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Abstract—This paper develops a notion of capacity–delay–error
(CDE) boundaries as a performance model of networked sources
and systems. The goal is to provision effective capacities that sus-
tain certain statistical delay guarantees with a small probability of
error. We use a stochastic non-equilibrium approach that models
the variability of traffic and service to formalize the influence of
delay constraints on the effective capacity. Permitting unbounded
delays, known ergodic capacity results from information theory
are recovered in the limit. We prove that the model has the
property of additivity, which enables composing CDE boundaries
obtained for sources and systems as if in isolation. A method for
construction of CDE boundaries is devised based on moment-
generating functions, which includes the large body of results from
the theory of effective bandwidths. Solutions for essential sources,
channels, and respective coders are derived, including Huffman
coding, MPEG video, Rayleigh fading, and hybrid automatic re-
peat request. Results for tandem channels and for the composition
of sources and channels are shown.

Index Terms—Queueing analysis, information theory, channel
models, time varying channels, quality of service.

I. INTRODUCTION

O RIGINATING from the seminal works by Shannon in
1948, the tremendous progress in information and coding

theory has fostered ground-breaking applications that range
from digital communications to data storage and processing.
The fundamental results of information theory are asymptotic
limits for the transmission rate of information by a source over
a channel. Information theory defines the notion of entropy
and channel capacity as the expected information of a source
and the expected transinformation of a channel. Coding the-
ory devises practical codes for data compression and reliable
transmission that seek to approach the limits established by the
entropy and the channel capacity, respectively [3].

In networking, information theory has not become widely
accepted, yet. A major challenge for establishing a connection
is due to the properties of network data traffic that is highly
variable and delay-sensitive [4]. In contrast, information theory
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mostly neglects the dynamics of information and capacity and
focuses on averages, respectively, asymptotic limits. Typically,
these limits can be achieved with negligibly small probability
of error assuming, however, arbitrarily long codewords and as a
consequence arbitrarily large coding delays [5]. In networking
though, delay is a key performance parameter that can be traded
for capacity or loss as shown, e.g., by queueing theory. Further,
the variability of sources is essential in packet data networks,
as it potentiates significant resource savings due to statistical
multiplexing [4].

The analytical cornerstone of networking is queueing theory
that dates back to the works on the dimensioning of circuit-
switched networks by Erlang in 1909 and 1917. In 1962
Kleinrock advanced this theory to prove the resource efficiency
of packet-switching, which is achieved by bursty sources due
to resource sharing. For packet-switched networks queueing
theory can provide exact solutions for backlogs and delays.
These occur due to the variability of packet inter-arrival and
service times. Typically, the inter-arrival and service times obey
a certain distribution by assumption, e.g., exponential. Recent
approaches like the theory of effective bandwidths [6], [7],
the deterministic network calculus [7]–[9] and the stochastic
network calculus [7], [10]–[15] compute performance bounds
for a wide range of stochastic processes. Despite the need, e.g.,
for joint coding and scheduling problems or cross-layer opti-
mization in wireless multimedia networks, a tight link between
these models and information theory has not been established
yet [4], [5], [15].

To bridge the gap towards queuing theory, a non-equilibrium
information theory that can model the variability and delay-
sensitivity of real sources is required [4], [5]. While [4] en-
visions “effective bandwidth versus distortion functions,” [5]
proposes the idea of “throughput-delay-reliability-triplets” to
characterize mobile ad-hoc networks. Rate-delay tradeoffs are
investigated, e.g., in [16] for networks with multi-path routing
and network coding. To provide a connection to queueing
networks, [4], [5], [15] mention effective bandwidths, large
deviations theory, or stochastic network calculus as potentially
promising candidate theories. Further details are, however,
omitted and the conclusion is that unifying information and
queueing theory remains as one of the most important chal-
lenges in this field.

The variability of fading channels is already considered in
[17], where a notion of outage capacity is defined. The outage
capacity models the probability of errors that occur when the
transmission rate is larger than the instantaneous capacity of
the channel. A related concept, the delay-limited capacity [18],
compensates fluctuations of the fading process using power
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control to achieve a constant transmission rate. Subsequent
works implement power control subject to additional buffering
constraints [19], [20]. Recently, the impact of finite block-
length codes on the variability of the capacity is investigated
in [21]–[23].

While the definition of outage capacity does not contain
any queueing-theoretic aspects, it can be incorporated into a
queueing analysis, as shown in [24] using the M|G|1 model.
Markovian queues have been parameterized to model fading
channels also in [25] and [26]. While [25] models a block
fading process by a variable rate server that is governed by
an embedded Markov chain, [26] views fading outages as an
impairment process that is described by high priority customers
at an M|G|1 priority queue. The concept of an impairment
process was already introduced to the stochastic network cal-
culus in [10] to model outages of a channel, e.g., due to noise,
interference, or fading. The impairment model is used in [15]
to analyze outages of wireless channels and in [27] to derive a
statistical service curve for Markov channels.

Statistical service curves, e.g., [10], [12], [13], are used in
the network calculus to specify the input-output-relation of
systems, such as links, buffers, and schedulers. A first applica-
tion of service curves to describe fading channels is presented
in [28]. The authors use the MGF, respectively, the Laplace
transform of a random process that denotes the service of the
channel. The model is named effective capacity as it is dual
to the characterization of sources by effective bandwidths [6],
[7]. Using arguments from large deviations theory, the effective
capacity provides a tail asymptote of the delay W for W → ∞
that arises if constant bit rate traffic is transmitted over a ran-
dom channel [28]. Effective capacities have subsequently been
derived for a variety of systems, e.g., for cognitive radio [29],
multi-antenna [30], Rayleigh fading [31], and Nakagami-m
fading channels [32].

MGFs are also frequently used in the stochastic network
calculus [7], [12], [14]. Compared to the effective capacity,
the service curve model of the network calculus provides
non-asymptotic results, includes variable bit rate traffic, and
extends to multi-hop networks. Related works in the stochastic
network calculus use Markov chains to reproduce the state of
Gilbert-Elliott fading channels with memory [33], to model
Nakagami-m fading channels [34], and to analyze delays
of spatial multiplexing MIMO channels [35]. Memoryless
Rayleigh fading channels in tandem are investigated in [36]
using a two step approach that expresses the MGF as a Mellin
transform of an exponential function. The rationale is that
exponentiation takes the channel capacity of an additive white
Gaussian noise (AWGN) channel from the bit domain to a
signal-to-noise ratio (SNR) domain [36].

Regarding traffic sources, networking research typically ei-
ther assumes certain stochastic processes or employs traffic
traces. Methods for construction of an empirical effective band-
width or an empirical envelope function from a traffic trace,
e.g., of MPEG video, are given in [37] and [38], respectively.
Recent papers [39], [40] provide an analytical framework for
network elements that process and re-scale data, such as a
transcoder. While information theoretic concepts are not used
in these works, they may facilitate such applications.

An example is [41], where a binary symmetric channel with
automatic repeat request is modeled as a network element that
re-scales the amount of data to account for retransmissions. Dis-
crete memoryless channels are also investigated in [42], where
an error server is defined, that counts the cumulative number of
bit errors. Another link between the stochastic network calculus
and information theory is established in [43], where a calculus
for so-called information-driven networks is introduced. To this
end, the authors use the entropy to convert functions of data bits
into functions of information bits.

In this paper, we investigate a potentially promising con-
nection of methods from stochastic network calculus with
information theory. We develop a notion of capacity-delay-
error (CDE)-boundaries for model-based performance evalua-
tion [44] of sources and systems. We use CDE-boundaries as a
mathematical model to represent the capacity that is effectively
required by a source, respectively, offered by a system under
certain maximal delay constraints. Delays are guaranteed with
a defined, small probability of error. Compared to information
theory, we use a non-equilibrium approach to consider the vari-
ability of sources and systems on finite time-scales. In the limit,
we recover known ergodic capacity results. We use techniques
from convex optimization to prove that our CDE-boundaries
are additive. Like the source-channel separation theorem from
information theory, the property of additivity enables us to
compose results obtained for sources and systems as if in
isolation. Tandem systems are expressed as an equivalent single
system using properties of the network calculus.

We derive a method for construction of CDE-boundaries
from moment generating functions (MGFs). Hence, our model
comprises the large body of MGF results provided by the theory
of effective bandwidths [6], [7] and the related concept of effec-
tive capacity [28]. We derive CDE-boundaries for sources and
channels with and without memory including, e.g., Huffman
video coding and Rayleigh fading channels. We quantify the
increase of delays due to memory and show how error correc-
tion codes can be applied in hybrid automatic repeat request
(ARQ) systems to combat this effect. We include composition
results for fading channels in tandem, and for the transmission
of an MPEG source via a fading channel. We expect that our re-
sults enable further joint information- and queueing-theoretical
investigations that have the potential to provide substantial new
insights and applications from a holistic analysis of networked
communications systems.

The remainder of this paper is structured as follows. In
Section II, we establish the notion of CDE-boundaries and
prove important properties of the model. We derive a method
for construction of CDE-boundaries and present results for
different sources in Section III and systems in Section IV.
In Section V, we show results for composition of sources,
systems, and tandem systems. In Section VI, we provide brief
conclusions.

II. CAPACITY-DELAY-ERROR-BOUNDARIES

In this section, we establish capacity-delay-error (CDE)-
boundaries as a performance model of sources and systems.
We base our definition on a general queueing model, where
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data arrivals from sources and the service offered by sys-
tems, respectively, are random processes, see Section II-A. In
Section II-B, we characterize the arrival and service processes
by Legendre transforms. This approach enables us to prove
the additivity of CDE-boundaries of sources and systems. This
important result facilitates an analysis of networked sources and
systems as if in isolation. Finally, in Section II-C, we connect
CDE-boundaries to other well-known models: for sources, we
make use of a known link between the notion of statistical
envelopes and effective bandwidths; for systems, we establish a
connection to the effective capacity model.

A. Queueing Model and Envelope Processes

We employ a queueing model that is defined in the frame-
work of the stochastic network calculus, see [10], [13] and for a
broader overview also [15], [45]–[47]. The stochastic network
calculus enables the computation of statistical performance
bounds of the type P[backlog > y] ≤ ε or P[delay > y] ≤ ε,
meaning that the stationary backlog, respectively, delay exceeds
a defined threshold y at most with a small probability ε, e.g.,
ε = 10−6. To this end, it makes use of statistical arrival en-
velopes and statistical service curves that are statistical bound-
ing functions of the arrivals and the service, respectively.

Denote A(t) the cumulative arrivals of a system, i.e., the
cumulative number of bits generated by a source in the time
interval (0, t]. By convention, there are no arrivals for t ≤
0. In the sequel, time t is non-negative and can be either
continuous t ∈ R

+
0 or discrete t ∈ N0. By definition A(t) is a

non-negative and non-decreasing random process that passes
through the origin, i.e., A(t) ∈ F0 where F0 = {f : f(t) ≥
f(τ) ≥ 0, ∀ t ≥ τ ≥ 0, f(0) = 0}. We use shorthand A(τ, t) =
A(t)−A(τ) for t ≥ τ ≥ 0 to describe the cumulative number
of bits in (τ, t]. Similarly, the cumulative departures from a
system are denoted D(t) where D(t) ∈ F0. Besides F0, we
will use F = {f : f(t) ≥ f(τ), ∀ t ≥ τ ≥ 0} that is the set of
non-decreasing functions.

We build our work on a basic queueing model that expresses
the service offered by a system as a random process S(τ, t). It
defines a lower bound for the departures of the type [7]

D(t) ≥ inf
τ∈[0,t]

{A(τ) + S(τ, t)} =: A⊗ S(t) (1)

for all t ≥ 0. The operator ⊗ is referred to as the min-
plus convolution.1 In this work, S(τ, t) is non-negative, non-
increasing in τ , non-decreasing in t, and S(t, t) = 0 for all
t ≥ 0. Examples of (1) are a work-conserving link with a time
varying capacity, where S(τ, t) is the service that is available in
(τ, t] [7]; the service Slo(τ, t) that is left over after scheduling
cross traffic at a channel

Slo(τ, t) = max {0, S(τ, t)−Acr(τ, t)} , (2)

1More commonly known is the min-plus convolution of univariate functions
f(t), g(t) that is defined as f ⊗ g(t) := infτ∈[0,t]{f(τ) + g(t− τ)}. We
use an accordingly extended definition for bivariate functions [7]. Note that
min-plus convolution is commutative in case of univariate functions but not in
case of bivariate functions.

where S(τ, t) is the entire service of the channel and Acr(t)
denotes cross traffic [14]; or the end-to-end service Snet(τ, t)
of a network of N tandem systems2 where

Snet(τ, t) = S1 ⊗ S2 ⊗ · · · ⊗ SN (τ, t) (3)

and Si(τ, t) are the service processes of the individual systems
i ∈ [1, 2, . . . , N ] [7].

Statistical arrival envelopes [10], [13] are used to specify an
upper bound of the arrival process, that may be exceeded at
most with a defined probability εA ∈ [0, 1]. The arrival pro-
cess has an upper envelope EA(t) ∈ F with overflow profile3

σA(εA) ≥ 0 if for all t ≥ 0 it holds that [10], [13]

P [∃τ ∈ [0, t] : A(τ, t) > EA(t− τ) + σA(εA)] ≤ εA. (4)

Note that (4) specifies a guarantee for entire sample paths of
A(τ, t), i.e., all τ ∈ [0, t] are tested.

Similarly, we define statistical service envelopes to specify a
lower bound of the service process with underflow probability
εS ∈ [0, 1]. The service process has lower envelope ES(t) ∈ F
with deficit profile σS(εS) ≥ 0 if for all t ≥ 0 it holds that4

P [∃τ ∈ [0, t] : S(τ, t) < ES(t− τ)− σS(εS)] ≤ εS . (5)

Using the definition of arrival and service envelopes, statisti-
cal performance bounds follow readily. We show that backlog
and delay bounds can be computed as the maximal vertical
and horizontal deviation of EA(t) and ES(t), respectively.
The backlog at time t is defined as B(t) = A(t)−D(t) and
by insertion of (1) B(t) ≤ supτ∈[0,t]{A(τ, t)− S(τ, t)}. By
substitution of the envelopes EA(t− τ) + σA(εA) from (4) as
an upper bound for A(τ, t) and ES(t− τ)− σS(εS) from (5)
as a lower bound for S(τ, t) it follows that

b = sup
t≥0

{EA(t)− ES(t)}+ σA(εA) + σS(εS) (6)

is a statistical backlog bound. Since the envelopes (4) and(5)
may be violated with probability εA and εS , respectively, it
holds that the backlog bound is exceeded at most with prob-
ability P[B(t) > b] ≤ εA + εS for all t ≥ 0. Similarly, under
the assumption of first-come first-serve (fcfs) order, the delay
at time t is defined as W (t) = inf{τ ≥ 0 : A(t)−D(t+ τ) ≤
0}. Using the same basic steps it follows that

d = inf

{
τ ≥ 0 :

sup
t≥0

{EA(t)− ES(t+ τ)}+ σA(εA) + σS(εS) ≤ 0

}
(7)

is a statistical delay bound with probability P[W (t) > d] ≤
εA + εS for all t ≥ 0. We refer to ε = εA + εS as the prob-
ability of error. Since εA and εS are free parameters, we can

2The composition of tandem systems follows immediately by recursive
insertion of (1) and by the associativity of min-plus convolution.

3Compared to [10], [13] that define εA(σA) as a function of σA, we use the
inverse σA(εA). We make this minor change to use εA as a free parameter.

4We note that since S(τ, t) is non-negative, a stronger envelope follows as
P[∃τ ∈ [0, t] : S(τ, t) < max{0, ES(t− τ)− σS(εS)}] ≤ εS , that can be
used at the expense of additional notation.
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fix ε and choose εA and εS that minimize σA(εA) + σS(εS)
to derive a minimal backlog and delay bound from (6) and (7),
respectively.

The definitions of arrival envelope (4) and service envelope
(5) serve as the basis of CDE-boundaries that will be derived in
the next section. We conclude this section with a comparison
to the related work. Instead of the definition of a random
service process S(τ, t) in (1), the literature on the stochastic
network calculus frequently employs a queueing model, where
the service is expressed by a statistical service curve. Statistical
service curves S(t) are defined as deterministic functions [48]
that give a guarantee of the type [10], [13]

P [D(t) < A⊗ S(t)− σS(εS)] ≤ εS (8)

for all t ≥ 0, i.e., statistical service curves provide a lower
bound for the departures that may be violated at most with
probability εS ∈ [0, 1]. Using the definition of statistical service
curve (8) and arrival envelope (4), backlog and delay bounds
follow as their maximal vertical and horizontal deviation, re-
spectively. A connection of statistical service curves to random
service processes is made in [15], [49], where it is observed
that the envelope (5) of a service process (1) also satisfies the
definition of statistical service curve (8). In the sequel, we will
assume the concept of random service processes as a starting
point and derive envelopes thereof. The reason is, that we can
readily specify service processes that satisfy (1) for a number
of basic, work-conserving systems.

B. Definition and Properties of CDE-Boundaries

In this section, we use Legendre transforms to derive a
notion of CDE-boundaries from envelope functions. The model
specifies operating points in the capacity-delay-error space that
are achievable by a source or a system, respectively. We prove
that the model is additive. The additivity is highly useful as
it allows composing results that are obtained for sources and
systems independently.

Definition 1 (CDE-Boundaries): Given an arrival process
A(t). We define its (c, dA, εA)-boundary as delay bound dA
with error probability εA if the arrivals are transmitted by a
constant rate server with capacity c.

Given a service process S(τ, t). We define its (c, dS , εS)-
boundary as delay bound dS with error probability εS if con-
stant rate arrivals with rate c are transmitted by the server.

To derive relevant properties of the model, we will benefit
from the qualities of the Legendre transform of envelope func-
tions. The concave and convex Legendre transforms of EA(t)
and ES(t), respectively, are defined for c ≥ 0 as5

LA(c) := sup
t≥0

{EA(t)− ct} , (9)

LS(c) := sup
t≥0

{ct− ES(t)} . (10)

5The Legendre transform is also referred to as Fenchel conjugate [50].
Strictly speaking, the concave conjugate is defined as inft≥0{ct− f(t)} =
−supt≥0{f(t)− ct}. We slightly adapt the definition for ease of exposition.

The role of Legendre transforms in the min-plus systems theory
of the deterministic network calculus has been elaborated,
e.g., in [51]. Here, we use Legendre transforms to formulate
performance bounds for stochastic arrival processes, service
processes, and their composition, respectively.

First, we consider the arrival process A(t) at a work-
conserving constant rate server with rate c > 0 to derive
the (c, dA, εA)-boundary of the arrivals. The constant rate
server has service process S(τ, t) = c(t− τ) with service en-
velope ES(t) = ct and parameter σS(εS) = 0 for all εS ≥
0. By insertion into (6), a backlog bound follows as bA =
supt≥0{EA(t)− ct}+ σA(εA) with error probability εA.
Since supt≥0{EA(t)− ct} = LA(c) it becomes evident that
the Legendre transform LA(c) has the interpretation of a back-
log bound. Assuming fcfs order, a delay bound follows in the
same way from (7), so that

bA = LA(c) + σA(εA), dA =
LA(c) + σA(εA)

c
(11)

defines a (c, dA, εA)-boundary of the source. Conversely, con-
sidering the service process S(τ, t) with constant rate arrivals
with rate c > 0, a backlog bound and a delay bound with error
probability εS , respectively, are

bS = LS(c) + σS(εS), dS =
LS(c) + σS(εS)

c
. (12)

The bounds (11) and (12) are a dual model of arrival en-
velopes (4) and service envelopes (5), respectively. The duality
is due to the fact that for concave, respectively, convex functions
the Legendre transform is its own inverse such that (11) and
(12) uniquely determine concave arrival envelopes and convex
service envelopes, respectively. While (11) and (12) consider
stochastic sources and systems in isolation, we provide a fun-
damental result for their composition in the following theorem.

Theorem 1 (Additivity): Given an arrival process A(t) at a
system with service process S(τ, t). A backlog bound and,
assuming fcfs order, a delay bound are

b = bA + bS , d = dA + dS ,

where bA, dA and bS , dS are given by (11) and (12), respec-
tively. The error probability of b and d is ε = εA + εS and c > 0
is a free parameter.

If EA(t) is concave and ES(t) convex, the minimal
backlog bound b = infc>0{bA + bS} and the minimal delay
bound d = infc>0{dA + dS} are identical to (6) and (7),
respectively.

The proof is provided in Appendix A. We highlight that the
performance bounds from Thm. 1 consist of two independent
terms that are due to the variability of the source and of the
system, respectively. As an important consequence, sources and
systems can be analyzed as if in isolation and can be composed
afterwards by addition of their individual backlog and delay
bounds. Hence, with Thm. 1 we obtain a composable model of
sources and systems that are each characterized by their CDE-
boundaries (c, dA, εA) and (c, dS , εS). Generally, the bounds
from Thm. 1 are conservative. Further, for the prevalent case
of concave and convex envelope functions, the second part of
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Thm. 1 proves that the bounds are as tight as corresponding
bounds from the stochastic network calculus, i.e., (6) and (7).

While in this subsection, the overflow profile σA is a gen-
eral function of εA, we will next provide a method for con-
struction of CDE-boundaries for the class of exponentially
bounded arrival processes, where εA = e−θσA , respectively,
σA = −ln εA/θ for any θ > 0 and εA ∈ (0, 1]. For service
processes a corresponding deficit profile is derived.

C. Construction of CDE-Boundaries

In this section, we show how to construct CDE-boundaries
from the well-known effective bandwidth model of traffic
sources [6], [7] and the effective capacity model of transmission
systems [28], respectively. Other methods for construction of
CDE-boundaries may be developed, e.g., using service en-
velopes (5) that are estimated from measurements [49].

The effective bandwidth and the effective capacity are ba-
sically moment generating functions (MGFs), respectively,
Laplace transforms. Despite their similarity, the two models
are essentially researched independently, i.e., a significant body
of literature focuses either on deriving the effective bandwidth
of sources, e.g., Markovian, On-Off, and fractional Brownian
motion, or the effective capacity of wireless systems, e.g.,
fading channels. The composition of statistically independent
sources and systems that are characterized by MGFs has mainly
been considered in the stochastic network calculus, see e.g., [7],
[14], [33], [52]. Compared to these works, Thm.1 contributes a
much simpler rule for composition that creates a strong con-
nection between the effective bandwidth traffic model and the
effective capacity channel model without requiring statistical
independence.

We use a discrete time6 model t ∈ N0 and assume stationary
arrivals, i.e., P[A(τ, τ + t) > y] = P[A(t) > y] for any y and
all τ, t ≥ 0. The MGF of the arrivals A(t) is defined as

MA(θ, t) = E
[
eθA(t)

]
, (13)

where θ is a free parameter. For θ < 0, (13) is also referred
to as Laplace transform. MGFs are a convenient model of
traffic multiplexing since the MGF of the sum of independent
random processes A(t) = A1(t) +A2(t) follows immediately
as MA(θ, t) = MA1

(θ, t)MA2
(θ, t).

The effective bandwidth of a source is defined for θ > 0 and
t > 0 as the normalized log MGF [6], [7]

αA(θ, t) =
1

θt
lnMA(θ, t). (14)

The effective bandwidth increases in θ from the mean rate
of the arrivals in an interval of length t to their peak rate.
The parameter θ is also referred to as the quality of service
exponent since the effective bandwidth provides an estimate of
the capacity requirements of the source with respect to quality
of service constraints. For notational convenience, we define
αA(θ, t) for t = 0 to be a finite constant, so that tαA(θ, t) =
lnMA(θ, t)/θ = 0 for t = 0.

6In continuous time an additional discretization step is required, see [13].

The notion of effective capacity is conceived in [28] as a
dual model of the effective bandwidth. Assuming a stationary
service process S(τ, t) with Laplace transform MS(−θ, t−τ),
the effective capacity is defined as αS(−θ, t)=1/(−θt) lnMS

(−θ, t) for θ>0 and t>0. The effective capacity decreases
with increasing θ from the mean service rate to the minimum
service rate. It can be interpreted as the maximal data rate a sys-
tem can support with respect to the quality of service exponent.
Again, we define αS(−θ, t) for t=0 to be a finite constant.

While MGFs of arrival processes are a convenient model
for statistical multiplexing, Laplace transforms of service pro-
cesses have been effectively used in the network calculus
to analyze tandem systems with cross-traffic. The end-to-end
service process Snet(τ, t) of a tandem of N systems each with
service process Si(τ, t) for i ∈ [1, 2, . . . , N ] is given by min-
plus convolution (3). Assuming statistically independent ser-
vice processes, a bound7 for the Laplace transform of Snet(τ, t)
for θ ≥ 0 and t ≥ 0 is [14]

MSnet
(−θ, t) ≤ MS1

∗MS2
∗ · · · ∗MSN

(−θ, t), (15)

where ∗ denotes the convolution in the conventional algebra.8

The individual systems can, e.g., be described by left over
service processes Si,lo according to (2) where MSi,lo

(−θ, t) ≤
min{1,MSi

(−θ, t)MAi,cr
(θ, t)} [14].

Statistical bounds or envelopes can be derived from the ef-
fective bandwidth, respectively, the MGF of the arrivals by use
of Chernoff’s bound. Examples are the exponentially bounded
burstiness model [53] as well as effective envelopes [12].
Dual to the exponentially bounded burstiness traffic model, a
service model referred to as exponentially bounded fluctuation
is developed in [54]. The tightness of these envelopes depends
on Chernoff’s bound and on the union bound, that is used to
evaluate sample paths as defined, e.g., in (4). For a comparison
with simulation results see [33] and [55].

Using the connection of CDE-boundaries with envelope
functions established in Section II-B, the following theorem
derives CDE-boundaries for sources and systems from the
effective bandwidth and the effective capacity, respectively.

Theorem 2 (CDE-Boundaries of Sources and Systems):
Given a stationary arrival process A(τ, t) with effective band-
width αA(θ, t). A delay bound dA from (11) is

dA =
supt≥0 {(αA(θ, t) + ρ− c) t}

c
− ln(θρεA)

θc
,

where εA ∈ (0, 1] is the error probability, c > 0 is the service
rate, and θ > 0 and ρ ∈ (0, 1/(θεA)] are free parameters.

Given a system that satisfies (1) with stationary service
process S(τ, t) and effective capacity αS(−θ, t). A delay bound
dS from (12) is

dS =
supt≥0 {(c+ ρ− αS(−θ, t)) t}

c
− ln(θρεS)

θc
,

7We note that the Laplace transform reverses the order of inequalities such
that the upper bound in (15) corresponds to a lower bound of the end-to-end
service process. By definition of service processes (1) a lower bound of a
service process is also a valid service process.

8The conventional convolution is defined for discrete time processes as f ∗
g(t) =

∑t

τ=0
f(τ)g(t− τ).



FIDLER et al.: CAPACITY–DELAY–ERROR BOUNDARIES: A COMPOSABLE MODEL OF SOURCES AND SYSTEMS 1285

Fig. 1. Joint information- and queueing-theoretic model. A source generates
symbols that are encoded and stored in a source buffer, denoted arrivals A(t).
A system comprising of an ARQ protocol and a channel coder transmits the
arrivals over an error-prone channel. The transmission system including the
channel is characterized by a service process S(τ, t). The departures of
the system D(t) are decoded, de-jittered in a buffer, and delivered to the sink.

where εS ∈ (0, 1] is the error probability, c > 0 is the arrival
rate, and θ > 0 and ρ ∈ (0, 1/(θεS)] are free parameters.

The proof is provided in Appendix B. Corresponding backlog
bounds follow directly as bA = cdA and bS = cdS . Thm. 2
specifies families of functions dA and dS each with free pa-
rameters θ and ρ. Since any of these functions provides an
upper delay bound, a minimal delay bound can be derived
by optimization of θ and ρ. Finally, Thm. 1 states that d =
dA + dS is a delay bound for the composition of the source
and the system for all c > 0. We note that due to the properties
of the (min,+)-algebra, the minimization of d does not depend
on the order of optimizing the free parameters.

III. SOURCES AND SOURCE CODING

In this section, we employ CDE-boundaries to investigate
the performance of networked sources. An example is shown
in Fig. 1, where a source generates symbols that are encoded
and transmitted by a system that offers a random service, e.g.,
due to a fading channel. Our aim is to combine information-
and queueing-theoretic aspects to identify achievable operat-
ing points within the capacity-delay-error-space. For example,
given the arrival process of the source and the service process
of the system, we seek to answer the question can source and/or
channel coding achieve a target delay bound d with probability
of error ε? The result enables, e.g., the choice of suitable codes
or the dimensioning of the playout delay and the de-jitter buffer
at the receiver. Due to the additivity established by Thm. 1, we
can analyze sources (Section III) and systems (Section IV) as
if in isolation and compose the results afterwards (Section V).
This separation enables us to consider the gains of source
coding and channel coding independently.

After specifying the necessary notation, we investigate CDE-
boundaries of different types of sources and source coders.
Consider a random variable X that can take any of the values
xi, i ∈ N0 with probability pi. We also refer to xi as the

symbols and X = {x0, x1, . . .} as the alphabet of the source and
denote |X| its cardinality. Information theory defines that if the
event X = xi occurs, it provides information I(xi) = −ld pi
bit, where ld is the logarithm dualis (base 2). The expected
information of a source becomes HX := −

∑
i pild pi that is

defined as the entropy of X .
Shannon established the entropy of a source as a fundamental

limit for lossless data compression. To this end, a code ex-
pressed as a function l maps symbols xi to unique codewords
of length li. The compression gain is due to assigning short
codewords to frequent symbols. If no codeword is a prefix of
any other codeword, the code is referred to as a prefix-free
code, where each codeword can be decoded on its own [3].
For an optimal code the expected codeword length l =

∑
i pili

is bounded in an interval of one bit width by the entropy as
HX ≤ l < HX + 1 [3]. Without loss of generality, we restrict
our investigation to binary codes.

We label successive symbols generated by a discrete source
by n ∈ N to obtain the random process X(n). By encoding
X(n) it follows that L(n) = l(X(n)) is a random process of
codeword lengths. As L(n) specifies increments, we obtain the
cumulative arrival process as A(n) =

∑n
ν=1 L(ν) for n ≥ 1.

We let A(0) = 0 by definition.
In the following, we explore the non-equilibrium behav-

ior of encoded sources. We provide analytical solutions for
memoryless sources and Huffman coding. We also consider
Markov sources, which we parameterize using empirical data
from video compression. Further results for a variety of other
coders can also be found in the technical report [27].

A. Memoryless Sources

We start our investigation, with the basic memoryless source,
where the X(n) for n ∈ N are independent and identically
distributed (iid). We use function l to assign a codeword li to
each symbol xi. By definition, the increment process L(n) =
l(X(n)) has categorical distribution with MGF

ML(θ) =
∑
i

pie
θli . (16)

For the cumulative arrival process A(n) =
∑n

ν=1 L(ν) it fol-
lows that MA(θ, n) = (ML(θ))

n is multinomial. Assuming a
source that emits symbols at a constant rate of one symbol per
time-slot we substitute n = t. We will show how to relax this
assumption later. From (14) we obtain the effective bandwidth

αA(θ) =
1

θ
ln

(∑
i

pie
θli

)
(17)

for θ > 0. Due to the memorylessness of the source, the effec-
tive bandwidth does not depend on t. By insertion of (17) into
Thm. 2, we derive a delay bound dA. Since αA(θ) is indepen-
dent of t, the condition c > αA(θ) is sufficient to compute a
finite bound. We choose the free parameter ρ ∈ (0, 1/(θεA)] as
ρ = c− αA(θ), where c > αA(θ) for stability. It follows that

dA =
−ln (θ (c− αA(θ)) εA)

θc
(18)
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for any θ > 0 that satisfies θ ≤ 1/((c− αA(θ))εA). In the
limit θ → 0, the effective bandwidth approaches the average
codeword length, i.e., αA(θ) → l. Hence, if arbitrarily large
delays are permitted, (18) recovers that a capacity of l bits per
time-slot is sufficient.

1) Entropy Coding: Source coding can achieve a compres-
sion gain by using codewords of nonuniform lengths, where
short codewords are assigned to frequent symbols. Here, we
use Huffman coding to assign codewords to symbols. Results
for other codes such as Shannon or Lempel-Ziv coding are
provided in the technical report [27]. For completeness, we
briefly recapitulate the Huffman algorithm. To construct a
Huffman code [3], execute the following steps repeatedly until
all symbols have been processed:

• sort the symbols of the alphabet in decreasing order of
probability,

• substitute the two least probable symbols by a new com-
pound symbol; assign the sum of the two probabilities; and
add one bit to the respective codewords to distinguish the
two individual symbols.

The Huffman prefix code achieves the minimal expected
codeword length, hence HX ≤ l < HX + 1. Regarding the in-
dividual codeword lengths li, however, no such simple upper
bound exists. In fact, it is shown in [56] that individual code-
words of a Huffman code can become as large as approximately
1.45 times the information of the corresponding symbol, i.e.,
li < −1.45ld pi. As a consequence, the length of actual code-
words generated by a Huffman coder for a sequence of symbols
may be significantly larger than the entropy.

For an analytical investigation, assume a source with an
infinite alphabet with geometrically distributed symbols pi =
p(1− p)i for i ∈ N0. The entropy can be derived by use of the
geometric sum as

HX = −p ld p+ (1− p)ld(1− p)

p
.

We let p = 1/2 to obtain a dyadic source where I(xi) =
−ld pi = i+ 1 is integer. The entropy becomes HX = 2. The
corresponding Huffman code uses codewords of lengths li =
i+ 1. Consequently, the average codeword length is l = 2 and
the code achieves the entropy. The effective bandwidth follows
from (17) after some algebra where θ ∈ (0, ln 2) as

αA(θ) = −1

θ
ln(2e−θ − 1). (19)

In Fig. 2, we show the (c, dA, εA)-boundary obtained for
the Huffman coded source by insertion of (19) into (18). We
optimized the parameter θ numerically to obtain the smallest
delay bound. The surface plot depicts the capacity that achieves
a delay bound subject to a defined probability of error. The
delays are due to the randomness that is introduced by variable
codeword lengths. For c > HX finite delay bounds can be
computed, whereas the delay grows unbounded for c → HX .
Also, Fig. 2 shows the logarithmic growth of dA for decaying
εA that is characteristic of the approach.

2) Variable Symbol Rate: So far, we assumed that sources
generate symbols at a constant rate. Next, we show how sources

Fig. 2. (c, dA, εA)-boundary of a Huffman coded dyadic source with entropy
HX = 2. The delay grows unbounded if the capacity approaches the expected
codeword length l = 2.

with a variable symbol rate can be modeled using conditional
MGFs. We provide a solution for the Poisson process. Given
a memoryless source and denote ML(θ) the MGF of the in-
crements (16). The conditional MGF of n increments becomes
MA(θ, n) = (ML(θ))

n. Here, the count of increments N(t) ∈
N0 in the interval (0, t] is a random process with probability
mass function pN (n, t). The effective bandwidth of the arrival
process A(t) follows by unconditioning as

αA(θ, t) =
1

θt
ln

(∑
n

(ML(θ))
n pN (n, t)

)
(20)

for θ > 0 and t > 0. A Poisson process with mean rate λ
has probability mass function pN (n, t) = e−λt(λt)n/n!. By
insertion into (20) we derive

αA(θ) =
λ

θ
(ML(θ)− 1)

for θ > 0, where we used that
∑∞

n=0 a
n/n! = ea.

Fig. 3(a) shows the (c, dA, εA)-boundary from (18) for a
Huffman coded Poisson source. The remaining parameters are
as in Fig. 2, i.e., the generation of symbols is memoryless
and obeys the dyadic distribution. For illustration, we fix εA =
10−6. For comparison, we show results for a Huffman coded
source with constant symbol rate, as in Fig. 2, and a Poisson
source with constant word size of 2 bit. The average symbol rate
of all sources is λ = 1. Consequently, for all cases finite delay
bounds exist if c > HX = 2. The double randomness of the
Huffman coded Poisson source causes, however, a considerable
increase of the delays.

3) Length Limited Codewords: While source coding can
achieve a significant compression gain, unfavorable sequences
of symbols that are mapped to large codewords can cause no-
ticeable transmission delays, as shown in Fig. 2. The Huffman
algorithm can be modified to comply with a given maximum
codeword length at the expense of an increase of the average
codeword length. We use the corresponding encoding algorithm
from [57].
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Fig. 3. (a) Huffman coded Poisson source compared to a Huffman coded
constant rate source and a Poisson source with constant word size of 2 bit.
(b) Length-limited Huffman codes compared to unlimited codeword lengths.

Fig. 4. (a) Example two-state Markov chain. (b) Extended Markov model
where the information generated by symbol xj given the previous symbol was
xi is uniquely determined by the state xj |xi itself.

To show the effects of length limited codewords, we con-
strain the dyadic source from Fig. 2 to 256 symbols. We
truncate and re-normalize the geometric symbol distribution
accordingly. The entropy of the source remains virtually un-
changed, i.e., 2 bit. In Fig. 3(b) we compare the unlimited
Huffman code that uses codewords of up to 255 bit to the
limited code with a length limit of 11 bit and 9 bit, respectively.
The average codeword lengths are 2 bit, 2.24 bit, and 2.96 bit,
respectively. The (c, dA, εA)-boundaries make a fundamental
tradeoff evident: due to its higher compression gain, the unlim-
ited code outperforms the length limited codes if the capacity is
close to the entropy; otherwise, the more balanced codewords
of the length limited codes achieve smaller delay bounds.

B. Markov Sources

In this section, we consider the encoding of discrete, sta-
tionary Markov sources, i.e., random processes X(n) with first
order dependence where the symbol xj that occurs in step n
depends only on the previous symbol xi in step n− 1. The
symbol xi determines the state of the Markov chain that can
take any of the values i = 1, 2, . . . , |X|. An example of a two
state Markov chain is shown in Fig. 4(a). We denote pi the
stationary state distribution of the chain and qij the transition
probabilities from state i to state j. Define P to be the row
vector (p1, p2, . . .) and Q to be the state transition matrix. The
stationary state distribution is the solution of P = PQ under
the normalization condition P1 = 1 where 1 is a column vector
of ones. We let n = t assuming a source that emits symbols at
a constant rate of one symbol per time-slot.

1) Direct Coding: First, we consider a coder that maps
individual symbols xi to codewords of length li. Let L(θ) be
the diagonal matrix L(θ) = diag(eθl1 , eθl2 , . . .). The effective

Fig. 5. (a) The HuffYUV prediction error approximates a two-sided geomet-
ric distribution. (b) HuffYUV encoded source with memoryless compared to
Markovian prediction error. The memoryless model underestimates delays.

bandwidth of the coded Markov source results from [7] for
θ > 0 and t > 0 as

αA(θ, t) =
1

θt
ln

(
P (L(θ)Q)t−1 L(θ)1

)
. (21)

To compute the delay bound from Thm. 2 we choose the free
parameter ρ ∈ (0, 1/(θεA)] as ρ = c− supt>0{αA(θ, t)}. It
follows that

dA =
−ln (θ (c− supt>0 {αA(θ, t)}) εA)

θc
(22)

for any θ>0 that satisfies θ≤1/((c− supt>0{αA(θ, t)})εA).
We show numerical results for lossless video coding. A com-

mon technique in lossless image and video compression is to
exploit the correlation of neighboring pixels by prediction. The
prediction error, i.e., the difference between adjacent pixels,
typically follows a two-sided geometric distribution. Hence,
it can be efficiently compressed using entropy coding. The
method is implemented, e.g., in the HuffYUV ffmpeg coder,
which we use for compression of the Big Buck Bunny cartoon.
The video comprises 14315 frames in PNG format with a
resolution of 640 × 360 pixels each. We consider the prediction
error of the 8 bit luminance component. Fig. 5(a) depicts the
probability mass function of the prediction error. It has an
entropy of HX = 4.29 bit. The average codeword length of the
Huffman code is l = 4.32 bit.

Frequently, statistical independence of the prediction error
is assumed. Using the memoryless model from (17), Fig. 5(b)
depicts the corresponding (c, dA, εA)-boundary after compres-
sion of the video by Huffman coding. The empirical data for
the given video sequence shows, however, considerable first-
order dependencies. Measuring the empirical dependence of
the prediction error, we parameterize a Markov model and
compute the (c, dA, εA)-boundary from (22). Fig. 5(b) shows
that both models have the same limiting behavior, i.e., the
delay bounds grow unboundedly if the capacity approaches the
average codeword length. Compared to small delays that apply
for the memoryless model, significantly larger delays can be
noticed if the dependencies are considered.

2) State-Dependent Coding: As the memory of a Markov
source helps predicting the next symbol, its conditional entropy
H(X(n)|X(n− 1)) = −

∑
i

∑
j piqij ld qij [3] can be signif-

icantly smaller than its entropy HX = −
∑

i pild pi. Conse-
quently, a code that encodes individual symbols is limited by
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HX , whereas codes that take advantage of the memory of the
source can achieve a compression down to H(X(n)|X(n− 1)).
For a first order dependent source, it is sufficient to consider
only the previous symbol, i.e., the state of the Markov chain.
One option are individual codes for each of the states, i.e., the
last symbol determines the code that is used to encode the next
symbol. Alternatively, a coder can encode groups of symbols
instead of single symbols to exploit the memory, see [1] and the
technical report [27].

We propose a model for state-dependent codes, where we
extend the state space of the Markov chain from |X| to |X|2.
We label the states xj |xi meaning that symbol xj occurs in the
current time-slot after symbol xi occurred in the previous time-
slot. We denote lj|i the length of the codeword that applies for
state xj |xi, i.e., the codeword that is used to encode symbol xj

given the previous symbol was xi. The transition probabilities
from state xj |xi to state xk|xj are qjk for any i, j, k and zero
otherwise. Fig. 4(b) shows the accordingly extended Markov
model for the example from Fig. 4(a). As before, the effective
bandwidth can be computed from (21) and the (c, dA, εA)-
boundary from (22). For the Big Buck Bunny cartoon as used
in Fig. 5(b), the conditional entropy of the prediction error
is H(X(n)|X(n− 1)) = 3.80 bit, compared to its entropy of
HX = 4.29 bit. Hence, the use of state-dependent codes can
achieve a higher compression gain that causes a shift of the limit
of the CDE-boundary depicted in Fig. 5(b) to the left.

We conclude this section with some remarks on further
applications. While we focused on delays, backlogs can be
analyzed in the same way, where εA can be interpreted as the
probability of buffer overflow if buffer space is limited [7]. We
note that the envelopes from Lem. 2 can also be used for traffic
policing at the source, where excess traffic, that occurs with
probability εA, can be discarded pro-actively to prevent that
backlog and delay bounds are violated in the network.

IV. TRANSMISSION SYSTEMS

In this section, we investigate basic transmission systems.
We examine Rayleigh fading, hybrid ARQ, and Gilbert-Elliott
channels and derive respective CDE-boundaries. Firstly, we
are concerned with systems in isolation. The composition of
sources and systems is covered in Section V.

A. Rayleigh Fading

We consider the transmission of data via a fading channel. To
begin with, we omit the ARQ protocol that is depicted in Fig. 1.
Instead, we assume that the transmitter has perfect channel
state information. It adapts the encoding accordingly such that
data can generally be decoded at the receiver. We adopt the
basic approach taken, e.g., in [36] and estimate the transmission
rate from Shannon’s capacity C = δf ld(1 + γ), where δf is
the bandwidth of the channel and γ is the signal-to-noise ratio
(SNR). The SNR γ(t) is governed by a random fading process
with discrete time index t and time-slot duration δt. With β =
δfδt/ ln 2 the number of bits served in the t-th time-slot is

Y (t) = β ln (1 + γ(t)) . (23)

Fig. 6. (c, dS , εS)-boundaries of Rayleigh fading channels with diffe-
rent SNR.

In case of Rayleigh fading γ is exponentially distributed with
density f(γ) = λe−γλ and mean 1/λ. After some algebra the
Laplace transform of the increment process Y (t) follows as
MY (−θ) = eλλθβΓ(−θβ + 1, λ), where we used the incom-
plete Gamma function Γ(a, λ) =

∫ ∞
λ za−1e−zdz. The service

process is computed as S(τ, t) =
∑t

ϑ=τ+1 Y (ϑ) for t > τ ≥
0. Under the assumption that fading samples are iid, that is
justified if the time-slot duration is sufficiently large compared
to the channel coherence time [36], the effective capacity of the
service process is αS(−θ) = − lnMY (−θ)/θ and by insertion

αS(−θ) = −1

θ
ln

(
eλλθβΓ(−θβ + 1, λ)

)
for θ > 0. Based on the effective capacity, the (c, dS , εS)-
boundary of the fading channel is provided by Thm. 2. We
choose the free parameter ρ ∈ (0, 1/(θεS)] as ρ = αS(−θ)−
c, where αS(−θ) > c for stability to obtain

dS =
−ln (θ (αS(−θ)− c) εS)

θc
(24)

for any θ > 0 that satisfies θ ≤ 1/((αS(−θ)− c)εS).
We provide numerical results for parameter β = 1, i.e., the

capacity is normalized and given in nats/Hz/s. The mean SNR
is 10 log10(1/λ) = {5, 6, . . . , 10} dB and the corresponding
expected service per time-slot is determined by the Shannon
capacity (23) as E[Y (t)] = {1.19, 1.34, 1.50, 1.66, 1.83, 2.01}.
We show the delay bound dS from (24) that applies for constant
rate arrivals with rate c. We let ε = 10−6 and optimize param-
eter θ numerically. Fig. 6 reveals the influence of the SNR on
the delay. Clearly, if the arrival rate approaches the expected
service, delays grow unboundedly. The effect is due to the
variability of the channel. The capacity limit is determined by
the SNR. For moderate utilizations small delays prevail where
a higher SNR generally leads to smaller delays.

B. Hybrid ARQ

In this section, we avoid the previous assumption of perfect
channel state information and consider the hybrid ARQ trans-
mission system depicted in Fig. 1. Blocks of l data symbols
are encoded using an error correcting code. The resulting k >
l code symbols are transmitted over an error-prone channel,
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where the receiver has no a priori knowledge whether a symbol
is received correctly or not. The code has a symbol error cor-
recting capability of s, i.e., the receiver can correctly decode all
blocks that have up to s symbol errors. The ARQ protocol uses
a frame check sequence to detect remaining errors. If no error
is detected, the block is acknowledged and the sender proceeds
with the next block. Otherwise, the sender immediately retrans-
mits the current block. The transmission time of a block is one
time-slot. An implementation of this policy is stop-and-wait
ARQ as used, e.g., in IEEE 802.11 WiFi networks. For simplic-
ity, we assume that acknowledgements are not delayed nor lost.
Models of different ARQ schemes are also provided in [41].

Given symbol errors occur independently with probability p.
The block error probability after decoding is computed as

P =
k∑

i=s+1

(
k

i

)
pi(1− p)k−i, (25)

i.e., a block cannot be reliably decoded if it contains more
than s symbol errors. The transmission of each block is an iid
Bernoulli trial, i.e., during a time-slot no data is delivered with
probability P and ml bits are delivered with probability 1− P ,
where we assume m-bit symbols. We denote Y (t) the amount
of service that is available in the t-th time-slot. The Laplace
transform becomes MY (−θ) = P + (1− P )e−θml. Since the
increments Y (t) are independent, the service process S(τ, t)
has effective capacity αS(−θ) = −lnMY (−θ)/θ for θ > 0. By
insertion of MY (−θ) we obtain for θ > 0 that

αS(−θ) = −1

θ
ln

(
P + (1− P )e−θml

)
.

Based on the effective capacity, the (c, dS , εS)-boundary of the
hybrid ARQ system follows from (24).

For an implementation, we consider conventional Reed-
Solomon codes. Reed-Solomon (k, l) codes with k = 2m − 1
code symbols and l = 2m − 1− 2s data symbols are available
for any m > 1 [58]. We use the code family for m = 6, i.e.,
blocks comprise of k = 63 coded symbols generated from l =
k − 2s data symbols. The code family enables us to examine
how the symbol error correcting capability s impacts the delay
performance. Parameter s has two counteracting effects on the
capacity of the hybrid ARQ system: increasing s helps avoiding
retransmissions since more errors can be corrected. On the
other hand, it increases the overhead as the number of data
symbols per block l is reduced. For evaluation we compute the
(c, dS , εS)-boundary of the system from (24) for εS = 10−6.
We optimize the free parameter θ numerically. The symbol error
probability is p = 0.01.

The results are depicted in Fig. 7. With increasing s the ca-
pacity of the system first grows, i.e., the curves are shifted to the
right. In this region the additional errors that can be corrected
by a stronger code outweigh its overhead. Then, starting with
s = 3 the capacity shrinks, as the increasing overhead prevails.
Consequently, there exists an optimal s with respect to the
capacity. Regarding delays, increasing s is mostly beneficial,
i.e., the curves are shifted downwards. The effect is due to the
fact that a stronger error correcting code requires fewer time-
consuming retransmissions.

Fig. 7. (c, dS , εS)-boundaries of hybrid ARQ using Reed-Solomon codes.
The results show the impact of the error correcting capability s.

C. Gilbert-Elliott Channel

Next, we relax the assumption of a memoryless channel
and consider the impact of first-order dependencies on the
performance of hybrid ARQ. We use the Gilbert-Elliott model
to characterize the channel by a finite-state Markov chain. In
each of the states i the transmission rate is given as ri. As in
Section III-B denote P the stationary state distribution, Q the
transition matrix, and R(−θ) = diag(e−θr1 , e−θr2 , . . .). The
effective capacity for θ > 0 and t > 0 is

αS(−θ, t) = − 1

θt
ln

(
P (R(−θ)Q)t−1 R(−θ)1

)
.

To compute the delay bound from Thm. 2, we choose the free
parameter ρ ∈ (0, 1/(θεS)] as ρ = inft>0{αS(−θ, t)} − c and
it follows that

dS =
−ln (θ (inft>0 {αS(−θ, t)} − c) εS)

θc
(26)

for any θ>0 that satisfies θ≤1/((inft>0{αS(−θ, t)} − c)εS).
As a model of the hybrid ARQ system from Section IV-B,

we obtain a two-state Markov chain with states On (state 1) and
Off (state 2). In On state, data can be decoded correctly so that
r1 = ml bits are transmitted per time-slot, whereas in Off state,
data cannot be decoded correctly so that r2 = 0. The stationary
state probabilities are p1 = 1− P and p2 = P , where P is
determined by the error correcting capability s of the code
(25). The remaining free parameter of the two-state Markov
model can be used to adjust the mean state holding times. We
fix the mean time to change state twice 1/q12 + 1/q21 = aT .
We use T = 1/p1 + 1/p2 so that parameter a = 1 corresponds
to the memoryless case from Section IV-B, whereas memory
increases with increasing a > 1.

In Fig. 8, we depict the impact of the memory for Reed-
Solomon codes with symbol error correcting capabilities of
s = 1 and s = 5, respectively. The remaining parameters of
the code are as in Section IV-B. We optimized parameter θ
numerically. Generally, Fig. 8 shows that the delay bounds
become larger in case of memory. The effect is due to longer
Off periods. While both codes achieve approximately the same
maximum throughput, it is interesting to note that codes with a
higher error correction capability achieve smaller delay bounds
due to less pronounced Off periods.
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Fig. 8. Gilbert-Elliott channels with different state holding times aT . The
error correcting capability of the code is s = 1 (a) and s = 5 (b).

We note that a variety of different systems that have been
characterized by Markov chains can be included into the CDE-
model in the same way. These include among others correlated
fading [33], [35], [59], opportunistic scheduling [33], cognitive
radio [29], MIMO [35], and Chase combining [2].

V. COMPOSITION RESULTS

In this section, we consider networks of systems. We present
an approach for concatenation of tandem systems, where the
service process of each system is characterized by its Laplace
transform. Hence, the approach includes the systems from
Section IV as well as the set of systems with known effective
capacity from the literature. We provide a specific solution for
the case of iid service increments as assumed, e.g., for the
Rayleigh fading channel in Section IV-A. The result is a CDE-
boundary for an entire network. Finally, we take advantage of
the additivity of CDE-boundaries to compose a source and a
(tandem) system. Using Thm. 2, the method generally applies
to sources and systems with known effective bandwidth, respec-
tively, effective capacity, including the sources from Section III
and systems from Section IV. We note that CDE-boundaries of,
e.g., more complex network topologies, systems with feedback
flow control, joint source-channel coding, or scalers [39], [40]
have not been investigated, yet.

A. Networks of Systems

We consider a network of i = 1 . . . N systems in series. The
network calculus features a characterization of the network by
a single service process that is computed by (3) as the min-
plus convolution of the service processes of the individual sys-
tems. Given statistically independent systems, a bound for the
Laplace transform of the network service process MSnet

(−θ, t)
is provided by (15) as

MSnet
(−θ, t) ≤ MS1

∗MS2
∗ · · · ∗MSN

(−θ, t)

=
∑

τi≥0:
∑N

i=1
τi=t

MS1
(−θ, τ1)MS2

(−θ, τ2) · · ·MSN
(−θ, τN ).

(27)

A lower bound of the effective capacity of the network follows
from αSnet

(−θ, t) = −lnMSnet
(−θ, t)/(θt) for θ > 0 and t >

0 by insertion of (27).

Fig. 9. (c, dS , εS)-boundary of a tandem of N Rayleigh fading channels.

In the following, we include a solution for homogeneous
channels with iid service increments9 Yi(t) as analyzed in [36],
i.e., MSi

(−θ, t) = (MYi
(−θ))t. Consequently, (27) comprises(

t+N−1
N−1

)
identical summands (MYi

(−θ))t [36], [60]. A lower
bound of the effective capacity of the network follows for θ > 0
and t > 0 as

αSnet
(−θ, t) ≥ αSi

(−θ)− 1

θt
ln

(
t+N − 1

N − 1

)
, (28)

where we substituted αSi
(−θ) = −ln(MYi

(−θ))t/(θt). By in-
sertion of (28), Thm. 2 gives the (c, dS , εS)-boundary of the
network.

In addition to numerical results from Thm. 2, we provide an
analytical solution to analyze the growth of delays in networks
in Appendix C. The analytical solution recovers the finding
from [14] that performance bounds for N independent systems
in series are in O(N) and hence proves that the CDE-boundary
of the network grows additively with N .

Fig. 9 shows (c, dS , εS)-boundaries for a tandem of N =
1, 6, 11, 16, 21 Rayleigh fading channels as in Section IV-A.
The mean SNR is 10 dB and ε = 10−6. We optimized param-
eters θ and ρ numerically. The numerical results confirm the
linear growth of dS with N .

B. Composition of Sources and Systems

In this section, we show how our model facilitates the con-
venient composition of sources and systems. Key to the com-
position is the additivity of CDE-boundaries that is established
by Thm. 1.

We consider an MPEG video source that is transmitted via
a Rayleigh fading channel. The video is the Big Buck Bunny
cartoon from Section III-B that is encoded using the ffmpeg
coder. We use different quantization parameters (qp) to obtain a
set of encoded streams to enable source rate adaptation. Corre-
sponding PSNR values are given in Table I as a quality measure.
For the encoded video streams we apply the method from
[38] to compute empirical envelopes. The (c, dA, εA)-boundary
follows by insertion of the envelope into (9) and subsequently

9Heterogeneous channels and non-iid service increments can be analyzed
using the same basic steps and linear envelopes of the type MSi

(−θ, t) ≤
e−θ(ςi+�it) [47]. Also, we omit results on scheduling cross-traffic.
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TABLE I
MEAN PSNR OF THE VIDEO FOR DIFFERENT

QUANTIZATION PARAMETERS

(11). Since the model from [38] is deterministic, parameter
σA(εA)=0 for all εA∈ [0, 1]. The transmission system is a
Rayleigh fading channel as in Section IV-A, where we fix the
bandwidth δf =4 MHz, the duration of a time-slot δt=1 ms,
and εS=10−6. While we perform the analysis for a single chan-
nel, we note that it applies to tandem channels in the same way.

Fig. 10(a) shows the (c, dA, εA)-boundary of the video
source and the (c, dS , εS)-boundary of the Rayleigh fading
channel for different video qp and channel SNR, respectively. A
delay bound for the composition of the source and the system
is computed from Thm.1 by addition of the individual CDE-
boundaries for any c > 0. The minimal delay bound that is
obtained by choice of the optimal c is depicted in Fig. 10(b).

In Fig. 10(c) we show the delay bound of the composition
for different qp as a function of the SNR. Given the qp of
the source and the SNR of the channel, Fig. 10(c) provides a
method to determine the playout delay such that video frames
arrive late for reproduction at the receiver at most with prob-
ability ε = 10−6. In Fig. 10(d), we show combinations of qp
and SNR that ensure a playout delay of 0.1, 0.15, 0.2, 0.25,
and 0.3 ms, respectively, with error probability ε = 10−6. All
operating points in the upper right of the curves are feasible.
Given a target playout delay, Fig. 10(d) enables adaptive video
applications that adjust the qp of the video to the SNR of the
channel such that the playout is ensured with probability 1− ε.

VI. CONCLUSION

We devised a notion of CDE-boundaries to facilitate the
performance analysis of networked sources and systems. In-
tuitively, the model defines achievable operating points in the
capacity-delay-error-space. A fundamental insight is the addi-
tivity of CDE-boundaries that is established for transmission of
a source over a system. It enables the convenient composition
of results obtained for sources and systems in isolation and
creates a strong link between the individual research areas of
effective bandwidth and effective capacity. We derived CDE-
boundaries for various essential sources and systems, including
the HuffYUV ffmpeg coder, Rayleigh fading channels, and
hybrid ARQ systems. We presented composition results for
tandem channels and for the transmission of an MPEG source
over a fading channel. Extending the CDE-model to more
complex systems and topologies is subject of future work,
where we expect that solutions may be obtained using, e.g., the
connection to MGFs and effective envelopes. Applications of
the theory include, e.g., wireless quality of service, cross-layer
optimization, and adaptive systems. As an example, we showed
how to dimension the playout delay of a video transmission and
how an adaptive video source can be adjusted to the SNR of the
channel, e.g., by use of the quantizer.

Fig. 10. Transmission of an MPEG video via a Rayleigh fading channel.
(a) (c, dA, εA)-boundary of the source for different qp and (c, dS , εS)-
boundary of the system for different SNR. (b) The delay bound of the com-
position follows as the minimum of the sum of the individual CDE-boundaries.
(c) Playout delay as a function of the SNR. (d) All combinations of qp and SNR
in the upper right of the curves are feasible operating points with respect to the
target playout delay.

APPENDIX

A. Proof of Thm.1

The proof of Thm.1 uses the following Lem. 1.
Lemma 1 (Duality): Given the envelope functions EA(t)

and ES(t) ∈ F with Legendre transform LA(c) and LS(c),
respectively. It holds that

sup
t≥0

{EA(t)− ES(t)} ≤ inf
c>0

{
LA(c) + LS(c)

}
,

inf

{
τ ≥ 0 : sup

t≥0
{EA(t)− ES(t+ τ)} ≤ 0

}
≤ inf

c>0

{
LA(c)/c+ LS(c)/c

}
.
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If EA(t) is concave and ES(t) is convex,10 both statements hold
with equality.

Proof of Lem. 1: Let v = supt≥0{EA(t)− ES(t)} be the
maximum vertical deviation of EA(t) and ES(t). For any c > 0
we rewrite v = supt≥0{EA(t)− ct+ ct− ES(t)}. It follows
that

v ≤ sup
t≥0

{EA(t)− ct}+ sup
t≥0

{ct− ES(t)} = LA(c) + LS(c)

for all c>0. Taking the infimum for c>0 proves the first claim.
If EA(t) is concave and ES(t) is convex, it follows im-

mediately from Fenchel’s duality theorem [61] that the first
statement holds with equality.

Let h = inf{τ ≥ 0 : supt≥0{EA(t)− ES(t+ τ)} ≤ 0} be
the maximum horizontal deviation of EA(t) and ES(t).
Note that an equivalent expression is h = inf{τ ≥ 0 : EA(t)−
ES(t+ τ) ≤ 0, ∀ t ≥ 0}. For any c > 0 and ϑ ≥ 0 we rewrite

h = inf {τ ≥ 0 : EA(t)− c(t+ ϑ)

+ c(t+ ϑ)− ES(t+ τ) ≤ 0, ∀ t ≥ 0} .

We let ϑ = supt′≥0{EA(t
′)− ct′}/c so that EA(t)− c(t+

ϑ) = EA(t)− ct− supt′≥0{EA(t
′)− ct′} ≤ 0 for all t ≥ 0

and estimate

h ≤ inf {τ ≥ 0 : c(t+ ϑ)− ES(t+ τ) ≤ 0, ∀ t ≥ 0} .

After some reordering we arrive at the equivalent form

h ≤ inf

{
τ ≥ 0 : sup

t≥0
{c(t+ τ)− ES(t+ τ)} ≤ c(τ − ϑ)

}
.

Since supt≥0{c(t+ τ)− ES(t+ τ)} ≤ supt≥0{ct− ES(t)}
for all τ ≥ 0 it follows with some further reordering that

h ≤ inf

{
τ ≥ 0 : ϑ+ sup

t≥0
{ct− ES(t)} /c ≤ τ

}
.

The solution of the infimum is τ = ϑ+ supt≥0{ct− ES(t)}/c
so that by insertion of ϑ

h ≤ sup
t′≥0

{EA(t
′)− ct′} /c+ sup

t≥0
{ct− ES(t)} /c

for all c > 0. An equivalent expression is h≤ infc>0{LA(c)/
c+LS(c)/c} which proves the second claim.

Finally, we show that if EA(t) is concave and ES(t) is
convex, the second statement holds with equality. By defini-
tion of h it follows that ES(t+ h+ ε) ≥ EA(t) for all t ≥
0 and any ε > 0. From the separation theorem for convex
and concave functions [61] there exists at least one tuple
ϑ, c so that ES(t+ h+ ε) ≥ c(t+ ϑ) for all t ≥ −(h+ ε)
and c(t+ ϑ) ≥ EA(t) for all t ≥ 0. Since EA(t) and ES(t)
are non-decreasing and excluding the trivial case EA(t) =
ES(t) = 0 for all t ≥ 0, it holds that c > 0. From c(t+
ϑ) ≥ EA(t) we estimate (EA(t)− ct)/c ≤ ϑ for all t ≥ 0
such that supt≥0{EA(t)− ct}/c ≤ ϑ. Similarly, we obtain
from ES(t+ h+ ε) ≥ c(t+ ϑ) by substitution of t′ = t+

10If time is discrete t ∈ N0, we require that there exist functions E′
A(y)

concave and E′
S(y) convex, y ∈ R

+
0 such that EA(t) = E′

A(t) and ES(t) =

E′
S(t) for all t ∈ N0 [61].

h+ ε that ES(t
′) ≥ c(t′ − h− ε+ ϑ) for all t′ ≥ 0. It fol-

lows that (ct′ − ES(t
′))/c ≤ h+ ε− ϑ for all t′ ≥ 0 such that

supt′≥0{ct′ − ES(t
′)}/c ≤ h+ ε− ϑ. Adding the expressions

for EA(t) and ES(t) we conclude that there exists c > 0 so
that h ≥ supt≥0{EA(t)− ct}/c+ supt≥0{ct− ES(t)}/c− ε.
Consequently, h ≥ infc>0{LA(c)/c+ LS(c)/c− ε}. Letting
ε → 0 this proves that the upper bound from Lem. 1 is also a
lower bound so that equality holds. �

Proof of Thm.1: Thm. 1 follows immediately by insertion
of EA(t) = E′

A(t) + σA(εA) and ES(t) = E ′
S(t)− σS(εS)

into Lem. 1. �

B. Proof of Thm. 2

The proof of Thm. 2 uses the following Lem. 2 for construc-
tion of arrival and service envelopes, respectively.

Lemma 2 (Arrival and Service Envelopes): Given a station-
ary arrival process A(τ, t) with effective bandwidth αA(θ, t).
Define

EA(t) = (αA(θ, t) + ρ) t− ln(θρ)

θ

for t ≥ 0, where θ > 0 and ρ ∈ (0, 1/(θεA)] are free parame-
ters. EA(t) is a statistical arrival envelope (4) of A(τ, t) with
overflow profile σA(εA) = −ln εA/θ for εA ∈ (0, 1].

Given a stationary service process S(τ, t) with effective
capacity αS(−θ, t). Define

ES(t) = (αS(−θ, t)− ρ) t+
ln(θρ)

θ

for t ≥ 0, where θ > 0 and ρ ∈ (0, 1/(θεS)] are free parame-
ters. ES(t) is a statistical service envelope (5) of S(τ, t) with
deficit profile σS(εS) = −ln εS/θ for εS ∈ (0, 1].

Proof of Lem. 2: We only show the proof of the service
envelope and omit the arrival envelope that follows in the same
way. The derivation of the envelopes uses basic steps from the
stochastic network calculus, see e.g., [13]. We define

ξ = P [∃τ ∈ [0, t] : S(τ, t) < ES(t− τ)− σS(εS)]

that is the left hand side of (5) and use the union bound to
estimate

ξ ≤
t−1∑
τ=0

P [S(τ, t) < ES(t− τ)− σS(εS)] ,

where we omitted the addend at τ = t that is zero trivially since
ES(0)− σS(εS) ≤ 0 and S(τ, t) is non-negative.

For each of the addends we apply Chernoff’s bound, i.e.,
P[S(τ, t) ≤ y] ≤ eθyMS(−θ, t− τ) = eθ(y−(t−τ)αS(−θ,t−τ))

for θ > 0. By substitution of y = ES(t− τ)− σS(εS) we
have

ξ ≤
t−1∑
τ=0

eθ(ES(t−τ)−σS(εS)−(t−τ)αS(−θ,t−τ)). (29)

We let ES(t) = (αS(−θ, t)− ρ)t+ ln(θρ)/θ from Lem. 2.
The free parameter ρ > 0 will be used as a slack rate to achieve
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summability. Further ρ ≤ eθσS(εS)/θ ensures that ES(0)−
σS(εS) ≤ 0. By insertion of ES(t) we get

ξ ≤ θρe−θσS(εS)
t−1∑
τ=0

e−θρ(t−τ).

We substitute
∑t−1

τ=0 e
−θρ(t−τ) =

∑t
δ=1 e

−θρδ and estimate∑t
δ=1 e

−θρδ ≤
∑∞

δ=1 e
−θρδ for all t ≥ 0. Since e−θρδ , where

θ > 0 and ρ > 0, is decreasing in δ > 0, we can bound each
summand by e−θρδ ≤

∫ δ

δ−1 e
−θρydy and compute

ξ ≤ θρe−θσS(εS)

∫ ∞

0

e−θρydy = e−θσS(εS). (30)

Equating εS = e−θσS(εS) and solving for σS(εS) = −ln εS/θ
completes the proof of the service envelope. �

We note that a closely related statistical envelope function

ES(t) = (αS(−θ, t)− ρ) t+
ln(1− e−θρ)

θ
(31)

for θ > 0 and ρ > 0 is derived if we solve the geometric sum∑∞
δ=0 e

−θρδ = 1/(1− e−θρ) instead of the integral (30).
Proof of Thm. 2: Thm. 2 follows immediately by insertion

of EA(t) from Lem. 2 into (9) and subsequently into (11),
respectively, by insertion of ES(t) from Lem. 2 into (10)
and (12). �

C. CDE-Boundaries of Networks

The proof of the additive growth of the CDE-boundary of
networks uses the following lemma.

Lemma 3 (Network Service Envelopes): Given a tandem of
N homogeneous systems each with service process Si(τ, t),
iid service increments, and effective capacity αSi

(−θ). The
tandem has network service process Snet(τ, t) (3), and effective
capacity αSnet

(−θ, t) (28). Define

ESnet
(t) = (αSi

(−θ)− ρ) t+
N ln(1− e−θρ)

θ

for t ≥ 0, where θ > 0 and ρ > 0 are free parameters. ESnet
(t)

is a statistical service envelope (5) of Snet(τ, t) with deficit
profile σSnet

(εSnet
) = − ln εSnet

/θ for εSnet
∈ (0, 1].

For N = 1, Lem. 3 recovers the previous result for a single
system (31) where αS(−θ, t) = αS(−θ) in case of iid service
increments.

Proof of Lem. 3: The first steps of the proof are identical
to the proof of Lem. 2. By insertion of ESnet

(t) from Lem. 2
and αSnet

(−θ, t) from (28) into (29) we obtain for the overflow
probability ξ that

ξ≤e−θσSnet (εSnet )
t−1∑
τ=0

(
t−τ+N−1

N−1

)(
e−θρ

)t−τ(
1−e−θρ

)N
,

where ρ > 0 is a free parameter. We substitute δ = t− τ and
let t → ∞ to estimate

ξ ≤ e−θσSnet (εSnet )
∞∑

δ=0

(
δ +N − 1

N − 1

)
(e−θρ)δ(1− e−θρ)N .

Since θρ > 0 we have 0 < e−θρ < 1 and the argument of the
sum is the negative binomial distribution so that the infinite sum

equals one and hence

ξ ≤ e−θσSnet(εSnet).

Letting εSnet
= e−θσSnet (εSnet ) and solving for σSnet

(εSnet
) =

−ln εSnet
/θ completes the proof. �

We insert ESnet
(t) from Lem. 3 into (10) and subsequently

into (12) to obtain for θ > 0, ρ > 0, and c > 0 that

dSnet
=

supt≥0{(c+ρ−αSi
(−θ))t}

c
− N ln(1−e−θρ)+ln εSnet

θc
.

We choose the free parameter ρ = αSi
(−θ)− c where

αSi
(−θ) > c for stability so that

dSnet
= −

N ln
(
1− e−θ(αSi

(−θ)−c)
)
+ ln εSnet

θc
,

which proves the linear growth of dSnet
with N .
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