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Abstract— This paper presents a content-centric transmission
design in a cloud radio access network by incorporating multicas-
ting and caching. Users requesting the same content form a multi-
cast group and are served by a same cluster of base stations (BSs)
cooperatively. Each BS has a local cache, and it acquires the
requested contents either from its local cache or from the central
processor via backhaul links. We investigate the dynamic content-
centric BS clustering and multicast beamforming with respect to
both channel condition and caching status. We first formulate
a mixed-integer nonlinear programming problem of minimizing
the weighted sum of backhaul cost and transmit power under the
quality-of-service constraint for each multicast group. Theoretical
analysis reveals that all the BSs caching a requested content can
be included in the BS cluster of this content, regardless of the
channel conditions. Then, we reformulate an equivalent sparse
multicast beamforming (SBF) problem. By adopting smoothed
�0-norm approximation and other techniques, the SBF problem
is transformed into the difference of convex programs and
effectively solved using the convex–concave procedure algorithms.
Simulation results demonstrate significant advantage of the
proposed content-centric transmission. The effects of heuristic
caching strategies are also evaluated.

Index Terms— Cloud radio access network (Cloud RAN),
caching, multicasting, content-centric wireless networks, sparse
beamforming.

I. INTRODUCTION

OWING to the popularity of smart mobile devices,
the mobile data traffic is growing rapidly. Meanwhile,

the provision of the types of wireless services is also expe-
riencing a fundamental shift from the traditional connection-
centric communications, such as phone calls, e-mails, and web
browsing, to the emerging content-centric communications,
such as video streaming, push media, mobile applications
download/updates, and mobile TV [3]. A central feature of
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these emerging services is that a same copy of content may
be needed by multiple mobile users, referred to as content
diversity [4] or content reuse [5]. Two enabling techniques to
exploit such content diversity are multicasting and caching.
Compared with point-to-point unicast transmission, point-
to-multipoint multicast transmission provides an efficient
capacity-offloading approach for common content delivery
to multiple subscribers on a same resource block [6], [7].
Caching, on the other hand, brings contents closer to users
by pre-fetching the contents during the off-peak time and
hence can greatly reduce the network congestion and improve
the user-perceived experience [5], [8], [9]. In this paper, we
propose a content-centric transmission design based on cloud
radio access network (cloud RAN) architectures for efficient
content delivery by integrating both multicasting and caching.

Cloud RAN is a promising network architecture to boost
network capacity and energy efficiency [10]. In a cloud RAN,
the base stations (BSs) are all connected to a central proces-
sor (CP) via digital backhaul links, thus enabling joint data
processing and precoding across multiple BSs [11]. However,
performing full joint processing requires not only signalling
overhead but also payload data sharing among all the BSs,
resulting in tremendous burden on backhaul links. To alleviate
the backhaul capacity requirement in cloud RAN architecture,
one way is to associate each user with a cluster of BSs so
that each user is cooperatively served by the given cluster of
BSs through joint precoding. With BS clustering, each user’s
data only needs to be distributed to its serving BSs from CP
rather than all the BSs, thus the overall backhaul load can
be greatly reduced. Dynamic BS clustering and the associ-
ated sparse beamforming have been developed in [12]–[17].
These previous works present a user-centric view on the
BS clustering and beamforming, regardless of the content
diversity. In practice, however, the mobile users normally send
requests in a non-uniform manner, following certain content
popularity distribution, e.g., the Zipf distribution [18]. Popular
contents are likely to be requested by multiple users.

To exploit such content popularity, we propose a content-
centric BS clustering and multicast beamforming in this paper.
We first group all the scheduled users according to their
requested contents. In specific, the users who request a same
content form one group. Then we use multicast transmission to
deliver each requested content to the corresponding user group.
The users from the same multicast group receive a common
content sent by a cluster of BSs. The BS clustering is designed
with respect to each requested content. The BS clusters for
different contents may overlap. Compared with traditional
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unicast transmission in user-centric BS clustering, multicast
transmission in the considered content-centric BS clustering
can improve energy and spectral efficiency, thus providing
efficient content delivery in wireless networks.

In addition to multicasting, we incorporate caching in
the considered cloud RAN architecture to facilitate content-
centric communications. Wireless caching has been recently
proposed as a promising way of reducing peak traffic and
backhaul load, especially for video content delivery. Due
to the content reuse feature of video streaming, i.e., many
users are likely to request the same video content, caching
some of the popular contents at the local BSs during the
off-peak time [19] or pushing them at user devices directly
through broadcasting [20], [21] can help improve the network
throughput and user-perceived quality of experience. In the
considered cache-enabled cloud RAN, each BS is equipped
with a local cache. If the content requested by a user group is
already cached in its serving BS, the serving BS will transmit
the content directly. Otherwise, the serving BS needs to fetch
the content via the backhaul links from the CP. Compared with
non-cache cooperative networks, cache-enabled cloud RAN
can fundamentally reduce the backhaul cost and support more
flexible BS clustering. A similar wireless caching network
has been considered in [22], but it is based on a user-centric
transmission design.

In this paper, we investigate the joint design of content-
centric BS clustering and multicast beamforming in the con-
sidered cache-enabled cloud RAN to improve the network
performance as well as to reduce backhaul cost. There are
two important issues to address in this paper. The first
one is how to optimize the content-centric BS cluster-
ing. In the traditional user-centric BS clustering without
cache [15], [17], each user is most likely to be served by a clus-
ter of BSs which are nearby and have good channel conditions.
While in the proposed content-centric BS clustering, there are
multiple users receiving a same content. Since the users are
geographically separated from each other, the BS clustering
becomes more involved. Moreover, after introducing cache at
each BS, the BS clustering needs to be adaptive to the caching
state as well. Therefore, the BS clustering in the considered
network must be both channel-aware and cache-aware.

To address this issue, we formulate an optimization problem
with the objective of minimizing the total network cost subject
to the quality-of-service (QoS) constraint for each muticast
group. The total network cost is modeled by the weighted sum
of backhaul cost and transmit power cost, where the backhaul
cost is counted by the accumulated data rate transferred from
the CP to all the BSs through the backhaul links. This
problem is a mixed-integer nonlinear programming (MINLP)
problem. Through theoretical analysis, we show that all the
BSs which cache the content requested by a multicast group
can be included in the BS cluster of this content without
loss of optimality, regardless of their channel conditions. This
finding can be used to reduce the search space for the global
optimal solution of the joint content-centric BS clustering and
multicast beamforming problem.

To make the problem more tractable, we reformulate an
equivalent sparse multicast beamforming design problem.

Solving the equivalent problem is, however, still challenging
due to both the nonconvex QoS constraints and the nonconvex
discontinuous �0-norm in the objective. In sparse signal
processing, one approach to handle the �0-norm minimization
problem is to approximate the �0-norm with its weighted
�1-norm [23] and update the weighting factors iteratively.
Another approach is to approximate the �0-norm with smooth
functions [16], where the authors use Gaussian family func-
tions. The smooth function method is a better approximation
to the �0-norm but its performance highly depends on the
smoothness factor. In this paper, we adopt the smoothed
�0-norm approximation and compare the performance of three
smooth functions: logarithmic function, exponential function,
and arctangent function. The approximated problem is then
transformed into the difference of convex (DC) programming
problems. Two specific forms of DC programming are
obtained. One has DC objective and convex constraints
by using semi-definite relaxation (SDR) approach, and the
other is a general one with DC forms in both objective and
constraints. The convex-concave procedure (CCP) [24]–[26]
based algorithms are then proposed to find effective solutions
of the original problem. Note that the proposed CCP-based
algorithms can also be used to solve the traditional multi-group
multicast beamforming problems formulated in [27].

The second issue is how would different caching strate-
gies affect the overall performance of the cache-enabled
cloud RAN. In order to increase cache hit rate, i.e., the
probability that a requested content can be accessed at the
local cache of its delivering BSs, caching strategies should
be designed carefully. It is noted in [28] that when BSs are
sparsely deployed such that each user can only be connected
to one BS, each BS should cache the most popular contents,
otherwise when BSs are densely deployed such that each
user can be served by multiple BSs, the optimal caching
strategy is highly complex. Notice that the cache placement
and content delivery phases happen on different timescales:
cache placement in general is in a much larger timescale
(e.g., on a daily or hourly basis) while content delivery is
in a much shorter timescale [19], [28]. In [29], the authors
studied the mixed-timescale precoding and cache control in
MIMO interference network. But the caching strategy in each
transmitter is the same. In addition, the precoding is limited
to two modes only, i.e., each user is either served by all the
BSs simultaneously or served by one of the BSs only.

In this work, although the content placement is assumed
to be given in the formulated content-centric sparse mul-
ticast beamforming problem, we shall briefly address the
caching strategy problem through simulation. We consider
three heuristic caching strategies, popularity-aware caching,
probabilistic caching, and random caching. Numerical results
have demonstrated interesting insights into the performance
of these caching strategies together with the proposed sparse
beamforming algorithms.

The rest of the paper is organized as follows. Section II
introduces the network model and assumptions. Section III
provides the formulations of content-centric BS clustering
and multicast beamforming problem and the equivalent
sparse beamforming problem. The CCP based algorithms are
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presented in Section IV. Comprehensive simulation results
are provided in Section V. Finally, we conclude the paper
in Section VI.

Notations: Boldface lower-case and upper-case letters
denote vectors and matrices respectively. Calligraphy letters
denotes sets. R and C denote the real and complex domains,
respectively. E(·) denotes the expectation of a random vari-
able. CN (μ, σ 2) represents a complex Gaussian distribution
with mean μ and variance σ 2. The conjugate transpose and
�p-norm of a vector are denoted as (·)H and ‖·‖p respectively.
1M and 0M denote the M-long all-ones and M-long all-
zeros vectors respectively. The inner product between matri-
ces X and Y is defined as 〈X, Y〉 = Tr(XH Y). For a square
matrix SM×M , S � 0 means that S is positive semi-definite.
The real part of a complex number x is denoted by R{x}.

II. NETWORK MODEL AND ASSUMPTIONS

A. System Model

Consider the downlink transmission of a cache-enabled
cloud RAN with N multiple-antenna BSs and K single-
antenna mobile users. Each BS is connected to the CP via a
limited-capacity backhaul link. The CP can access a database
that contains a total number of F contents with equal size. Let
N = {1, 2, . . . , N} denote the set of BSs, where each BS is
equipped with L transmit antennas and has a local cache with
finite storage size. At the beginning of a transmission time
interval, each user submits a content request according to cer-
tain demand probabilities. Users requesting the same content
are grouped together and served using multicast transmission.
The transmission time interval is assumed to contain enough
number of transmission frames for the system to complete
the content delivery. Let the total number of multicast groups
be denoted as M (1 ≤ M ≤ min{K , F}) and the set of
users in each group m be denoted as Gm , for m = 1, . . . , M .
We assume that each user can request at most one content at
a time, thus we have Gi ∩G j = ∅, i 	= j and

∑M
m=1|Gm | ≤ K .

We consider the dynamic content-centric BS clustering and
multicast beamforming on a transmission frame basis. The
channel remains constant within each transmission frame but
varies from one frame to another. Each multicast group m is
served by a cluster of BSs cooperatively during each frame,
denoted as Qm , where Qm ⊆ N and they may overlap
with each other. Each BS in a cluster acquires the requested
contents either from its local cache or from the database in the
CP through the backhaul. During each transmission frame, the
BS clusters {Qm}Mm=1 are dynamically optimized by the CP.
An example is shown in Fig. 1, where three mutlicast groups
are formed and the instantaneous BS clusters serving the three
groups are Q1 = {1, 2}, Q2 = {2}, and Q3 = {1, 2, 3},
respectively.

Define a binary BS clustering matrix S ∈ {0, 1}M×N , where
sm,n = 1 indicates that the n-th BS belongs to the serving
cluster for the m-th multicast group and 0 otherwise. That
is, sm,n = 1 if n ∈ Qm and sm,n = 0 if n /∈ Qm . Denote
the aggregate network-wide beamforming vector of group m
from all BSs as wm = [wH

m,1, wH
m,2, · · · , wH

m,N ]H ∈ C
N L×1,

where wm,n ∈ C
L×1 is the beamforming vector for group m

Fig. 1. An example of cache-enabled cloud RAN downlink.

from BS n. Note that wm,n = 0 if n /∈ Qm . Therefore, for
each group m, the network-wide beamformer wm can have a
sparse structure. The received signal at user k from group Gm

can be written as

yk = hH
k wm xm +

M∑

j 	=m

hH
k w j x j + nk, ∀k ∈ Gm (1)

where hk ∈ C
N L×1 is the network-wide channel vector from

all the BSs to user k, xm ∈ C is the data symbol of the
content requested by group m with E

[|xm |2
] = 1, and

nk ∼ CN (0, σ 2
k ) is the additive white Gaussian noise at user k.

The received SINR for user k ∈ Gm is expressed as

SINRk = |hH
k wm |2

∑M
j 	=m |hH

k w j |2 + σ 2
k

, ∀k ∈ Gm . (2)

We define the target SINR vector as γ = [γ1, γ2, · · · , γM ]
with each element γm being the minimum received SINR
required by the users in group m. In this paper, we consider
the fixed rate transmission as in [14], where the transmission
rate for group m is set as Rm = B log2(1 + γm), where B is
the total available channel bandwidth. Thus, to successfully
decode the message, for any user k ∈ Gm , its target SINR
should satisfy SINRk ≥ γm .

B. Cache Model

Let F = {1, 2, · · · , F} represent the database of F contents,
each with normalized size of 1. The local storage size of BS n
is denoted as Yn (Yn < F), which represents the maximum
number of contents it can cache. We define a binary cache
placement matrix C ∈ {0, 1}F×N , where c f,n = 1 indicates
that the f -th content is cached in the n-th BS and 0 otherwise.
Due to limited cache size,

∑F
f=1 c f,n ≤ Yn . As noted before,

cache placement happens in a much larger timescale than
scheduling and transmission. Hence we assume that the cache
placement matrix C is given and fixed according to certain
caching strategy, and focus on the optimization of content-
centric dynamic BS clustering and multicast beamforming at
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the given caching design. Similar assumptions have been made
in the previous literature, e.g. [22].

C. Cost Model

The total network cost for the considered network architec-
ture consists of both the backhaul cost and the transmission
power. Let fm denote the content requested by users in
group m. For each BS n ∈ Qm , if content fm has been cached
in its local storage, it can access the content directly without
costing backhaul. Otherwise, it needs to fetch this content
from the CP via the backhaul link. Since the data rate of
fetching a content from the CP needs to be as large as the
content-delivery rate Rm , we model the backhaul cost as the
transmission rate of the corresponding multicast group. Thus,
the total backhaul cost of the network can be expressed as:

CB =
M∑

m=1

N∑

n=1

sm,n(1− c fm ,n)Rm . (3)

The total transmission power cost at all the BSs is
defined as:

CP =
M∑

m=1

N∑

n=1

‖wm,n‖22. (4)

As a result, the total network cost can be modeled as:

CN = CB + ηCP , (5)

where η > 0 is a weighting parameter between backhaul cost
and transmission power. In practice, η can be regarded as the
pricing factor to trade power for backhaul capacity.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we formulate an optimization problem
of minimizing the total network cost by jointly designing
the content-centric BS clustering and multicast beamforming.
In the considered network architecture, all the channel state
information (CSI) and user requests are assumed to be avail-
able at the CP for joint processing. The cache placement is
also given as assumed in the previous section.

A. Joint Content-Centric BS Clustering
and Multicast Beamforming

The goal is to optimize the BS clustering and multicast
beamforming at each transmission frame so as to minimize
the total network cost. This is formulated as:

P0 : min{wm,n },{sm,n}

M∑

m=1

N∑

n=1

sm,n(1− c fm ,n)Rm

+ η

M∑

m=1

N∑

n=1

‖wm,n‖22 (6a)

s.t. SINRk ≥ γm , ∀k ∈ Gm , ∀m (6b)

sm,n ∈ {0, 1}, ∀m, n (6c)

(1− sm,n)wm,n = 0, ∀m, n (6d)

Constraint (6b) is the minimum required SINR constraint,
and constraint (6d) indicates that if BS n /∈ Qm , i.e., sm,n = 0,

the corresponding beamformer wm,n must be zero. Note that
per-BS or per-antenna peak power constraints may be imposed
in practice as in [30]. However, such peak power constraints
are convex and hence will not change the nature of the
formulated problem in this work as well as the algorithm
design. As such we have omitted the peak power constraints
and focus on the study of backhaul-power tradeoff in the
total network cost.

Problem P0 is combinatorial in nature. A brute-force
approach to find the global optimum BS clusters is exhaustive
search. In particular, there are 2M N possible BS clustering
matrices {S}. For each given BS clustering matrix S, the
backhaul cost CB becomes a constant and problem P0 reduces
to the following power minimization problem with partially
coordinated transmission:

P(ZS) : min{wm,n}

M∑

m=1

N∑

n=1

‖wm,n‖22 (7a)

s.t. (6b)

wm,n = 0, ∀(m, n) ∈ ZS. (7b)

where ZS = {(m, n)|sm,n = 0} is the set of inactive BS-content
associations.

Problem P(ZS) is similar to the QoS multi-group multicast
beamforming problems [27], [31] and is a nonconvex
quadratically constrained quadratic programming (QCQP)
problem. Unlike traditional unicast beamforming problem
where the nonconvex SINR constraints can be transformed
to a second-order cone programming (SOCP) problem
and hence solved efficiently, the multicast beamforming
problem is NP-hard in general. The authors in [27] developed
semi-definite relaxation (SDR) method with randomization to
obtain a good sub-optimal solution.

Once P(ZS) is solved for all possible BS clustering matri-
ces S’s, the one with the minimum objective is then selected
to be the global optimal solution. Note that problem P0 can
be infeasible if the SINR requirements {γm} are too stringent
or the channels of users in different multicast groups are
highly correlated. In general, determining the feasibility of an
NP-hard problem is as difficult as solving the problem itself.
In [31], a necessary condition for the QoS-based multi-cell
multicast beamforming problem to be feasible is given. In this
work we only discuss P0 when it is feasible.

The following proposition reveals some insights on BS
clustering in cached-enabled networks.

Proposition 1: If the content fm requested by a multicast
group m has been cached in BS n, i.e., c fm,n = 1, then without
loss of optimality, one can set sm,n = 1 in problem P0.

Proof: See Appendix.
Proposition 1 indicates that if a certain BS caches the

requested content already, then adding this BS to the existing
cluster of this content regardless of its channel conditions will
not cause extra backhaul cost but can potentially reduce the
total transmit power because of higher degrees of freedom for
cooperative transmission. This proposition however does not
mean BS n must serve group m with strictly positive power
if c fm ,n = 1. Depending on the actual channel realizations,
it is possible that the optimized beamformer wm,n = 0 even
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when sm,n = 1 according to the problem formulation in P0.
Proposition 1 can be used to reduce the exhaustive search
space for global optimal BS clustering. In the extreme case
when all the requested contents are cached in every BS, then
the original joint BS clustering and multicast beamforming
problem P0 reduces to the multicast beamforming problem
with full cooperation, where sm,n = 1,∀m, n. In the gen-
eral case when there exists a requested content which is
not cached anywhere (except the CP), the search space for
global optimal BS clustering is in the order of 2N . When the
number of BSs, N , is very large in the considered cloud RAN
architecture, the complexity can still be prohibitively high.

The above proposition holds for user-centric design as
well [1]. Based on Proposition 1, we have developed a cache-
aware greedy BS clustering algorithm, which is an extension
of the greedy algorithm in [1] from unicast transmission to
multicast transmission. The details are omitted due to page
limit. The algorithm starts with full BS cooperation, then
successively deactivates one BS from the serving cluster of
a requested content based on greedy search. The BSs to be
deactivated for each content only comes from the set of BSs
which do not cache the content. Similar greedy algorithms
without cache for user-centric BS clustering are proposed
in [17]. Nevertheless, the number of iterations in such greedy
algorithms in the worst case still grows quadratically with
M N and in each iteration it needs to solve a non-convex
QCQP problem.

B. Sparse Multicast Beamforming

In this subsection, we formulate a sparse multicast beam-
forming (SBF) problem which is equivalent to the original
problem P0 but more tractable. It is clear that the BS cluster
matrix S can be specified with the knowledge of the beam-
formers wm,n’s. Specifically, when wm,n = 0, we have:

sm,n =
{

0, if c fm ,n = 0,

0 or 1, if c fm ,n = 1.
(8)

Otherwise when wm,n 	= 0, we have sm,n = 1 from con-
straint (6d). Thus, without loss of optimality, sm,n can be
replaced by the �0-norm1 of ‖wm,n‖22:

sm,n =
∥
∥‖wm,n‖22

∥
∥

0. (9)

By substituting (9) into the network cost in the objective (6a),
P0 can be transformed into the following equivalent problem:

PSBF : min{wm,n}

M∑

m=1

N∑

n=1

∥
∥‖wm,n‖22

∥
∥

0(1− c fm,n)Rm

+ η

M∑

m=1

N∑

n=1

‖wm,n‖22 (10)

s.t. (6b).

Problem PSBF is a sparse multicast beamforming problem
with sparsity from the �0-norm in the objective. This
problem takes the dynamic content-centric BS clustering

1The �0-norm denotes the number of nonzero elements of a vector.
It reduces to the indicator function in the scalar case.

into account inexplicitly. Through solving this problem,
a sparse beamformer for each content can be found whose
nonzero entries correspond to the active serving BSs. Solving
the equivalent problem PSBF is still challenging due to the
nonconvex QoS constraints and the nonconvex discontinuous
�0-norm in the objective.

IV. CCP BASED SPARSE MULTICAST

BEAMFORMER DESIGN

In this section, we first review some basics of the convex-
concave procedure (CCP), a powerful heuristic method to
find local optimal solutions to the general form of DC
programming problems. After that, we show that problem
PSBF can be converted to DC programs after replacing
�0-norm with concave smooth functions and applying other
techniques. Then two CCP-based algorithms are proposed to
find effective solutions of PSBF.

A. Basics of DC Programming and CCP

DC programming deals with the optimization problems of
functions with each represented as a difference of two convex
functions. A general form of DC programming problems is
written as follows:

min
x∈Rn

g0(x)− h0(x) (11)

s.t. gi (x)− hi (x) ≤ 0, i = 1, 2, . . . , m.

where gi and hi for i = 0, 1, . . . , m, are all convex functions.
A DC program is not convex unless the functions hi are affine,
and is difficult to solve in general.

The convex-concave procedure is a heuristic algorithm to
find a local optimal solution of DC programs. Its main idea
is to convexify the problem by replacing the concave part
in the DC functions, which is hi , i = 0, 1, . . . , m, by their
first order Taylor expansions, then solve a sequence of convex
problems successively. Specifically, it starts with an initial
feasible point x0, i.e., gi (x0)− hi (x0) ≤ 0, for i = 1, . . . , m.
In each iteration t , it solves the following convex subproblem:

min
x∈Rn

g0(x)−∇h0(x (t))T x (12)

s.t. gi (x)−
[
hi (x (t))+∇hi (x (t))T (x − x (t))

]
≤ 0, ∀i

where x (t) is the optimal solution obtained from the previous
iteration.

The original CCP is proposed in [24] dealing with uncon-
strained or linearly constrained problems. It is then extended
in [25] to handle the general form of DC programming with
DC constraints. Some other variations and extensions have
been made in [26] recently. In particular, it is shown explicitly
in [26] that the optimal solution of each iteration x (t) is always
a feasible point of the original DC program. The convergence
proof of CCP to critical points of the original problem for the
differentiable case can be found in [26] and [32].

We would like to point out that CCP falls in the category
of majorization-minimization (MM) algorithms for a particu-
lar choice of the majorization function. On the other hand,
CCP can also be derived from the DC algorithm (DCA),
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a primal-dual subdifferential method for solving DC programs
where the objective can be a difference of proper lower semi-
continuous convex functions. In this paper, for differential
convex functions, we prefer CCP formulation as it is a purely
primal description of the problem. In [33], a successive linear
approximation (SLA) has been proposed to solve the single-
group multicast beamforming problem, which can be seen as
a special case of CCP. In [34], the authors propose a convex
inner approximation technique to tackle the max-min fairness
beamforming problem in multicast relay networks, which also
belongs to the class of CCP. To the best of our knowledge, this
work is the first to apply CCP to solve multi-group multicast
beamforming problems.

B. Smoothed �0-Norm Approximation

To solve the sparse multicast beamforming problem PSBF,
we approximate the discontinuous �0-norm in the objective
with a continuous smooth function, denoted as f (x).
Specifically, we consider three frequently used smooth
concave functions: logarithmic function, exponential function,
and arctangent function [35], defined as

fθ (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log
( x

θ + 1
)

log( 1
θ + 1)

, for log-function

1− exp(− x

θ
), for exp-function

arctan
( x

θ

)
, for arctan-function

(13)

where θ > 0 is a parameter controling the smoothness of
approximation. A larger θ leads to smoother function but
worse approximation and vice versa. The effectiveness of
these smooth functions has been demonstrated for sparse
signal recovery [35] and feature selection in SVM (Support
Vector Machine) [36].

With the above smoothed �0-norm, the problem PSBF can
be approximated as:

P1 : min{wm,n }

M∑

m=1

N∑

n=1

αm,n fθ
(
‖wm,n‖22

)
+ η

M∑

m=1

N∑

n=1

‖wm,n‖22
(14)

s.t. (6b).

where αm,n � (1 − c fm ,n)Rm , ∀m, n. Note that the smooth
function fθ

(‖wm,n‖22
)

is concave in ‖wm,n‖22, but not concave
in wm,n . In the following two subsections, we introduce two
different techniques to convert problem P1 into DC program-
ming problems, and then solve it using CCP-based algorithms.

C. SDR-Based CCP Algorithm

To convert P1 into a DC program, we take the SDR
approach in this subsection. Define two sets of matrices
{Wm ∈ C

N L×N L }Mm=1 and {Hk ∈ C
N L×N L }Kk=1 as

Wm = wmwH
m , ∀m and Hk = hkhH

k , ∀k. (15)

We further define a set of selection matrices {Jn}Nn=1, where
each Jn ∈ {0, 1}N L×N L is a diagonal matrix defined as

Jn = diag
([

0H
(n−1)L, 1H

L , 0H
(N−n)L

])
, ∀n. (16)

Therefore, we can rewrite ‖wm,n‖22 as

‖wm,n‖22 = Tr(WmJn), ∀m, n. (17)

By removing the rank constraint rank{Wm} = 1, prob-
lem P1 can be relaxed as

P2 : min{Wm }

M∑

m=1

N∑

n=1

αm,n fθ (Tr (WmJn))+ η

M∑

m=1

Tr (Wm)

(18a)

s.t.
Tr(WmHk)

∑M
j 	=m Tr(W j Hk)+ σ 2

k

≥ γm, ∀k ∈ Gm, ∀m

(18b)

Wm � 0, ∀m (18c)

Clearly the SINR constraint (18b) becomes affine.
In addition, observing (18a) closely, we find that the objective
can be rewritten as the difference of two functions g and h,
defined as

g − h = η

M∑

m=1

Tr (Wm)−
[

−
M∑

m=1

N∑

n=1

αm,n fθ (Tr (WmJn))

]

.

Recall that the smooth function fθ (x) (13) is chosen to
be concave, thus, h is a convex function of {Wm}. On the
other hand, g is affine. Then the objective of problem P2 can
be expressed as a difference of convex functions. Therefore,
P2 is a DC program with DC objective and convex constraints.
The CCP reviewed in Section IV-A can be readily applied with
the objective function to be convexified only. The subproblem
in each iteration is an SDP problem and can be solved using
a generic SDP solver. The details are omitted.

If the resulting solution {Wm} after solving problem P2 is
already rank-one, the optimal network-wide beamformer w∗m
of problem PSBF can be obtained by applying eigen-value
decomposition (EVD). Otherwise, the randomization and scal-
ing method [27], [31] is used to generate a suboptimal
solution. In general, the SDR method can demonstrate good
performance for small number of users, where the percentage
of rank-one solution is high. However, as the number of users
or antennas becomes very large, the probability of rank-one
solution is very small, and the randomization-based solution
can be far from optimal [27]. Furthermore, by adopting the
SDR method, the number of variables is roughly squared
(from M N L to M(N L)2), which is not computationally
efficient.

D. Generalized CCP Algorithm

In this subsection we convert P1 into a general form of DC
programs with DC forms in both objective and constraints
without any relaxation.

The nonconvex SINR constraints (6b) in P1 can be rewrit-
ten as

γm

⎛

⎝
M∑

j 	=m

|hH
k w j |2 + σ 2

k

⎞

⎠− |hH
k wm |2 ≤ 0, ∀k ∈ Gm . (19)

Clearly, the left hand side of (19) is a DC function. By intro-
ducing auxiliary variables {tm,n ∈ R}m=1,...,M

n=1,...,N and noticing
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that the smooth function fθ (x) is strictly monotone increasing,
problem P1 can be transformed into the following problem as

P3 : min
M∑

m=1

N∑

n=1

αm,n fθ
(
tm,n

)+ η

M∑

m=1

N∑

n=1

tm,n (20a)

s.t. ‖wm,n‖22 − tm,n ≤ 0, ∀m, n, (20b)

γm

⎛

⎝
M∑

j 	=m

|hH
k w j |2+σ 2

k

⎞

⎠−|hH
k wm |2 ≤ 0, ∀k ∈ Gm .

(20c)

Here, the introduction of auxiliary variables {tm,n} is crucial.
The objective (20a) now becomes the difference of two convex
functions expressed as:

g − h = η

M∑

m=1

N∑

n=1

tm,n −
(

−
M∑

m=1

N∑

n=1

αm,n fθ
(
tm,n

)
)

. (21)

The new constraints (20b) are convex. It can be observed that
problem P3 falls into a general form of DC programming
problems since both the objective and the constraints are
DC functions. Hence, the general CCP algorithm reviewed in
Section IV-A can be readily applied to obtain a local optimal
solution of P3. In specific, the subproblem in the i th iteration
of the CCP takes the following form in (22), as shown at the
bottom of this page, which is a convex QCQP problem.

Remark 1: By comparing with the DC transformation from
P1 to P2, the DC transformation from P1 to P3 differs in two
major aspects. First, the optimal solution of P3 must satisfy
‖w∗m,n‖22 = t∗m,n (this can be easily proved by contradiction)
and thus the transformation from P1 to P3 does not incur any
loss of optimality. On the other hand, the transformation from
P1 to P2 is a relaxed one due to the removal of rank-one
constraints. Second, while the number of variables in P2 (i.e.,
M(N L)2) is roughly squared of that in P1 (i.e., M N L), the
number of variables in P3 (i.e., M N(L + 1)) almost keeps
the same as that in P1. In the simulation section, we shall
compare the performance and complexity of the two methods
in greater details.

E. Discussions and Algorithm Outlines

In this subsection we first provide some discussions on
the initialization of the above CCP-based sparse beamforming
algorithms and the updating rule of the smoothness parame-
ter θ in (13). Then we summarize our proposed algorithms
formally.

1) Initialization: As stated in Section IV-A, the CCP algo-
rithm needs a feasible starting point. Unlike the single-group
multicast beamforming problems [7], [33], [34], where any
starting point after simple scaling can be feasible, the starting
point for our problem needs to be chosen carefully. In this
paper, we propose to find a feasible starting point through
solving the following power minimization problem with full
BS cooperation:

PINI : min{Wm }

M∑

m=1

Tr (Wm) (23a)

s.t.
Tr(WmHk)

∑M
j 	=m Tr(W j Hk)+ σ 2

k

≥ γm, ∀k ∈ Gm , ∀m
(23b)

Wm � 0, ∀m (23c)

The optimal solution {Wm} of PINI can be used directly
as a feasible starting point for the SDR-based CCP algo-
rithm in Section IV-C. For the generalized CCP algorithm in
Section IV-D, if {Wm} are all rank-one, then the feasible beam-
formers {wm} can be obtained by applying EVD on {Wm}.
Otherwise, randomization and scaling are needed. Note that if
the SDP problem PINI turns out to be infeasible, then the
original problem P0 is infeasible and both algorithms will
terminate.2

The need for an initial feasible point can be removed with
a penalty CCP algorithm proposed in [26]. But the penalty
algorithm is not a descent algorithm and the convergence may
not be a feasible point of the original problem. The algorithm
needs to be performed many times, each with a different
starting point until a feasible point is obtained. This increases
the overall complexity significantly.

2) Updating Rule of θ : The performance of the smoothed
�0-norm approximation fθ (x) depends on the smoothness
factor θ . Intuitively, when x is large, θ should be large so that
the approximation algorithm can explore the entire parameter
space; when x is small, θ should be small so that fθ (x)
has behavior close to �0-norm. In our conference paper [2],
we proposed a novel θ updating rule that achieves the above
effect automatically using a sequence of θ that depends on the
specific x in each iteration. More specifically, θ is set to be the
one that maximizes the gradient of the approximation function.
It is shown in [2] that with such updating rule, the three smooth
functions in (13) perform almost identically. In this work, we
propose to implement an annealing design of θ . We begin with

2However, even if PINI is feasible, it does not necessarily guarantee that
P0 is feasible.

min{wm,n },{tm,n }

M∑

m=1

N∑

n=1

(
η + αm,n∇ fθ

(
t(i)m,n

))
tm,n (22a)

s.t. ‖wm,n‖22 − tm,n ≤ 0, ∀m, n (22b)

γm

⎛

⎝
M∑

j 	=m

|hH
k w j |2 + σ 2

k

⎞

⎠−
(

2R
{
(w(i)

m )H hkhH
k wm

}
− |hH

k w(i)
m |2

)
≤ 0, ∀k ∈ Gm (22c)
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Algorithm 1 (SDR-CCP) SDR-CCP Based Sparse Multicast
Beamforming Algorithm

Initialization:
1) Find a feasible starting point {W(0)

m } by solving PINI.
2) Set the smoothness factor θ = θ0, decaying factor 0 <

β < 1 and small constant ε.

Repeat
1) Solve P2 using CCP at the starting point {W(0)

m } and
denote the solution as {W∗m}

2) Update θ ← βθ and {W(0)
m } ← {W∗m}

Until θ < ε.
If rank(W∗m) = 1, ∀m, apply EVD on {W∗m} to obtain the
final solution {w∗m} .
Else, apply Gaussian randomization and scaling to obtain
the approximate solution {w∗m}

Algorithm 2 (G-CCP) Generalized CCP Based Sparse Multi-
cast Beamforming Algorithm

Initialization:
1) Solve PINI and denote the solution as {W(0)

m }.
2) If rank(W(0)

m ) = 1, ∀m, apply EVD to obtain a feasible
point {w(0)

m }.
3) Else, apply Gaussian randomization and scaling to

obtain a feasible point {w(0)
m }.

4) Set the smoothness factor θ = θ0, decaying factor 0 <
β < 1, and small constant ε.

Repeat
1) Solve P3 using CCP at the starting point {w(0)

m } and
denote the solution as {w∗m}

2) Update θ ← βθ and {w(0)
m } ← {w∗m}

Until θ < ε.
Output solution {w∗m}

a large value of θ , solve P2 using SDR-CCP algorithm (or P3
using generalized CCP algorithm), then decrease θ by a given
factor β (i.e., θ ← βθ ) and solve P2 (or P3) again with the
initial point given by the solution from the previous iteration.
This scheme is then iterated until θ is sufficiently small.

3) Algorithm Outlines: In summary, the two proposed algo-
rithms are outlined in Alg. 1 and Alg. 2, respectively. Besides
the differences mentioned in Remark 1, from Alg. 1 and Alg. 2
one can note that the SDP-CCP algorithm and the G-CCP
algorithm also differ in randomization and scaling. In specific,
the randomization and scaling in SDR-CCP is performed in
the last step of Alg. 1 and needs to be done many times in
order to get a good approximate solution if {W∗m} do not have
rank one; however, the randomization and scaling in G-CCP
is performed at the initialization step of Alg. 2 and can be
finished as soon as a feasible point {w(0)

m } is found.
Remark 2: In the extreme case when η → +∞, the

original problem P0 or PSBF reduces to the total power
minimization problem of multi-group multicast beamforming
in a fully cooperative network subject to QoS constraints.
In this case, the SDR-CCP algorithm (Alg. 1) reduces to

Fig. 2. Simulation scenario with 7 BSs, 30 mobile users randomly distributed.

the traditional SDR method [27] without invoking CCP.
However, the G-CCP algorithm (Alg. 2) still stands as it is
except there is no need to update the smoothness factor θ .
Thus we can claim that our proposed G-CCP based sparse
muticast beamforming algorithm is general and can be used
to solve the traditional multi-group multicast beamforming
problem [27], [31] as special cases.

V. SIMULATION RESULTS

In this section, we provide comprehensive simulations to
illustrate the performance of the proposed content-centric
sparse beamforming algorithms. We consider a hexagonal
multicell cloud RAN network, where each BS is located at
the center of a hexagonal-type cell as illustrated in Fig. 2.
There are N = 7 BSs in total and each BS has L = 4
antennas. The distance between adjacent BSs is set to 500m.
The mobile users are uniformly and independently distributed
in the network, excluding an inner circle of 50m around
each BS. All BSs are assumed to have equal cache size of Y
(e.g., Yn = Y, ∀n). The transmit antenna power gain at each
BS is 10dBi. The available channel bandwidth is 10MHz.
The distance-dependent pathloss is modeled as P L(dB) =
148.1 + 37.6log10(d), where d is the distance in kilometers.
The log-normal shadowing parameter is assumed to be 8dB.
The small-scale fading is the normalized Rayleigh fading. The
noise power spectral density σ 2

k for all users is set to be
−172dBm/Hz. The SINR target for each multicast group is
γm = 10dB, ∀m.

In the proposed updating rule of smoothness factor θ ,
it generally requires the initial θ0 to be large enough so
that the smooth function fθ (x) can explore the entire para-
meter space during the iterations. In our simulation, we
set θ0 = max{Tr(W(0)

m Jn),∀m, n} for Alg. 1 and θ0 =
max{‖w(0)

m,n‖22,∀m, n} Alg. 2, respectively, where W(0)
m is the

optimal solution of PINI and w(0)
m,n is obtained from W(0)

m

by EVD (Gaussian randomization and scaling is applied if
necessary). Our empirical results have shown that such θ0
is large enough so that further increasing it will not bring
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additional gain. For the decaying factor β, a larger β can
lead to more accurate result and hence better performance
but the convergence speed can be slow; a smaller β can
speed up the convergence but the algorithm is more likely to
get a suboptimal solution. In our simulation, we empirically
choose β = 0.1, which can strike a good balance between the
convergence speed and the performance. The small constant ε
is set to be 10−6.

In each simulation trial we consider K = 30 active users
and each user submits a content request independently to
a database of F = 100 contents. Each simulated result is
obtained by averaging over 100 independent simulation trials,
unless stated otherwise. In each trial we only generate one set
of user locations, channel realizations, and user requests for
simulation simplicity. We assume the following two different
content popularity distributions: 1) Unequal popularity: among
the 100 contents, one content belongs to trending news with
request probability 0.5, and the other 99 contents share the
rest 0.5 of the request probability following a Zipf distribution
with skewness parameter α. In general, large α means more
user requests are concentrated on fewer popular contents.
2) Equal popularity: all the 100 contents are requested with
equal probabilities. In our simulation the defaulted setting is
the unequal popularity with α = 1. Each BS caches Y = 10
contents if not specified otherwise.

The following three heuristic caching strategies are
considered:
• Popularity-aware Caching (PopC): Each BS caches the

most popular contents until its storage is full. In such
caching scheme, the cached contents in all the BSs are the
same if their cache sizes are the same. This strategy can
bring significant opportunity for full cooperation when
the content popularity distribution is highly non-uniform.
On the other hand, if the popularity is equally distributed,
the cache hit rate can be very low and may cause large
backhaul burden.

• Random Caching (RanC): Each BS caches the contents
randomly with equal probabilities regardless of their
popularity distribution.

• Probabilistic Caching (ProC): Each BS caches a content
randomly with probability depending on the content pop-
ularity, and the more popular the content is, the more
likely it will be cached in each BS. This caching strategy
can strike a good balance between cache hit rate and
cooperative transmission gain.

A. Comparison Between SDR-CCP and
Generalized CCP Algorithms

We first demonstrate the convergence behavior of the pro-
posed two CCP based algorithms denoted as SDR-CCP and
G-CCP, in Fig. 3 and Fig. 4, respectively. For illustration
purpose, the smoothness factor in all smooth functions is fixed
at θ = 0.01. Popularity-aware caching is adopted. It can be
seen clearly that both SDR-CCP and G-CCP converge within
less than 10 iterations for all the considered cases.

In Fig. 5, we plot the backhaul-power tradeoff curves
achieved by the proposed two algorithms. The tradeoff curves

Fig. 3. Convergence behavior of the SDR-CCP based algorithm
with θ = 0.01.

Fig. 4. Convergence behavior of the general CCP based algorithm
with θ = 0.01.

Fig. 5. Backhaul-power tradeoff comparison between SDR-CCP and G-CCP.

are obtained by controlling the weight parameter η between
the backhaul cost and the transmit power cost. When η → 0
(e.g., η = 10−6), the total network cost only takes backhaul
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TABLE I

COMPARISON OF RUNNING TIMES (SECOND) OF SDR-CCP AND G-CCP ALGORITHMS

capacity into account. When η→ +∞, the total network cost
only counts the transmit power and the optimization problem
reduces to the transmit power minimization problem P(ZS)
with sm,n = 1, ∀m, n. Without loss of generality, we take
the arctangent smooth function for example. It is observed
that the G-CCP algorithm provides a better backhaul-power
tradeoff than the SDR-CCP algorithm. In particular, at the
same backhaul cost, G-CCP can achieve 1 ∼ 5 dB lower
power cost than SDR-CCP. In the extreme case with transmit
power minimization (i.e., η → +∞), our proposed prob-
lem P0 reduces to the multi-group QoS multicast beamforming
problem in [27] and, correspondingly, the SDR-CCP based
algorithm reduces to the SDR method in [27]. It is seen that the
proposed G-CCP algorithm still outperforms the SDR method
in [27] by saving 0.5dB power cost.

We also compare the simulation running time of the two
CCP-based algorithms in Table I. The simulation is based
on MATLAB R2012a and carried out on a Windows x64
machine with 3.2 GHz CPU and 4 GB RAM. We adopt the
CVX package with SDPT3 solver in [37] to solve the convex
subproblem in each iteration of CCP. It is seen from Table I
that the running time of G-CCP is around 46% ∼ 56% of
the SDR-CCP algorithm in general. In the extreme case when
η → +∞, the running time of G-CCP is only 33% that of
SDR-CCP. The complexity reduction of G-CCP is contributed
by two facts. First, the problem size of P3 in G-CCP is smaller
than that of P2 in SDR-CCP, as noted in Remark 1. Second,
G-CCP requires less number of randomization and scaling
steps as noted in Section IV-E.

From the above comparison, it can be concluded that the
G-CCP based algorithm is superior to the SDR-CCP algorithm
in both performance and computational complexity. Therefore,
in the rest of our simulation, we only use the G-CCP algorithm.

B. Comparison of Different Smooth Functions

In Fig. 6, we compare the performance of the three
smooth functions with popularity-aware caching. Each result is
obtained by averaging over 200 independent simulation trials.
It is seen that the three functions have similar performance
for a wide range of η. In the extreme case when η → 0,
the arctangent function can achieve slightly lower backhaul
cost than the other two functions. Thus, in the rest of our
simulation, only the arctangent function is adopted.

C. Effects of Caching

In Fig. 7, we compare the performance of different caching
strategies for unequal content popularity with skewness factor
α = 1. Both K = 30 and K = 7 users are considered and the
cache size is Y = 10. It is seen that compared with the network
without cache, the cache-enabled network with a reasonably

Fig. 6. Performance comparison of different smooth functions.

Fig. 7. Performance comparison of different caching strategies for unequal
content popularity with α = 1.

designed cache can dramatically reduce the backhaul cost,
hence improving the backhaul-power tradeoff.

Next we focus on the comparison between the popularity-
aware caching (PopC) and the probabilistic caching (ProC)
under both unequal content popularity in Figs 7-8 and equal
content popularity in Fig. 9. The simulation setting in Fig. 8
is the same as Fig. 7 except the skewness factor α = 2. The
results for equal content popularity in Fig. 9 are obtained at
K = 20 and K = 7 users with cache size Y = 10 and Y = 20.

From Fig. 7 and Fig. 8 with unequal content popularity,
it can be generally observed that PopC outperforms ProC
for a wide range of the backhaul-power tradeoff parameter η
in the total network cost, except the limiting case η → 0.
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Fig. 8. Performance comparison of different caching strategies for unequal
content popularity with α = 2.

Fig. 9. Performance comparison of different caching strategies for equal
content popularity.

Intuitively, since PopC places the same and most popular
contents in each BS, it can enjoy the maximum transmit
cooperation gain if the network is not extremely concerned
with the backhaul cost. However, if the backhaul cost is
the primary concern of the network (i.e., η → 0), then
ProC performs better than PopC. In specific, the achievable
minimum backhaul cost of ProC is only around 50%-60% of
that of PopC with K = 7 users. This is because when the user
number is small, each content can be served by only a small
number of BSs cooperatively to meet their SINR targets and
hence it is more likely to find the requested contents in the
local cache of all the serving BSs when ProC is adopted.

From Fig. 9 with equal content popularity, it is interestingly
observed that when K = 20, PopC and ProC (ProC is
equivalent to RanC in this case) perform almost the same in
the entire backhaul-power tradeoff curve, in sharp contrary to
the common belief that ProC may outperform PopC because
of large cache hit rate. This observation is because when the
user number is large, each content should be better served

Fig. 10. Performance comparison between multicast transmission and unicast
transmission.

by a large number of BSs cooperatively to meet their SINR
targets, and hence the benefits of randomness in ProC may
vanish since all the serving BSs need to access the requested
content either from its local cache or from the CP via backhaul.
On the other hand, when K = 7, ProC still shows advantage
over PopC by a significant reduction of achievable minimum
backhaul cost as expected.

The above observations indicate that the design of
more advanced caching strategies for network performance
optimization should not only take into account the content
popularity, but also the user density as well as the optimization
objective.

Nevertheless, from Figures 7 to 9, one can see that the
minimum transmit power cost of the network is the same
for all caching strategies, since it is only determined by the
target SINR constraint of each multicast group (10dB in the
simulation).

D. Multicast Versus Unicast

In Fig. 10, we compare the performance of multicast trans-
mission and unicast transmission at different number of active
users. Here, unequal content popularity with skewness factor
α = 1 is assumed and the popularity-aware caching with cache
size 10 is applied. In unicast transmission, we design different
beamformers for different users regardless of their requested
contents. Note that if a BS serves multiple users requesting
for a same content that it does not cache, the central processor
only needs to distribute to the BS one copy of the content at
the maximum requested data rate. This is to ensure a fair com-
parison on the backhaul cost. The iterative reweighted �1-norm
based sparse unicast beamforming algorithm proposed in [1]
is adopted. Such comparison between multicast transmission
and unicast transmission is essentially a comparison between
the proposed content-centric design and the traditional user-
centric design.

It is seen from Fig. 10 that when there are K = 30 active
users in the network, the unicast transmission (user-centric
design) performs very poorly. This is mainly because there are
only N × L = 28 transmit antennas in total in the considered
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Fig. 11. Comparison between smooth approximation, greedy algorithm, and
exhaustive search in a small network with N = 3 BS, K = 6 users, and
F = 4 files.

cloud RAN and hence there is not enough spatial dimension
to construct 30 beamformers for unicast transmission. On the
other hand, the proposed multicast transmission (content-
centric design) performs well since it exploits the content
popularity among different users and needs to design fewer
beamformer. When the number of active users decreases,
it is observed that the backhaul-power tradeoff for unicast
transmission is improved, but it is still considerably inferior to
multicast transmission. In the extreme case when only power
cost is concerned (η→+∞), it is seen that unicast transmis-
sion requires 3 dB higher power than multicast transmission
when there are K = 20 active users. A question one may
ask is whether multicast transmission still outperforms unicast
transmission in the special scenario where the users requesting
a same content happen to be located in geographically disjoint
areas covered by different BSs. We note that such scenario
belongs to the special case where the network-wide user
channel vectors are orthogonal and hence unicast beamforming
and multicast beamforming are equivalent.

The above observations demonstrate significant advantage
of the proposed content-centric transmission design over the
conventional user-centric transmission design for the consid-
ered content request model.

E. Effectiveness of Smooth Approximation

Finally, in this subsection we validate the effectiveness of
the proposed smooth approximation. The “global optimal”
solution (subject to the rank-1 condition) obtained by exhaus-
tive search as mentioned in Section III-A is considered as a
benchmark. The cache-aware greedy BS clustering algorithm
extended from [1] is also compared. Due to the significantly
high computational complexity of the exhaustive search, we
are only able to conduct the simulation in a small network
with N = 3 BS each having L = 3 antennas, K = 6 users,
and F = 4 files. The content popularity distributions are
{0.48, 0.24, 0.16, 0.12} and each BS only caches the 2 most
popular contents. The performance comparison is depicted
in Fig. 11. Here, the G-CCP algorithm with arctangent smooth

function is simulated and each result is obtained by averaging
over 200 independent simulation trials.

From Fig. 11, we observe that the performance of the
smooth-function based sparse beamforming algorithm is very
close to the global optimal solution, except having slightly
higher minimum backhaul cost at η → 0. This confirms the
accuracy of the proposed smooth approximation at least in the
considered small network. It is also observed that the greedy
algorithm performs almost identically with the exhaustive
search in the given scenario.

Note that when the number of base stations or users
increases, the number of non-convex QCQP problems to
solve in the exhaustive search and the greedy algorithm grows
exponentially and quadratically, respectively, in general.
However, these system parameters have no direct impact
on the number of convex QCQP problems to solve in the
proposed G-CCP algorithm.

VI. CONCLUSION

In this paper we investigated the joint design of content-
centric BS clustering and multicast beamforming in the cache-
enabled cloud RAN for wireless content delivery. The problem
was formulated as an MINLP problem with the objective of
minimizing the total network cost subject to the QoS constraint
for each multicast group. Based on this formulation, we proved
that all the BSs which cache the content requested by a
multicast group can be always included in the serving BS clus-
ter of this content, regardless of their channel conditions.
To make the problem more tractable, we reformulated it as
an equivalent sparse beamforming design problem. We then
adopted the smoothed �0-norm approximation and converted
the problem into two forms of DC programs, which are
then solved using SDR-based CCP algorithm and general-
ized CCP algorithm, respectively. Comprehensive simulation
reveals several interesting findings. First, the generalized CCP
algorithm is superior to the SDR-based CCP algorithm in
both transmission power efficiency and computation efficiency.
Second, among the considered three heuristic caching strate-
gies, the popularity-aware caching in general provides the best
backhaul-power tradeoff curves, but in the extreme case where
only the backhaul cost is considered and when user density
is low, the probabilistic caching outperforms the popularity-
aware caching. Last but not least, the proposed content-centric
transmission (i.e. content-centric BS clustering and multicast
beamforming) offers significant reduction in total network
cost than the conventional user-centric design (i.e. user-centric
BS clustering and unicast beamforming) under the considered
content-request model.

This work can be viewed as an initial attempt from the
physical layer toward the design of content-centric wireless
networks. There are many interesting directions to pursue
in the future. For instance, the problem formulation in this
work assumes that the content placement is given and fixed.
As observed by simulation, the performance of the considered
heuristic caching strategies depends on not only the content
popularity, but also the user density as well as the network
optimization objective. As such, it is of particular importance
to investigate the globally optimal caching strategy through the
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joint design of mixed timescale cache placement/replacement
and content delivery. In addition, the proposed sparse multicast
beamforming algorithms are centralized and may be difficult
to implement in very large networks. To be more practical
in cloud RAN architectures with large number of users, low-
complexity or distributed implementation of these algorithms
is greatly desired.

APPENDIX

PROOF OF PROPOSITION 1

Assume that the content requested by user group m∗ is
already cached in BS n∗, i.e., c fm∗ ,n∗ = 1. Consider an arbi-
trary BS clustering matrix S′ with s′m∗,n∗ = 0. The minimum
total network cost incurred by the given S′ is denoted as
C ′N = C ′B + ηC ′P , where C ′B is determined by (3) with the
summation term sm∗,n∗(1−c fm∗ ,n∗)Rm∗ being zero, and C ′P is
the optimal solution of the following power minimization
problem at given S′

P(ZS′) : C ′P = min{wm,n}

M∑

m=1

N∑

n=1

‖wm,n‖22 (24a)

s.t. (6b)

wm,n = 0, ∀(m, n) ∈ ZS′ (24b)

Here, ZS′ is the set of inactive BS-content associations at
given S′, i.e., ZS′ = {(m, n)|[S′]m,n = 0}. Obviously we have
(m∗, n∗) ∈ ZS′ .

Now, define a new BS clustering matrix S′′ which only
differs from S′ at the (m∗, n∗)-th element, i.e., s′′m∗,n∗ = 1.
Then the minimum total network cost incurred by S′′ can be
written as C ′′N = C ′′B+ηC ′′P . Here, C ′′B is also determined by (3)
with the summation term sm∗,n∗(1 − c fm∗ ,n∗)Rm∗ being zero
again due to c fm∗ ,n∗ = 1 and hence one has C ′′B = C ′B . C ′′P
is the optimal solution of the following power minimization
problem at given S′′

P(ZS′′) : C ′′P = min{wm,n}

M∑

m=1

N∑

n=1

‖wm,n‖22 (25a)

s.t. (6b)

wm,n = 0, ∀(m, n) ∈ ZS′′ (25b)

By definition, the set of inactive BS-content association at S′′
satisfies:

ZS′′ = ZS′ \(m∗, n∗). (26)

By observing P(ZS′) and P(ZS′′) closely, it is clear that the
feasible set of P(ZS′) is only a subset of that of P(ZS′′)
due to (26). Therefore, we have C ′P ≥ C ′′P . Together with
C ′B = C ′′B , we obtain that the two total network costs satisfy
C ′N ≥ C ′′N . This means that, for any BS clustering matrix S′
with s′m∗,n∗ = 0, we can always find another BS clustering
matrix S′′ with s′′m∗,n∗ = 1 such that it can achieve a total
network cost no larger than that of S′. Therefore, without loss
of optimality, one can set sm∗,n∗ = 1 in P0.
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