
5244 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 8, AUGUST 2017

Cooperative Spectrum Sensing With M-Ary
Quantized Data in Cognitive Radio

Networks Under SSDF Attacks
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Abstract— In this paper, we address the challenging and
important cooperative spectrum sensing (CSS) problem with
M-ary quantized data under spectrum sensing data falsifica-
tion (SSDF) attacks. We introduce a probabilistic SSDF attack
model to characterize the attacks by a malicious secondary
user (SU). We analyze the attack behavior and derive the
condition to nullify the detection capability of the fusion cen-
ter (FC). To defend against the SSDF attacks, we propose a novel
attack-proof CSS scheme with M-ary quantized data, mainly
including a malicious SU identification method and an adaptive
linear combination rule. By using the malicious SU identification
approach, FC identifies malicious SUs and removes them from the
data fusion process. The adaptive linear combination rule adjusts
the weighted coefficients with the distribution parameter sets of
identified normal SUs estimated using a maximum likelihood-
based estimator. FC performs the spectrum sensing process
with M-ary quantized data from the identified normal SUs.
Comprehensive evaluation is conducted. Evaluation results show
that the proposed malicious SU identification method can remove
malicious SUs successfully and the proposed CSS scheme with
M-ary quantized data is robust against the SSDF attacks.

Index Terms— Cognitive radio networks, cooperative spec-
trum sensing, malicious SU identification method, quantization,
spectrum sensing data falsification attack.

I. INTRODUCTION

COGNITIVE radio (CR) has emerged as a solution to the
spectrum scarcity, since it allows secondary users (SUs)

to opportunistically access the under-utilized spectrum bands
of primary users (PUs) on a non-interfering basis [1], [2].
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One of the main challenges in a cognitive radio net-
work (CRN) is using spectrum sensing with the aim of
finding the vacant spectrum band [3]. In the spectrum sensing
process, various effects of the listening channels (i.e., the
wireless channels between the PU and the SUs), such as
shadowing, multi-path fading, and hidden terminal problem,
have crucial impacts on the system performance. Thus, the
single-user spectrum sensing may not be reliable. To mitigate
these effects, cooperative spectrum sensing (CSS) has been
proposed and has attracted considerable attention in recent
years [4], [5]–[10].

In the CSS schemes, data fusion and final decision making
can be performed in a centralized [5]–[8] or decentralized
mode [9], [10]. In the centralized mode, there is a fusion
center (FC) undertaking the responsibility of coordinating the
cooperation among SUs and generating the overall sensing
result. The cooperation of SUs with the FC is generally
carried out in a three-phase process. The first phase is the
local spectrum sensing performed at SUs individually with
their built-in sensing mechanisms [3]. In other words, SUs
listen to their environment and generate local sensing results
about the PU signal. The second phase is the local sensing
reporting performed at both SUs and FC sides. SUs involving
cooperation send their local sensing results to the FC through a
dedicated [7], [8] or non-dedicated channel [9], [10], where the
local sensing results are transmitted in a raw [7], [8], [11], [12]
or quantization mode [13], [14]. The third phase is the data
fusion performed at the FC. The FC fuses the received
local sensing results to decide the status of the PU using a
fusion rule, such as the linear combination [7], [8], [11]–[15],
the likelihood ratio test [16], and so on. In the decentralized
mode, since the FC does not exist, SUs exchange their local
sensing results and make the final decision by themselves
in the second and third phases [17]. Most CSS schemes are
performed in a centralized mode. In this paper, we consider
the CSS with M-ary quantized data in the centralized mode.

Most research on the CSS in the CRN mentioned above
has been carried out under the assumption of conditionally
independent observations at SUs. In practice, as sensors
are observing the same phenomenon, it is likely to have
spatially dependent observations. Owing to the dependence
among observations, the design of the sensing scheme at
local sensors and the fusion rule at the FC becomes highly
complex. The effect of dependence on the performance of
distributed detection has been investigated recently [18], [19].
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In this paper, we consider the CSS with M-ary quantized data
using conditionally independent observations at SUs.

On the other hand, the cooperation introduces new secu-
rity threats to the CRN. The spectrum sensing data falsi-
fication (SSDF) attack [20], in which malicious SUs send
falsified local sensing results to degrade the performance of
the spectrum sensing, is a typical attack in the CSS. An SSDF
attack may impair the cooperation process, which results in
either the excessive interference on the PU network or the
decrease of the spectrum utilization of the CRN. Therefore,
having the ability to mitigate the SSDF attacks is a critical
issue for the CSS system. The SSDF attack problem has
been widely studied in the CSS with 1-bit quantized data
or soft data, and some attack-proof CSS schemes have been
proposed [20]–[32]. Due to the limited bandwidth in practice,
the reporting channel is assumed as a digital communication
link through which the quantized local sensing data are sent to
the FC. However, the SSDF attack problem in the CSS with
M-ary quantized data is still an open issue.

There is a number of research work related to the CSS
schemes under SSDF attacks. In [33], the negative effect of
the SSDF attacks on the detection performance of the CSS
with M-ary quantized data was analyzed, where it is assumed
that the attacker has complete knowledge about the status of
the PU, and malicious SUs choose symbols using an optimal
probability distribution based on the true hypothesis in order to
degrade the detection performance maximally. The assumption
in [33] may be too strong because malicious SUs should
have an extra power of knowing the true hypothesis. In [34],
the problem of distributed detection with M-ary quantized data
under SSDF attacks was also studied, where it is assumed
that malicious SUs do not have knowledge about the status
of the PU and the attacker is ignorant about the quantization
thresholds used at the SUs to generate M-ary symbols. The
assumption used in [34] may be too weak since malicious SUs
may have some knowledge about the quantization thresholds
used and incomplete knowledge about the true hypothesis
based on their local measurements. Moreover, the attack-
proof approaches proposed in [33] and [34] are under the
assumption that the attacker’s strategy is known such that the
a posteriori probabilities of malicious SUs can be computed.
In [35], an abnormality detection approach to alleviate the
challenge of the unknown attack strategy is proposed to detect
malicious SUs. This abnormality detection algorithm is based
on proximity, where it is assumed that the number of malicious
SUs is far smaller than that of cooperative SUs. The essential
technique for identifying a malicious user is to compare
the behavior of this user behavior with that of other honest
users. A malicious SU detection method using two conditional
frequency check statistics proposed by He et al. [36] can deal
with the case where malicious SUs dominate the network.
However, this method needs the assistance of a trusted user.

In this paper, we investigate the problem of the CSS with
M-ary quantized data under SSDF attacks from both perspec-
tives of the attacker and the defender. The main contributions
of this paper are summarized as follows.

(1) We introduce a probabilistic and independent SSDF
attack model for the CSS with M-ary quantized data, where the

malicious SU independently modifies its quantized data
according to its attack probability, the local decision about
the status of the PU, and the local sensing result about the PU
signal. This model captures the characteristics of the SSDF
attacks by malicious SUs well.

(2) We characterize the negative effect of the proposed
probabilistic SSDF attack on the performance of the CSS
with M-ary quantized data. By letting the modified deflection
coefficient of the global statistic test be zero, we derive the
condition of the proposed attack model to nullify the detection
capability of the FC.

(3) We propose a malicious SU identification method,
where only the report history of each SU and the knowledge
about the quantization scheme adopted at SUs are used. The
performance of malicious SU identification method, namely,
the identification probability and the detectability, is analyti-
cally evaluated.

(4) Using a technique based on the maximum likelihood
estimation to learn the distribution parameters of identified
normal SUs, we present an adaptive linear combination rule
for the fusion process of the CSS with M-ary quantized data
under SSDF attacks.

The remainder of this paper is organized as follows. The
system model and the problem of the CSS with M-ary quan-
tized data under SSDF attacks are described in Section II.
We also introduce a probabilistic SSDF attack model in
this section. In Section III, the attack performance of the
proposed SSDF attack is analyzed, and the blind condition
is derived. To resolve the SSDF attack problem, an attack-
proof CSS scheme with M-ary quantized data is presented
in Section IV. Numerical results and conclusion are given in
Sections V and VI, respectively.

For clarity, we explain the denotation of some notations used
in this paper. H0 and H1 are the hypotheses of the absence
and the presence of the PU, respectively. H0 and H1 denote
the inferences of the absence and the presence of the PU,
respectively. T Yi denotes the type of SU i , and T Yi ∈ {H, M},
where H and M correspond to “normal” and “malicious”,
respectively. TY i denotes the type of SU i to be declared using
the malicious SU identification method, and TY i ∈ {H, M}.
Symbol M in italic denotes the number of the quantization
levels. CN (·, ·) and N (·, ·) denote the circularly symmetric
normal distribution and the normal distribution, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider an infrastructure-based network consisting of a
PU network and a CRN under the IEEE 802.22 network
standard model [37]. We focus on the CRN with one primary
transmitter (regarded as PU in the CRN), one FC and N SUs,
where K (0 < K < N) SUs are assumed to be malicious.
The PU is located at a place far away from all SUs. The
PU network has a licensed spectrum band, and the CRN is
located in the coverage area of the PU network. SUs can use
the licensed spectrum band assigned to the PU network when
the status of PU is inferred as absent [38].

Fig. 1 shows the basic configuration of the CSS sys-
tem in a CRN, including listening and reporting channels,
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Fig. 1. The CSS system model under SSDF attacks.

PU, SUs (normal or malicious) and the FC. These N SUs
cooperatively sense the radio spectrum to find spatial and/or
temporal vacant bands for their communication in the CRN.
It is assumed that the CSS is performed in the centralized
mode. Specifically, SUs perform local spectrum sensing. Due
to the constrained resource, SUs send an M-ary quantized
version of their local sensing results to the FC via the
reporting channel, which is assumed to be ideal [26]. However,
malicious SUs may transmit falsified quantized data to the FC
in order to deteriorate the CSS. Finally, the FC combines the
quantized data from SUs and makes the final decision about
the status of the PU.

B. Local Sensing and Quantization

To simplify the analysis, we assumed that N SUs are with
the same sensing capability, where some SUs are malicious.
Since the distance between SUs and the PU is much farther
than that between SUs, it can also be assumed that the sensing
channel between SUs and the PU is relatively static, and all
SUs have similar average received signal-noise-ratio (SNR).

In the system model, the j th sample of the received
PU signal at SU i , xi ( j), is presented as

xi ( j) =
{

ni ( j), H0,

hi s( j)+ ni ( j), H1,

where H0 and H1 are the hypotheses of the absence and the
presence of the PU, respectively. s( j) denotes the PU signal;
hi is the block fading gain of the listening channel between the
FC and SU i ; and ni ( j) denotes the j th sample of the circu-
larly symmetric additive white Gaussian noise (AWGN) with
zero-mean and variance σ 2

i at SU i , i.e., ni ( j) ∼ CN (0, σ 2
i ).

SU i performs the spectrum sensing by using its built-in
sensor to derive the local test statistic, yi . The SU’s built-in
sensor can be of any common types, such as energy detection,
cyclostationary detection, and so on. In this work, the energy
detection mechanism is assumed to be used as the fundamental
brick of local spectrum sensing because of its low complex-
ity and needing no a priori knowledge about the PU [6].
Specifically,

yi =

⎧⎪⎨
⎪⎩
(1/J )

∑J

j=1
[ni ( j)]2, H0,

(1/J )
∑J

j=1
[hi s( j)+ ni ( j)]2, H1,

where J denotes the number of samples.

When J is large enough, according to the Central Limit
Theorem (CLT) [39], yi follows asymptotically normal distri-
bution with mean and variance as

yi ∼
{

N (σ 2
i , 2σ 4

i /J ), H0,

N
(
(1 + μi )σ

2
i , 2(1 + 2μi )σ

4
i /J

)
, H1,

where μi is the average SNR, and μi = E[|hi s( j)|2]/σ 2
i .

Considering the constrained resource of the reporting chan-
nel, yi is quantized using the following quantization rule as

μi = ψi (yi ) = l, if Ei,l−1 < yi ≤ Ei,l ,

i = 1, 2, . . . , N, l = 1, 2, . . . ,M, (1)

where ψi (·) denotes the quantization process at SU i ; M is the
number of quantization levels; ui denotes the quantized level
of yi ; Ei,l−1 and Ei,l denote the (l −1)th and lth quantization
boundaries at SU i , respectively. There are several quantization
methods that can be considered at SUs, such as uniform
quantization, maximum output entropy (MOE) quantization
and minimum average error (MAE) quantization [40]. It is
shown in [40] that, for a signal that follows the normal
distribution, the quantizers with MOE and MAE are approxi-
mately the same within a multiplicative constant. In this paper,
we consider the MOE quantization method because of its low
computational complexity.

In the MOE quantization incorporated at SU i , the range of
yi is divided into M levels, and each level has the probability
mass function (PMF) of 1/M . Hence, the PMF of ui can be
calculated as

Pr(ui = l) =
∫ Ei,l

Ei,l−1

fyi (x) dx = 1/M,

i = 1, 2, . . . , N, l = 1, 2, . . . ,M, (2)

where fyi (·), the probability density function (PDF) of yi ,
is given by

fyi (x) = p(H0) fyi (x |H0)+ p(H1) fyi (x |H1),

i = 1, 2, . . . , N, (3)

where p(H0) and p(H1) are the prior probabilities of H0 and
H1, respectively; fyi (·|H0) and fyi (·|H1) denote the PDFs of
yi conditioned H0 and H1, respectively.

The quantized data of the lth quantized level at SU i , qi,l ,
lies in the centroid of Ei,l−1 and Ei,l , i.e.,

qi,l =
∫ Ei,l

Ei,l−1
x fyi (x) dx∫ Ei,l

Ei,l−1
fyi (x) dx

= M
∫ Ei,l

Ei,l−1

x fyi (x) dx,

i = 1, 2, . . . , N, l = 1, 2, . . . ,M. (4)

For a CRN under SSDF attacks, note that a malicious
SU may not transmit its real quantized level. Denote the
transmitted quantized level as vi for SU i . If SU i is honest,
vi = ui ; otherwise, we assume that SU i may modify ui to vi

according to the SSDF attack model, and vi �= ui .

C. Probabilistic SSDF Attack Model

The objective of the SSDF attacker is to deteriorate the
detection performance of the CSS in the CRN. In this work,
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Fig. 2. Quantized level modification in the probabilistic SSDF attack model.

we introduce a probabilistic SSDF attack model, where
a malicious SU can use its local information to launch
an attack. Let βi denote the attack probability of SU i .
That is, SU i behaves maliciously with probability βi , and
behaves normally with probability 1 − βi . If SU i is honest,
βi = 0.

At each sensing interval, malicious SU i utilizes a prob-
ability, βi , to decide whether to launch an SSDF attack
or not.

When a malicious SU decides to launch the attack, it prefers
to make the attack successful. If SU i decides to launch
the SSDF attack, it first makes its local decision according

to yi

H1

�
H0

φi , where φi is the local decision threshold, H0 and

H1 denote the inferences of the absence and the presence of
the PU, respectively. Based on the decision, SU i falsifies its
quantized level according to the model as illustrated in Fig. 2.
If the local inference is H0, SU i modifies its quantized level
ui = l into vi = k with probability 1

M−l , where k is one of the
quantized levels larger than l. Similarly, if the local inference
is H1, SU i modifies its quantized level ui = l into vi = k
with probability 1

l−1 , where k is one of the quantized levels
smaller than l. Here, SU i modifies the quantized level with a
uniform distribution in order to prevent from being identified
by the FC easily.

If malicious SU i decides not to launch the SSDF attack,
it sends its true quantized level to the FC with probability
(1 − βi ).

Let T Yi be the type of SU i , T Yi ∈ {H, M} and
i = 1, 2, . . . , N . We say that if T Yi = H, SU i is an honest
user, while T Yi = M means that SU i is a malicious user.

Based on the probabilistic SSDF attack model introduced
above, for a malicious SU i , the PMFs of vi under H0 and H1
are presented as

Pr(vi = l|H0, T Yi = M)

= (1 − βi ) Pr(ui = l|H0)+ βi (1 − Pf,i )

l−1∑
k=1

Pr(ui = k|H0)

M − k

+ βi Pf,i

M∑
k=l+1

Pr(ui = k|H0)

k − 1
, l = 1, 2, . . . ,M (5)

and

Pr(vi = l|H1, T Yi = M)

= (1 − βi ) Pr(ui = l|H1)+ βi (1 − Pd,i )

l−1∑
k=1

Pr(ui = k|H1)

M − k

+ βi Pd,i

M∑
k=l+1

Pr(ui = k|H1)

k − 1
, l = 1, 2, . . . ,M, (6)

respectively. Here, Pf,i is the local false-alarm probability at
SU i , and Pd,i is the local detection probability at SU i .

Hence, if SU i is malicious, the PMF of vi is

Pr(vi = l|T Yi = M)
= p(H0) Pr(vi = l|H0, T Yi = M)

+ p(H1) Pr(vi = l|H1, T Yi = M), l = 1, 2, . . . ,M. (7)

Obviously, if SU i is honest, the PMF of vi is the same as
that of ui . That is,

Pr(vi = l|T Yi = H) = 1/M, l = 1, 2, . . . ,M. (8)

D. Linear Combining and Decision Making

It is assumed that SUs transmit the quantized levels via an
ideal reporting channel. Although the quantized levels may
be corrupted by the noise and interference in the reporting
channel, the influence can be avoided by using an efficient
channel coding mechanism. Thus, we neglect the effect of
the reporting channel errors in this paper. In other words,
the quantized levels received by the FC are the transmitted
quantized levels from SUs, {vi }N

i=1.
In this paper, we consider the CSS is carried out under

the assumption of conditionally independent observations from
SUs. However, dependence often occurs in practice as the SUs
observing the same phenomenon are likely to have spatially
dependent observations. The effect of dependence on the
performance of distributed detection has been investigated
recently [18], [19]. However, it is beyond the scope of
this paper.

A linear combining is performed at the FC, which means
that the global test statistic, Zc, is constructed as a weighted
sum of the received quantized data. That is,

Zc =
N∑

i=1

wiψ
−1
i (vi ), (9)

where wi is the weighted coefficient of the received quantized
data from SU i , ψ−1

i (·) denotes the inverse of the quantization
process at SU i , and ψ−1

i (vi ) is the centroid of the quantization
region of vi . In most cases, it is a nonlinear inverse mapping.

Then Zc is compared with a pre-defined global decision
threshold, λc, to decide the status of PU, i.e.,

Zc

H1

�
H0

λc. (10)

The detector performance of the CSS with M-ary quantized
data is commonly measured by two probabilities, namely,
the global false-alarm probability Qf = Pr(Zc ≥ λc|H0) and
the global detection probability Qd = Pr(Zc ≥ λc|H1).
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The integrated performance of the CSS with M-ary quan-
tized data in a CRN under SSDF attacks can be measured by
the global error probability, which is defined as

Qe = p(H0)Qf + p(H1)(1 − Qd). (11)

We consider the Neyman-Pearson formulation [41] at the
FC, and the global decision threshold is determined such
that the global false-alarm probability subjects to an upper
bound, Q̄f . Hence, λc can be written as

λc = arg min
x

{x : Pr(Zc ≥ x |H0) ≤ Q̄f }. (12)

To derive the closed-form expressions of the global false-
alarm probability and the global detection probability of the
CSS with M-ary quantized data, the PDFs of Zc under
H0 and H1 are needed. Since vi in (9) follows multivariate
Bernoulli distribution, the exact distribution of Zc is in the
form of generalized multivariate binomial. The distribution of
Zc has a very complicated form with many terms, and its
computational complexity is O(N M−1) [42]. Therefore, it is
not feasible to obtain the exact distribution function of Zc.

In order to reduce the computational complexity, we should
consider an approximation of the distribution of Zc. According
to the CLT, if N is large enough, a Gaussian approximation
can be made for the distribution of Zc. Since {vi }N

i=1 are
independently and identically distributed (iid), the mean and
variance of ψ−1

i (vi ) conditioned H j , j = 0, 1, are given as

μ(ψ−1
i (vi )|H j ) =

M∑
l=1

qi,l Pr(vi = l|H j),

i = 1, 2, . . . , N, j = 0, 1, (13)

and

σ 2(ψ−1
i (vi )|H j) =

M∑
l=1

q2
i,l Pr(vi = l|H j )−μ(ψ−1

i (vi )|H j )
2,

i = 1, 2, . . . , N, j = 0, 1. (14)

Hence, the closed-form expressions of the global false-alarm
probability and the global detection probability of the CSS
scheme with M-ary quantized data can be expressed as

Qf = Q

⎛
⎝ λ

′
c − µT

H0
w√

wT
∑

H0
w

⎞
⎠ (15)

and

Qd = Q

⎛
⎝ λ

′
c − µT

H1
w√

wT
∑

H1
w

⎞
⎠ , (16)

respectively. Here, λ
′
c is the global decision threshold for

the CSS with Gaussian approximation; w is the set of
weight coefficients, and w = [w1w2 . . . wN ], µHj

is the

set of mean conditioned H j , and µHj
= [μ(ψ−1

1 (v1)|H j)

μ(ψ−1
2 (v2)|H j) . . . μ(ψ

−1
N (vN )|H j)], j = 0, 1,

∑
Hj

is
the set of variance conditioned H j , and

∑
Hj

= diag(
σ 2(ψ−1

1 (v1)|H j ) σ
2(ψ−1

2 (v2)|H j ) . . . σ
2(ψ−1

N (vN )|H j )
)

,

j = 0, 1; Q(x) is the Q-function, and Q(x) = ∫ +∞
x exp

(−t2/2) dt/
√

2π .

By considering a required global false-alarm probability,
Q̄f , λ

′
c can be calculated by

λ
′
c = Q−1(Q̄f )

√
wT

∑
H0

w + µT
H0

w, (17)

where Q−1(·) is the functional inverse of the Q-function.
From the perspective of the attacker, the aim of malicious

SUs is to destroy the network such that the detection per-
formance of the CSS is degraded. The most serious case is
to make the FC blind (completely dysfunctional), in which
the decisions made by the FC are no better than merely
flipping a coin without using any received quantized data.
Although incapable of making the FC blind, malicious SUs
will try to degrade the performance of the CSS as far as
possible. In this paper, we will analyze the maximal impact of
the introduced SSDF attack on the detection performance of
the CSS.

On the other hand, in the view of the network designer,
the objective is to make the FC infer the status of the PU
reliably, although there are malicious SUs in the network.
In this paper, we present an attack-proof CSS scheme with
M-ary quantized data in the CRN, where the malicious SU
identification method and the linear combination rule at the
FC are mainly studied.

III. DERIVATION OF BLIND CONDITION

In this section, we analyze the maximal impact of the
probabilistic SSDF attack on the detection performance of the
CSS with M-ary quantized data.

As described in Subsection II.D, the FC adopts the Neyman-
Pearson detector to infer the status of the PU. It is proven
in [43] that the performance of Neyman-Pearson detector can
be evaluated by the deflection coefficient since it can measure
the variance-normalized distance between the centers of two
conditional PDFs.

According to (14), Zc has a different variance under
H0 and H1. Since the PDF of Zc under H1 has a heavier
tail than that under H0, the modified deflection coefficient is
used to characterize the detection performance of the CSS with
M-ary quantized data in this paper. The modified deflection
coefficient of Zc can be represented as

D(Zc) = (µT
H1

w − µT
H0

w)2

wT
∑

H1
w

. (18)

In the CSS with M-ary quantized data, malicious SUs aim to
make the modified deflection coefficient as small as possible in
order to maximally degrade the detection performance. Since
the modified deflection coefficient is always non-negative,
making D(Zc) = 0 means that malicious SUs disrupt the
decision mechanism, and the FC is incapable of inferring
the status of the PU using the received quantized data from
SUs. Therefore, the condition making FC blind is summarized
as Theorem 1.

Theorem 1: For the probabilistic SSDF attack model and
the weighted linear data combination rule, the condition to
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blind the CSS system with M-ary quantized data is

K∑
i=1

wiβi

M∑
l=1

qi,l

[ l−1∑
k=1

(1 − Pf,i )a0
i,k − (1 − Pd,i )a1

i,k

M − k

+
M∑

k=l+1

Pf,i a0
i,k − Pd,i a1

i,k

k − 1
+ (a1

i,l − a0
i,l )

]

=
N∑

i=1

wi

M∑
l=1

qi,l (a
1
i,l − a0

i,l ), (19)

where a1
i,l = Pr(ui = l|H1) and a0

i,l = Pr(ui = l|H0).
Proof: The variance of Zc conditioned H1 can be com-

puted by (14). To make D(Zc) = 0, (18) becomes
N∑

i=1

wi

M∑
l=1

qi,l Pr(vi = l|H0) =
N∑

i=1

wi

M∑
l=1

qi,l Pr(vi = l|H1).

(20)

For the probabilistic SSDF attack model defined in Sub-
section II.C and the weighted linear data combination rule
described in Subsection II.D, the means of Zc conditioned
H0 and H1 can be computed by (13).

If SU i is an honest user, the PMFs of vi under H0 and
H1 are the same as those of ui under H0 and H1. Since K
out of N SUs are malicious, SUs labeled from 1 to K are
malicious, and SUs labeled from K +1 to N are honest without
loss of generality. Substituting (5), (6) for i = 1, 2, . . . , K ,
{Pr(vi = l|H0) = Pr(ui = l|H0)}N

i=K+1 and {Pr(vi =
l|H1) = Pr(ui = l|H1)}N

i=K+1 into (20), the condition to make
D(Zc) = 0 becomes

K∑
i=1

wiβi

M∑
l=1

qi,l

[ l−1∑
k=1

(1 − Pf,i )a0
i,k − (1 − Pd,i )a1

i,k

M − k

+
M∑

k=l+1

Pf,i a0
i,k − Pd,i a1

i,k

k − 1
+ (a1

i,l − a0
i,l )

]

=
N∑

i=1

wi

M∑
l=1

qi,l (a
1
i,l − a0

i,l ).

For a special case where all SUs have the same average
received SNR since the distances between SUs and PU are
much larger than those between any two SUs, the subscript i
in a0

i,l and a1
i,l can be neglected and thus we have a0

l and a1
l .

In the case, all SUs adopt the same MOE quantization rule,
Ei,l = El and qi,l = ql, i = 1, 2, . . . , N, l = 1, 2, . . . ,M .
The FC uses the equal gain combination (EGC) rule, and wi =
1/N, i = 1, 2, . . . , N . It is reasonable to assume that the
behaviors of malicious SUs are the same, that is, βi = β,
Pd,i = Pd and Pf,i = Pf , i = 1, 2, . . . , K . Hence, when the
attack probability is given, the condition to make FC blind can
be simplified as

αblind = K

N

=

M∑
l=1

ql(a1
l − a0

l )

β
M∑

l=1
ql[(a1

l −a0
l )+

l−1∑
k=1

(1−Pf )a0
k−(1−Pd)a1

k
M−k +

M∑
k=l+1

Pf a0
k−Pda1

k
k−1 ]

,

(21)

where αblind is the minimum fraction of malicious SUs to
nullify the detection capability of the FC.

IV. PROPOSED CSS SCHEME WITH M-ARY

QUANTIZED DATA UNDER SSDF ATTACKS

If the SSDF attacker cannot compromise enough SUs,
the FC will not become completely blind. Hence, we consider
the CSS scheme with M-ary quantized data against the SSDF
attacks in this section.

A. Optimal Linear Combination

As the FC uses the weighted linear combination rule,
the global test statistic is given in (9).

In order to characterize the performance of the FC, we also
consider the modified deflection coefficient as the performance
metric. Hence, the optimal linear combination problem for the
CSS scheme with M-ary quantized data under SSDF attacks
and its solution are given in Theorem 2.

Theorem 2: The optimal linear combination problem for the
CSS scheme with M-ary quantized data under SSDF attacks
is formulated as

max
w

(µT
H1

w − µT
H0

w)2

wT
∑

H1
w

, s.t.
N∑

i=1

wi = 1. (P.1)

Solving (P.1), the optimal weighted coefficients are given as

wi =
μ(ψ−1

i (vi )|H1)−μ(ψ−1
i (vi )|H0)

σ 2(ψ−1
i (vi )|H1)∑N

k=1
μ(ψ−1

k (vk)|H1)−μ(ψ−1
k (vk)|H0)

σ 2(ψ−1
k (vk)|H1)

,

i = 1, 2, . . . , N. (22)

Proof: On partially differentiating
(µT

H1
w−µT

H0
w)2

wT
∑

H1
w

with respect to wi , i = 1, 2, . . . , N , we have
μ(ψ−1

1 (v1)|H1)−μ(ψ−1
1 (v1)|H0)

w1σ 2(ψ−1
1 (v1)|H1)

= μ(ψ−1
2 (v2)|H1)−μ(ψ−1

2 (v2)|H0)

w2σ 2(ψ−1
2 (v2)|H1)

=
. . . = μ(ψ−1

N (vN )|H1)−μ(ψ−1
N (vN )|H0)

wN σ 2(ψ−1
N (vN )|H1)

.

Since
∑N

i=1 wi = 1, the optimal weighted coeffi-
cients of linear combination rule at the FC are wi =

μ(ψ−1
i (vi )|H1)−μ(ψ−1

i (vi )|H0)

σ2(ψ−1
i (vi )|H1)∑N

k=1
μ(ψ−1

k (vk )|H1)−μ(ψ−1
k (vk )|H0)

σ2(ψ−1
k (vk )|H1)

, i = 1, 2, . . . , N.

However, the optimal weighted linear combination at the FC
is difficult to numerically evaluate since the optimal weighted
coefficients, {wi , i = 1, 2, . . . , N}, involve many unknown
distribution parameters of SUs. To deal with this problem,
malicious SUs should be identified by observing the data over
multiple iterations and excluded from the linear combination
process at the FC. Moreover, the distribution parameters of
identified normal SUs should be estimated by observing the
data over multiple iterations.

B. Malicious SU Identification Method

In this section, we present a malicious SU identification
method to distinguish between malicious and normal SUs.
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1) Proposed Method: For detecting the malicious SUs,
the FC observes the M-ary quantized data of each SU over a
time window T , where T is the number of the sensing intervals
that have been completed. The history of reports for SU i is
denoted by vi = (vi (1), vi (2), . . . , vi (T )), where vi (t) is the
reported quantized level for SU i at sensing interval t .

Let πi,l be the reporting frequency of quantized level l for
SU i over a time window T , l = 1, 2, . . . ,M . Using vi , πi,l

can be estimated as

πi,l = 1

T

T∑
t=1

δ(vi (t)−l), i = 1, 2, . . . , N, l = 1, 2, . . . ,M,

(23)

where δ(x − x0) is the Kronecker-delta function, and δ(x −
x0) =

{
1, x = x0.

0, x �= x0.
The normalized deviation of the reporting frequency of

quantized level l for SU i is defined as

ξi,l = ei,l√
Var(ei,l )

, (24)

where ei,l is the deviation of the reporting frequency of
quantized level l for SU i , and

ei,l = πi,l − 1

M
. (25)

Var(ei,l ) is the variance of ei,l , and

Var(ei,l ) = πi,l (1 − πi,l )

T
. (26)

Hence, the deviation of the SU i , �i , can be calculated as

�i =
M∑

l=1

(ξi,l )
2, i = 1, 2, . . . , N. (27)

SU i can be declared as either normal or malicious using
the rule as follows

�i

TY i =M

�
TY i =H

ιi , i = 1, 2, . . . , N, (28)

where ιi is the malicious SU identification threshold at SU i ;
TY i denotes the type of SU i to be declared using the
malicious SU identification method, and TY i ∈ {H, M}.

Hence, the proposed malicious SU identification method
only uses the report history of each SU and the knowledge
about the quantization scheme adopted at SUs. The essential
technique for identifying the malicious user is to compare the
reporting frequency of certain quantized levels using the report
history of each SU with normal PMF of quantized levels. The
behavior of the malicious SU identification method for SU i is
quantified by two conditional probabilities, namely, the iden-
tification probability 
d,i = Pr{�i ≥ ιi |T Yi = M} and the
false identification probability 
f,i = Pr{�i ≥ ιi |T Yi = H}.
Specifically, 
d,i denotes the probability that a malicious SU
is identified correctly, and 
f,i denotes the probability that a
normal SU is falsely declared as malicious.

2) Threshold Selection: From (28), the behavior depends
strongly on the choice of ιi . The value of ιi should be set in
such a way that the identification probability is high enough,
and the false identification probability is low. However,
a trade-off between the identification probability and the false
identification probability should be achieved.

Now, we discuss how to choose ιi for the proposed mali-
cious SU identification method.

In order to find the optimal choice of ιi in (28), we adopt
the Neyman-Pearson framework in the context of the malicious
SU identification, where the goal is to maximize 
d,i subject
to the condition that 
f,i ≤ ζ . The optimal problem can be
expressed as

max
ιi

d,i , s.t. 
f,i ≤ ζ. (P.2)

To obtain 
d,i and 
f,i , we need the closed-form expres-
sions of conditional distributions of �i , P(�i |T Yi = M) and
P(�i |T Yi = H), respectively. In practice, as T is finite, it is
intractable to determine the conditional distributions of �i .
Therefore, we present an asymptotic choice of ιi in (28) as
T → ∞ in this paper.

As T → ∞, according to the strong law of large numbers,
the reporting frequency of quantized level l for SU i converges.
As SU i is normal, πi,l → Pr(vi = l|T Yi = H) = 1/M;
otherwise, πi,l → Pr(vi = l|T Yi = M). Hence, as T →
∞, ξi,l follows the normal distribution with unit variance.
That is,

ξi,l

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (0, 1),

T Yi = H.

N (
Pr(vi = l|T Yi = M)− 1

M√
Pr(vi = l|T Yi = M)(1−Pr(vi = l|T Yi = M))

T

, 1),

T Yi = M.
(29)

From (27), it can be inferred that �i follows a central
Chi-square distribution with M degrees of freedom if
T Yi = H; otherwise, it follows a non-central Chi-square dis-
tribution with M degrees of freedom and a non-centrality
parameter κi if T Yi = M. That is,

�i ∼
{
χ2

M , T Yi = H,

χ2
M (κi ), T Yi = M,

(30)

where κi = ∑M
l=1

T
(

Pr(vi=l|T Yi=M)− 1
M

)2

Pr(vi=l|T Yi=M)(1−Pr(vi=l|T Yi=M)) .

According to (28) and (30), the false identification probabil-
ity and the identification probability of the proposed malicious
SU identification method for SU i can be calculated by


f,i = Pr{�i ≥ ιi |T Yi = H} = �(M
2 ,

ιi
2 )

�(M
2 )

, (31)


d,i = Pr{�i ≥ ιi |T Yi = M} = Q M
2

(√
κi ,

√
ιi
)
, (32)



CHEN et al.: CSS WITH M-ARY QUANTIZED DATA IN CRNs UNDER SSDF ATTACKS 5251

where �(a, x) is the incomplete gamma function, and
�(a, x) = ∫ ∞

x ta−1e−t dt . �(x) is the gamma func-
tion, and �(x) = ∫ ∞

0 t x−1e−t dt . Qc(a, x) is the c-
order generalized Marcum Q-function, and Qc(a, x) =

1
ac−1

∫ ∞
x tce− t2+a2

2 Ic−1(at) dt with modified Bessel function
Ic−1(at) of order c − 1.

By considering Pr(�i ≥ ιi |T Yi = H) = ζ , the optimal ιopt,i
is calculated using (31). Substituting ιopt,i into (32), we obtain
the identification probability, 
d,i = Q M

2

(√
κi ,

√
ιopt,i

)
.

Therefore, the malicious SU identification method is given
in Algorithm 1.

Algorithm 1 Malicious SU Identification Method
Input and Parameter Initialization
(1) Input M , {vi , i = 1, 2, . . . , N}, {
̄f,i , i = 1, 2, . . . , N},
T .
Malicious SU Identification Procedure
(2) for SU i do
(3) Using vi , compute πi,l with (23), l = 1, 2, . . . ,M .
(4) Compute ei,l and Var(ei,l ) with (25) and (26), l =
1, 2, . . . ,M .
(5) Compute ξi,l with (24), l = 1, 2, . . . ,M .
(6) Compute the deviation, �i , with (27).

(7) Setting ζ = 
̄f,i in Pr(�i ≥ ιi |T Yi = H) = �( M
2 ,

ιi
2 )

�( M
2 )

=
ζ , compute ιopt,i .
(8) If �i > ιopt,i , SU i is declared as malicious, TY i = M;
otherwise, SU i is declared as normal, TY i = H.
(9) end for
Output
(10). Output {TY i , i = 1, 2, . . . , N}.

For a practical system, the FC estimates πi,l in a recursive
form as

πi,l (t + 1) = tπi,l (t)+ δ(vi (t + 1)− l)

t + 1
, l = 1, 2, . . . ,M.

(33)

Similarly, the mean and variance of ei,l are estimated as

E(ei,l )(t + 1) = t E(ei,l )(t)+ [πi,l (t + 1)− 1/M]
t + 1

(34)

and

Var(ei,l )(t + 1) = t − 1

t
Var(ei,l )(t)+ [πi,l (t + 1)− 1/M]2

+ t[E(ei,l )(t)]2 − (t + 1)[E(ei,l )(t + 1)]2.

(35)

3) Performance Analysis: In this subsection, we analyze
the performance of the proposed malicious SU identification
method.

The identification performance, namely the false identifica-
tion probability and the identification probability, are analyzed
in the preceding subsection. The closed-form expressions of

f,i and 
d,i are given in (31) and (32), respectively.

As mentioned above, when SU i is normal, πi,l → Pr
(vi = l|T Yi = H) = 1/M almost surely when T → ∞
according to the strong law of large numbers; otherwise,

πi,l → Pr(vi = l|T Yi = M). Obviously, as Pr(vi = l|T Yi =
M) �= 1/M, l = 1, 2, . . . ,M , the malicious SU can be
detected with probability 1 when T → ∞ if the threshold
is properly chosen.

Theorem 3: The malicious SU is always detectable using
the proposed malicious SU identification method.

Proof: The malicious SU is non-detectable when Pr(vi =
l|T Yi = M) = 1/M, l = 1, 2, . . . ,M . That is, Pr(vi =
l|T Yi = M) = p(H0) Pr(vi = l|H0, T Yi = M) +
p(H1) Pr(vi = l|H1, T Yi = M) = 1/M .

Substituting (5) and (6) into (7), we obtain

Pr(vi = l|T Yi = M)

= 1

M

+ p(H0)βi

[
(1 − Pf,i )

l−1∑
k=1

Pr(ui = k|H0)

M − k

+ Pf,i

M∑
k=l+1

Pr(ui = k|H0)

k − 1

]

+ p(H1)βi

[
(1 − Pd,i )

l−1∑
k=1

Pr(ui = k|H1)

M − k

+ Pd,i

M∑
k=l+1

Pr(ui = k|H1)

k − 1

]
. (36)

From (36), to make Pr(vi = l|T Yi = M) = 1/M ,
one option is to make βi = 0, which means that SU i
does not launch the SSDF attack at all. Obviously, this
condition does not satisfy the definition of the malicious SU.

Another selection is to make p(H0)

[
(1−Pf,i)

l−1∑
k=1

Pr(ui=k|H0)
M−k +

Pf,i

M∑
k=l+1

Pr(ui=k|H0)
k−1

]
+ p(H1)

[
(1 − Pd,i )

l−1∑
k=1

Pr(ui=k|H1)
M−k +

Pd,i

M∑
k=l+1

Pr(ui=k|H1)
k−1

]
= 0,∀l ∈ {1, 2, . . . ,M} as βi �= 0.

That is, which means that Pd,i changes with the value of l.
However, by adopting Neyman-Pearson detector, SU i makes

local decision as yi

H0

�
H1

φi , where φi = σ 2
i (Q

−1(Pf,i )
√

2
J +

1) and Pf,i is the required local false-alarm probability at
SU i . The local detection probability of SU i is Pd,i =
Q

(
(Q−1(Pf,i )

√
2
J +1)−(1+μi )√

2(1+μi )
J

)
. Obviously, it contradicts (37),

as shown at the top of the next page. Hence, when βi �= 0,
it is impossible to make Pr(vi = l|T Yi = M) = 1/M,
∀l ∈ {1, 2, . . . ,M}.

Therefore, the malicious SU is always detectable.
According to Glivenko-Cantelli Theorem, πi,l → Pr(vi =

l|T Yi = H) = 1/M or πi,l → Pr(vi = l|T Yi = M) as
T is large enough. For a practical system, it is impossible
for obtaining infinity samples to estimate πi,l . In this paper,
the required number of sensing intervals is computed using
the confidence interval method.

It is assumed that the required number of the sens-
ing intervals for estimating πi,l is Ti,l . According to
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Pd,i =
p(H0)Pf,i

[
M∑

k=l+1

Pr(ui=k|H0)
k−1 −

l−1∑
k=1

Pr(ui=k|H0)
M−k

]
+ l−1

M

l−1∑
k=1

1
M−k

p(H1)

[
l−1∑
k=1

Pr(ui=k|H1)
M−k −

M∑
k=l+1

Pr(ui=k|H1)
k−1

] , ∀l ∈ {1, 2, . . . ,M}, (37)

the CLT, πi,l follows asymptotically normal distribution
with mean and variance Pr(vi = l|T Yi = H) (or
Pr(vi = l|T Yi = M)) and Pr(vi=l|T Yi=H)[1−Pr(vi=l|T Yi =H)]

Ti,l
(or

Pr(vi=l|T Yi=M)[1−Pr(vi=l|T Yi =M)]
Ti,l

) for a normal (or malicious)
SU, l = 1, 2, . . . ,M .

Define I0 and I1 be two-sided test problems πi,l = Pr(vi =
l|T Yi = H) (or πi,l = Pr(vi = l|T Yi = M)) and πi,l �=
Pr(vi = l|T Yi = H) (or πi,l �= Pr(vi = l|T Yi = M)),
respectively. By controlling the number of samples, we can
make the error probability under I1 below a certain limited
value. For the two-sided test problem, the conditions |πi,l −
Pr(vi = l|T Yi = H)| ≥ ϑ (or |πi,l − Pr(vi = l|T Yi =
M)| ≥ ϑ) and 1 − Pr(πi,l = Pr(vi = l|T Yi = H)) ≤ γ
(or 1 − Pr(πi,l = Pr(vi = l|T Yi = M)) ≤ γ ) need to be
satisfied under I1, where Pr(πi,l = Pr(vi = l)|T Yi = H) (or
Pr(πi,l = Pr(vi = l)|T Yi = M)) denotes the probability of
the event πi,l = Pr(vi = l|T Yi = H) (or πi,l = Pr(vi = l|
T Yi = M)).

According to sampling size formula of two-sided test prob-
lem, when the confidence interval is set as ν, the required
number of sensing intervals for estimating πi,l needs to
satisfy

Ti,l ≥ (zν/2 + zγ )
2πi,l (1 − πi,l )

ϑ2 , (38)

where zx is the quantiles, zx = �−1(x), and �(x) =∫ x
−∞ exp(−t2/2) dt/

√
2π . As ν and γ are given, zν/2 and

zγ can be obtained by table lookup.
Since the FC needs to estimate all the PMFs of reported

quantized levels of SU i , the required number of sensing
intervals for SU i , Ti , can be set as Ti = max

l
Ti,l . For a CRN

with N SUs, the observation time window for the proposed
malicious SU identification method can be selected as

T = max
i

Ti . (39)

C. Adaptive Linear Combination Rule

In the way mentioned in Subsection IV.B, it is possible
to resolve the SSDF attack problem by excluding malicious
SU(s) from the information fusion process at the FC. After
identifying and isolating malicious SUs, the FC performs the
spectrum sensing process with M-ary quantized data from
identified normal SUs.

Let NH denote the number of identified normal SUs.
Furthermore, from (13), (14) and (22), the distribution para-
meters, μi,0 = E(ψ−1(vi )|H0), μi,1 = E(ψ−1(vi )|H1),
σ 2

i,0 = σ 2(ψ−1(vi )|H0) and σ 2
i,0 = σ 2(ψ−1(vi )|H1), should

be estimated for NH identified normal SUs, i = 1, 2, . . . , NH.
These parameters are estimated by observing the reporting

data over multiple learning iterations. In each iteration t ,

FC observes the reporting quantized data from SUs for L
detection intervals to learn the respective distribution parame-
ters. Let zi (t) = (

z0
i (1), z0

i (2), . . . , z0
i (L0(t)), z1

i (L0(t)+ 1),
z1

i (L0(t) + 2), . . . , z1
i (L)

)
be the buffered quantized data

coming from the identified normal SU i , where L0(t) denotes
the number of times H0 occurred in learning iteration t ,
z0

i and z1
i denote the reporting quantized data of SU i for

H0 and H1, respectively, and z0/1
i (l) = ψ−1

i (vi (l)).
To estimate the distribution parameter set of the identified

normal SU i , (μi,0, μi,1, σ
2
i,0, σ

2
i,1), a maximum likelihood-

based estimator is used. Let (μ̂i,0(t), μ̂i,1(t), σ̂ 2
i,0(t), σ̂

2
i,1(t))

denote the estimated distribution parameter set of the identified
normal SU i at learning iteration t . Hence, the maximum
likelihood estimates of μi,0, μi,1, σ

2
i,0, σ

2
i,1 can be expressed

in a recursive form as follows:

μ̂i,0(t + 1)

=
∑t

m=1 L0(m)∑t+1
m=1 L0(m)

μ̂i,0(t)

+ 1∑t+1
m=1 L0(m)

L0(t+1)∑
l=1

z0
i (l), (40)

μ̂i,1(t + 1)

=
∑t

m=1[L − L0(m)]∑t+1
m=1[L − L0(m)]

μ̂i,1(t)

+ 1∑t+1
m=1[L − L0(m)]

L∑
l=L0(t+1)+1

z1
i (l), (41)

σ̂ 2
i,0(t + 1)

=
(∑t

m=1 L0(m)
) {σ̂ 2

i,0(t)+ [μ̂i,0(t + 1)− μ̂i,0(t)]2}∑t+1
m=1 L0(m)

+
∑L0(t+1)

l=1 [z0
i (l)− μ̂i,0(t + 1)]2∑t+1
m=1 L0(m)

, (42)

σ̂ 2
i,1(t + 1)

=
(∑t

m=1[L − L0(m)]
) {σ̂ 2

i,1(t)+ [μ̂i,1(t + 1)− μ̂i,1(t)]2}∑t+1
m=1[L − L0(m)]

+
∑L

l=L0(t+1)+1[z1
i (l)− μ̂i,1(t + 1)]2∑t+1

m=1[L − L0(m)]
. (43)

Substituting (40)-(43) into (22), the optimal weighted coef-
ficients of the linear combination rule at the FC for those
identified normal SUs after learning iteration t can be repre-
sented as

wi (t) =
μ̂i,1(t)−μ̂i,0(t)

σ̂ 2
i,1(t)∑NH

k=1
μ̂k,1(t)−μ̂k,0(t)

σ̂ 2
k,1(t)

, i = 1, 2, . . . , NH. (44)
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Fig. 3. The performance of the CSS scheme with M-ary quantized data
without malicious SUs, where the MOE quantization method and its Gaussian
approximation are considered.

V. PERFORMANCE VALUATIONS

In this section, we perform a few experiments based on
simulated data to validate our attack/defense analysis and
demonstrate the performance of the proposed CSS scheme
with M-ary quantized data.

We consider a CRN consisting of 1 PU, 1 FC and 12 SUs
located far away from the PU. In each sensing interval,
J = 20. We assume that p(H1) = p(H0) = 0.5, and
Q̄f = 0.1.

A. Performance of the MOE Quantization Method

Fig. 3 shows the performance of the CSS with M-ary
quantized data in terms of the global error probability using
the MOE quantization method and its Gaussian approximation,
where all SUs are normal, and σ 2

i = σ 2 = 1 for all
SUs. For the case of variable average SNR at SUs, {μi } =
{−4.0, −3.9, −3.0, −4.0, −3.8, −4.0, −3.9, −3.8, −3.9,
−3.0,−3.8,−4.0} in dB for 12 SUs, and wi = μi/

∑N
i=1 μi

for SU i . For the case of similar average SNR at SUs, μi = μ,
and wi = w = 1/12 for all SUs. Here, we consider the CSS is
carried out under the assumption of conditionally independent
observations from SUs.

From Fig. 3, we observe that the performance of the
CSS with M-ary quantized data using the MOE quantization
method and its Gaussian approximation is nearly identical,
which means that the Gaussian approximation can replace the
MOE quantization method in the performance evaluation to
reduce the computational complexity. Furthermore, we also
observe that the performance of the CSS with M-ary quantized
data improves as the number of quantization bits increases.
Obviously, the performance improvement is in the price of the
communication overhead. When the number of quantization
bits is large enough, the global error probability does not
degrade any more. Hence, to achieve a good trade-off between
the communication overhead and the performance of the CSS
with M-ary quantized data, it is reasonable to set M = 32.

Fig. 4. Impact of the attack probability on the minimum fraction of malicious
SUs to make the FC blind.

Fig. 5. Impact of the attack probability on the detection performance.

B. Behavior of the Probabilistic SSDF Attack Model

Fig. 4 shows the impact of the attack probability on the
minimum fraction of malicious SUs, αblind, to make the FC
blind for the proposed probabilistic SSDF attack model, where
μi = μ, σ 2

i = σ 2 = 1 and wi = w = 1/12 for all SUs,
Pf,i = Pf = 0.2 and βi = β for all malicious SUs.

From Fig. 4, we observe that as the attack probability
increases, the security performance of the CSS with M-ary
quantized data under SSDF attacks degrades because the
minimum fraction of SUs needed to be compromised by the
attacker decreases. Furthermore, when the attack probability
is smaller than a certain value, the SSDF attacker needs to
compromise most SUs to blind the FC for the probabilistic
SSDF attack in the CSS.

Fig. 5 shows the impact of the attack probability on the
detection performance of the CSS with M-ary quantized data
in terms of the modified deflection coefficient under the
proposed probabilistic SSDF attack model, where K = 6,
μi = μ, σ 2

i = σ 2 = 1 and wi = w = 1/12 for all SUs,
Pf,i = Pf = 0.2 and βi = β for all malicious SUs.
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Fig. 6. Impact of the number of quantization bits on the minimum fraction
of malicious SUs to blind the FC.

From Fig. 5, we observe that the detection performance of
the CSS with M-ary quantized data degrades rapidly as the
attack probability increases. When the attack probability is
large enough, the modified deflection coefficient of the CSS
with M-ary quantized data approaches zero, which means that
the FC cannot infer the status of PU correctly.

In practical, as the attack probability increases, the pos-
sibility of the malicious SUs being identified by the system
increases. Therefore, a tradeoff between the performance dam-
age and the hazard to be discovered needs to be settled by the
attacker.

Fig. 6 shows the impact of the number of quantization bits
on the minimum fraction of malicious SUs, αblind, to make the
FC blind for the proposed probabilistic SSDF attack model,
where μi = μ, σ 2

i = σ 2 = 1 and wi = w = 1/12 for all SUs,
Pf,i = Pf = 0.2 and βi = β for all malicious SUs.

From Fig. 6, we observe that as the number of quantization
bits increases, the security performance of the CSS with
M-ary quantized data under SSDF attacks improves because
the minimum fraction of SUs needed to be compromised by
the attacker increases. However, the security performance does
not keep improving as the number of quantization bits is large
enough.

Fig. 7 shows the impact of the number of quantization
bits on the detection performance of the CSS with M-ary
quantized data in terms of the modified detection coefficient
under the proposed probabilistic SSDF attack model, where
K = 6, μi = μ, σ 2

i = σ 2 = 1 and wi = w = 1/12 for all
SUs, Pf,i = Pf = 0.2 and βi = β for all malicious SUs.

From Fig. 7, we observe that the detection performance of
the CSS with M-ary quantized data improves as the number
of quantization bits increases. However, the detection perfor-
mance does not keep improving as the number of quantization
bits is large enough.

In practical, as the number of quantization bits increases,
the communication overhead of the quantized data transmis-
sion increases. Therefore, the defender should face with a
tradeoff between the performance damage and the commu-
nication overhead.

Fig. 7. Impact of the number of quantization bits on the detection
performance.

C. Performance of the Malicious SU Identification Method

Fig. 8 plots the performance of the proposed malicious
SU identification method as a function of the time win-
dow T , in terms of the proportion of identified malicious SUs
in Fig. 8(a) and the false identification probability in Fig. 8(b),
where K = 6, μi = μ, σ 2

i = σ 2 = 1 for all SUs,
Pf,i = Pf = 0.2 and βi = β = 1 for all malicious SUs,
and ζ = 0.01.

From Fig. 8, we observe that as the time window increases,
the performance of the proposed malicious SU identification
method improves. However, the performance degrades as the
number of the quantization bits increases. Specifically, SUs
are differentiated successfully as T = 171, 249, 344 and 452
for M = 4, 8, 16 and 32, respectively. The reason for
this phenomenon is that for the M-ary quantization scheme,
the required observation time window for estimating πi,l

(l = 1, 2, . . . ,M) precisely increases as the number of
quantization bits increases. Furthermore, it can be seen
in Figs. 8(a) and 8(b) that malicious SUs are always declared
correctly, while the normal SUs are declared as malicious
when the time window is not large enough. The reason for
this phenomenon is that, for the M-ary quantization scheme,
the required observation time window should be large enough
for estimating πi,l (l = 1, 2, . . . ,M) precisely.

Fig. 9 shows the identification probability of the proposed
malicious SU identification method, where μi = μ, and
σ 2

i = σ 2 = 1 for all SUs, Pf,i = Pf = 0.2 and βi = β = 1
for all malicious SUs, ζ = 0.01, T = 175 and 455 for
M = 4 and 32, respectively.

From Fig. 9, we observe that the identification probability
of the proposed method increases as the attack probabil-
ity increases. This is because when the attack probability
increases, the behavior deviation between the malicious and
normal SUs also increases, which makes malicious SUs easy
to be identified. Furthermore, for a given attack probabil-
ity, the identification probability decreases as the number of
quantization bits increases. The reason for this phenomenon
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Fig. 8. Identification performance vs. time window T .

Fig. 9. The identification probability of the proposed malicious SU identi-
fication method.

is that the quantization region reduces as the number of
quantization bits increases, which also makes the behavior
deviation between the malicious and normal SUs reduce.

Fig. 10. The performance comparison of different CSS schemes with M-ary
quantized data.

D. Performance of the CSS Scheme With M-ary
Quantized Data Under SSDF Attacks

Fig. 10 shows the performance comparison of different CSS
schemes with M-ary quantized data, where M = 32, K = 3,
and σ 2

i = σ 2 = 1 for all SUs, {μi } = {−4.0, −3.9, −3.8,
−4.0, −3.8, −4.0, −3.9, −3.8, −3.9} in dB for 9 normal
SUs, Pf,i = Pf = 0.2 and βi = β = 1 for all malicious
SUs, {μi } = {−3.8, −3.9, −4.0} in dB for 3 malicious SUs,
ζ = 0.01 and T = 455 for the proposed malicious SU
identification method, L = 64 and the number of iterations
is 5 for the proposed adaptive linear combination rule.

It can be seen in Fig. 10 that the performance of the
proposed CSS scheme with the proposed malicious SU identi-
fication method and adaptive linear combination rule is better
than that of the EGC-based CSS scheme and reputation-
tagging-based CSS scheme in [34], but a bit worse than that of
the optimal weighted CSS scheme. However, the distribution
parameter sets of all SUs are needed for the optimal weighted
CSS scheme, while only distribution parameter sets of identi-
fied normal SUs need to be estimated for the proposed CSS
scheme. Since the FC has no a priori information about the
SSDF attack model, obtaining the distribution parameter sets
of the malicious SUs is intractable. Since the malicious SU
identification method does not depend on the global detection
result in the proposed CSS scheme, the malicious identification
performance is better than that of the malicious identification
method in [34] when the SNR is low at SUs or/and the number
of the malicious SUs is much large. Hence, the performance of
the proposed CSS scheme is better than that of the reputation-
tagging-based CSS scheme in [34].

Fig. 11 plots the performance of the proposed CSS scheme
with M-ary quantized data as a function of the attack prob-
ability, where μi = μ = −4dB, σ 2

i = σ 2 = 1, and
wi = w = 1/NH for all identified SUs, Pf,i = Pf = 0.2 and
βi = β = 1 for all malicious SUs. For the proposed malicious
SU identification method, ζ = 0.01, T = 175 and 455 for
M = 4 and 32, respectively. For the proposed adaptive linear
combination rule, L = 64 and the number of iterations is 5.
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Fig. 11. Global error probability vs. attack probability.

It is shown in Fig. 11 that for the proposed CSS scheme,
an optimal attack probability, which does not equal to 1,
exists. Moreover, the value of the optimal attack probability
is related to the number of quantization bits. Furthermore,
the performance of the proposed CSS scheme degrades as the
number of malicious SUs increases. The reason for this is that
for the proposed CSS scheme, the malicious SUs are identified
using the malicious SU identification method and removed
from the combination process at the FC. The FC performs the
spectrum sensing process with M-ary quantized data from the
identified normal SUs.

VI. CONCLUSION

We have studied the challenging and important CSS prob-
lem with M-ary quantized data under SSDF attacks. We have
significantly extended the research results obtained in [34]
by considering a more realistic scenario in the distributed
detection, where the malicious SUs have incomplete knowl-
edge about the true hypothesis based on their local sensing
results, and the knowledge about the quantization thresholds
used have been considered. We introduce a probabilistic SSDF
attack model for the CSS with M-ary quantized data. The
negative effect of defined probabilistic SSDF attack for the
CSS with M-ary quantized data has been characterized, and
the condition of the proposed SSDF attack model to make
the FC completely incapable of inferring the status of PU has
been derived. Furthermore, we propose an efficient method
to indentify malicious SUs and remove them from the data
fusion process at the FC. The performance of the malicious
SU identification method is analytically evaluated. Finally,
using a maximum likelihood estimator to estimate the dis-
tribution parameter sets of identified normal SUs, we present
an adaptive linear combination rule for the fusion process of
the CSS with M-ary quantized data under SSDF attacks. The
presented analytical expressions followed by simulation results
demonstrate that the proposed malicious SU identification
method can successfully remove the malicious SUs, and the
proposed CSS scheme with M-ary quantized data is robust
against SSDF attacks.
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