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Abstract— This paper investigates the potential improvement
in signal reliability for outdoor wearable communications chan-
nels operating at 868 MHz using switched combining based
macro-diversity. In this paper, a number of different macro-
diversity configurations consisting of two and four base stations
were considered to help mitigate the impact of body shadowing
upon a wearable node, which was located on the central chest
region of an adult male. During the field measurements, five
different walking movements were performed, and then analyzed
to investigate the efficacy of using macro-diversity. It was found
that all of the considered switched combining schemes, includ-
ing switch-and-stay combining, switch-and-examine combining
(SEC) and SEC with post-examining selection (SECps) provided
a worthwhile signal improvement when an appropriate switching
threshold was adopted. The maximum diversity gain obtained
in this paper was found to be 19.5 dB when using four-
base station SECps. The diversity gain, the number of path
examinations, and the number of path switches between base
stations for the switched combiner output varied according to
the determined switching threshold, highlighting the importance
of the selection of an appropriate threshold level. Furthermore,
the performance/complexity tradeoff is demonstrated. Finally,
the fading behavior at the output of the switched diversity
combiners was then characterized using the diversity specific
equations developed under the assumption of independent and
non-identically distributed Nakagami-m fading channels. Over
all of the measurement scenarios considered in this paper, the
theoretical models provided an adequate fit to the fading observed
at the output of the virtual switched combiner.

Index Terms— Diversity gain, macro-diversity, Nakagami-
m fading, shadowing, switched combining, wearable
communications.

I. INTRODUCTION

COMBINING the signal obtained from spatially sepa-
rated antennas is one well-known method of mitigating

the detrimental effects of fading and improving the signal
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reliability and the performance of wireless communication
systems [1], [2]. Since spatial diversity schemes generally
require no additional transmit power or bandwidth, they are
more commonly applied compared to other diversity tech-
niques such as time, frequency and polarization diversity [3].
Spatial diversity schemes are often implemented using two
main configurations, namely micro- and macro-diversity which
are differentiated according to the allocation of the antennas.
In micro-diversity based systems, the antennas are typically
positioned within a single base station and their spacing
is in the order of, or shorter than, the carrier wavelength.
The expectation here is that the antennas will experience
different small-scale fading (multipath). On the other hand,
in macro-diversity based systems, the antennas are located in
a number of different spatially separated base stations and
their spacing is much longer than the carrier wavelength.
This causes the antennas to experience different large-scale
fading (shadowing). Hence, micro- and macro-diversity are
generally employed to combat the effects of multipath fading
and shadowing, respectively [4].

Switched combining and gain combining are the most preva-
lent combining schemes utilized in conjunction with micro-
and macro-diversity based systems [5]. In switched combining
schemes, the receiver selects one of the available diversity
paths according to a corresponding criterion. This category of
combiners contains both the pure selection combining (PSC)
and threshold selection combining (TSC) techniques. On the
other hand, in gain combining schemes, the output of combiner
is formed as a linear combination of the signals received by
all of the diversity paths. This class of combiner includes the
equal gain combining (EGC) and maximum ratio combining
(MRC) techniques. In general, a better performance can be
achieved by gain combining schemes compared to switched
combining schemes. Furthermore, it is widely recognized that
MRC is generally considered as the optimal combining scheme
in terms of performance. Nevertheless, switched combining
has remained popular due to its relatively low complexity
and ease of implementation. In a PSC system, the combiner
requires continuous and simultaneous knowledge of all of
the possible signal branches, which can be both time- and
power-consuming. Contrastingly, in a TSC system, the receiver
stays with the current branch as long as its signal-to-noise
ratio (SNR) is above the predetermined switching threshold.
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In other words, the receiver switches from the current branch
to another only when its SNR falls below the predetermined
switching threshold [6]. Therefore, this approach prevents
the unnecessary monitoring of the SNR of all branches but
more importantly avoids needless switching between branches
especially when the SNR of the currently selected branch is at
a level which is sufficient to provide the desired information
recovering capacity. The TSC grouping of combiners consists
mainly of the switch-and-stay combining (SSC), switch-and-
examine combining (SEC) and SEC with post-examining
selection (SECps) schemes.

Over the last few decades, a number of studies inves-
tigating spatial diversity techniques have been performed
in the context of wearable or equivalently body-centric
communications [7]–[14]. However, the majority of these have
considered only PSC, EGC and MRC schemes [7]–[12]. As
mentioned above, these combining schemes can be resource
consuming compared to simpler TSC schemes and therefore
may be impractical for implementation in wearable systems
which favor low complexity, low cost and ultra-low power
architectures [15], [16]. To this end, Liang and Smith [13] and
Smith [14] have studied cooperative diversity using the SEC
scheme for on-body communications channels. In [13], it was
shown that a cooperative switched combining scheme provided
an improvement in outage probability (OP), a reduction in
power consumption and a low switching rate. Smith [14]
demonstrated that the outage performance of the cooperative
switched combining scheme was not considerably degraded,
but it had a much lower switching rate between branches when
compared to the traditional cooperative PSC scheme.

Moreover, the majority of the studies on spatial diversity
techniques for wearable communications which have been
presented in the literature have focused on micro-diversity
systems positioned either on the human body or at a base
station with the aim of mitigating the impact of multipath
fading [7]–[9]. However, the use of micro-diversity alone may
not be sufficient to overcome the arguably more critical signal
degradations caused by random shadowing events induced
by the human body and obstacles in the local surroundings.
To overcome human body shadowing in wearable communi-
cations channels, spatial diversity using antennas distributed
across the human body has been proposed [17], [18]. For
example, in [17], front and back positioned antennas used
together with a PSC scheme provided mitigation of human
body shadowing and an overall improvement in signal relia-
bility in outdoor body-to-body communications channels at
2.45 GHz. In [18], six receiver antennas were distributed
across the front and back torso of the human body to help
overcome the detrimental effects of human body shadowing
in off-body communications within an indoor environment at
868 MHz. The benefit of having more than two branches was
demonstrated by comparing the diversity gains between dual-
branch and six-branch receiver configurations. Nonetheless,
there are many drawbacks to constructing diversity systems
designed to be worn on the human body, especially when
compared to integrating the technology into a local base station
or using combining opportunities offered by multiple base
stations. These include potential obtrusion to the user, the

additional weight added to the wearable system, associated
circuity and enclosures and also the extra drain on battery
life.

To the best of our knowledge, a systematic investigation
of the utilization of TSC based macro-diversity to overcome
shadowing for outdoor wearable communications has yet
to appear in the open literature. Therefore, in this paper,
we examine the potential improvement in signal reliability
for outdoor wearable communications channels operating at
868 MHz using the switched combined signal forwarded from
multiple spatially distributed base stations. It is widely known
that an SSC scheme gains no further benefit from having
more than two signal branches [19]. Accordingly, we consider
dual-base station SSC, L-base station SEC and L-base station
SECps schemes in this study. Most importantly though, for
the first time, we statistically characterize the fading behavior
observed at the output of the switched diversity combiners,
i.e., from the perspective of the combiner output, using the
diversity specific equations which were developed under the
assumption of independent and non-identically distributed
(i.n.i.d.) Nakagami-m fading channels.

The remainder of the paper is organized as follows.
In Section II, we briefly review the statistical characteristics of
the Nakagami-m fading model before introducing theoretical
equations for the cumulative distribution functions (CDFs) and
probability density functions (PDFs) of L-base station SSC,
SEC and SECps schemes operating in i.n.i.d. Nakagami-m
fading channels. In Section III, we describe the measure-
ment set-up, experiments and environments. In Section IV,
the achievable diversity gain, correlation, number of path
examinations and number of path switches for the SSC, SEC
and SECps schemes are presented and compared with those for
the PSC scheme. Model fitting for the SSC, SEC and SECps
schemes is presented in Section V while a further performance
analysis is conducted while considering the OP for the three
schemes in Section VI. Finally, Section VII concludes the
paper with some closing remarks.

II. FIRST-ORDER STATISTICS OF SWITCHED COMBINERS

OPERATING IN NAKAGAMI-m FADING ENVIRONMENTS

A. The Nakagami-m Fading Model

The Nakagami-m fading model has been proven to char-
acterize the fading behavior of a diverse range of wireless
channels such as those found in body-centric [20], [21] and
land-mobile [22], [23] communications systems. It is a general
statistical model which includes as special cases a number
of well-known distributions such as the one-sided Gaussian
(m = 0.5) and Rayleigh (m = 1) distributions [24]. It can also
be used to approximate the Rician distribution when m > 1.
As well as modeling small scale fading, the Nakagami-m
model can be used to describe shadowing of the signal ampli-
tude owing to its relationship with the gamma distribution.
It is already well established that the gamma distribution can
be used to model shadowing of the signal power [25], [26] and
since gamma and Nakagami-m random variables are related
by a simple quadratic transformation, accordingly the signal
power or equivalently SNR over a Nakagami-m fading channel
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is distributed according to the gamma distribution [6], [27].
The PDF, fγ (γ ), and CDF, Fγ (γ ) of the SNR in
Nakagami-m fading channels can be expressed as [6]

fγ (γ ) = mmγ m−1

� (m) γ̄ m
exp

(
−mγ

γ̄

)
(1)

Fγ (γ ) = 1 −
�

(
m, mγ

γ̄

)
� (m)

(2)

where m is the fading severity parameter, γ̄ = E
[
γ
]

is the
average SNR where E [·] is the expectation operator, � (·)
is the gamma function and � (·, ·) is the upper incomplete
gamma function [28].

B. L-Base Station SSC Operating Over Nakagami-m
Fading Channels

For the SSC scheme, when the received SNR at the currently
selected branch, or equivalently in this case base station,
falls below the predetermined switching threshold, the receiver
simply switches from one base station to another base station
and then stays with that base station irrespective of its channel
condition. When the fading observed at each of the base
stations is assumed to be i.n.i.d. the CDF and PDF of the
output SNR at an L-base station SSC combiner can be written
as follows [19]

FSSC (γ ) =
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1
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[
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⎛
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Fi (γ ) , γ ≥ γT

(3)

fSSC (γ ) =
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⎠
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⎤
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(4)

where L is the number of base stations, γT is the fixed
switching threshold, fi (·) and Fi (·) denote PDF and CDF
for i th base station, respectively, and λi is the probabil-
ity that the i th base station is used in the SSC scheme,
which can be obtained using an L-state Markov chain
such that

λi =
⎛
⎝L−1∑

j=0

1

Fj (γT )

⎞
⎠

−1
1

Fi (γT )
, i = 0, 1, . . . , L − 1. (5)

Now substituting (1) and (2) into (4), we can obtain the
PDF of the output SNR of an L-base station SSC combiner

operating over i.n.i.d. Nakagami-m channels as given in (6),
as shown at the top of the next page.

C. L-Base Station SEC Operating Over Nakagami-m
Fading Channels

For the SEC scheme, when the received SNR at the cur-
rently selected base station falls below the predetermined
switching threshold, the receiver switches from the current
base station to another base station and examines its SNR.
If it is not above the predetermined switching threshold, the
receiver switches to another base station and examines its SNR
again. The receiver repeats this process until either it finds an
acceptable base station which is above the switching threshold
or determines that all base stations are not acceptable. In the
latter case, it usually uses the last examined base station.
Again, for i.n.i.d. fading at each of the base stations, the CDF
and PDF of the output SNR at an L-base station SEC combiner
can be expressed as [19]

FSEC (γ )

=
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fSEC (γ )

=
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(8)

where (a)b denotes a modulo b and λi is the stationary
distribution of an L-state Markov chain and is defined as
follows

λi

=
⎡
⎣L−1∑

j=0

FL−1 (γT )
(
1−Fj (γT )

)
Fj (γT ) (1−FL−1 (γT ))

⎤
⎦

−1
FL−1 (γT ) (1−Fi (γT ))

Fi (γT ) (1−FL−1 (γT ))
.

(9)

Similarly, by substituting (1) and (2) into (8), the PDF of the
output SNR of an L-base station SEC combiner operating over
i.n.i.d. Nakagami-m channels can be obtained as given in (10),
as shown at the top of the next page.

D. L-Base Station SECps Operating Over Nakagami-m
Fading Channels

When the received SNR at the currently selected base station
falls below the predetermined switching threshold a receiver
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where n = (i − j + k)L and
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utilizing an SECps scheme switches from the current base
station to another base station and examines its SNR in exactly
the same manner as an SEC scheme. However, when there is
no acceptable base station available after examining all base
stations, the SECps scheme selects the best performing base
station, i.e., the base station with the highest SNR, instead of
the last examined one. For an L-base station SECps system in
which the SNR is i.n.i.d. at each of the L base stations, the
PDF of the output SNR can be expressed as [29]

FSECps (γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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The PDF of the output SNR can then be obtained by differ-
entiating (12) with respect to γ

fSECps (γ ) =
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Again, the PDF of the output SNR at an L-base station SECps
combiner operating over i.n.i.d. Nakagami-m channels can be
obtained by substituting (1) and (2) into (13) as given in (14),
as shown at the bottom of the next page.

III. EXPERIMENTAL SET-UP AND

MEASUREMENT PROCEDURE

The wearable device used in this study was a purposely
developed wireless sensor node with dimensions of 45 mm ×
60 mm ×1.6 mm as shown in Fig. 1(a). The unit consisted of
a CC1110F32 radio frequency (RF) transceiver, manufactured
by Texas Instruments (TI) which was configured to operate
at 868 MHz using a printed meander-line PCB monopole
antenna. During the experiments, the unit was configured to
transmit a 9 byte data packet at a data rate of 500 kbps using
minimum-shift keying. All data transmissions occurred at a
regular interval of 20 ms with an output power level of 0 dBm.

The test subject (an adult male of height 1.70 m and
mass 75 kg) wore a sports T-shirt (86% polyester / 14%
elastane) with a special holding pocket purposely sewn on to
the garment at the central chest region as shown in Fig. 1(a).
The sensor node was carefully positioned in the pocket such
that the printed antenna was in a plane parallel to the surface
of the test subject’s body. It is worth highlighting that the
battery which was used to power the sensor node ensured
that there was at least a 6 mm separation between the body
and the printed meander-line antenna. The virtual base station
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Fig. 1. (a) Purposely developed garment with mounting pocket at front central chest and the bodyworn wireless node used in the measurements; (b) satellite
view and side view of the measurement environment showing the positions of base stations.

Fig. 2. Five individual user movement scenarios: a rectangular shape walk path (scenarios 1 and 2); a diagonal-line walk path (scenario 3); a meandering
walk path (scenarios 4 and 5). It should be noted that the dotted lines and base station 5 represent the test subject’s walk path and the target base station,
respectively.

array consisted of 10 identical, equidistant base stations which
were positioned in a rectangular configuration with a length of
approximately 20 m and a width of 6.6 m as shown in Fig. 2.
The purposely developed base station units also consisted of a
CC1110F32 RF transceiver configured to record the received
signal strength of each received packet. The antenna used
by the base station units was a +3.0 dBi omnidirectional

monopole antenna with a 10 dB bandwidth of 61 MHz (833-
894 MHz), positioned at a height of 1 m from ground level
using a non-conductive support.

As shown in Fig. 1(b), all of the experiments conducted in
this study were carried out in an outdoor playing field at the
Ormeau Park within the city of Belfast in the United Kingdom.
These experiments were designed to emulate the channel char-
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acteristics which may be present in outdoor wearable appli-
cations such as sports and health monitoring, people tracking
and positioning etc. Five individual measurement scenarios, all
based around a walking test subject, were considered as shown
in Fig. 2. These scenarios can be broadly categorized into the
walk path which the movement followed. They included a
rectangular shaped walk path (scenarios 1 and 2), a diagonal-
line walk path (scenario 3) and a meandering walk path
(scenarios 4 and 5). In practice, it is the SNR which is of most
interest in the analysis of the performance of wireless systems.
For the purpose of transforming the received signal power into
the received SNR, prior to the acquisition of the channel data,
a number of noise floor measurements were performed. To
improve the robustness of the noise parameter estimates, these
measurements were repeated 10 times. The corresponding
mean recorded noise threshold was −100.9 dBm while the
corresponding lowest received signal power observed in the
environment was −94.0 dBm.

IV. BASE STATION CORRELATION, DIVERSITY GAIN,
NUMBER OF PATH EXAMINATIONS AND

NUMBER OF PATH SWITCHES

Prior to the data analysis, it was required to transform the
received signal power into the received SNR. To this end,
the noise parameters μ (mean) and σ (standard deviation)
were first estimated from noise floor measurements using
maximum likelihood estimation (MLE) [30] under the assump-
tion that noise envelope was characterized by a Gaussian
distribution [31]. The estimated noise parameters obtained over
the 10 repeated trials were then averaged and found to be
0.0021 mV (standard deviation 0.017 uV) and 0.0006 mV
(standard deviation 0.009 uV) for the μ and σ parameters,
respectively. The total duration of the 10 repeated noise floor
measurements was approximately 10 minutes. From the noise
parameter estimates, random variables representing the noise
process were then generated. Following from this, the received
signal power was then transformed into the received SNR
using the definition of SNR = PSignal/PNoise where PSignal

and PNoise denote the signal power and noise power,
respectively. As an example, Fig. 3 shows the received sig-
nal power at base station 1 for scenario 5 along with its
transformed SNR. The average received SNR at each base
station for all considered scenarios ranged between 22.6 dB
and 34.0 dB. Based on these averaged SNR values, three
different switching thresholds were determined, which were
low (10 dB), medium (30 dB) and high (50 dB).

A. Base Station Correlation

Since any significant correlation between the signal received
at each of the base stations has the potential to degrade
the diversity gain, it is important to determine the level of
correlation which may exist. For a macro-diversity scheme to
be effective, the received signal at each base station should be
statistically independent. In the context of diversity reception,
two signals are said to be suitably de-correlated if their cross-
correlation coefficient is less than 0.7 [1]. Fig. 4 shows the
CDFs of the cross-correlation coefficients calculated for all

Fig. 3. Received signal power (continuous lines) at base station 1 for
scenario 5 alongside the transformed SNR (dashed lines).

Fig. 4. CDFs of the calculated cross-correlation coefficients for all of the
considered scenarios.

of the considered scenarios. It is worth noting that the cross-
correlation coefficient computations were performed using the
approach proposed in [32]. It is clear from Fig. 4 that the
majority of the estimated cross-correlation coefficients were
between −0.7 and 0.7. This result suggests that a switched
combining based macro-diversity system equipped with mul-
tiple base stations can provide a worthwhile improvement in
the received signal reliability.

B. Diversity Gain

To evaluate the potential improvement in the received signal
reliability that could be obtained using a switched combining
based macro-diversity system with the SSC, SEC and SECps
schemes, we utilize the concept of macro-diversity gain. This
is defined as the signal reliability improvement between the
SNR of the diversity combiner and that of the target base
station for a given probability or signal reliability. It should
be noted that for this study, base station 5 was considered as
the target base station and all macro-diversity gain calculations
were made at a signal reliability of 90%. For brevity, herein
we refer to macro-diversity gain as simply diversity gain.
In this study, we have considered dual- and four-base station
configurations with two different potential groupings of base
stations. These were: group 1 a dual-base station configuration
consisting of base stations 1 and 6; group 2 another dual-
base station configuration consisting of base stations 5 and 10;
group 3 a four-base station configuration consisting of base
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TABLE I

DIVERSITY GAINS FOR THE SSC, SEC, SECPS AND PSC SCHEMES WITH THREE DIFFERENT SWITCHING
THRESHOLDS FOR ALL MEASUREMENT SCENARIOS AND GROUPINGS

stations 1, 4, 6 and 9; group 4 another four-base station
configuration consisting of base stations 3, 5, 8 and 10.

Table I shows the diversity gain statistics for dual-base sta-
tion SSC, SEC and SECps schemes with groups 1 and 2, four-
base station SEC and SECps schemes with groups 3 and 4.
For comparison, the diversity gains for dual- and four-base
station PSC are also shown in Table I. For a medium switching
threshold, the benefit of having more than two available base
stations was demonstrated by comparing the diversity gains
between dual- and four-base station configurations. For exam-
ple, four-base station SEC with group 3 for scenario 1 provided
a diversity gain of 13.7 dB whereas dual-base station SEC with
group 1 achieved a diversity gain of 2.8 dB. Moreover, for all
of the groupings and scenarios, dual-base station SEC provided
the same performance as dual-base station SSC. Table I shows
that the estimated diversity gain not only varied according
to the different scenarios but also with different groupings.
This observation can be attributed to each base station having
experienced different shadowing intensities depending on the
position and orientation of the test subject’s body during
each movement scenario. When comparing the diversity gains
obtained across all scenarios, the values obtained for scenario 4
were the highest. One possible explanation for this is that the
average SNR at the target base station (base station 5) for
scenario 4 was smaller than those for the other scenarios. This
occurred due to the direct signal path between the bodyworn
node and the target base station existing only for a relatively
short length of time compared to those for other scenarios due
to the test subject’s movement.

To visually investigate the improvement in the received
signal reliability using the switched diversity schemes, Fig. 5
shows the received SNR time series at base stations 1, 4,
6 and 9 (group 3) along with the output SNR of four-base
station SEC and SECps with a medium switching threshold

Fig. 5. Received SNR at base stations 1 (blue), 4 (red), 6 (green) and
9 (yellow) along with the output SNR (black) of four-base station switched
diversity schemes for scenario 2: (a) SEC and (b) SECps.

(30 dB) for scenario 2. When the currently selected base
station suffered from deep fading due to the shadowing caused
by the test subject’s body, the switched combining based
macro-diversity schemes selected and switched to another
base station. Consequently, for both the SEC and SECps
schemes, the majority of SNR values below the 30 dB level
(the predetermined switching threshold) were eliminated. This
suggests that a macro-diversity system using either an SEC or
SECps scheme made up of base stations 1, 4, 6 and 9 can
mitigate the shadowing effect of the person’s body and achieve
a significant improvement in signal reliability.

For a dual-base station configuration operating with a
medium switching threshold, group 1 always provided a
greater diversity gain than group 2 with the exception of
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Fig. 6. Effect of different switching thresholds on achievable diversity gain of four-base station (a) SEC and (b) SECps with group 3 (continuous lines) and
group 4 (dashed lines) for all of movement scenarios.

scenario 4. This suggests that the location of the base sta-
tions in group 1 was more appropriate compared to group 2
in general. However, for a four-base station configuration,
groups 3 and 4 provided similar diversity gains for all of the
movement scenarios. As well as this, for the majority of the
movements considered in this study, adding the two additional
base stations also offered no significant difference in the
diversity gains provided by the SEC and SECps schemes when
a medium switching threshold was selected. For example, as
shown in Table I, the diversity gains for dual-base station SEC
and SECps with group 1 for scenario 1 were 2.8 dB and
10.6 dB, respectively. On the other hand, for four-base station
SEC and SECps with group 3, both had the same diversity gain
which was 13.7 dB. These suggest that a switched diversity
system with more than two base stations is less affected by the
location of the base stations and thus provides a more stable
performance in terms of signal reliability.

Furthermore, it was found that the estimated diversity
gains for both the dual-base station and four-base station
configurations strongly depended on the switching threshold.
For example, the diversity gains for four-base station SEC
with group 3 for scenario 2 were −2.5, 6.8 and −8.2 dB at
the low, medium and high switching thresholds, respectively.
Interestingly, negative diversity gains were also observed at
the low and high switching thresholds, indicating that there
was no benefit to using a switched diversity scheme with these
switching thresholds. To examine the effect of different switch-
ing thresholds on the achievable diversity gain, Fig. 6 shows
the diversity gains for four-base station SEC and SECps with
different switching threshold values ranging between 0 dB and
60 dB for all of scenarios. It is obvious that the estimated
diversity gains varied according to the switching threshold, but
there always existed an optimum switching threshold which
maximizes the diversity gain. With the optimum switching
threshold, both four-base station SEC and SECps systems
provided almost the same diversity gain as an equivalent

PSC system. While the diversity gain for four-base station
SEC decreases beyond the optimum switching threshold, the
diversity gain for four-base station SECps became saturated at
the maximum achievable diversity gain level. This was most
likely due to the different combining methods implemented
by the SEC and SECps schemes. The SEC scheme selects the
last examined base station when no acceptable base station is
found after examining all available options. On the other hand,
the SECps scheme selects the best path which has the highest
SNR among all paths instead of the last examined base station.
The SECps scheme therefore acts as a PSC scheme when the
switching threshold is high and no acceptable path is found
after examining all diversity paths.

C. Number of Path Examinations and Switches

To evaluate the trade off between performance and com-
plexity (which is related to energy consumption), we eval-
uated the number of path examinations and the number of
path switches between base stations for the SEC and SECps
schemes. As shown in Fig. 7, the number of path examinations
and switches for the SEC an SECps schemes were almost
the same when the switching threshold was low while the
SECps scheme had a greater number of path examinations and
switches compared to the SEC scheme at the middle and high
switching threshold levels. This was most likely due to that
when there is no acceptable base station available the SEC
scheme usually selects the last examined base station while
the SECps scheme selects the best performing base station.
Consequently, for an L-base station arrangement, the SEC
scheme has at most L − 1 path switches whereas the SECps
scheme has at most L path switches, i.e., the number of path
switches for the SECps scheme is usually greater than that for
the SEC scheme. They are the same only if the last examined
base station has the highest SNR.

Likewise, the number of path examinations for the SEC and
SECps schemes were almost the same at the low switching
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Fig. 7. Diversity gain, the number of path examinations and the number of path switches for scenario 5 using the group 3 configuration with four-base
station SEC and SECps schemes for different switching thresholds. For comparison, (a)-(b) four-base station PSC using the group 3 configuration and (d)-(f)
dual-base station SEC and SECps using the group 1 configuration are also presented.

threshold levels whereas the number of path examinations for
the SECps was greater than that for the SEC at the medium
and high switching threshold levels. More specifically, for an
L-base station arrangement, when the receiver switches from
the (L −1)th base station to the L th base station (i.e., last base
station), the SECps scheme needs to monitor the L th base
station whereas the SEC scheme does not need to do this
because it switches to the L th base station anyway irrespective
of whether the received SNR at L th base station is above the
switching threshold or not. Based on the diversity gain, the
number of path examinations and the number of path switches,
it was observed that the SECps scheme provided a greater
diversity gain, but the additional number of path examinations
and switches will lead to more energy consumption compared
to the SEC scheme.

When compared with a PSC scheme, as shown in
Figs. 7(a) and (b), the SECps scheme had a smaller number
of path examinations at medium switching threshold levels,
but it had a similar diversity gain. This can be explained
by the fact that the PSC scheme monitors the SNR of all
of the base stations and then selects the base station with
the highest SNR. Therefore, at medium switching threshold
levels, the SECps scheme prevents the unnecessary monitoring
while providing a similar performance compared to the PSC
scheme, suggesting that the SECps scheme is less complex
and thus more energy efficient compared to the PSC scheme.
However, as expected, it was observed that the number of path
examinations for the SECps and PSC became similar at high
switching threshold levels. Figs. 7(d)-(f) show a comparison
of the diversity gain, the number of path examinations and the
number of path switches between base stations for dual- and
four-base station SEC and SECps schemes. While it is obvious
that four-base station SEC and SECps provided a greater
diversity gain (higher performance) than dual-base station

SEC and SECps, they also had a significantly greater number
of path examinations and switches (higher complexity and
higher energy consumption). Therefore the choice as to which
configuration and scheme to implement for wearable systems
will come down to a choice between performance and com-
plexity. For some, but not all cases (see Fig. 7 and Table I), a
dual-base station configuration with the appropriate switching
threshold/technology may offer a good compromise between
complexity (energy consumption) and information recovering
capability.

V. FADING STATISTICS AT THE OUTPUT

OF THE SWITCHED COMBINERS

To characterize the fading behavior at the output of the
virtual switched combiners, the diversity specific analytical
equations presented in (6), (10) and (14) for L-base sta-
tion SSC, SEC and SECps schemes operating in i.n.i.d.
Nakagami-m fading channels were fitted to the empirical data.
The Nakagami m and γ̄ parameters were estimated using
a non-linear least squares routine written in MATLAB to
fit (6), (10) and (14) to the measurement data. Again, we have
considered dual- and four-base station configurations with the
same groupings presented in Section IV. It should be noted that
the minimum data set size used for the parameter estimation
was 761 samples.

As an example of the results of the model fitting process,
Fig. 8 shows the PDFs of four-base station SEC and SECps
(group 3) with three different switching thresholds for sce-
nario 5. The resistor-average distance (RAD) was evaluated
to provide a quantitative measure of the goodness-of-fit of the
theoretical PDFs with the measured data. Unlike the Kullback-
Leibler divergence (KLD), the RAD satisfies the triangle
inequality and thus is a true distance metric. This can be
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Fig. 8. Empirical (black circle symbols) and theoretical (continuous lines) PDFs for scenario 5 with group 3 for four-base station SEC with (a) low,
(b) medium and (c) high switching thresholds and four-base station SECps with (d) low, (e) medium and (f) high switching thresholds.

TABLE II

ESTIMATED RESISTOR-AVERAGE DISTANCE FOR ALL OF THE CONSIDERED CASES

defined as follows [33]

RAD =
(

1

KLD (p, q)
+ 1

KLD (q, p)

)−1

(15)

where KLD (·, ·) denotes the KLD given by

KLD (p, q) =
∫ ∞

−∞
p(x)log2

(
p (x)

q (x)

)
dx with p(x) and

q(x) denoting the true PDF of the data and the test PDF, i.e.,
the approximated PDF of p(x), respectively [34]. As the RAD
tends towards zero, the test PDF (theoretical PDF) is in very
good agreement with the true PDF (empirical PDF). The RAD
analysis results are presented in Table II. The minimum and
maximum RAD values were 0.0039 and 0.0887 respectively,
suggesting that the theoretical models for SEC and SECps

generally provided an adequate fit to the measured data.
To assist with the interpretation of the goodness-of-fit, the
equivalent RAD was used to calculate the standard deviation
σ of a zero-mean, σ 2 variance Gaussian PDF that is used to
approximate a zero-mean, unit variance Gaussian PDF1. The
minimum and maximum calculated σ values corresponding
to the RAD above were 1.09 and 1.53 respectively. As the

1For the case when p is a Gaussian PDF with zero-mean and unit variance
and q is a Gaussian PDF with zero-mean and variance σ2, we can have
KLD (p, q) = 0.5

(
σ−2 − 1

)
+ ln (σ ) and KLD (q, p) = 0.5

(
σ 2 − 1

)
−

ln (σ ). By substituting these equations into (15), we can obtain RAD =(
1

0.5
(
σ−2−1

)+ln(σ)
+ 1

0.5
(
σ2−1

)−ln(σ)

)−1
.
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TABLE III

PARAMETER ESTIMATES FOR FOUR-BASE STATION SEC AND SECps WITH THREE DIFFERENT SWITCHING THRESHOLDS
FOR ALL OF THE CONSIDERED MOVEMENT SCENARIOS IN Group 3 (BASE STATIONS 1, 4, 6, AND 9)

Fig. 9. (a) Received SNR at base stations 6 and 9 along with the output SNR of four-base station SEC (continuous lines); (b) PDFs of the output SNR
(circle symbols) of four-base station SEC and the received SNR (continuous lines) at base station 9 beyond the vertical line which represents path switching
from base station 6 to 9. It should be noted that the received SNR at base stations 1 and 4 in group 3 are not shown in Fig. 9(a) for clarity.

Gaussian distribution is widely known and used, this provides
a reference level upon which our fits may be interpreted.

Furthermore, to allow the reader to reproduce the theoretical
plots reported, Table III provides the parameter estimates for
four-base station SEC and SECps (group 3) with three different
switching thresholds for all considered movement scenarios.
As we can see from Table III, the parameter estimates obtained
for the fading experienced at each of the considered base
stations were different, suggesting that each base station
experienced non-identical Nakagami-m fading. Additionally,
as expected, the parameter estimates also varied according to
the user’s movement. For example, when comparing scenarios
4 and 5 for four-base station SECps with a medium switching
threshold (30 dB), the estimated m parameters for scenario 4
were higher than those for scenario 5. This suggests that the

fading observed at the four base stations during scenario 4
were subject to less shadowing compared to scenario 5. This
is supported by the fact that the average SNR for the output
of four-base station SECps (group 3) for scenario 4 (36.4 dB)
was greater than that for scenario 5 (35.8 dB).

As shown in Fig. 8, the shapes of the PDFs were different
according to the switching threshold that was adopted. When
a low switching threshold was chosen (i.e., 10 dB) the PDFs
of both the SEC and SECps were the same as shown in
Fig. 8(a) and (d). This was most likely due to the fact that
path switching between base stations rarely occurred at the
low switching threshold level. More specifically, as shown
in Fig. 9(a), there was only one instance of path switching
between base stations (base station 6 → 9) with the virtual
switched combiner selecting base station 9 for the remainder
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TABLE IV

PARAMETER ESTIMATES FOR DUAL-BASE STATION SEC AND SECps WITH Group 2 (BASE STATIONS 5 AND 10) AND FOUR-BASE STATION SEC
AND SECps WITH Group 4 (BASE STATIONS 3, 5, 8, AND 10) AT THE MEDIUM SWITCHING THRESHOLD FOR SCENARIO 2

of the time. It should be noted that the received SNR at base
stations 1 and 4 in group 3 is not shown in Fig. 9(a) for
clarity. As evidence for this, Fig. 9(b) shows that the PDF
of the output SNR of four-base station SEC and the PDF of
the received SNR at base station 9. It is clear that these two
PDFs were similar. Note that the PDF of the received SNR at
base station 9 in Fig. 9(b) was generated using the received
SNR beyond the vertical line in Fig. 9(a) which represents
path switching from base station 6 to 9.

However, when the switching threshold is high (50 dB) path
switching between base stations occurs during almost every
single time slot. This is particularly evident from Fig. 10,
where the SEC scheme switched from the currently selected
base station to another base station even if the presently
selected base station had the highest SNR, causing a degra-
dation in the overall performance. As a result of this, there
was a significant increase in the spread of the output SNR
of the SEC scheme as shown in Fig. 8(c). However, the
SECps scheme does not follow this regime when the switching
threshold is high as it favors the base station with the highest
SNR when no acceptable signal base station is above the
switching threshold (Fig. 10). As discussed in Section IV,
in this scenario, the SECps scheme effectively operates as a
PSC scheme. Therefore, unlike the SEC scheme, the majority
of the SECps output SNR levels were in the reduced range
from 25 dB to 45 dB, which resulted in an empirical prob-
ability density with a significantly reduced spread as shown
in Fig. 8(f).

For both the SEC and SECps schemes, when the switching
threshold was set at a medium value (30 dB), the majority of
combiner output SNR levels ranged between 25 dB and 45 dB
as shown in Fig. 8(b) and (e). These were almost identical to
those obtained for the SECps scheme configured with a high
switching threshold, i.e., a PSC scheme, although occasionally
the SEC scheme still had instances where the combiner output
SNR was below 15 dB. When compared in terms of the
number of path examinations and achievable diversity gain, the
SECps scheme operating with a medium switching threshold
provided a more favorable alternative because it achieved suf-
ficient performance with a lesser number of path examinations
compared to the PSC scheme.

Further evidence of the benefits of having more than two
base stations can also be provided by analyzing the fading
statistics at the output of the switched diversity combiner.
For example, Fig. 11 shows the PDFs of dual-base station
SEC and SECps with group 2 and four-base station SEC and
SECps with group 4 for scenario 2 when a medium switching
threshold was adopted. As we can see, for both the SEC

Fig. 10. Excerpt of the SNR time series obtained for scenario 5 com-
paring four-base station SEC and SECps with the received SNR at base
stations 1, 4, 6 and 9.

and SECps schemes, the four-base station configuration had a
lower number of signal observations at low SNR levels and
a higher number of signal observations at high SNR levels
than the dual-base station configuration. More specifically, as
shown in Fig. 11(a), the dual-base station configuration had
some output SNR levels which were less than 15 dB whereas
the four-base station configuration had no output SNR less
than 15 dB. This result indicates that an additional improve-
ment in the signal quality can be achieved by implementing
a four-base station macro-diversity configuration, in which
case all SNR drops below 15 dB level will be eradicated.
Again, it was observed that the theoretical PDFs provided
an adequate fit to empirical PDFs with the exception of the
dual- and four-base station SEC schemes at SNR levels below
the switching threshold. Table IV provides a sample of the
parameter estimates obtained for both dual- and four-base
station SEC and SECps with a medium switching threshold
selected for scenario 2 to allow reader to reproduce the
theoretical probability densities presented in Fig. 11.

VI. OUTAGE PROBABILITY

The OP is an important performance measure for wireless
communication systems. It can be defined as the probability
that the instantaneous SNR drops below a minimum threshold
required to support acceptable performance, such that

Pout = Pr [γ ≤ γOutage] = Fγ (γOutage) (16)

where γOutage is the pre-determined SNR threshold. For the
SSC, SEC and SECps schemes, the corresponding OP can
be readily obtained by replacing γ in (3), (7) and (12)
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Fig. 11. Empirical (symbols) and theoretical (continuous lines) PDFs for scenario 2 for dual-base station configuration with group 2 (circle symbols) and
four-base station configuration with group 4 (triangle symbols) for both (a) SEC and (b) SECps schemes with a medium switching threshold (30 dB).

Fig. 12. Empirical and theoretical OPs for four-base station SEC and SECps with group 3 for scenarios 3 and 5 with a medium switching threshold (30 dB)
alongside the empirical OP for four-base station PSC. It is worth highlighting that the parameter estimates given in Table III are used for the theoretical OPs.

with γOutage. As an example, Fig. 12 shows the OPs of the
four-base station SEC and SECps schemes with group 3 for
scenarios 3 and 5 when a medium switching threshold was
adopted. For comparison, the OPs of four-base station PSC are
also illustrated in Fig. 12. It is clear that the theoretical OPs
provided a good fit to the empirical OPs for both the SEC and
SECps schemes. Furthermore, it can be seen that the SECps
scheme outperformed the SEC scheme for the lower outage
threshold levels, particularly below the switching threshold
(30 dB). Finally, it is also worth remarking that, similar to the
results presented in Section IV, the four-base station SECps
set-up provided almost the same performance as the four-base
station PSC configuration.

VII. CONCLUSION

The potential improvement in signal reliability for outdoor
wearable communications at 868 MHz using macro-diversity
arrangements based on dual-base station SSC, SEC and SECps
and four-base station SEC and SECps has been investigated.
The benefit of having more than two base stations has been
demonstrated by comparing the diversity gains between a
range of dual- and four-base station configurations. It was
found that for the scenarios considered here, switched diversity
systems consisting of a four-base station configuration were
less affected by the location of the base stations and thus

provided a more stable performance (in terms of signal relia-
bility). Among the three different switched diversity schemes,
the SECps scheme provided the best performance for all sce-
narios and groupings. The results have shown that this type of
switched diversity system can provide up to 19.5 dB diversity
gain when using a four-base station arrangement. However,
this improvement is not open-ended as it will add extra
complexity to the design of the switched diversity system.

The impact of different switching thresholds on the diver-
sity gain, the number of path examinations and the num-
ber of path switches of the various combiner outputs have
been studied to emphasize the importance of selecting an
appropriate switching threshold. It was observed that there
exists an optimum switching threshold which maximizes the
performance for this type of the wearable system. More
specifically, at the optimum switching threshold, the switched
diversity system can provide considerable performance with
much fewer path examinations when compared to the PSC
scheme. It was also found that while a four-base station
switched diversity system provides higher diversity gain than
a dual-base station switched diversity system, this comes at
the cost of having a greater number of path examinations
and switches. This result indicates that there exists a trade off
between diversity gain (performance) and the number of path
examinations and path switches between base stations (energy
consumption).
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In direct contrast to this, an inappropriate switching thresh-
old may cause not only the substandard performance of
wearable systems but also greater energy consumption due
to unnecessary path examinations and needless path switches
between base stations. In this case, no additional benefit is
obtained using a switched combining based macro-diversity
system. Consequently, the appropriate switching threshold
must be carefully chosen so that the switched combining based
macro-diversity system works as desired. In this study, each
scenario was found to have a different optimum switching
threshold. Nonetheless, among the three switching threshold
levels which were considered, the medium switching threshold
(30 dB) was found to be quite close to the optimum switching
threshold for all of the scenarios.

Finally, a statistical analysis of the switched diversity com-
biner output has been presented under the assumption of inde-
pendent and non-identically distributed Nakagami-m fading
channels. Over all of the measurement scenarios considered in
this study, the PDFs of the switched combiner including the
SSC, SEC and SECps schemes have been shown to provide an
adequate fit to the fading observed at the output of the virtual
switched combiner. From the parameter estimates, it was found
that each base station experienced non-identical Nakagami-m
fading. The parameter estimates also suggest that the fading
conditions observed at each base station varied according to
the user’s movement.
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