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Abstract—In cellular networks, resource allocation is usually
performed in a centralized way, which brings huge computation
complexity to the base station (BS) and high transmission
overhead. This paper introduces a distributed resource allocation
method that aims to maximize energy efficiency (EE) while en-
suring quality of service (QoS) for users. Specifically, to address
the challenge of fast-varying wireless channel conditions, we
propose a robust meta federated reinforcement learning (MFRL)
framework that enables local users to optimize transmit power
and assign channels using locally trained neural network models.
This approach offloads the computational burden from the
cloud server to the local users, reducing transmission overhead
associated with local channel state information. The BS performs
the meta-learning procedure to initialize a general global model,
enabling rapid adaptation to different environments and im-
proved EE performance. The federated learning technique, based
on decentralized reinforcement learning, promotes collaboration
and mutual benefits among users. Analysis and numerical results
demonstrate that the proposed MFRL framework accelerates the
reinforcement learning process, decreases transmission overhead,
and offloads computation, while outperforming the conventional
decentralized reinforcement learning algorithm in terms of
convergence speed and EE performance across various scenarios.

Index Terms—Federated learning, meta-learning, reinforce-
ment learning, resource allocation.

I. INTRODUCTION

The wireless network industry is experiencing an undeni-
able trend of development. The third Generation Partnership
Project (3GPP) has standardized the access technique and
physical channel model for the fifth-generation new radio
(5G NR) network. This standard enables user equipment
(UE) to dynamically switch between resource blocks (RBs)
with varying bandwidths and supports multiple subcarrier
spacing [2], [3]. Building upon the foundation established by
5G, the next generation of networks, such as sixth generation
(6G) and beyond, aim to provide enhanced and augmented
services of 5G NR while transitioning towards decentralized,
fully autonomous, and remarkably flexible user-centric sys-
tems [4]. These emerging techniques impose more stringent
requirements on decentralized resource allocation methods,
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emphasizing the significance of optimizing RB assignments
to enhance the overall quality of service (QoS) within the
systems.

Nevertheless, the fast variations and rapid fluctuations in
channel conditions render conventional resource allocation
approaches reliant on perfect channel state information (CSI)
impractical [5]. The inherent non-convexity of the resource
allocation problem resulting from discrete resource block
association necessitates computationally demanding solutions.
Furthermore, the coupled variables further exacerbate the
complexity of the problem. Traditionally, resource allocation
problems have been addressed through matching algorithms
executed at the central base station (BS), resulting in sub-
stantial computational burdens on the cloud server. All of the
aforementioned challenges require a brand-new optimization
tool capable of effectively operating in unstable wireless
environments.

Machine learning (ML) methods, particularly deep learning
(DL) approaches, have emerged as promising tools to tackle
mathematically intractable and high-computational problems.
However, artificial neural networks (NNs) typically demand
massive amounts of training data, even for simple binary
classification tasks. Additionally, the issue of overfitting makes
artificial NNs difficult to adapt and generalize when en-
countering new environments, necessitating additional data
for model retraining and affecting the efficiency of training
data. In particular, the fast channel variations and flexible
network structure in 5G beyond network services restrict the
application of conventional ML algorithms.

To enable fast and flexible learning, meta learning has
been proposed. Meta learning allows the model to adapt to
new tasks with faster convergence speed by leveraging input
from experience gained from different training tasks [6]–[8].
For example, model-agnostic meta-learning (MAML) [8] is a
meta-learning technique that integrates prior experience and
knowledge from the new environment, empowering models
with the ability to generalize and rapidly adapt to new tasks.
Another approach to improve data efficiency is through ex-
perience sharing among models, known as federated learning.
With periodic local model averaging at the cloud BS, federated
learning enables local users to collectively train a global
model using their raw data while keeping the data locally
stored on the mobile devices [9]. This paper focuses on meta-
learning enabled federated reinforcement learning, with the
objective of improving the performance of the reinforcement
learning algorithm for resource allocation tasks in wireless
communications.
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Through the implementation of periodic local model aver-
aging at the cloud-based base station (BS), federated learning
facilitates collaborative training of a global model by enabling
local users to utilize their respective raw data, which remains
stored locally on their mobile devices [9]. This paper inves-
tigates the application of meta-learning within the context of
federated reinforcement learning, with the aim of enhancing
the performance of the reinforcement learning algorithm in
resource allocation tasks within wireless communication sys-
tems.

A. Related work

1) Energy-Efficient Resource Allocation: Presently, most
cellular user equipment (UE) operates on battery power, and
the use of rate maximization-oriented algorithms [10] may re-
sult in unnecessary energy consumption, which is unfavorable
for the advancement of massive capacity and connectivity in
5G and beyond communications.

Existing literature on energy-efficient resource allocation
primarily focuses on optimizing transmit power and channel
assignment [11]–[13]. Robat Mili et al. [11] concentrate
on maximizing energy efficiency (EE) for device-to-device
communications. While numerous studies have investigated
resource allocation in wireless communication systems, most
of them rely on centralized approaches, which are complex
and not easily scalable [13]. In such centralized approaches,
the central entity needs global channel state information (CSI)
to assign channels to UEs, leading to significant communi-
cation overhead and latency. Consequently, distributed low-
complexity algorithms are preferable over centralized ones.

Game theory has been adopted for decentralized resource
allocation [13]–[15]. However, these approaches typically as-
sume a static radio environment and require multiple iterations
for UEs to converge to the Nash Equilibrium (NE) point. In the
practical environment, the performance of game theory based
algorithms is impacted by the rapid fluctuations in the wireless
channel. Yang et al. [14] and Dominic et al. [15] integrate
the game theory and stochastic learning algorithm (SLA) to
enable local users to learn from past experience and adapt to
channel variations. Yan et al. [16] further investigate resource
allocation for semantic communications, where the channel
assignment and power allocation problem is modeled as a
matching game among users. Nevertheless, game theory based
algorithms do not fully explore the advantages of collaboration
and communication among users, potentially affecting system-
level performance.

2) Decentralized Reinforcement Algorithms in Wireless
Communications: A promising solution to address concerns
regarding complexity and signaling cost concerns involves
establishing a decentralized framework for resource alloca-
tion and extending the intelligent algorithms to encompass
cooperative large-scale networks. The adoption of multi-agent
reinforcement learning (MARL) algorithm presents an oppor-
tunity to tackle the challenges associated with complexity and
enhance the intelligence of local UEs. MARL algorithms rely
solely on real-time local information and observations, thereby
significantly reducing communication overhead and latency.

Mathematically, MARL can be formulated as a Markov deci-
sion process (MDP), where training agents observe the current
state of the environment at each step and determine an action
based on the current policy. Agents receive corresponding
rewards that evaluate the immediate impact of the chosen
state-action pair. The policy updates are based on the received
rewards and the specific state-action pair, and the environment
transitions to a new state subsequently. The application of
MARL approaches in wireless communications has been
extensive [17]–[20]. Wang et al. [18] have demonstrated that
such a decentralized optimization approach can achieve near-
optimal performance. Ji et al. [20] further have extended the
application of the MARL algorithm for the joint optimization
of the communication and computation resources for semantic
communications. However, local user equipment (UE) cannot
directly access global environmental states, and UEs are
unaware of the policies adopted by other UEs. Consequently,
there is a possibility that UEs may select channels already
occupied by other UEs, leading to transmission failures in
the orthogonal frequency-division multiple access (OFDMA)
based schemes.

3) Reinforcement Algorithm for Jointly Resource Optimiza-
tion: It is noted that the resource block association problem
is a discrete optimization problem, which is usually solved
by value-based methods, e.g., Q-learning, SARSA, and Deep
Q-learning. Meanwhile, the transmit power is the continuous
variable, and only policy-based algorithm can deal with the
continuous optimization. Hence, how to jointly optimize the
transmit power and channel assignment becomes a challenge.
In some work, the transmit power is approximated to discrete
power levels, and the user can only transmit by these preset-
ting power levels [1], [21]. However, discrete transmit power
with large intervals means performance reduction. On the
other hand, the complexity could be very high if the number
of power levels is significant. To address these concerns, Yuan
et al. [22] proposed a framework with a combination of value-
based network and policy-based network. Similarly, Hehe et
al. [23] also proposed a combination framework with different
components to address the discrete user association problem
and continuous power allocation problem. However, in such
works the different networks are trained simultaneously, which
leads to an unstable framework and makes the NNs hard to
train and converge.

B. Motivations and Contributions

1) Federated Reinforcement Learning: The primary ob-
stacle faced by MARL algorithms is the instability and
unpredictability of actions taken by other user equipment
(UEs), resulting in an unstable environment that affects the
convergence performance of MARL [24]. Consequently, a
partially collaborative MARL structure with communication
among UEs becomes necessary. In this structure, each agent
can share its reward, RL model parameters, action, and state
with other agents. Various collaborative RL algorithms may
employ different information-sharing strategies. For instance,
some collaborative MARL algorithms require agents to share
their state and action information, while others necessitate the
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sharing of rewards. The training complexity and performance
of a collaborative MARL algorithm are influenced by the data
size that each agent needs to share. This issue becomes severer
when combining neural networks (NN) with reinforcement
learning. In a traditional centralized reinforcement algorithm,
e.g., deep Q-network (DQN), the environment’s interactive
experiences and transitions are stored in the replay memory
and utilized to train the DQN model. However, in multi-
agent DQN, local observations fail to represent the global
environment state, significantly diminishing the effectiveness
of the replay memory. Although some solutions have been pro-
posed to enable replay memory for MARL, these approaches
lack scalability and fail to strike a suitable balance between
signaling costs and performance.

To address the issue of non-stationarity, it is necessary to
ensure the sharing of essential information among UEs, which
can be facilitated by federated learning [25]. Federated learn-
ing has demonstrated successful applications in tasks such
as next-word prediction [26] and system-level design [27].
Specifically, federated reinforcement learning (FRL) enables
UEs to individually explore the environment while collectively
training a global model to benefit from each other’s experi-
ences. In comparison to MARL approaches, the FRL method
enables UEs to exchange their experiences, thereby enhancing
convergence performance [28]. This concept has inspired the
work of Zhang et al. [29] in improving WiFi multiple access
performance and Zhong et al. [30] in optimizing the placement
of reconfigurable intelligent surfaces through the application
of FRL.

2) Meta Reinforcement Technique for Fast Adaptation and
Robustness: Another main challenge of the reinforcement
learning algorithm is the demand for massive amounts of
training data. Since the training data can only be acquired
by interacting with the environment, the agent usually needs
a long-term learning process until it can learn from a good
policy. Moreover, using such a large amount of data to train an
agent also may lead to overfitting and restrict the scalability of
the trained model. In the scope of the wireless environment,
the fast fading channels and unstable user distributions also
put forward higher requirements on robustness and general-
ization ability. Particularly, the previous resource allocation
algorithms usually set a fixed number of users, which makes
the algorithm lack scalability to various wireless environments
in practical implementation.

Meta-learning is designed to optimize the model parameters
using less training data, such that a few gradient steps will
produce a rapid adaptation performance on new tasks. During
the meta-learning training process, the model takes a little
training data from different training tasks to initialize a general
model, which reduces the model training steps significantly.
The meta-learning can be implemented in different ways.
Wang et al. [6] and Duan et al. [7] have applied recurrent
NN and the long short-term memory to integrate the previous
experience into a hidden layer, and NNs have been adopted
to learn the previous policy. Finn et al. [8] have leveraged the
previous trajectories to update the NNs, and further extended
the meta-learning to reinforcement learning. In this paper, we
consider the meta-learning for initializing the NNs for MARL.

In the scope of wireless communications, Yuan et al. [22]
have adopted the meta reinforcement learning for different
user distributions and confirm that the meta reinforcement
learning is a better initialization approach and can achieve
better performance in new wireless environments.

Another challenge caused by federated learning is the het-
erogeneity in systems and the non-identical data distributions
in RL may slow down or even diverge the convergence
of the local model. Inspired by the meta-learning, Fallah
et al. [31] have developed a combined model, in which
the global training stage of the federated learning can be
considered as the initialization of the model for meta-learning,
and the personalized federated learning stage can be seen
as the adaptation stage for meta-learning. Due to the similar
mathematical expression, we can combine federated learning
and meta-learning naturally, so that training and adapting
the models from statistically heterogeneous local RL replay
memories. The aforementioned studies serve as valuable in-
spiration for us to explore the application of meta-learning and
FRL in addressing the challenges of channel assignment and
power optimization. By leveraging these techniques, we aim
to distribute the computational load to local user equipment
(UEs), reduce transmission overhead, and foster collaboration
among UEs.

This paper introduces a novel framework that combines
meta-learning and FRL for distributed solutions to the channel
assignment and power optimization problem. To the best of
our knowledge, this is the first endeavor to integrate meta-
learning and FRL in the context of resource allocation in
wireless communications. The contributions of this paper are
summarized as follows:

1) A meta federated reinforcement learning framework,
named MFRL, is proposed to jointly optimize the channel
assignment and transmit power. The optimization is per-
formed distributed at local UEs to lower the computational
cost at the BS and the transmission overhead.

2) To improve the robustness of the proposed algorithm, we
leverage the meta-learning to initialize a general model,
which can achieve fast adaptation to new resource allo-
cation tasks and guarantee the robustness of the proposed
MFRL framework.

3) To address the joint optimization of the discrete and
continuous variables, we redesign the action space for
the RL algorithm and design the corresponding proximal
policy optimization (PPO) network to optimize the real-
time resource allocation for each UE.

4) To explore the collaboration among cellular users, we
propose a global reward regarding the sum EE and the
successful allocation times for all UEs and apply the MFRL
framework for enabling experience sharing among UEs.

The remainder of the paper is organized as follows. In Sec-
tion II, the system model is presented and an EE maximization
problem is formulated. The proposed MFRL framework is
presented in Section III. The numerical results are illustrated
in Section IV. The conclusion is drawn in Section V.
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II. SYSTEM MODEL

In this paper, we assume that the set of UEs is denoted as
UE = {UE1, . . . , UEI}, where I is the total number of UEs.
For UEi, the binary channel assignment vector is given by
ρi = [ρi,1, . . . , ρi,n, . . . , ρi,N ] , i ∈ I, n ∈ N , where N is the
number of subchannels. The channel assignment parameter
ρi,n = 1 indicates that the n-th subchannel is allocated
to UEi, otherwise ρi,n = 0. Each UE can only accesses
one channel, i.e.,

∑N
n=1 ρi,n = 1,∀i ∈ I . Meanwhile, we

consider a system with OFDMA, which means a channel
can be accessed by at most one UE within a cluster, i.e.,∑I
i=1 ρi,n ∈ {0, 1},∀n ∈ N . In the case of each user

equipment (UE), successful transmission with the base station
(BS) is achieved when the UE accesses a specific subchannel
without any other UEs within the same cluster accessing the
same subchannel. For the cases where the number of UEs is
larger than the channels, the non-orthogonal multiple access
technique needs to be applied to support multiple UEs to
access the same channel, which is beyond the scope of this
article. To ensure that the channel assignment problem can
be solved and simplify the system settings, we assume that
at most N UEs can access the channel and transmit the data
within a time slot, i.e., N >= I . Consequently, if each UE
is allocated a channel that does not conflict with other UEs
within the cluster, this allocation is considered a successful
channel assignment.

The pathloss of a common urban scenario with no line of
sight link between UEi and the BS can be denoted by [3]

PLi,n = 32.4 + 20 log10 (fn) + 30 log10 (di,n) (dB), (1)

where di,n represents the 3D distance between UEi and the
BS, fn represents the carrier frequency for n-th subchannel.
Considering the small-scale fading, the overall channel gain
can be thereby denoted by

hi,n =
1

10(PLi,n/10)
ψmn, (2)

where ψ is the log-normally distributed shadowing parameter.
According to the aforementioned pathloss model, there is no
line of sight between UEs and the BS, and mn represents
the Rayleigh fading power component of the n-th subchannel.
Hence, the corresponding signal-to-noise ratio (SNR) between
the BS and UEi transmitting over the n-th subchannel is
represented as

γi,n =
ρi,nhi,npi

Nn
, (3)

where Nn = Wnσ
2
n represents the Gaussian noise power on

the n-th subchannel. The uplink EE for a successful channel
assignment of UEi is given by

ui,n =

{
Wn

pi+pci
log2 (1 + γi,n) , if

∑N
n=1 ρi,n = 1;

0, else.
(4)

where Wn = kn × bn is the bandwidth of the n-th sub-
channel, kn represents the number of subcarriers in each
subchannel, and bn denotes the subcarriers spacing for n-th
subchannel. The static and circuit power for maintaining the
basic operations of the UE system is set to a constant value

pci . Meanwhile, for the unsuccessful assignment, i.e., the UE
cannot access any subchannel, the uplink rate is set to 0 as it
is unacceptable for the OFDMA system.

The EE maximum problem is formulated as

(P0) maximize
{ρ,p}

I∑
i=0

N∑
n=0

ui,n (5a)

subject to pi ≤ pmax,∀i ∈ I, (5b)
γi,n > γmin,∀i ∈ I, (5c)
N∑
n=1

ρi,n = 1,∀i ∈ I, (5d)

∑I

i=1
ρi,n ∈ {0, 1},∀n ∈ N. (5e)

where p = {p1, . . . , pI} denotes the transmit power vector
of UEs, γmin represents the minimum SNR requirement to
guarantee the QoS for UEs. Constraint (5d) and (5e) make the
EE maximization problem a non-convex optimization problem
and cannot be solved by mathematical convex optimization
tools. In the literature, channel allocation problems are usu-
ally formed as linear sum assignment programming (LSAP)
problems. To solve this problem, local CSI or the UE related
information, e.g., location and velocity should be uploaded to
the BS, then the centralized Hungarian algorithm [32] can be
invoked to solve the problem with computational complexity
O
(
I3
)
. The computational complexity grows exponentially

with the number of UEs, and the mobility of UEs causes
the variable CSI, which means the high-complexity algorithm
needs to be executed frequently, leading to high transmission
overhead and high computational pressure to the BS. More-
over, due to the transmission latency, the current optimized
resource allocation scheme by the BS may not be optimal for
UEs anymore, and a distributed and low complexity resource
allocation approach on the UE side is more than desired.

According to the constraint (5d) and (5e), each UE can
only access one subchannel, and it is clear that the subchannel
assignment is a discrete optimization problem. As aforemen-
tioned concerns in Section I, it is hard to train different types
of neural networks simultaneously. In another way, the discrete
assignment problem can be described by different probabilities
to choose different subchannels, and then one-dimensional
discrete choice can be mapped to high-dimensional probability
distributions. Overall, the joint optimization problem can be
solved by a simple policy-based framework with a specific
output design.

III. PROPOSED META FEDERATED REINFORCEMENT
LEARNING FOR RESOURCE ALLOCATION

In this section, we will first introduce the proposed MFRL
framework from an overall perspective. Then we will design
the NN structure to solve this EE maximization problem,
and propose a meta reinforcement learning scheme for the
NN initialization. We also demonstrate the meta-training and
meta-adapting algorithms in detail. Finally, we will present
the federated learning algorithm and procedures.

The proposed algorithm starts from the meta-training for
initializing the global generalized model at the BS. The initial

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3345363

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

BS 

Dataset

UE 

Dataset

3

4

5

Central 

BS

Central 

BS

6

21

3. Local model training (meta-adaptation).

4. Local model updating.

5. Model averaging at the central BS.

6. Global model broadcasting.

7. Repeat step 3-6.

1. Meta-training for the model initialization at the BS.

2. Pre-trained model broadcasting.

Meta-adaptation 

and federated 

learning process 

(step 3-7) 

Meta-training 

process (step 1 

and 2)

ii

i
UE

1

1

I

i i

i

I

i

i

h

h

=

=

=
å

å

W

W

Fig. 1. The proposed MFRL framework. The local models are uploaded and
averaged periodically.

model is meta-trained using the BS data set. After the initial
global model is trained, it will be broadcast to the local
UEs for adapting to the new environments. During the meta-
adapting, i.e., the fine-tuning process, the local models are
trained using a local database, i.e., local CSI, and the local
models can be reunited as a global model so that the UEs
could learn the knowledge from the experiences of other UEs
and improve the global EE. One popular way is to average the
distributed models and form a global model, which is called
federated learning [25]. After the local models are averaged
by the BS, it would be broadcast to the local UEs which will
fine-tune the global model and adapt to the local scenarios.
This process will be repeated until the meta-adaptation stage
finishes. The overall procedure is shown in Fig. 1

A. Neural Network Structure Design

As the aforementioned description, the resource allocation
problem can be modeled as a multi-agent markov decision
process (MDP), which is mathematically expressed by a tuple,
⟨I,O,A,R, P ⟩, where I is the number of agents, I = 1
degenerates to a single-agent MDP, O is the combination
set of all observation state, A = A0 × · · · × AI is the set
of actions for each agent, R is the reward function, which
is related to current observation Ot = {o0, . . . , oI} ∈ O,
At = {a0, . . . , aI} ∈ A, and Ot+1 ∈ O. Transition prob-
ability function is defined as P : O × A → P(O), with
P (Ot+1|Ot, At) being the probability of transitioning into
state Ot+1 if the environment start in state Ot and take joint
action At.

One of the challenges of using deep reinforcement learning
algorithms to solve the problem (P0) is that the resource
allocation of the transmit power and subchannel association
is the hybrid optimization of the continuous and discrete
variables. As the analysis above, the discrete subchannel asso-
ciation parameter can be described by different probabilities to
choose different subchannels, thus the discrete variable can be
expressed by probability distributions on subchannels, which
is generated by a categorical layer. Meanwhile, continuous
power optimization is performed by the Gaussian layer, where
the mean and variance of the transmit power can be trained.

UE

PPO brain

Actor
Input state 

information

F
F

N
1

F
F

N
3

G
a

u
ss

ia
n

 

La
y

e
r

C
a

te
rg

o
ri

ca
l

 L
a

y
e

r
v

 L
a

y
e

r

Power

Critic

( , )m s

A_loss

C_loss

Sum_loss

BP

ChannelF
F

N
2

Sample
p

ρ Clip

t
L

CR

t
L

O A R

Wireless Environment

{ , }ρ p

Fig. 2. The proposed PPO network structure for the MFRL framework.

In fact, any deep reinforcement learning algorithms with
continuous action space can be applied for training the
proposed network structure. Specifically, we apply the PPO
algorithm because of its ease of use and robustness, which
make it the default algorithm by OpenAI [33]. It is noted
that the NN architecture shares parameters between the policy
and value function, so that the actor network and critic
network share the underlying features in the NN, and simplify
the meta-learning initialization and model broadcast costs.
The corresponding network structure of the local models is
illustrated in Fig. 2.

In this paper, we define the observation state at training step
t for the UEs, which are considered as the agents in the MFRL
framework, as ot,i = {{hi,n}∀n∈N , t} with dimension |oi|,
where t represents the number of epoch. The variables t can be
treated as a low-dimensional fingerprint information to contain
the policy of other agents [24], thus enhancing the stationary
and the convergence performance of the MFRL algorithm.

The action at,i for the UEi including the subchannel and
the transmit power choice with dimension |a| = 2. The
Actor network contains a categorical layer with N neurons
to determine which subchannel the local UE should access.
The continuous transmit power is optimized by a σ layer and a
µ layer, and the power is sampled according to the probability
distribution N(µ,σ2).

Since we aim to maximize the sum EE of the cellular
network, here we design a global reward rt, according to the
joint action at such that encouraging collaboration of UEs.
The global reward at training step t can be defined as

rt =


I∑
i=0

ri(t) if
I∑

i=0

ρi,n ∈ {0, 1},∀i ∈ I,∀n ∈ N;

Isuc−I
I , Otherwise,

(6)

where Isuc denotes the number of UEs that satisfy the sub-
channel assignment constraints, i.e.,

∑I
i=0 ρi,n ∈ {0, 1},∀n ∈

N . For the assignment that fails to meet the subchannel
access requirements, a punishment is set to proportional to
the number of failure UEs. 1 Meanwhile, the reward for a

1Please note that the reward is designed as a sum of EE and the punishment,
which makes it a dimensionless parameter and we only need to focus on its
value.
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successful subchannel assignment is expressed by

ri(t) =


ξui,n(t), ifγi,n ≥ γmin;

ξupmax

i,n (t), ifγpmax

i,n ≥ γmin > γi,n;

0, Otherwise,

(7)

where ξ is a constant coefficient, upmax

i,n (t) denotes the EE by
the maximum transmit power, which means if the UE fails
to meet the SNR constraint, it needs to use the maximum
transmit power to avoid transmission failure. The UE could
receive a reward that is proportional to the achieved EE when
satisfying the SNR constraint. The success rate of UEi can
be defined as ηi = βi/T , where βi represents the successful
resource assignment counts for UEi, and T represents the
number of resource allocation counts since the initialization
the system.

The objective of the proposed MFRL framework is to enable
UEs to learn a strategy that maximizes the discount reward,
which can be expressed by

R(τ) =

∞∑
t=0

ξtrt, (8)

where τ = (o0, a0, ..., oT+1) is a trajectory, T is the current
timestamp, ξ ∈ (0, 1) represents the discount rate, which
denotes the impact of the future reward to the current action.

B. Policy Gradient in Meta-training

In the previous work [1], [17], [18], the number of UEs in
each cluster is fixed, and the training and testing performance
are implemented in the same environment. Particularly, the
local model is trained by each UE individually for the MFRL
algorithm, which limits its application, making it hard to
adapt to more complicated practical scenarios. The resource
allocation model should have the ability to adapt and gener-
alize to different wireless communication environments with
different cluster sizes. Hence, the meta reinforcement learning
algorithm can be considered to meet the requirement of the
generalization.

The meta-learning can be implemented in different ways,
and we apply the MAML method for reinforcement learn-
ing [8]. As an instance of the MAML algorithm, the pro-
posed MFRL algorithm combines the MAML algorithm with
the PPO reinforcement learning and the federated learning
algorithms, enhancing its adaptation in the considered wireless
communication scenarios. Particularly, the MAML algorithm
for reinforcement learning algorithm is divided into two
stages, the meta-training stage and the meta-adapting stage,
which are detailed in Algorithm 1 and Algorithm 2, re-
spectively. The meta-training stage takes the experience from
different tasks, i.e., the resource allocation for different cluster
sizes, to initialize a model that can be adopted by UEs in
different scenarios and achieve fast adaptation. In the meta-
adaptation stage, the local UEs adapt the initialized model for
different tasks based on the interaction with various scenarios.

To take the number of UEs into account, the local obser-
vation should include the total number of UEs, i.e., ot,i =
{{hi,n}∀n∈N , I, t}. The task set of resource allocation for UEs

is defined as T = {T Ik},∀k ∈ K, where K is the number of
tasks, Ik is the number of UEs for task k. The meta-training
process is implemented at the BS, which can use the previous
resource allocation experience for different amount of UEs to
meta-train an initial model.

At the end of each training epoch, the BS stores the
transitions ekt,i = {(okt,i, akt,i, rkt , okt+1,i)|i = 0, 1, . . . , Ik − 1}
acquired from T Ik in the central dataset. The transitions
et,i = (ot,i, at,i, rt, ot+1,i) are sampled from B for calcu-
lating the advantage function and the estimated state value
function, which are introduced in the following paragraphs.
The objective function for training the reinforcement model
is to maximize the expected reward for each trajectory as

J (πθ) = Eτ∼πθ(τ) [R(τ)] =

∫
τ

P (τ |πθ)R(τ), (9)

where πθ is the parameterized policy, P (τ |πθ) =
P (o0)

∏T−1
t=0 P (ot+1,i|ot,i, at,i)πθ(at,i|ot,i) represents

the probability of the trajectory τ , P (ot+1,i|ot,i, at,i) is the
state transformation probability, πθ(at,i|ot,i) is the action
choice probability, and P (o0) is the probability of the initial
state o0. To optimize the policy, the policy gradient needs to
be calculated, i.e., θj+1 = θj + α ∇θJ(πθ)|θj , where α is
the learning rate or the learning step.

The gradient of the policy can be expressed by a general
form as

∇θJ(πθ) = Eτ∼πθ(τ)

[
T∑
t=0

∇θ log πθ(at,i|ot,i)Φt,i

]
, (10)

where Φt,i could be denoted as the action-value function
Qπθ (o, a) = Eτ∼πθ(τ) [R(τ)|o0 = o, a0 = a], which is the
expectation reward for taking action a at state o. Although
we can use the action-value function to evaluate the action is
good or bad, the action-value function Qπθ (o, a) relies on the
state and the action, which means an optimal policy under a
bad state may have less action-value than an arbitrary action
under a better state. To address this issue, we need to eliminate
the influence caused by the state. First, we prove that the state
influence elimination will not affect the value of the policy
gradient [34].

Lemma 1 (Expected Grad-Log-Prob Lemma). Given Pπθ is a
parameterized probability distribution over a random variable
o, then Eo∼Pπθ [∇θ logPπθ (o)] = 0.

Proof. For all probability distributions, we have∫
o

Pπθ (o) = 1. (11)

Take the gradient of both side

∇θ
∫
o

Pπθ (o) = ∇θ1 = 0. (12)
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Thus

Eo∼Pπθ [∇θ logPπθ (o)]

=

∫
o

Pπθ (o)∇θ logPπθ (o)

=

∫
o

∇θPπθ (o)

= ∇θ
∫
o

Pπθ (o)

= 0.

According to Lemma 1, we can derive that for
any function b(ot) that only depends on the state,
Ea∼πθ

[∇θ log πθ(a|o)b(o)] = 0. Hence, it would cause the
same expected value of the policy gradient ∇θJ(πθ) if we
substitute the b(o) into the action-value function Qπθ (o, a).
In fact, we can use the state-value function V πθ (o) which
represents whether the state is good for a higher reward or
not. Instead of comparing the action-value function Qπθ (o, a)
of the action a directly, it is more reasonable to substitute
the influence of the state into the action-value function. We
define the substitution Aπθ (o, a) = Qπθ (o, a)−V πθ (o) as the
advantage function, which represents whether an action good
or bad compared with other actions relative to the current
policy. Hence, the value function Φt,i can be also denoted as

Φt,i = Qπθ (ot,i, at,i)− V πθ (ot,i) = Aπθ (ot,i, at,i). (13)

C. Advantage Estimation and Loss Function Design

Although we express the policy gradient by introducing the
advantage function, the challenge is, the action-value func-
tion and the state-value function cannot be acquired directly
from the experience et,i. Instead, the action-value function
can be expressed by the temporal difference form [35] as
Qπθ (ot,i, at,i) = rt + ξV πθ (ot+1,i). In deep reinforcement
learning approaches, NNs can be used to estimate the state-
value function as V̂ πθ , then the estimated advantage function
Âπθ (ot,i, at,i) = δVt,i = rt + ξV̂ πθ (ot+1,i) − V̂ πθ (ot,i) can
be derived. However, the bias for this estimation is high,
which restricts the training and convergence performance.
To overcome this issue, generalized advantage estimation
(GAE) [34] can be applied to estimate the advantage function
for multi-steps and strike a tradeoff between the bias and
variance. The GAE advantage function is denoted by

AGAE(ot,i, at,i) =

T−t∑
l=0

(λξ)lδVt+l,i, (14)

where λ ∈ (0, 1] is the discount factor for reducing the
variance of the future advantage estimation.

The actor network is optimized by maximising LAC =
Eτ∼πθ(τ)

[
ratiot,i ×AGAE(ot,i, at,i)

]
, where ratiot,i =

πθ(at,i|ot,i)
πθold

(at,i|ot,i) is the action step. However, the large action step
could lead to an excessively large policy update, hence we

Algorithm 1 Meta-training algorithm.
1: Input: The task set T = {T Ik},∀k ∈ K, BS memory
M, BS batch B;

2: Initialize the PPO network θ;
3: for each epoch t do
4: for each meta task k do
5: The BS acquire the experience ekt,i =

{(okt,i, akt,i, rkt , okt+1,i)|i = 0, 1, . . . , Ik − 1} from all
UEs and store the transitions in central dataset M;

6: end for
7: Sample the transitions in the BS batch B;
8: Update the global PPO network by SG ascent with

Adam: θ ← θ + αmeta∇θL;
9: end for

10: Return: Pre-trained global model θ.

can clip this step and restrict it. The clipped actor objective
function is expressed by

LClip
t = min

(
ratiot,i ×AGAE(ot,i, at,i), g(ϵ, A

GAE(ot,i, at,i))
)
,

(15)
where

g(ϵ, A) =

{
(1 + ϵ)A, A ≥ 0;

(1− ϵ)A A < 0,
(16)

in which the ϵ is a constant value representing the clip
range. The clip operation have been proved to improve the
robustness [33].

The loss LCR for the critic network is to minimize the gap
between the estimated state-value function and discount sum
reward, which can be expressed by

LCR
t =

∥∥∥rt + V̂ πθ (ot+1,i)− V̂ πθ (ot,i)
∥∥∥2 . (17)

Combining the objective of the actor network and critic
network, we can express the overall objective as

L = argmin
θ

Et
[
LClip
t − c1LCR

t + c2Et

]
, (18)

where Et represents an entropy bonus to ensure sufficient
exploration, θ is the weights for the PPO network, c1 and c2
are weight parameters for the estimation of value function and
entropy, respectively. Then the initial model will be updated
by the stochastic gradient (SG) ascent approach. The details
of the meta-training algorithm is shown in Algorithm 1.

D. Meta-Adapting Process

Unlike the meta-training process where the BS stores the
transitions and uses these experiences to train a global model,
the local UE can train its own model based on its own ob-
servations and experience during the meta-adaptation process.
Compared with supervised learning which requires sufficient
data set and pre-knowledge of the system, the proposed MFRL
framework can train the local model with the local CSI data
which is required by interacting with the environment, thus
not only offloading the computational pressure to the UEs,
but also lower the transmission overhead significantly.
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Algorithm 2 Meta-adapting algorithm.
1: Input: The pre-trained global model θ, number of UEs I ,

local memory Mi and batch Bi for each UE;
2: Initialize the local models θ0,i ← θ,∀i ∈ I;
3: for each epoch j do
4: for each D2D pair i do
5: Collect set of trajectories Mi by running policy

πj,i = π(θj,i) in the environment;
6: Compute advantage estimations AGAE(oj,i, aj,i)

based on current state-value function V̂ πθ (o) and
reward rj ;

7: Update the PPO network by maximizing the objec-
tive function:

θj+1,i = argmax
θi

1
T

T∑
j=0

(
LClip
j − c1LCR

j + c2Ej

)
;

8: end for
9: end for

As the local models are inherited from the global model, the
network structure, the observation state space, the action, and
the reward are defined the same as Section III. Considering
that the i-th UE interacts with the environment at adapting
epoch j, i.e., observes the state oj,i, and takes action according
to current policy π(θj,i). Then the i-th UE receives the reward
rj and observes the next state oj+1,i. The transition ej,i =
(oj,i, aj,i, rj , oj+1,i) is stored in its local memory Mi which
can be sampled in the batch to train the local models. The
advantage is estimated using the GAE method and the loss
function is the same as the meta-training process. The details
of the meta-adapting process are described in Algorithm 2.

According to the definition in [8], the goal of meta-learning
is to enable models to generalize well across a wide range of
tasks, even those they haven’t encountered during the meta-
training phase. In the meta-training process, the models take
the experience from different tasks with different cluster sizes.
For the meta-adapting process, the models are deployed in
scenarios where the number of UEs is not seen during the
meta-training process, i.e., I /∈ Ik. Moreover, the models
are adapted in different scenarios with different environment
settings to further verify the adaptation capability of the
proposed framework, i.e., we expand the definition of the new
tasks to the resource allocation in new scenarios, which will
be presented in detail in Section IV.

E. Global Averaging of Local Models

Unlike the meta-training process that the BS uses the
centralized replay memory that collects from all UEs to
train the global model, the local UEs can only access their
local memories during the meta-adaptation process, which
affects the robustness of the local models when encountering
unfamiliar scenarios. To enable the individual models at each
UE can be benefited from other UEs, the federated learning
technique can be applied.

The local model is averaged to a global model, then the
global model is broadcast to UEs and the UEs will continue to
train the new global model locally. By averaging the models,
each UE is able to benefit from the experience of other UEs,

since the weights direct correspond to the experience and
memory. Mathematically, the model averaging process at the
central BS can be denoted as

W =

∑I
i=1 |Bi|W i∑I
i=1 |Bi|

, (19)

where |Bi| represents the number of number of elements in
Bi. The average algorithm shows that the averaged model will
learn more from the model with more training cases. However,
in the proposed MFRL framework, we assume that UEs share
the team stage reward, which means the replay memory of
each UE has an equivalent size. To ensure that the averaged
model can benefit from the model that caters to the needs of
QoS, we further revised the averaging algorithm that considers
the success rate, which is denoted by

Ŵ =

∑I
i=1 ηiW i∑I
i=1 ηi

, (20)

where ηi is the resource allocation success rate for UEi as
defined in Section II.

IV. NUMERICAL RESULTS

We consider a communication scenario underlying a single
cellular network. For the meta-training process, we adopt the
urban micro (street canyon) scenario in [3]. For the meta-
adaptation process, the pre-trained models are trained and fine-
tuned in the indoor scenario, the urban macro scenario, and the
rural macro scenario. The scenarios differ from each other in
terms of the cell size, the path loss characteristics, the noise
power spectral density, and the height of the BS antennas.
The cell sizes for the indoor, urban micro (street canyon),
urban macro, and rural macro scenarios are set to 25m×25m,
100m× 100m, 500m× 500m, and 1000m× 1000m, respec-
tively. For all of the scenarios, the BS is fixed at the center
of the considered square. The heights of the BS antennas are
set to 5m, 10m, 25m, and 35m, respectively. The shadowing
factors are set to 8.29, 7.82, 7.8, and 8, respectively. We also
adopt the simulation assumptions in [3] to model the channels,
and the rest of the parameters of the proposed simulation
environment are listed in Table IV.

To enable the mobility of UEs, we assume that the UEs
can move with the speed from 0 meters per second (m/s) to
1 m/s within the square. Each subcarrier has ∆f = 2ψ · 15
kHz spacing, where ψ denotes an integer. A resource block
usually consists of 12 consecutive subcarriers [2], hence we
set the bandwidth set of the subchannels as [0.18, 0.18, 0.36,
0.36, 0.36, 0.72, 0.72, 0.72, 1.44, 1.44] MHz.

The network structure of local models is shown in Fig. 2.
The state information is fed in two fully connected feed-
forward hidden layers, which contain 512 and 256 neurons
respectively. Then the PPO network diverges to actor networks
and critic networks. The actor branch contains two layers for
channel choice and power optimization independently, while
the critic branch includes an additional hidden layer with 128
neurons, following which is the value layer for estimating
the advantage function for the output of the actor network.
The meta-training rate for different number of users is 5e−7,
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TABLE I
ENVIRONMENT PARAMETERS

Parameter Value
Antenna gain of the BS 8dB
Antenna gain of the UEs 3dB

Noise figure at the BS 5dB
Noise figure at the UEs 9dB

Number of UEs I 6
Number of UEs for different tasks in meta-learning [2, 4, 8]

Number of subchannels N 10
Height of antenna of the UEs 1.5m

Number of subcarriers in a RB K 12
Carrier frequency fn,∀n ∈ N 6GHz
Cellular transmit power range [0, 24]dBm

Static and circuit power pci , ∀i ∈ I 18dBm
Minimum SINR requirements for BS γC

min 5 dB
Noise power spectral density of indoor scenario -160 dBm/Hz

Noise power spectral density of urban micro scenario -170 dBm/Hz
Noise power spectral density of urban macro scenario -180 dBm/Hz
Noise power spectral density of rural macro scenario -185 dBm/Hz

Shadowing distribution Log-normal
Pathloss and shadowing update Every 100ms

Fast fading update Every 1ms
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Fig. 3. Meta-training reward over the meta-training episodes. The curve
represents the sum reward the agent gets from different tasks.

while the learning rate for meta adaptation is 1e−6. The meta-
learning rate is set relatively small to avoid the overfitting of
the meta model for some specific tasks. The weight for the
loss of the value function c1 and entropy c2 are set as 0.5
and 0.01, respectively. The sample batch size is 256, and the
discount rate for the future reward ξ is set to 0.9. The discount
factor for the advantage function λ = 0.98 in Eq. (11) is set
according to [33].

To verify the performance of the proposed MFRL frame-
work, we set an ablation study and compare the perfor-
mance with the following benchmarks. Note that the network
structure, the advantage function estimation algorithm, and
reinforcement learning related parameters are the same for all
schemes.

1) MRL: Meta reinforcement learning benchmark. The lo-
cal models are pre-trained and inherited from the global

model, but the local models are not averaged by federated
learning.

2) FRL: Federated reinforcement leanring benchmark. The
local models are trained from the random initialization and
averaged by the federated learning every 100 episodes.

3) MFRL early: The early model of the proposed MFRL
framework. The models are stored at half of the meta-
adaptation period, i.e., at 500 episodes to evaluate the fast-
adaptation performance of the proposed framework at the
early stage.

4) MARL: The multi-agent reinforcement learning bench-
mark [17]. The local models are trained from random
initialization and are not averaged by the federated learning
technique. Each UE learns the policy according to the local
observations and receives the global reward, but cannot
communicate the model with the centralized cloud or other
UEs.

Fig. 3 demonstrates the reward for different tasks (with
different amounts of users) during the meta-training process.
Particularly, the meta reward is the sum of the reward of the
resource allocation tasks for 2, 4, and 8 UEs in the urban
micro scenario. The increase in the meta reward demonstrates
the effectiveness of the meta-training. It is also noted that
with the meta-training step increasing over 100 episodes, the
sum reward keeps stable. This is because the meta-training
process is to train a global and generalized model which
can be adapted to different tasks, but the performance of the
generalized model itself cannot be as well as the models for
the specific tasks.

Fig. 4 shows the training reward comparison over different
episodes of meta-training, from which we can see that the
meta-training could lead to faster convergence and higher
rewards. Since the local UEs are assigned with the same
initialization, the conflict may exist during the channel as-
signment. Hence, at the start of the training stage, we can
observe a low and negative reward until 200 to 300 episodes
in all schemes due to the punishment. Nevertheless, with the
execution of the training progress, we can see the lower policy
entropy of the proposed scheme, which reveals the stable
policy and faster convergence performance. The proposed
algorithms with meta-learning can achieve faster convergence
and higher training rewards, while the conventional bench-
mark needs more iterations to find the appropriate actions
to converge. Meanwhile, the better generalization capability
of the proposed MFRL framework brings higher system EE,
verifying the fast adaptation by the meta-learning is robust to
different scenarios.

To further verify the robustness of the trained local models,
we set different simulation settings under each scenario. At
each random testing user distribution, the system EE is aver-
aged by 100 testing steps with fast-fading channel updates.
Fig. 5 illustrates the testing performance for 10 random
user distributions. It is noted that the UEs are randomly
distributed in the square range. Compared to the indoor
scenario, the distributions of UEs in urban and rural scenarios
vary more significantly, leading to greater differences in terms
of large-scale fading and path loss. The EE is unstable for
different UE distributions, and we use average EE to reveal
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(b) Urban macro scenario.
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(c) Rural macro scenario.

Fig. 4. Training performance comparison of the proposed algorithm and benchmarks in three different scenarios.
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loc 1 loc 2 loc 3 loc 4 loc 5 loc 6 loc 7 loc 8 loc 9 loc 10
Different user distributions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

in
g 

En
er

gy
 E

ffi
cie

nc
y 

in
 ru

ra
l s

ce
na

rio
 (M

bi
ts

/J) MFRL_early
MRL
FRL
MARL
MFRL

(c) Rural macro scenario.

Fig. 5. Testing snapshots of the proposed algorithm and benchmarks in three different scenarios.
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Fig. 6. Policy entropy of the MFRL and FRL schemes in the indoor scenario.

the robustness of the algorithms. Under these circumstances,
the proposed algorithm still outperforms other reinforcement
learning benchmarks in terms of average system EE. We also
store the local models at 500 episodes to test the performance
of the algorithms at the early training stage. As expected, the
proposed MFRL framework outperforms the MRL and FRL
algorithms. Moreover, even if MFRL early models are only
trained half of the whole training period, they still provide
good performances compared with the models that are not
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Fig. 7. Testing averaged EE performance of 100 random user distributions
over the number of model averaging times.

pre-trained, which verifies the fast adaptation ascendancy of
the meta-learning.

To evaluate the convergence speed and the stability of
the policy, and verify the fast adaptation performance of the
proposed MFRL framework, we use the policy entropy as
the measure. The policy entropy is an dimensionless index
in policy gradient based reinforcement learning algorithms,
to measure the randomness of a policy. As shown in Fig. 6,
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Fig. 8. Testing energy efficiency over the different number of users.

the lower entropy of the MFRL algorithm verifies that meta-
learning can speed up the training process and achieve con-
vergence earlier. It can be observed from Fig. 6 that the policy
entropy is decreased and remains stable from 500 episodes,
which represents that the policy is stable from around 500
episodes. The MFRL framework also achieves a similar lower
entropy and faster convergence compared with the benchmarks
in other scenarios, and the results are omitted due to space
limitations.

Fig. 7 concludes the sum EE in different scenarios. The
results are averaged according to 100 random user distribu-
tions. It is clear that the proposed MFRL framework achieves
the highest sum EE in all of the scenarios, which verifies the
robustness of the proposed scheme. Additionally, although the
models for the MFRL early benchmarks are trained half of the
whole adapting period, they still achieve better performance
compared with the FRL and MARL models. The MFRL
framework and the FRL scheme enable the UEs to cooperate
with each other and benefit the local models, hence also
improving the overall system EE.

Fig. 8 shows the testing sum EE of the system over a
different number of users. Note that for different users, the
training parameters may differ slightly for the best perfor-
mance. It is obvious that as the number of UEs increases,
more subchannels can be accessed and the sum system EE can
be improved. However, the improvement slows down as the
number of UEs increases, since the bandwidth of subchannels
in the proposed scenario is not equal, and when the number
of UEs is less than the subchannels, it would access the
subchannel with larger bandwidth for higher EE.

V. CONCLUSION

In this paper, a distributed energy-efficient resource allo-
cation scheme was developed. The system energy efficiency
was maximized by jointly optimizing the channel assignment
and the transmit power of user equipments. The formulated
non-convex problem was solved by the proposed robust meta
federated reinforcement learning framework to overcome the

challenge of the computational complexity at the base station
and the transmission cost by the local data. Quantity analysis
and numerical results showed that the meta training model
has good generalization ability under different scenarios,
even if the scenarios and tasks are different. Meanwhile,
the combination of federated learning and meta-learning with
reinforcement learning enables the decentralized algorithm a
better performance on convergence and robustness.
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