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Abstract— This paper jointly optimizes the precoding matrices
and the set of active remote radio heads (RRHs) to minimize
the network power consumption for a user-centric cloud radio
access network, where both the RRHs and users have multiple
antennas and each user is served by its nearby RRHs. Both
users’ rate requirements and per-RRH power constraints are
considered. Due to these conflicting constraints, this optimization
problem may be infeasible. In this paper, we propose to solve this
problem in two stages. In Stage I, a low-complexity user selection
algorithm is proposed to find the largest subset of feasible users.
In Stage II, a low-complexity algorithm is proposed to solve
the optimization problem with the users selected from Stage I.
Specifically, the re-weighted l1-norm minimization method is used
to transform the original problem with non-smooth objective
function into a series of weighted power minimization (WPM)
problems, each of which can be solved by the weighted minimum
mean square error (WMMSE) method. The solution obtained
by the WMMSE method is proved to satisfy the Karush-Kuhn-
Tucker conditions of the WPM problem. Moreover, a low-
complexity algorithm based on Newton’s method and the gradient
descent method is developed to update the precoder matrices
in each iteration of the WMMSE method. Simulation results
demonstrate the rapid convergence of the proposed algorithms
and the benefits of equipping multiple antennas at the user side.
Moreover, the proposed algorithm is shown to achieve near-
optimal performance in terms of NPC.

Index Terms— Cloud radio access network (C-RAN), user-
centric network, MIMO systems, user selection, green commu-
nications.

I. INTRODUCTION

MOBILE communications has been developing very
rapidly [2]–[4]. In recent years, C-RAN has been

proposed as a promising solution to support the exponential
growth of mobile data traffic [5], [6]. In C-RAN, all the
baseband processing is performed at the baseband unit (BBU)
pool with powerful computation capacity, while the remote
radio heads (RRHs) perform the basic functionalities of signal
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processing [7], [8]. The RRHs are geographically distributed
away from each other, but connected to the BBU pool through
optical fiber transport links. Under the C-RAN architecture,
centralized signal processing technologies can be realized.
Hence, significant performance gains can be achieved. In addi-
tion, the RRHs can be densely deployed in the network with
low operation cost due to their simple functionalities. This will
significantly reduce the average access distance for the users,
and thus lowers the transmission power.

On the other hand, it was reported that the total energy
consumption of wireless communications contributes more
than 3 percent of the worldwide electrical energy consump-
tion [9], and this portion is expected to grow in the near future
due to the explosive growth of high-data-rate applications
and mobile devices. Hence, energy efficiency has attracted
extensive interest and becomes one of the main performance
metrics in the future fifth generation (5G) systems [10]. When
a large number of RRHs are deployed in the network, the
network power consumption (NPC) of C-RAN will become
considerable due to the increasing circuit power consumption
of the RRHs. Fortunately, it was reported in [11] that the traffic
load varies substantially over both time and space due to user
mobility and varying channel state. Hence, the NPC can be
significantly reduced by putting some RRHs with light load
into sleep mode while maintaining the quality of service (QoS)
requirements of the users, which is the focus of this paper.

Recently, the NPC minimization problem for C-RAN has
been extensively studied in [12]–[22]. These papers formulated
the joint RRH selection and beamforming vector optimization
problem as a mixed-integer non-linear programming (MINLP)
problem, which has a nonconvex discontinuous l0-norm in the
objective function or constraints. We summarize the existing
approaches to solve the MINLP problem as follows. The
first approach was proposed in [12], which first reformulated
the problem as an extended mixed integer second-order cone
programming (SOCP) and then applied the branch-and-cut
method to obtain the optimal solution. In the second approach
in [13], [14], the MINLP was first decomposed into a master
problem and a beamforming subproblem. Then, an iterative
algorithm based on the Benders decomposition was derived to
find the optimal solution. Although these two approaches yield
the optimal solution, they have an exponential complexity.
The third approach is the smooth function method, where the
l0-norm was approximated as Gaussian-like function in [15],
the exponential function in [16], and arctangent function
in [17]. However, the smooth function cannot produce sparse
solutions in general. The last approach was inspired by the
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compression sensing, named re-weighted l1-norm minimiza-
tion method [23]. This method has been widely adopted in
the literature [18]–[22], [24] due to its low computational
complexity and sparsity guarantee, which will also be applied
in this paper.

All of the above papers only considered the single-antenna
user (SAU) case. With the increasing development in antenna
technology [25], [26], it is possible to equip the wireless
devices with multiple antennas. When both the transmitter
and the receiver are equipped with multiple antennas, multiple
streams can be transmitted simultaneously, rather than only
one stream in the SAU case. Simulation results show that
with the increasing number of receive antennas, more users
can be admitted. Therefore, in this paper, we consider the
multiple-antenna user (MAU) case and jointly optimize the
precoding matrices and the set of active RRHs to minimize
the NPC subject to users’ rate requirements and per-RRH
power constraints.

Unfortunately, the techniques in [12]–[22] dealing with the
SAU case cannot be extended directly to the MAU case.
The reasons are as follows. Firstly, since the rate constraints
and power constraints are conflicting with each other, this
problem may be infeasible. In the SAU networks, the rate
requirements can be equivalently represented as signal-to-
interference-plus-noise ratio (SINR) constraints, which can be
transformed into an SOCP problem. Hence, the feasibility of
the original problem can be easily checked by solving the
SOCP feasibility problem. However, the rate constraints in
the MAU case is non-convex and much more complex due to
the complicated rate expression, which cannot be transformed
into the SOCP formulation as in the SAU case. Hence, new
techniques need to be developed to check the feasibility of the
original problem. Secondly, even though the original problem
is checked to be feasible, how to solve it is still difficult, since
it cannot be transformed into an SOCP problem as in the SAU
case. [27] proposed the weighted minimum mean square error
(WMMSE) method to solve the rate maximization problem
for MIMO interfering broadcast channels, where the rate
expression is in the objective function. Recently, there have
been some work in applying the WMMSE method to solve
the energy efficiency (measured in bit/s/Joule) optimization
problems under rate constraints [28], [29]. However, these
researches have not addressed the feasibility problem due to
the incorporated rate constraints. Only in [29], a heuristic
method was proposed to check the feasibility based on the
interference alignment technique, under the assumption that
the transmit power is approaching infinity, which in not practi-
cal. Since the problem considered in this paper imposes power
constraints at each RRH, the heuristic method developed
in [29] is not applicable. More importantly, they have not
revealed the hidden property of applying WMMSE method
to the optimization problem with rate constraints, such as the
convergence property and the optimality of the solutions.

To the best of our knowledge, this paper is the first attempt
to solve the joint RRH and precoding optimization problem
to minimize the NPC in the MAU based user-centric C-RAN,
where each user can be served by an arbitrary subset of
RRHs. Due to the conflicting constraints, this problem may

be infeasible. Some users should be removed or rescheduled
for the next transmission to guarantee the rate requirements
of other users. We provide a comprehensive analysis for this
problem by considering two stages: user selection in Stage I
and algorithm design in Stage II. The main contributions of
this paper are summarized as follows:

1) In Stage I, a low-complexity user selection approach
is proposed to maximize the number of admitted users
that can have their QoS requirements satisfied. Specif-
ically, in each step we solve an alternative problem
by introducing a series of auxiliary variables. This
alternative problem is always feasible. By replacing the
rate expression in the constraints with its lower-bound,
an iterative algorithm is proposed to solve this problem
along with the complexity and convergence analysis
of the algorithm. The alternative problem should be
solved at most K times, where K is the total number
of users. Its complexity is much lower than the optimal
exhaustive user selection method that has an exponential
complexity. Simulation results show that both algorithms
achieve similar performance.

2) In Stage II, a low-complexity algorithm is proposed to
solve the NPC minimization problem with the users
selected from Stage I. Specifically, the re-weighted
l1-norm minimization method is adopted to convert
the non-smooth optimization problem into a series of
smooth weighted power minimization (WPM) problems.
We again replace the rate expression with its lower-
bound and adapt the WMMSE algorithm originally
designed for a rate maximization problem to solve the
WPM problem. In addition, we strictly prove that when
the WMMSE algorithm is initialized with a feasible
solution, the sequences of precoder matrices generated
in the iterative procedure will finally converge to the
Karush-Kuhn-Tucker (KKT) point of the WPM problem.

3) In each iteration of the WMMSE algorithm, there is
a subproblem for the precoder matrices being updated
with some other fixed variables. Most existing papers
[21], [28]–[31] directly transform it into an SOCP prob-
lem and apply the interior point method [32] to solve
it, which may incur high computational complexity.
In this paper, we go one step further and develop a
low-complexity algorithm to solve this subproblem by
exploiting its special structure. Specifically, we equiva-
lently solve its dual problem because the subproblem is
a convex problem. Fortunately, the objective function
of the dual problem is differentiable, and the block
coordinate descent (BCD) method is adopted to solve
the dual problem. In each iteration of the BCD method,
Newton’s method and the gradient descent method are
applied to update the Lagrangian multipliers. It is strictly
proved that the BCD method can obtain the globally
optimal solution of the subproblem. Complexity analysis
in conjunction with the simulation results show that the
BCD method has a much lower computational complex-
ity than the interior point method.

This paper is organized as follows. In Section II, we
introduce the system model and formulate the optimization
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Fig. 1. Illustration of a C-RAN with thirteen RRHs and six users, where user-
centric clustering technique is adopted. In this example, each user is served
by its nearby RRHs within the dotted circle centered at itself. The RRHs that
are not in any users’ candidate set are turned into idle mode, such as RRH3
and RRH 5.

problems. In Section III, a new approach is introduced to
select the maximum number of admitted users. An iterative
algorithm with low complexity is provided in Section IV.
Simulation results are presented in Section V. Conclusions
are drawn in Section VI.

Notations: Uppercase and lowercase boldface denote
matrices and vectors, respectively. For a matrix A, ‖A‖F
denotes the Frobenius norm of A and AH represents the
Hermitian transpose of A. Im denotes a m×m identity matrix.
For a vector a, diag(a) denotes the diagonal matrix with
diagonal elements given by a. blkdiag(·) represent the block-
diagonal matrices. E(·), and Tr(·) represent expectation,
trace operators, respectively. A � B means A − B is a
positive semidefinite matrix. For vector a ∈ C

n×1, ‖a‖2 is
the Euclidean norm. CN

(
0, σ 2I

)
represents the complex

circularly symmetric Gaussian distribution with zero mean
vector and covariance matrix σ 2I. For a vector x, ‖x‖0 is
l0-norm, means the number of nonzero entries in a vector.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a downlink C-RAN consisting of I RRHs and K
users,1 where each RRH is equipped with M transmit antennas
and each user has N receive antennas, as shown in Fig. 1.
Denote the set of RRHs and users as I = {1, · · · , I } and
Ū = {1, · · · , K }, respectively. It is assumed that each RRH
is connected to the BBU pool via fronthaul link and the BBU
pool has access to all users’ CSI and data information.

Let U ⊆ Ū be the set of users that can be admitted to
this networks. To reduce the computational complexity of the

1In dense networks, the number of RRHs may be larger than the number
of users so that the average distance between serving RRHs and users can
be significantly reduced, leading to improved performance. In some extreme
cases, each user may be served by its dedicated RRHs as in [33], [34], where
each RRH serves only one user.

dense network, the user-centric clustering method is adopted,
where each user k ∈ U is assumed to be served by its nearby
RRHs since the distant RRHs contribute less to user’s signal
quality due to the large path loss. The unselected RRHs are
turned into idle mode, such as RRH 3 and RRH 5 in Fig. 1.
Let Ik ⊆ I and Ui ⊆ U be the candidate set of RRHs for
serving user k and candidate set of users served by RRH i ,
respectively. Note that the set of RRHs serving the users may
overlap with each other. For example, in Fig. 1, RRH 12 jointly
serves user 1 and user 6.

Denote Vi,k ∈ C
M×d as the precoding matrix used by the

i th RRH to transmit data vector sk ∈ C
d×1 to the kth user,

where d is the number of data streams for each user, and
sk satisfies E

[
sksH

k

] = Id and E
[
sksH

l

] = 0, for l �= k. Let

V̄k =
[
VH

i,k ,∀i ∈ Ik

]H ∈ C
|Ik |M×d be the big precoding matrix

for user k from all RRHs in Ik . In addition, define a set
of new channel matrices H̄ j,k = [Hi,k ,∀i ∈ I j ] ∈ C

N×|Il |M ,
representing the overall CSI from RRHs in I j to user k, where
Hi,k ∈ C

N×M denotes the channel matrix from the i th RRH to
the kth user. Then, the received signal vector at the kth user,
denoted as yk ∈ C

N×1, is given by

yk = H̄k,kV̄ksk +
∑

j∈U, j �=k
H̄ j,kV̄ j s j + nk, (1)

where nk is the noise vector at the kth user, which satisfies
CN

(
0, σ 2

k IN
)
. Then, the achievable rate (nat/s/Hz) of the kth

user is given by [35]

Rk(V) = log
∣
∣∣I + H̄k,kV̄kV̄H

k H̄H
k,kJ−1

k

∣
∣∣ , (2)

where log(·) is the base of natural logarithm, Jk =∑
j∈U, j �=k H̄ j,kV̄ j V̄H

j H̄H
j,k+σ 2

k I is the interference-plus-noise

covariance matrix, and V is the collection of all precoding
matrices. Each user’s data rate should be larger than the
minimum requirement:

C1 : Rk(V) ≥ Rk,min, ∀k ∈ U. (3)

With densely deployed RRHs, the power consumption on
the RRHs and the corresponding fronthaul links may be
significant. Switching off some RRHs and the corresponding
fronthual links may be a good option to reduce the NPC.
To this end, it is critical to model the NPC.

B. NPC Model

The realistic NPC model should consist of three parts:
power consumption at the RRHs, that at the fronthaul links
and that at the BBU pool.

As in [18], the power consumption at RRH i can be modeled
as follows:

Prrh
i (V) =

{
ηi P tr

i (V)+ M Pa,rrh
i , if P tr

i (V) > 0
M Ps,rrh

i , if P tr
i (V) = 0

(4)

where ηi > 1 accounts for the inefficiency of the power
amplifier of RRH i , P tr

i (V) is the total transmit power of RRH

i given by P tr
i (V) = ∑k∈Ui

∥∥Vi,k
∥∥2

F that satisfies the power
constraint:

C2 : P tr
i (V) ≤ Pi,max, ∀i ∈ I , (5)
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Pa,rrh
i and Ps,rrh

i represent the power consumption for each
antenna (or each RF chain) when RRH i is in active mode
and sleep mode, respectively. In practical systems, Pactive

i is
much higher than Psleep

i , which motivates us to switch off
some RRHs.

In general, more power consumption will be consumed
on the fronthaul links when they support high data rates.
In [22], this power was modeled to be proportional to the total
fronthaul data rate. We modify the model in [22] to account
for the power when the fronthaul links are in the sleep mode
as follows:

Pfr
i (V) =

{
ρi

∑

k∈Ui
Rk(V)+ Pa,fr

i , if P tr
i (V) > 0,

Ps,fr
i , if P tr

i (V) = 0.
(6)

where ρi is the proportional factor for fronthaul link i . The
power consumed in the BBU pool mainly depends on the
computational complexity for signal processing. However, how
to accurately model this kind of power consumption is still not
fully understood. As in most papers [12], [18], [19], [22], the
BBU power consumption is modeled as a constant PBBU for
simplicity. Let A denote the active RRH set. Then, the NPC
can be modeled as

P̂(A, V) =
∑

i∈I

(
Prrh

i (V)+ Pfr
i (V)

)
+ PBBU (7)

=
∑

i∈A

(
ηi P tr

i (V)+ ρi

∑

k∈Ui
Rk(V)+ Pc

i

)

+
∑

i∈I
Ps

i + PBBU, (8)

where Pc
i and Ps

i are two constants, given by Pc
i =

M(Pa,rrh
i − Ps,rrh

i )+ Pa,fr
i − Ps,fr

i and Ps
i = M Ps,rrh

i + Ps,fr
i .

C. Problem Formulation

Due to the power constraints C2, the rate requirements C1
may not be satisfied for all users. Some users should be
removed to make the optimization problem feasible. Hence,
we formulate a two-stage optimization problem. In Stage I,
one should maximize the number of admitted users that can be
supported by the system; in Stage II, one should jointly select
some RRHs and optimize the precoding matrices to minimize
the NPC with the selected users from Stage I.

Specifically, the optimization problem in Stage I can be
formulated as

max
V,U⊆U

|U|
s.t. C1, C2. (9)

Then in Stage II, we aim to jointly select the RRHs and
optimize the precoding matrices to minimize the NPC with
the users selected from Stage I, which can be formulated as2

min
A,V

∑

i∈A

(
ηi P tr

i (V)+ ρi

∑

k∈U�
i

Rk(V)+ Pc
i

)

s.t. C1,
∑

k∈U�
i

∥
∥Vi,k

∥
∥2

F ≤ Pi,max, i ∈ A, (10a)
∑

k∈U�
i

∥
∥Vi,k

∥
∥2

F = 0, i ∈ I\A, (10b)

2In general, the number of transmit antennas should be optimized to
additionally reduce the NPC as seen in the RRH power consumption model
in (4). However, the resulting problem will be much more difficult to solve,
and will be left for future work.

where U�
i is the solution from Stage I. Note that when the

system parameters are given, the last two terms in (8) are
constants, and are omitted in the objective function.

Both the optimization problems in the two stages are
MINLP problems and are difficult to solve. The intuitive
approach to solve this kind of problems is through the exhaus-
tive search. For example, to solve the NPC minimization
problem in Stage II, one must solve the precoding matrices
that minimizes the NPC with each given A and obtain the
corresponding objective value. Finally, the A that achieves
the minimum NPC together with the corresponding precoding
matrices is the optimal solution of Problem (10). However,
the exhaustive search has exponentially prohibitive complexity
with respect to the number of RRHs, which is hard to be
implemented in practice in dense C-RANs. The same issue
holds for the user selection problem in Stage I, where the
exhaustive search method has an exponential complexity of
the number of users. Hence, this motivates us to develop low-
complexity algorithms to solve these two Problems.

III. STAGE I: LOW-COMPLEXITY USER

SELECTION ALGORITHM

In this section, we provide a low-complexity user selection
algorithm to guarantee the rate requirements of other users.
Specifically, for an arbitrary given subset of users U, we
construct an alternative problem by introducing a series of
auxiliary variables {αk}k∈U:

min{αk}k∈U ,V

∑

k∈U
(αk − 1)2

s.t. C2, Rk(V) ≥ α2
k Rk,min, ∀k ∈ U, (11)

Obviously, Problem (11) is always feasible and the optimal αk

for each user k should be no larger than one. This can be easily
proved by contradiction. Moreover, user k can be admitted if
and only if the optimal αk is equal to one. Hence, maximizing
the number of admitted users is equal to finding the largest
subset of users U, in which all {αk}k∈U are equal to one.

Based on the above analysis, we provide a low-complexity
user selection (USC) algorithm to solve Problem (9) in Stage I.
The main idea is to remove each user with the least αk < 1
in each iteration. It is intuitive since the user with the least αk

has the largest gap to its rate target.

Algorithm 1 USC Algorithm
1: Initialize the set of users U = {1, · · · , K };
2: Given U, solve Problem (11) by Algorithm 2 in Subsection

III-A to obtain {αk}k∈U and V;
3: If αk = 1,∀k ∈ U, output V and U∗ = U for the

initialization of Stage II and terminate; Otherwise, find
k∗ = arg mink∈U αk , remove user k∗ and update U = U\k∗,
go to step 2.

A. Algorithm to Solve Problem (11)

In step 2 of Algorithm 1, Problem (11) needs to be solved.
Due to constraints C3 in (11), Problem (11) is a non-convex
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problem, which is difficult to solve. To handle this difficulty,
we apply the relationships between WMMSE and the rate
expression.

We consider the linear receiver filter so that the estimated
signal vector is given by

ŝk = UH
k yk, ∀k ∈ U. (12)

where Uk ∈ C
N×d is the receiver filter of the kth user. Since

the signal vectors sk ’s and noise nk’s are mutually independent,
the mean square error (MSE) matrix at the kth user is given
by

Ek = Es,n

[(
ŝk − sk

) (
ŝk − sk

)H
]

=
(

UH
k H̄k,kV̄k − Id

) (
UH

k H̄k,kV̄k − Id

)H

+
∑

j∈U, j �=k

UH
k H̄ j,kV̄ j V̄H

j H̄H
j,kUk + σ 2

k UH
k Uk . (13)

By introducing a set of auxiliary matrices {Wk � 0}, we define
the following functions

hk (V, Uk, Wk) = log |Wk | − Tr (WkEk)+ d, ∀k. (14)

where Ek is the MSE matrix of user k given in (13). The
following lemma establishes the relationships between the rate
expression and function hk (V, Uk, Wk).

Lemma 1 [27]: hk (V, Uk, Wk) is a concave function for
each set of the matrices V, Uk and Wk when the other two
are given. Given V, hk (V, Uk, Wk) is the lower-bound of the
data rate Rk(V) in (2). The optimal Uk, Wk for hk (V, Uk, Wk)
to achieve the data rate is given by

U�
k =

⎛

⎝
∑

j∈U

H̄ j,kV̄ j V̄H
j H̄H

j,k + σ 2
k I

⎞

⎠

−1

H̄k,kV̄k,

W�
k = E�−1

k , ∀k, (15)

where E�
k is obtained by plugging the expression of U�

k into
the kth user’s MSE in (13)

E�
k = Id − V̄H

k H̄H
k,k

⎛

⎝
∑

j∈U

H̄ j,kV̄ j V̄H
j H̄H

j,k + σ 2
k I

⎞

⎠

−1

H̄k,kV̄k .

�
By replacing the first set of constraints in (11) with its

lower-bound hk (V, Uk, Wk), we have the following optimiza-
tion problem

min{αk}k∈U ,V,W,U

∑

k∈U
(αk − 1)2

s.t. C2, hk (V, Uk, Wk) ≥ α2
k Rk,min, ∀k ∈ U, (16)

where U and W are the collection of matrices Uk,∀k and
Wk,∀k, respectively.

To solve Problem (16), we apply the block coordinate
descent method: given V, update U and W by using (15);
update {αk}k∈U and V with given U and W. We only need to

solve the latter one. Putting the MSE expression in (13) into
constraints C4 in Problem (16) yields

min{αk }k∈U ,V

∑

k∈U
(αk − 1)2

s.t. C2,

C5 : Tr

((
UH

k H̄k,kV̄k − Ik

)H
Wk

(
UH

k H̄k,kV̄k − Ik

))

+
∑

j∈U, j �=k

Tr
(

V̄H
j H̄H

j,kUkWkUH
k H̄ j,kV̄ j

)

+ α2
k Rk,min ≤ tk, ∀k, (17)

where tk = log |Wk | + d − σ 2
k Tr

(
UH

k UkWk
)
.

Without loss of generality, we assume U = Ū = {1, · · · , K }
and define the indices of Ui as Ui = {qi

1, · · · , qi|Ui |}. Prob-
lem (17) can be equivalently transformed into the following
problem

min{αk }k∈U ,V

∑

k∈U
(αk − 1)2

s.t. ‖xk‖2 ≤
√

tk, ∀k ∈ U,

‖yi‖2 ≤
√

Pi. max, ∀i ∈ I , (18)

where xk is given by

xk =
[
αk
√

Rk,min, vec
(

V̄H
1 H̄H

1,kUkW1/2
k

)H
, · · · ,

vec
((

V̄H
k H̄H

k,kUk − Ik

)
W1/2

k

)H
, · · · ,

vec
(

V̄H
K H̄H

K ,kUkW1/2
k

)H
]H

and yi is given by

yi =
[

vec
(

Vi,qi
1

)H
, · · · , vec

(
Vi,qi|Ui |

)H
]H

. (19)

Problem (18) is an SOCP problem for which a globally optimal
solution can be obtained by existing techniques such as interior
point method [32].

Based on the above analysis, the iterative algorithm for
solving Problem (11) is formally described in Algorithm 2.

Theorem 1: Algorithm 2 will converge during the iterative
procedure.

Proof: Please see Appendix A. �

Algorithm 2 Iterative Algorithm
1: Initialize iterative number n = 1, the maximum number

of iterations nmax. Initial precoding matrices V(0) such that
the per-RRH power constraints are satisfied. Calculate U(0)

and W(0) by using (15) with V(0);
2: With U(n−1) and W(n−1), update {α(n)

k }k∈U and V(n) by
solving the SOCP problem (18);

3: Update U(n) and W(n) as in (15) with V(n);
4: If n < nmax, set n ← n + 1 and go to step 2. Otherwise,

terminate.
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B. Overall Complexity to Solve Problem (9) in Stage I

We first analyze the complexity of Algorithm 2 to solve
Problem (11). For simplicity, we assume that candidate
size for each user is equal, i.e., |Ik| = l, and U = Ū.
In each iteration of Algorithm 2, the main complexity
lies in step 2, where the SOCP Problem (18) is solved.
This problem has 2M Kld + K real variables, K SOC
constraints where each has 2K d2 + 1 real dimensions,
and I SOC constraints where each has 2Md |Ui | real
dimensions. From [page 196, [36]], the complexity is
O
(
(2M Kld + K )2 (2K 2d2 + K + 2Md

∑
i∈I |Ui |

))
, and

the total number of iterations required is O
(√

I + K
)
.

Note that
∑

i∈I |Ui | = ∑
k∈U |Ik| = Kl, the total

complexity to solve the SOCP Problem (18) is given
by O

(√
I + K (2M Kld + K )2 (2K 2d2 + K + 2Md Kl

))
.

Finally, Algorithm 2 should be run at most K times,
then the overall complexity to solve Problem (9) in
Stage I is at most TStageI = O(K

√
I + K (2M Kld + K )2

(
2K 2d2 + K + 2Md Kl

)
).

IV. STAGE II: A LOW-COMPLEXITY ALGORITHM

TO SOLVE PROBLEM (10)

In this section, we provide a low-complexity algorithm to
solve Problem (10) with the selected users from Stage I. First,
we adopt the re-weighted l1-norm method [23] to transform
the original non-smooth optimization problem into a series
of WPM problems. Then, the WPM problem is solved by
the WMMSE algorithm. In each iteration of the WMMSE
algorithm, there is a subproblem that the precoder matrices
should be optimized. We exploit the special structure of
the subproblem and develop a low-complexity algorithm to
solve it.

A. Reweighted l1-Norm Minimization

For simplicity, the subscript in U� is omitted.
It is easy to see that the minimum rate constraints
in C1 of Problem (10) hold with equality at the
optimal point, i.e., Rk(V) = Rk,min,∀k. Then, defining

P̃c
i

�= ρi
∑

k∈U�
i

Rk,min + Pc
i and using the l0-norm, the

objective function of Problem (10) is equivalent to
∑

i∈I(
ηi
∑

k∈Ui

∥
∥Vi,k

∥
∥2

F +
∥
∥
∥
∑

k∈Ui

∥
∥Vi,k

∥
∥2

F

∥
∥
∥

0
P̃c

i

)
. This rewritten

expression enables us to apply the compressive sensing
techniques [37], where the non-smooth l0-norm objective can
often be approximated by a re-weighted l1-norm, i.e.,

∥
∥
∥
∑

k∈Ui

∥
∥Vi,k

∥
∥2

F

∥
∥
∥

0
≈ a(n)

i

∑

k∈Ui

∥
∥Vi,k

∥
∥2

F , (20)

where a(n)
i is a weight factor of the i th RRH at the nth

iteration that is iteratively updated as

a(n)
i =

1
∑

k∈Ui

∥∥
∥V(n)

i,k

∥∥
∥

2

F
+ δ

, ∀i, (21)

where δ is a small constant regularization parameter and
V(n)

i,k is the solution in the nth iteration. The above updating
rule shows that those RRHs with lower transmit power in the

previous iteration will have larger weights, which force them
to be shut off in the future iterative procedure.

By using the approximation in (20), we have the following
optimization problem that should be solved in the n-th iteration

min
V

∑

i∈I
ω

(n−1)
i

∑

k∈Ui

∥
∥Vi,k

∥
∥2

F

s.t. C1, C2, (22)

where ω
(n−1)
i = ηi + a(n−1)

i P̃c
i .

Based on the above analysis, the re-weighted l1-norm
based (RLN) algorithm to solve Problem (10) is given in
Algorithm 3. The convergence of the RLN algorithm is proved
in [24]. In addition, [24] showed that the RLN algorithm is
guaranteed to achieve sparse solutions, while the other smooth
approximations cannot produce sparse solutions in general.

Algorithm 3 RLN Algorithm
1: Initialize a small enough δ, the iterative number n = 1, the

maximum number of iterations Nmax. Initialize V(0) with
the outputs given by Stage I, calculate {ω(0)

i ,∀i};
2: Given {ω(n−1)

i ,∀i}, solve Problem (22) to get V(n) by using
the WMMSE algorithm in Subsection IV-B;

3: Update {ω(n)
i ,∀i} with V(n);

4: If n ≥ Nmax, terminate. Otherwise, set n ← n + 1 and go
to step 2.

B. Algorithm to Solve Problem (22)

For simplicity, the subscript of ω
(n−1)
i in Problem (22) is

omitted. The main difficulty in solving Problem (22) lies in
the rate requirement, which is non-convex. To handle this
difficulty, we again apply the relationship between WMMSE
and the rate expression. Based on Lemma 1, we replace the
rate constraints in (22) with its lower bound hk (V, Uk, Wk).

Define the indices of Ik as Ik =
{

sk
1 , · · · , sk|Ik |

}
, we have the

following optimization problem

min
V,W,U

∑

k∈U
Tr
(

V̄H
k GkV̄k

)

s.t. hk (V, Uk, Wk) ≥ Rk,min, ∀k ∈ U,
∑

k∈Ui

∥
∥Bi,k V̄k

∥
∥2

F ≤ Pi,max, ∀i ∈ I , (23)

where Gk and Bi,k are both diagonal matrices, given by

Gk = blkdiag

{
ωsk

1
IM×M , · · · , ωsk|Ik |

IM×M

}

and

Bi,k = diag

⎧
⎪⎪⎨

⎪⎪⎩

sk
1︷ ︸︸ ︷

01×M , · · · ,
sk

j
︷ ︸︸ ︷
11×M , · · · ,

sk|Ik |︷ ︸︸ ︷
01×M

⎫
⎪⎪⎬

⎪⎪⎭
,

if sk
j = i, ∀i, k.

By solving Problem (23), we can find a solution that satisfies
the KKT conditions of Problem (22). To solve it, we again
apply the block coordinate descent method. Matrices U and W
can be updated with (15). The remaining task is to update V
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with given U and W. Plugging the MSE expression in (13)
into the first set of Problem (23) yields

min
V

∑

k∈U
Tr
(

V̄H
k GkV̄k

)

s.t.
∑

j∈U
Tr
(

V̄H
j H̄H

j,kUkWkUH
k H̄ j,kV̄ j

)

−Tr
(

WkUH
k H̄k,kV̄k

)
− Tr

(
V̄H

k H̄H
k,kUkWk

)
≤ ck, ∀k

∑

k∈Ui
Tr
(

V̄H
k Bi,k V̄k

)
≤ Pi,max, ∀i, (24)

where ck = log |Wk | + d − Rk,min − Tr (Wk) −
σ 2

k Tr
(
UH

k UkWk
)
.

Then, an WMMSE algorithm is proposed to solve
Problem (22) in Algorithm 4. In the following theorem, we
show the property of the WMMSE algorithm.

Algorithm 4 WMMSE Algorithm
1: Initialize iterative number l = 1, maximum number of

iterations lmax, feasible V(0), calculate U(0) and W(0) by
using (15) with V(0), tolerance ε, calculate the objective
value of Problem (23), denoted as Obj(V(l−1)).

2: With U(l−1) and W(l−1), update V(l) by solving Problem
(24) with the BCD algorithm in Subsection IV-C;

3: Update U(l) and W(l) as in (15) with V(l);
4: If l ≥ lmax or

∣
∣Obj(V(l−1))− Obj(V(l))

∣
∣/Obj(V(l)) < ε,

terminate. Otherwise, set l ← l + 1 and go to step 2.

Theorem 2: The sequence of V generated by the WMMSE
algorithm will converge to the KKT point of Problem (22).

Proof: Please see Appendix B. �

C. Low-Complexity Algorithm to Solve Problem (24)

Since ωi > 0,∀i , matrices {Gk,∀k ∈ U} are positive defi-
nite matrices. Then, Problem (24) can be similarly transformed
an SOCP problem as in (18). Using the same method in
Subsection III-B, the total complexity to solve this problem
by using the interior point method is

TSOCP = O
(√

I + K (2l M K d)2
(

2K 2d2 + 2d M Kl
))

.

In the following, we go one step further to design an
algorithm with lower complexity. Obviously, Problem (24) is
a convex problem, and it satisfies the Slater’s condition [32].
Hence, the duality gap between Problem (24) and its dual
problem is zero [32]. Then we can solve its dual problem
instead of directly solving it.

With some simple manipulations, the Lagrangian function
of Problem (24) is given by

L (V,λ,μ) =
∑

k∈U

(
Tr
(

V̄H
k ḠkV̄k

)
− Tr

(
λkWkUH

k H̄k,kV̄k

)

− Tr
(
λkV̄H

k H̄H
k,kUkWk

))

−
∑

k∈U

λkck −
∑

i∈I

μi Pi,max,

where λ = [λk,∀k ∈ U]H and μ = [μi ,∀i ∈ I ]H are the
Lagrangian multipliers associated with the first and second

sets of constrains of Problem (24), respectively, and Ḡk is
given by

Ḡk = Gk +
∑

j∈U
λ j H̄H

k, j U j W j UH
j H̄k, j +

∑

i∈Ik
μi Bi,k .

The dual function is given by

g(λ,μ)

= min
V

L (V,λ,μ)

= min
V

∑

k∈U

(
Tr
(

V̄H
k ḠkV̄k

)
− Tr

(
λkWkUH

k H̄k,kV̄k

)

− Tr
(
λkV̄H

k H̄H
k,kUkWk

))
−
∑

k∈U

λkck −
∑

i∈I

μi Pi,max.

(25)

Note that matrices {Gk,∀k ∈ U} are positive definite matrices.
Problem (25) is a convex problem, and the optimal solu-
tion can be obtained from its first-order derivative condition
as:

V̄k = λkḠ−1
k H̄H

k,kUkWk, ∀k ∈ U. (26)

By inserting this solution into (25), the dual function
becomes

g(λ,μ) = −
∑

k∈U

λ2
kTr
(

WH
k UH

k H̄k,kḠ−1
k H̄H

k,kUkWk

)

−
∑

k∈U

λkck −
∑

i∈I

μi Pi,max. (27)

Hence, the dual problem of Problem (24) is given by

max{λk≥0,μi≥0} g(λ,μ)

= min{λk≥0,μi≥0}
∑

k∈U

λ2
kTr
(

WH
k UH

k H̄k,kḠ−1
k H̄H

k,kUkWk

)

+
∑

k∈U
λkck +

∑

i∈I
μi Pi,max

� min{λk≥0,μi≥0} f (λ,μ), (28)

where f (λ,μ) = −g(λ,μ).
Fortunately, the objective function of the dual problem

in (28) is differentiable and the dual problem is convex [32],
the descent methods such as the gradient descent method
and Newton’s method [32], [38] can be applied to solve it.
In the following, we also utilize the block coordinate descent
method to solve the dual problem (28): Optimize {λk ,∀k} with
{μi ,∀i}, and vice versa.

Given {μi ,∀i}, Newton’s method is applied to find the
optimal {λk,∀k} of the dual problem, which is summarized
in Algorithm 5.3

In step 4 of Algorithm 5, the backtracking line search
method is used to find the step size, where ξ is typically chosen
as a very small value and ϕ is chosen between 0 and 1. The
step κ(t) starts with one and then reduces by a factor of ϕ
until the stop condition (29) is satisfied. Note that in each

3Since {μi ,∀i} are given, f (λ) is short for f (λ,μ) and the same for f (μ)
later.
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Algorithm 5 Newton’s Method to Update {λk ,∀k}
1: Initialize iterative number t = 1, the maximum number

of iterations tNewt
max , initial λ(0) = 1, tolerance ε = 10−10,

ξ ∈ (0, 0.5), ϕ ∈ (0, 1);
2: Compute the gradient ∇ f (λ(t−1)), Hessian matrix
∇2 f (λ(t−1)), the Newton direction and the decrement

�λ(t−1) = −
(
∇2 f (λ(t−1))

)−1∇ f (λ(t−1)),

o(t−1) = ∇ f (λ(t−1))T
(
∇2 f (λ(t−1))

)−1∇ f (λ(t−1));
3: Compute λ̄(t−1) = [λ(t−1) +�λ(t−1)]+;
4: Update λ(t) = λ(t−1) + κ(t−1)(λ̄(t−1) − λ(t−1)), where

κ(t−1) = ϕm(t−1)
and m(t−1) is the first non-negative integer

m that satisfies

f (λ(t))− f (λ(t−1)) ≤ ξϕm∇ f (λ(t−1))T
(
λ̄(t−1)−λ(t−1)

)
.

(29)

5: If o(t−1)/2 ≤ ε or t ≥ tNewt
max , terminate; Otherwise,

t ← t + 1, and go to step 2;

iteration of Algorithm 5, the step value κ(t) may be different.
The constant ξ can be regarded as the acceptable fraction of
the decrease in the objective value of f that is predicted by
the line search method.

However, to make this algorithm work, there are still
problems to be solved: how to calculate the gradient and how
to compute the Hessian matrix. To derive the expressions of
the gradient and the Hessian matrix, we first introduce some
useful results in the matrix differential calculus. Given a matrix
function �(x), one has [39], [40]

d

dx
Tr (�(x)) = Tr

(
d�(x)

dx

)
, (30)

d

dx
�(x)−1 = −�(x)−1 d�(x)

dx
�(x)−1. (31)

In addition, to simplify the expressions of the gradient and
the Hessian matrix, one defines some matrices:

H̃ j,k = H̄H
j,kUk,

�

H j,k = H̃ j,kWk, Ĥ j,k =
�

H j,kH̃H
j,k,

G̃k = Ḡ−1
k , Ck = G̃k

�

Hk,k , Fk =
�

H
H

k,kCk, Y j,k = CH
j Ĥ j,k,

Ỹ j,k = Y j,kG̃ j , Z j,k = Y j,kC j , ∀ j, k ∈ U.

Based on the above results and definitions, the gradient can
be derived as follows:

∇ f (λ) =
[
∂ f (λ)

∂λk
, ∀k ∈ U

]H

, (32)

with

∂ f (λ)

∂λk
= 2λkTr (Fk)−

∑

j∈U
λ2

j Tr
(
Z j,k

)+ ck, k ∈ U.

The Hessian matrix of f (λ) can be calculated as:

[
∇2 f (λ)

]

i, j
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2Tr(Fi )+ 2
∑

k∈U
λ2

kTr
(

Ỹk,i YH
k,i

)

−4λi Tr
(
Zi,i
)
, if i = j,

2
∑

k∈U
λ2

kRe
{

Tr
(

Ỹk, j YH
k,i

)}

−2λi Tr
(
Zi, j

)− 2λ j Tr
(
Z j,i

)
, if j > i,[∇2 f (λ)

]
j,i , if j < i.

(33)

Next, given {λk,∀k ∈ U}, we solve the dual problem (28)
to update {μi ,∀i ∈ I}. Here, the gradient descent method [32]
is applied. Although Newton’s method converges faster than
the gradient descent method, simulation results show that the
gradient method also converges within five iterations but it has
much lower computational complexity than Newton’s method
since it does not require the calculations of the Hessian matrix
and the inverse of the Hessian matrix. The gradient descent
method to update {μi ,∀i ∈ I} is given in Algorithm 6.

Algorithm 6 Gradient Descent Method to Update {μi }Ii=1

1: Initialize iterative number t = 1, maximum number of
iterations tGrad

max , initial μ(0) = 1, accuracy ε;
2: Compute the gradient ∇ f (μ(t−1));
3: Compute μ̄(t−1) = [μ(t−1) −∇ f (μ(t−1))]+;
4: Update μ(t) = μ(t−1)+κ(t−1)(μ̄−μ(t−1)), where κ(t−1) =

βl(t−1)
and l(t−1) is the first non-negative integer l that

satisfies

f (μ(t))− f (μ(t−1)) ≤ δβl∇ f (μ(t−1))T
(
μ̄(t−1) − μ(t−1)

)
.

5: If t ≥ tmax or
∣
∣ f (μ(t))− f (μ(t−1))

∣
∣/
∣
∣ f (μ(t))

∣
∣ < ε, stop;

Otherwise, t ← t + 1, and go to step 2;

In Algorithm 6, the gradient ∇ f (μ) is required. Define
Dk = CkCH

k . Then, by using the results in (30) and (31),
the gradient ∇ f (μ) can be calculated as

∇ f (μ) =
[

d f (μ)

dμi
,∀i ∈ I

]H

, (34)

with

d f (μ)

dμi
= −

∑

k∈Ui
λ2

kTr
(
Bi,k Dk

)+ Pi,max, ∀i ∈ I . (35)

Finally, based on the above analysis, the method to solve
the dual problem (28) is given in Algorithm 7, which is named
as Block Coordinate Descent (BCD) method.

Theorem 3: The sequences of μ and λ generated by
Algorithm 7 will converge to the globally optimal solution
of the dual problem (28).

Proof: Please see Appendix C. �
When the optimal μ and λ are obtained by using

Algorithm 7, the optimal solution to Problem (24) is given
by (26). As there is zero duality gap between the primal
problem (24) and dual problem (28), which means that this
solution is the globally optimal solution of Problem (24).
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Algorithm 7 BCD Method to Solve the Dual Problem (28)
1: Initialize iterative number n = 1, the maximum number

of iterations nmax, initial λ(0) = 1 and μ(0) = 1, error
tolerance ε;

2: Given μ(n−1), apply Newton’s method in Algorithm 5 to
update λ(n);

3: Given λ(n), employ the gradient descent method in Algo-
rithm 6 to update μ(n);

4: If n ≥ nmax or
∣
∣ f (λ(n),μ(n))− f (λ(n−1),μ(n−1))

∣
∣

∣
∣ f (λ(n),μ(n))

∣
∣ < ε,

terminate; Otherwise, set n← n + 1, and go to step 2;

D. Overall Complexity to Solve Problem (24) in Stage II

In this subsection, we analyze the overall complexity to
solve Problem (24). It mainly includes three layers of itera-
tions: the first layer is the RLN algorithm to deal with the non-
smooth l0 norm, the second layer is the WMMSE algorithm to
deal with the non-convex rate constraints, and the third layer
is the BCD algorithm to solve Problem (24).

We first analyze the complexity of the third layer for BCD

algorithm. Note that H̃ j,k ,
�

H j,k , and Ĥ j,k can be calculated
before the iterations of the BCD Algorithm. The main com-
plexity of the BCD Algorithm lies in step 2 and step 3, where
Newton’s method and gradient descent method are used to
update λ and μ, respectively.

We first analyze the computational complexity of Newton’s
method under the same assumption in Subsection III-B. The
main complexity in each iteration of Newton’s method lies in
step 2 and step 4 of Algorithm 5. We first analyze step 2 of
Algorithm 5. According to [41], the complexity of calculating
{G̃k,∀k ∈ U} is on the order of O

(
K (Ml)2.376). For any

two matrices X ∈ C
m×n, Y ∈ C

n×p , the complexity of
computing XY is on the order of O (mnp) [32]. In gen-
eral, d � M I . Then, the total complexity of computing
{Ck, Fk,∀k ∈ U} is on the order of O

(
K M2l2d

)
. Similarly,

the total complexity of computing
{

Y j,k, Ỹ j,k, Z j,k∀ j, k ∈ U
}

is on the order of O
(
K 2M2l2d

)
. Hence, the total complexity

of computing {Ck, Fk,∀k} and
{

Y j,k, Ỹ j,k, Z j,k,∀ j, k ∈ U
}

is on the order of O
(
K 2 M2l2d

)
. With a similar analysis,

the total complexity of computing (33) is on the order of
O
(
K 3Mld2

)
. In addition, the complexity of computing the

inverse of ∇2 f (λ(t)) is on the order of O
(
K 2.376

)
[41].

Hence, the total complexity of step 2 of Algorithm 5 is
on the order of O

(
max

{
K 3 Mld2, (K Ml)2.376, K 2(Ml)2d

})
.

In the t th iteration of step 4 of Algorithm 5, f (λ(t+1)) is
required to calculate m(t) times. The complexity in each time
is on the order of O

(
max

{
(Ml)2.376, K (Ml)2d

})
. Thus, the

total complexity of step 4 of Algorithm 5 is on the order of
O
(
m(t)max

{
(Ml)2.376, K (Ml)2d

})
. Simulation results show

that in general m(t) is always equal to one, which means that
f (λ(t+1)) only needs to be computed for once. Hence, the
complexity of step 4 of Algorithm 5 can be approximately by

Fig. 2. Illustration of a wrap-round C-RAN system model, where C-RAN
is deployed in the center of the region, which is surrounded by eight nearby
cells.

O
(
max

{
(Ml)2.376, K (Ml)2d

})
. As a result, the total com-

plexity of Newton’s method is

TNewton = O
(

tNewt
max max

{
K 3Mld2, (Ml)2.376, K 2(Ml)2d

})
.

(36)

Simulation results show that Newton’s method converges very
rapidly and in general five iterations are enough for the
algorithm to converge.

By using the similarly analytical technique to Newton’s
method, the total complexity of the gradient descent method
is given by

TGrad = O
(

tGrad
max max

{
(M I )2.376, K (M I )2d

})
. (37)

The simulation results in the next section show that the gra-
dient descent method usually converges within five iterations.
Hence, in each iteration of the BCD Algorithm, the complexity
of Newton’s method dominates the complexity of the gradient
descent method.

Based on the above analysis, the overall complexity to solve
Problem (24) in Stage II is

TStageII = tRLNtWMMSEtBCD (TNewton + TGrad) , (38)

where tRLN, tWMMSE and tBCD represent the average number
of iterations required by the RLN, WMMSE, and BCD algo-
rithms, respectively. Simulation results show that these three
algorithms converge very fast and generally five iterations are
enough to achieve large portion of the final performance.

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed algorithms. To be more realistic,
we consider a wrap-around system model shown in Fig. 2 as
in [42], where the C-RAN network is deployed in the central
square with [−1000 1000]×[−1000 1000] meters, surrounded
by eight uncoordinated square macrocells. It is assumed that
all the users and RRHs are uniformly and independently
distributed in the C-RAN region. We adopt the channel model
that consists of four parts: 1) the long term evolution (LTE)
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Fig. 3. Convergence behaviour of Algorithm 2.

standard path loss model: P Li,k = 148.1+37.6log10di,k (dB),
where di,k (in km) is the distance from the i th RRH to
the kth user; 2) Log-normal shadowing with zero mean and
8 dB standard derivation; 3) Rayleigh fading with zero mean
and unit variance; 4) transmit antenna power gain of 9 dBi.
Each user is assumed to have the same rate requirement,
i.e., Rmin = Rk,min,∀k, and each RRH has the same power
constraint, i.e., Pmax = Pi,max = 4W,∀i ∈ I . It is assumed
that each user is potentially served by its nearest X RRHs, i.e.,
|Ik| = X,∀i . Unless stated otherwise, the system parameters
are set as follows: error tolerance is ε = 10−3, thermal noise
power is σ 2 = −104 dBm, I = 12, K = 8, X = 3, M = 2,
N = 2, d = min{M, N}, ηi = 4 [43], ρi = 0.5 [22],
Pa,rrh

i = 3.4W, Ps,rrh
i = 2.15W, Pa,fr

i = 3.85W, Ps,fr
i =

0.75W, PBBU = 20W [18], [44]. Moreover, let L be the set of
uncoordinated base stations (BSs) in C-RAN’s nearby eight
macrocells. The noise power at user k can be modeled as
σ 2

k = σ 2+∑m∈L Pmax P Lm,k Sm,k Gm [42], where P Lm,k and
Sm,k are the large-scale fading and shadowing respectively
from the BS in macrocell m to user k, Gm represents the
antenna gain.

A. Properties of the Proposed Algorithms

1) Convergence Behavior of Algorithm 2: Fig. 3 shows the
convergence behaviour of Algorithm 2 for different numbers
of receive antennas. The results are obtained by averaging
over 100 channel realizations. Due to the non-convexity of
Problem (11), different initial points for Algorithm 2 may
yield different solutions. To investigate this effect, we con-
sider two initialization schemes: 1) SVD-initial, in which
the beam directions for each user are chosen as the unitary
matrices obtained by the singular value decomposition (SVD)
of channel matrices and the total power at each RRH is
equally allocated to the users potentially served by each RRH;
2) Rand-initial, in which both the beam directions and power
allocations are randomly generated. It can be seen from
Fig. 3 that the objective value of Problem (11) monotonically
decreases during the iterative procedure for two initialization
schemes. In addition, the algorithm converges very fast and in
general six iterations are sufficient to achieve a large propor-
tion of the converged value for different numbers of receive
antennas and different initialization schemes. It is interesting
to find that the algorithm under two different initialization
schemes will converge to almost the same value. As expected,

Fig. 4. Average number of admitted users versus the rate requirements.

Fig. 5. (a) Total power consumption versus the number of iterations;
(b) The number of active RRHs versus the number of iterations, where
Rmin = 2 nats/s/Hz.

the converged objective value decreases with the number of
receive antennas since more degrees of freedom are available.

2) User Selection Performance of USC Algorithm: Fig. 4
compares the performance of the USC algorithm with two
algorithms: greedy search method and exhaustive search
method. For the greedy search method, in each time we com-
pute the objective value of Problem (11) when excluding one
user, then the user yielding the smallest objective value will be
removed. This procedure continues until all remaining users
are feasible. Note that this algorithm increases quadratically
with K . The exhaustive search method checks all feasible
sets of users and chooses the largest one. Its complexity
increases exponentially with K . As expected, the number of
admitted users decreases with the rate requirements for all
algorithms. The greedy search method achieves almost the
same performance as the exhaustive one, and the performance
gap between the exhaustive search algorithm and the proposed
USC algorithm can be negligible. However, the complexity of
our proposed USC algorithm only increases linearly with K .
The impact of initial points is also studied and we find that
both initialization schemes (SVD-initial and rand-initial) have
similar performance, which is not shown here for clarity.

3) Convergence Behaviour of the RLN Algorithm: The
convergence behaviours of the RLN algorithm are shown in
Figs. 5 (a) and (b) for the NPC and the number of the
remaining RRHs in each iteration, respectively. Three different
values of δ are tested, i.e., δ = 10−4, 10−5 and 10−6. One
randomly generated channel is used to obtain the convergence
behaviour, where the USC algorithm is first executed to find
the largest feasible set of users. In this example, User 8 is
removed to guarantee the feasibility of the other users as seen
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Fig. 6. Converged state of one randomly generated system configuration.
The boundary user 8 is not selected as it is far from the RRHs.

Fig. 7. Converged state of one randomly generated system configuration.
The boundary user 8 is not selected as it is far from the RRHs.

in Fig. 6. It can be seen from the figures that for all values of δ,
both the number of active RRHs and the NPC decrease rapidly
and there is no additional decrease after the fifth iteration. At
the converged state, only six RRHs are active. Compared to
the full cooperation strategy where all RRHs are active, we can
save large amount of power as seen from Fig. 5 (a). Fig. 6
illustrates the converged state of the system. It can be seen that
RRH 2 is switched off since it is far from the users and User
8 is not selected as it is far from the RRHs. We also study
the impact of initialization schemes on the performance of the
RLN algorithm. The initial precoders for the RLN algorithm
are the outputs of the USC algorithm which is initialized
with the SVD-initial and rand-initial schemes. The simulation
results show they achieve almost the same performance, which
is not shown here for clarity.

4) Convergence Behaviour of the WMMSE Algorithm: In
step 2 of each iteration of the RLN algorithm, we need to solve
Problem (22) by using the WMMSE algorithm. Fig. 7 shows
the convergence performance of the WMMSE algorithm for
the first three iterations of the RLN algorithm. It is observed
that the WMMSE algorithm converges within ten iterations for
the first iteration of RLN algorithm. However, the objective
values stay almost fixed for the second and third iterations
of the RLN algorithm. This means that only in the first
iteration of RLN algorithm, some iterations are required for
the WMMSE algorithm.

5) Convergence Behaviour of the BCD Algorithm: In step 2
of each iteration of the WMMSE algorithm, Problem (24)
should be solved to update the precoding matrices by using

Fig. 8. Convergence behaviour of the BCD algorithm for the first iteration
of the WMMSE algorithm.

Fig. 9. (a) Convergence behaviour of Newton’s method; (b) Convergence
behaviour of gradient descent method.

the BCD algorithm. Fig. 8 shows the convergence behaviour
of the BCD algorithm for the first iteration of the WMMSE
algorithm. It is seen that the algorithm converges very fast
and one iteration is sufficient to achieve a large portion of the
converged value (99.2% in this example).

6) Convergence Behaviour of Newton’s Method and the
Gradient Descent Method: In each iteration of the BCD
algorithm, Newton’s method is required to update {λk,∀k}
and the gradient descent method is applied to update {μi ,∀i}.
The convergence behaviours of these two algorithms for the
first three iterations of the BCD algorithm are shown in
Figs. 9 (a) and (b), respectively. Newton’s method requires
several iterations to converge only in the first iteration of the
BCD algorithm, while stays almost constant for the second
and third iterations of the BCD algorithm. Interestingly, the
gradient descent method only requires one iteration to con-
verge in the first iteration of the BCD algorithm and keeps
fixed during the rest of the iterations of the BCD algorithm.
By combining the complexity analysis in (36), (37) and the
above convergence behaviours, we can conclude that the BCD
algorithm has a much lower computational complexity than
directly solving the SOCP problem.

7) Impacts of the Number of Data Streams: In Fig. 10,
the impact of the number of data streams on the number of
admitted users is studied. As expected, the number of admitted
users decreases with the rate requirements and larger number
of data streams can support more users. We find significant
performance gains can be achieved when the number of data
streams increases from 1 to 2, especially for the high data
rate requirements. However, only marginal performance gains
are achieved by the case of d = 4 over the case of d = 2,
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Fig. 10. Number of admitted users versus rate requirements for different
numbers of data streams with M = N = 4.

Fig. 11. (a) NPC versus the rate requirements; (b) The corresponding number
of active RRHs versus the rate requirements.

which comes at the higher cost of computational complexity.
This reveals that the performance saturates with the increase
of data streams d . In Fig. 11, the impacts of data streams
on the NPC and on the number of active RRHs are studied
with the same setup in Fig. 10. For fair comparison, we only
consider the set of users that can be supported under the
case of d = 1, so that all cases can support the selected
users. Fig. 11 (a) shows that the NPC first increases with
the rate requirements when Rmin ≤ 3 nats/s/Hz and then
decreases significantly when Rmin > 3 nats/s/Hz. The reason
can be explained as follows. When Rmin increases from 1 to
3 nats/s/Hz, the number of admitted users almost keeps stable
as shown in Fig. 10, while the fronthaul power increases when
the rate requirement increases and the number of active RRHs
increases to support the higher rate requirements as seen in
Fig. 11 (b), which in turn consumes more power consumption.
On the other hand, when Rmin increase from 3 to 6 nats/s/Hz,
the number of admitted users decreases dramatically as shown
in Fig. 10, which leads to reduced transmit power and a
reduced number of active RRHs as shown in Fig. 11 (b).
Again, it is observed from Fig. 11 (a) that a greater number
of data streams requires lower NPC, but the performance gain
shrinks with the number of data streams.

8) Impacts of the Number of Transmit Antennas: In Fig. 12,
the impact of the number of transmit antennas on the number
of admitted users is studied. As expected, the number of
admitted users increases with the number of transmit antennas
due to more degrees of freedom. Significant performance gains
can be achieved by the case of M = 2 over the case of M = 1,
especially in the high rate regime. However, the performance
gain shrinks for the case of M = 4 over the case of M = 2.
In Fig. 13, the impacts of the number of antennas on the

Fig. 12. Number of admitted users versus rate requirements for different
numbers of transmit antennas with N = 2.

Fig. 13. (a) NPC versus the rate requirements; (b) The corresponding number
of active RRHs versus the rate requirements.

Fig. 14. The number of admitted users versus rate requirements for different
candidate sizes.

NPC and the number of active RRHs are investigated. For fair
comparison, it is also assumed that the set of users selected
from the case of M = 1 are the input of Stage II for all
cases of different values of M so that the selected users are
the same and feasible for all cases. It is interesting to find
that when M increases, the NPC increases while the number
of active RRHs decreases. This is mainly due to the fact that
the RRH power consumption model in (4) increases linearly
with M , and this increased power consumption dominates
the reduced power consumption resulting from the reduced
number of active RRHs. It should be emphasized that in some
other cases with different values of system parameters, the
NPC may not increase with M and the counter part happens,
such as the case of the low circuit power consumption for
each antenna and high power consumption associated with the
fronthaul power consumption.

9) Impacts of the Candidate Size: The impact of candidate
size on the number of admitted users is illustrated in Fig. 14
for a dense network with 20 RRHs and 12 users. As expected,
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Fig. 15. (a) NPC versus the rate requirements; (b) The corresponding number
of active RRHs versus the rate requirements.

larger candidate sizes can support more users due to the
increased degrees of freedom. However, the performance gains
decreases with the candidate sizes, which implies that there
is no need to consider distant RRHs for each user since they
contribute less to their signal strength. In general, the candidate
size should be no larger than 4 to achieve a good tradeoff
between performance and complexity. Similarly to the trend
observed in Fig. 10 (a), it is seen from Fig. 15 (a) that the NPC
increases in the low rate regime, while decreasing significantly
in the high rate regime. For the former part, the reason is that
the increased fronthaul power dominates the reduced circuit
power for the reduced active RRHs. While for the latter part,
the reason is the opposite. Also, it is observed that the NPC
performance gain for larger candidate size is more obvious in
the low rate regime, while the performance is almost the same
in the high rate regime. This is mainly due to the fact that in
the high rate regime, only a small number of users can be
admitted, and these users are separated far away. As a result,
the multiuser interference is not so significant and each user’s
nearest RRH is able to serve it with the rate requirement.

B. Performance Comparison

We compare the performance of the RLN algorithm with
the following RRH selection methods:

• Exhaustive search (Exhau-search) method: For each given
active RRH set A, this method first checks its feasibility.
If feasible, the method will use the WMMSE algorithm
to solve the corresponding transmit power minimization
problem. The complexity of this method increase expo-
nentially with I , which is served as the performance
benchmark for our proposed algorithm.

• Successive RRH selection (Succesive-sel) method: This
method first lets all the RRHs be active and check its
feasibility. If feasible, the method applies the WMMSE
algorithm to solve the transmit power minimization prob-
lem. Then, the method gradually removes the RRHs
according to their transmit power from the lowest to
the highest until the problem becomes infeasible. The
complexity of this scheme increases linearly with I .

• Greedy search method: In each step, we exclude each
RRH and calculate the NPC when the remaining RRHs
are active. Then, we remove the RRH so that the remain-
ing RRHs yield the least NPC. This procedure terminates

Fig. 16. (a) NPC versus the rate requirements; (b) The corresponding average
number of active RRHs versus the rate requirements. The candidate size is
X = 4.

Fig. 17. (a) NPC versus the number of RRHs; (b) The corresponding number
of active RRHs versus the number of RRHs with Rmin = 3 nats/s/Hz and
X = 4.

until the problem becomes infeasible. The complexity of
this scheme increases quadratically with I .

• Full cooperative (Full-coop) method: In this method, all
the selected RRHs in cluster-formation stage are active
and the WMMSE algorithm is used to solve the transmit
power minimization problem.

For fair comparison, we assume in the following simulation
results, only the channel realizations that are feasible for all
users are considered.

1) Impact of the Rate Requirements: Figs. 16 (a) and (b)
illustrate the average NPC and the corresponding number
of active RRHs versus the rate requirements, respectively.
Fig. 16 (a) shows that the RLN algorithm outperforms the
‘Succesive-sel’ method and ‘Full-coop’ method for all rate
regimes. However, the performance of the ‘Greedy search’
method is slightly better than the RLN algorithm when
Rmin ≤ 3nats/s/Hz, while the RLN algorithm outperforms
the ‘Greedy search’ method in the high rate regime and
the performance gain increases with the rate requirements.
Fig. 16 (b) shows a similar trend in terms of the number
of active RRHs. Compared with the optimal ‘Exhau-search’
method, the performance loss in power consumption is at most
8% when Rmin = 1 nats/s/Hz, and this gap gradually dimin-
ishes with the increase of rate requirements. In particular, the
performance gain provided by the ‘Exhau-search’ method over
the RLN algorithm is negligible when Rmin = 5 nats/s/Hz. As
expected, the ‘Full-coop’ method consumes the highest power
since all selected RRHs are active.

2) Impact of the Number of RRHs: Figs. 17 (a) and (b) illus-
trate the average NPC and the corresponding number of active
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RRHs versus the total number of RRHs, respectively. It is seen
that the NPC achieved by all schemes decreases with I due to
the fact that when there are more RRHs, the average access
distance between users and RRHs decreases significantly and
thus leads to more reduced transmit power. It is again observed
that the performance of the RLN algorithm is superior to that
of the ‘Succesive-sel’ method. This implies that selecting the
RRHs only based on the transmit power is not enough, and
may incur significant performance loss. Note that the ‘Greedy
search’ method requires higher power consumption than the
RLN algorithm for all numbers of RRHs, especially when
I = 6. Also, the performance of ‘Exhau-search’ method is
slightly better than the RLN algorithm. Note that although
the number of active RRHs increases slightly with the total
number of RRHs as seen in Figs. 17 (b), the NPC decreases.
This may due to the fact that the overall transmit power
reduction overwhelms the increase of circuit power.

VI. CONCLUSION

In this paper, a joint selection of active RRHs and optimiza-
tion of the precoding matrices which minimizes the NPC for
the MIMO C-RAN, while guaranteeing users’ rate require-
ments and per-RRH power constraints, has been studied.
A low-complexity user selection was proposed to guarantee the
feasibility of the other users. Then a low-complexity iterative
algorithm, based on the reweighted l1-norm minimization
method, WMMSE algorithm, Newton’s method, and gradient
descent method, was proposed to solve the network power
minimization problem for the selected users. Simulation results
show that the proposed algorithms converge fast, which is
attractive for practical implementation. Also, more antennas
at the user side can admit more users. The proposed user
selection algorithm was shown to achieve the similar perfor-
mance as the optimal exhaustive search method. Moreover, our
proposed algorithm was shown to achieve much greater power
savings than the full cooperation method, and the performance
loss compared with the optimal approach is insignificant.

APPENDIX A
PROOF OF THEOREM 1

In step 2 of the nth iteration, we solve Problem (18) to
obtain the optimal {α(n)

k }k∈U and V(n) with given U(n−1)

and W(n−1). Hence, we have hk
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k , W(n−1)
k

)
≥
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α

(n)
k

)2
Rk,min,∀k. In step 3 of the nth iteration, we

update U(n) and W(n) as in (15) with V(n). According to
Lemma 1, we have Rk

(
V(n)

) = hk

(
V(n), U(n)

k , W(n)
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)
≥
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(
V(n), U(n−1)
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. Hence, we have
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)2
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In step 2 of the (n+1)th iteration, we obtain {α(n+1)
k }k∈U and

V(n+1) with given U(n) and W(n) by solving Problem (18).

Then we have
∑

k∈U

(
α

(n+1)
k − 1

)2 ≤ ∑
k∈U

(
α

(n)
k − 1

)2
.

The reason is that from (A.1), {α(n)
k }k∈U and V(n) is just a

feasible solution for Problem (18) with given U(n) and W(n).
Hence, the objective value of Problem (11) is monotonically
decreasing. Obviously, the objective value is lower bounded
by zero. Hence, Algorithm 2 will converge.

APPENDIX B
PROOF OF THEOREM 2

We first prove that the sequence of V generated by the
WMMSE algorithm (i.e. Algorithm 4) always satisfies the
rate requirements of Problem (22). In step 2, we obtain V(l)

with U(l−1) and W(l−1). Hence, hk

(
V(l), U(l−1)

k , W(l−1)
k

)
≥

Rk,min,∀k hold since V(l) is feasible for Problem (23). Accord-

ing to Lemma 1, hk

(
V(l), U(l−1)

k , W(l−1)
k

)
is a lower-bound

of Rk(V(l)), i.e., Rk(V(l)) ≥ hk

(
V(l), U(l−1)

k , W(l−1)
k

)
. Hence,

Rk(V(l)) ≥ Rk,min holds. Thus, the sequence of V generated
by the WMMSE algorithm satisfies the rate requirements of
Problem (22).

Next, we show that the value of the objective function
of Problem (22) monotonically decreases during the itera-
tive process of the WMMSE algorithm. Denote Obj(V(l))
as the objective value of Problem (22) when V = V(l).
Step 2 of the WMMSE algorithm updates V(l) by solving
Problem (24) with U(l−1) and W(l−1). The objective value
of this step, Obj(V(l)), will be no larger than Obj(V(l−1)),
i.e., Obj(V(l)) ≤ Obj(V(l−1)). The reason is that V(l−1) is
a feasible solution for Problem (24) with U(l−1)

k and W(l−1)
k

since hk

(
V(l−1), U(l−1)

k , W(l−1)
k

)
= Rk(V(l−1)) ≥ Rk,min

holds as proved above. In step 3 of the WMMSE algorithm,
we update U(l) and W(l) by using (15) with V(l). This step
increases the value of hk (V, Uk, Wk) while maintaining the
same objective value of Problem (22). Therefore, this step
provides “room” for the next iteration to decrease the objective
value. In addition, the objective value is lower bounded by
zero. Hence, the WMMSE algorithm converges.

Then, we prove that given the initial set of precoders, the
WMMSE algorithm converges to a unique solution. Obviously,
when V is given, U and W can be uniquely determined by (15).
The remaining task is to prove that given U and W, the BCD
algorithm can obtain the unique globally optimal solution V.
Since {Gk,∀k} are positive definite matrices, the objective
function in Problem (24) is a strictly convex function with
respect to (w.r.t.) V. Obviously, the constraints in Problem (24)
are convex w.r.t. V [32]. Hence, Problem (24) is a strictly
convex problem [32]. According to [Page 137 in [32]], the
globally optimal solution of Problem (24) is unique. On the
other hand, Theorem 3 proves that the BCD algorithm can
obtain the globally optimal solution to the dual problem (28).
As Problem (24) is a convex problem and it satisfies the
Slater’s condition [32], the duality gap between Problem (24)
and its dual problem (28) is zero [32]. As a result, the BCD
algorithm can obtain the unique globally optimal solution V.
Finally, by alternatively updating step 2 and step 3, the
WMMSE algorithm will converge to a unique solution.
It should be emphasized that as Problem (23) is non-convex, it
may have many locally optimal solutions, and the unique solu-
tion of the WMMSE algorithm depends on the initial point.
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However, given the initial points of precoders, the WMMSE
algorithm will converge to a unique solution.

Finally, we prove that the unique solution satisfies the KKT
conditions of Problem (22). Denote the converged solution
of the WMMSE algorithm as V�, U� and W�. With given
U� and W�, the Lagrange function of Problem (23) can be
written as
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∑
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∥
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)
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where λ = {λk,∀k ∈ U} and μ = {μi ,∀i ∈ I} are the
corresponding Lagrange multipliers.

According to Theorem 3, the BCD algorithm can obtain the
globally optimal solution of Problem (24) (also Problem (23))
with given U� and W�, there must exist λ� and μ� such that
{V�,λ�,μ�} satisfy the following KKT conditions
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Since U� and W� are updated by using (15), we have
hk
(
V�, U�

k, W�
k

) = Rk(V�) according to Lemma 1. By
substituting it into the equations (B.2), (B.3) and (B.5), we
find that the set of equations (B.2)-(B.6) are just the KKT
conditions of Problem (22).

APPENDIX C
PROOF OF THEOREM 3

According to [32], the dual problem of any optimization
problem is a convex problem. Thus, the dual problem (28)
is jointly convex with respect to λ and μ. Assuming that the
constraint of this problem satisfies the Slater’s condition, the
KKT condition of this problem is sufficient and necessary for
optimality. For given μ, the dual problem (28) is a convex
problem w.r.t. λ. According to [32], Newton’s method can
obtain the globally optimal solution of dual problem (28)
for given μ. In addition, for given λ, the dual problem (28)
is convex w.r.t. μ, and the gradient descent method can
be applied to obtain the globally optimal solution. Then by
adopting the same idea as in the proof of Theorem 1 in [45],
we can prove that the converged solution also satisfies the KKT
condition of Problem (28). Since Problem (28) is a convex
optimization problem, Algorithm 6 can attain the globally
optimal solution of Problem (28).
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