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Abstract—We propose a scheme for the concomitant design of
hybrid beamforming and per-carrier transmit power allocation
to mitigate the effect of random path blockages in coordinated
multi-point (CoMP) systems using orthogonal frequency division
multiplexing (OFDM) in millimeter-wave (mmWave) channels.
In order to optimize both the beamformers and power allocation
while dealing simultaneously with outage minimization and sum
rate maximization (SRM) requirements, a regularized sum-of-
outage minimization problem is formulated. The problem is
then transformed into an empirical risk minimization (ERM)
problem, solved via block stochastic learning and manifold
optimization, with required learning rates derived and tuned to
guarantee convergence. The method, which demands only a few
radio frequency (RF) chains and relies only on knowledge of
blockage probabilities, is shown via simulation results not only
to outperform state-of-the-art (SotA) alternatives, but to actually
achieve outage probabilities comparable to those a fully digital
CoMP-SRM scheme with perfect knowledge of instantaneous
blockages.

Index Terms—Block stochastic learning, coordinated
multi-point (CoMP), manifold optimization, millimeter-wave
(mmWave) systems

I. INTRODUCTION

H IGH-FREQUENCY bands, in particular in the spectrum
referred to as mmWave bands, ranging from 24 [GHz] to

300 [GHz], play a key role in providing sufficient bandwidths
to satisfy the requirements of fifth-generation mobile commu-
nication systems (5G) [1]–[3]. Similarly, in beyond 5G and
sixth-generation mobile communication systems (6G), further
utilization of the mmWave and sub-THz bands will be crucial
to address spectrum shortage and meet even more sophisticated
requirements [4]–[6].

Wireless communications at high-frequency bands suffer,
however, from severe signal attenuation owing to larger free-
space propagation losses [7], [8]. Fortunately, mmWave sys-
tems can be equipped with more antenna elements than
microwave systems, due to the shorter wavelengths of car-
riers. Therefore, beamforming schemes operating with large
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antenna arrays that achieve high directivity can compensate for
power losses, making multiple-input multiple-output (MIMO)
technologies fundamental in future wireless communication
systems [9]–[11].

The first contributions in this direction relied on fully digital
beamforming approaches that require systems to be equipped
with the same number of radio frequency (RF) chains as
the number of antenna elements. In large MIMO systems,
however, fully digital architecture leads to high cost and high
power consumption demands, which limits the practicality of
their implementation. In response to the latter, hybrid beam-
forming methods, which require fewer RF chains than antenna
elements, have gained much attention as a practical alternative
for mmWave MIMO [12]–[15]. However, the highly directive
transmissions in sharp beams are prone to sudden and rapid
attenuation due to blockages in propagation paths, caused by
small objects such as pedestrians or vehicles [16]–[20].

In order to overcome this challenge, new blockage-robust
transmission strategies have been actively discussed recently.
An example of this is CoMP transmission, whereby multiple
synchronized base stations (BSs) transmit data cooperatively,
which was shown to maintain high data rates even in the
presence of blockages [21], [22].

However, CoMP systems do not really resolve the path
blockage problem, but rather avoid it by adding more diversity
to the channel. The approach therefore detracts efficiency from
the network, since power continues to be transmitted towards
blocked paths. In contrast, blockage prediction and mitigation
strategies have been proposed [23]–[25] to directly address
the path blockage problem. To cite a few examples, methods
based on the spatial correlation between mmWave and sub-6
[GHz] channels [23], visual information from cameras [24],
and in-band signatures [25] were proposed, which predict
instantaneous blockage occurrence or their probabilities.

As for mitigation approaches, although techniques based on
handover management have been proposed [26], that strategy
may lead to rapid throughput degradation and considerable de-
lays due to need for re-establishing links when prediction fails,
such that recent work has rather focused on the incorporation
of blockage predictions into CoMP transmission methods
[27]–[31]. As an example, a robust CoMP transmission method
was proposed in [27], which is based on the design of hybrid
beamforming with blockage probability, solved by a worst-
case optimization approach, aiming at maximizing the total
system data rate. Despite the elegance of the design, due to
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the high computational complexity, the method can mitigate
blockage effects on line-of-sight (LOS) paths only, which
results in frequent outages for some users and, consequently,
sub-optimal quality of service (QoS).

In turn, cooperative beamforming designs to guarantee QoS
under blockage occurrences on both LOS and non-line-of-
sight (NLOS) paths were proposed in [28]–[31], which employ
stochastic learning methods to minimize outage probabilities
with respect to prescribed target rates, relying on knowledge
of blockage probabilities. In particular, a fully digital outage
minimization (OutMin) beamforming was first presented in
[28], where a sum-of-outage minimization problem was for-
mulated and cast into an empirical risk minimization (ERM)
problem, efficiently solved via a mini-batch stochastic gradient
descent (MSGD) approach. The extension of the latter to a
hybrid design was then proposed in [29], and the approach was
modified in [30] to also exploit reflected intelligence surfaces
(RISs), by employing a block mini-batch stochastic gradient
descent (BMSGD) technique to design beamforming vectors
and reflection coefficients jointly.

A limitation of the aforementioned blockage-robust miti-
gation methods [28]–[30] is, however, that they all consider
single carrier transmission over frequency flat channels, mak-
ing them unsuitable to mmWave systems, which operate over
much wider bandwidths than sub-6 [GHz] systems and are
affected by frequency selectivity. While the effect of the
frequency selectivity can be effectively mitigated by equaliza-
tion over orthogonal frequency division multiplexing (OFDM)
transmissions, conventional methods based on this approach
exhibit high outage probabilities due to the per-carrier transmit
power allocation that does not consider blockage probability
and the distribution of the sum rate over subcarriers.

In order to address this limitation, in [31], a BMSGD-
based scheme for the joint design of OutMin fully digi-
tal beamformers and optimal transmit power allocation was
proposed for multi-carrier OFDM mmWave MIMO systems,
which was shown to successfully combat both path blockage
and frequency selective effects of the channel. Still, the method
proposed in [31] has two drawbacks; requiring a fully digital
architecture and exhibiting a decrease in total system data rate
the same as single carrier approaches [29], [30].

From all the above, it is natural to consider the joint
design of per-carrier power allocation, baseband beamforming,
and analog beamforming to guarantee QoS requirement while
maintaining a high total system data rate for mmWave OFDM
systems, which is the novelty of this article compared with our
previous work [31]. We therefore extend the latter approach
to a flexible hybrid beamforming alternative, which is further-
more designed to minimizing both outage and loss in data rate.
Simulation results confirm that the proposed scheme achieves,
using only blockage probabilities and a few RF chains, outage
probabilities comparable to those of a fully digital CoMP-sum
rate maximization (SRM) transmission scheme under the ideal
case where full knowledge of actual instantaneous blockage
occurrences is available. These results also show that the
proposed scheme achieves higher total system data rates than
state-of-the-art (SotA) schemes while maintaining comparable
outage probabilities.

The method is further optimized by the derivation and
tuning of the convergence-guaranteeing learning rates, as well
as with a discrete Fourier transform (DFT)-based initialization
beamforming, which are also shown via simulations to be
effective. The contributions of the article can be summarized
as follows:

• A sum-outage-probability minimization problem is for-
mulated, including per-user data rates aggregated over
multiple subcarriers, manifold constraints, and a regular-
izer to increase the data rate, which ultimately enables
joint hybrid robust beamforming design and power allo-
cation, and balancing outage probability and total system
data rate.

• A new BMSGD approach is developed to efficiently
solve the aforementioned problem, yielding hybrid (both
baseband and analog) beamformers for all subcarriers and
users with optimal powers.

• The learning rates required to guarantee the convergence
of the method are derived and tuned to obtain the lowest
empirical risks, both for outage probabilities and rate
losses.

• A simple initialization beamforming using the DFT ma-
trix is introduced, which is also shown to be effective in
improving the overall performance of the scheme.

Notation: The following notation is used throughout the article.
Matrices and vectors are denoted by upper- and lower-case
bold letters, as in X and x, respectively. The j-th column
of a matrix X is denoted by [X]j . The sets of integers, real
numbers, and complex numbers are represented by N, R, and
C, respectively. The operators (·)T, (·)∗, (·)H, and Tr(X)
respectively denote the transpose, conjugate, complex conju-
gate transpose, and trace of the argument. A diagonal matrix
obtained from a vector x, and a block diagonal matrix obtained
from given matrices are respectively denoted by diag(x) and
blkdiag(· · · ). An N -dimensional vector whose elements are
all 1, and the identity matrix of size N , are respectively
denoted by 1N and IN . The operators ⊗ and ◦ denote the
Kronecker and Hadamard products, respectively. The functions
vec(·) and ∥ · ∥p, respectively, denote vectorization and the lp
norm of the argument. The real part of a complex number
is denoted by R(·), and the circularly symmetric complex
normal distribution with mean µ and variance σ2 is denoted
by CN

(
µ, σ2

)
.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Communication Scenario

Consider a CoMP downlink system employing OFDM
transmission, as shown in Fig. 1, where multiple BSs, each
equipped with an uniform planar array (UPA) comprising of
Nt antenna elements and a fully connected structure with NRF

RF chains, cooperatively serve multiple single-antenna user
equipments (UEs). The BSs are synchronized and connected
to a common central processing unit (CPU), which designs
baseband and analog beamformers via a fronthaul. It is as-
sumed that space division multiple access (SDMA) enables
access to multiple UEs, and all subcarriers are assigned to
each UE.
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Fig. 1. A CoMP system, in which
multiple BSs cooperatively serve mul-
tiple single-antenna UEs.
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DownlinkUplink
Channel Estimation Data Transmission

Actual CSI: hb,u[k]

ωc
b,u = 0

BS b

UE u

Fig. 2. A TDD system, in which chan-
nel parameters are perfectly estimated
during uplink.

It is assumed that the uplink and downlink communications
are separated via time-division duplexing (TDD), such that
the uplink and downlink channels can be assumed reciprocal,
except for path blockages1, as illustrated in Fig. 2.

The path gains, angle of departures (AoDs), and multipath
propagation time delays are assumed to be perfectly estimated
from uplink signals. Following related literature, it is assumed
that propagation paths may be suddenly blocked by surround-
ing obstacles, with probabilities ranging from 20 % to 60 %
[16], [18], and that the blockage probability of each path can
be perfectly estimated using any blockage prediction method
[24], [25]. These assumptions imply that the available channel
state information (CSI) may differ from the actual CSI during
data transmissions, even under perfect channel estimation.

B. Channel Model

Let B ∈ N and U ∈ N denote the total number of BSs and
UEs, while b ∈ B ≜ {1, 2, . . . , B} and u ∈ U ≜ {1, 2, . . . , U}
denote the BS and UE indices, respectively. It is assumed that
the mmWave channel between the b-th BS and the u-th UE
contains a random number Cb,u of clusters, with Cb,u modeled
as Cb,u ∼ max(1,Possion(λ)) with the intensity parameter λ
[32].

Consequently, the estimated channel ĥb,u[d] ∈ CNt between
the b-th BS and the u-th UE at the d-th delay tap can be
modeled as [33]

ĥb,u[d] =
1√
Cb,u

[Cb,u∑
c=1

gcb,up(dTs − τc)aNt(θ
c
b,u, ϕ

c
b,u)

]
, (1)

where d ∈ {0, 1, . . . , D− 1} denotes the delay tap index, and
D ∈ N denotes the total number of delay taps; the path gain of
the c-th cluster is modeled as gcb,u ∼ CN (0, 10−PLc

b,u/10), with
the associated path loss PLc

b,u ∈ R calculated as PLc
b,u = α+

10β log10 (db,u) + γ, in which db,u denotes distance between
the b-th BS and the u-th UE, and the parameters α, β, γ are
listed in [32, Table I]; the function p(dTs − τc) represents
the equivalent pulse response at the transmitter and receiver,
calculated by the sampling duration Ts and time delay at the
c-th cluster τc. Without loss of generality, the index c = 1,
and the time delay τ1 = 0 represent the LOS components.

1Although path blockage at the uplink also happens, modeling the phe-
nomenon is unnecessary for design purposes since uplink blockages merely
prevent the corresponding paths to be known/exploited at the downlink [28].

In the above, the vector aNt
(θcb,u, ϕ

c
b,u) ∈ CNt denotes the

array response as a function of the elevation θcb,u and azimuth
ϕc
b,u of AoD of the c-th cluster from the b-th BS toward the

u-th UE and is given by

aNt(θ
c
b,u, ϕ

c
b,u)

= cNh
t

(
1
2 sin(θ

c
b,u) cos(ϕ

c
b,u)

)
⊗ cNv

t

(
1
2 cos(θ

c
b,u)

)
, (2)

where Nh
t ∈ N+ and Nv

t ∈ N+ respectively denote the
number of antenna elements in the horizontal and vertical
directions, satisfying Nt = Nh

t N
v
t , and cN ∈ CN is the

uniform linear array (ULA) response, given by [33]

cN (x) ≜ 1√
N

[
1, ej2πx , · · · , ej2π(N−1)x

]T∈ CN . (3)

Let k ∈ K ≜ {0, 1, . . . ,K − 1} denote the subcarrier
indices, where K ∈ N+ is the total number of available
subcarriers. Using the relationship between the delay and
frequency domains described by the Fourier transform, the
mmWave channel between the b-th BS and the u-th UE at the
k-th subcarrier can be modeled as

ĥb,u[k] =

D−1∑
d=0

ĥb,u[d]e
−j 2πkd

K . (4)

During data transmission, objects such as human bodies or
vehicles block the estimated path [7], [16]–[20] with proba-
bility pcb,u. These blockages are modeled using the random
variable ωc

b,u ∈ {0, 1}, which are assumed to follow a
Bernoulli distribution, typical in related work on blockage
robust CoMP [27]–[30], [34]. The mean of the Bernoulli
distribution corresponding to the c-th cluster from the b-th
BS toward the u-th UE is blockage probability pcb,u. During
data transmission, the actual channel between the b-th BS and
u-th UE at the d-th delay tap and the k-th subcarrier can be
modeled as

hb,u[d] =
1√
Cb,u

[Cb,u∑
c=1

ωc
b,ug

c
b,up(dTs − τc)aNt(θ

c
b,u, ϕ

c
b,u)

]
,

(5)

hb,u[k] =

D−1∑
d=0

hb,u[d]e
−j 2πkd

K . (6)

Because the sampling duration Ts specified in 5G new radio
(NR) is significantly shorter than the continuous blockage time
revealed in some studies [17], [18], it is assumed that all the
delayed rays of the c-th cluster experience the same blockage.
Hence, if ωc

b,u is zero, the path gain of the c-th cluster from
the b-th BS toward the u-th UE disappears completely for any
subcarrier. The actual channel in the data transmission phase
hb,u[k] differs from the estimated channel ĥb,u[k] unless all
estimated paths are available ωc

b,u = 1, ∀b, u, c.

C. Received Signal Model

Let fb,u[k] ∈ CNRF and Vb ∈ CNt×NRF denote the
baseband beamforming vector from the b-th BS toward the
u-th UE at the k-th subcarrier and the analog beamforming
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matrix at the b-th BS, respectively. The received signal at the
u-th UE and the k-th subcarrier can be represented as

yu[k] =
∑
b∈B

hH
b,u[k]Vb

∑
u∈U

fb,u[k]xu[k] + nu[k] (7)

= hH
u [k]Vfu[k]xu[k]+

∑
u′∈U\u

hH
u [k]Vfu′ [k]xu′ [k] + nu[k],

where the channel vector hu[k], the baseband beamforming
vector fu[k], and the analog beamforming matrix V are
respectively defined as hu[k] ≜

[
hT
1,u[k], . . . ,h

T
B,1[k]

]T ∈
CBNt , fu[k] ≜

[
fT1,u[k], . . . , f

T
B,1[k]

]T ∈ CBNRF , and V ≜
blkdiag (V1, . . . ,VB) ∈ CBNt×BNRF ; xu[k] ∈ C are the
transmitted data symbols taken from a zero-mean unit-energy
constellation, and nu[k] ∼ CN (0, σ2

u[k]) denotes additive
white Gaussian noise (AWGN), at the u-th UE and the k-th
subcarrier.

D. Proposed Problem Formulation

In view of the system and signal models of the previous
subsections, consider the case when the system has only
knowledge of blockage probabilities, such that the achievable
data rate of each user is probabilistic quantity dependent on
the actual (unknown) blockage realization. In this case, actual
rate-maximization is impossible, and since we are considering
a multi-band system, the most reasonable option to guarantee
QoS is to minimize outage probability of the sum of data rates
over all subcarriers.

It is known [31], however, that such an OutMin scheme
tends to lead to a loss of total sum data rate, in comparing
conventional approaches [21], [22]. We therefore propose a
beamforming design considering the balance between outage
minimization and sum rate-maximization, formulated as the
following regularized sum-of-outage-probability minimization
problem

minimize
V, f [k],∀k∈K

∑
u∈U

(1− µ)Pr

{∑
k∈K

Ru[k] < ru

}
+ µℓu, (8a)

subject to
∑
u∈U

∑
k∈K

∥Vbfb,u[k]∥22 ≤ Pmax,b, ∀b ∈ B, (8b)

Vb ∈ MNtNRF , ∀b ∈ B, (8c)

where f [k] ≜
[
fT1 [k], . . . , fTU [k]

]T ∈ CUBNRF , while Pmax,b,
ru, Ru[k] denote the maximum transmit power at the b-th BS,
the target rate for the u-th UE, and the achievable data rate at
the k-th subcarrier of the u-th UE, respectively.

For clarity, the data rate in equation (8a) is given by
Ru[k] = log2{1 + Γ(hu[k], f [k],V)} with the signal-to-noise
interference ratio (SINR) given by

Γ(hu[k], f [k],V) =

∣∣hH
u [k]Vfu[k]

∣∣2∑
u′∈U\u

|hH
u [k]Vfu′ [k]|2 + σ2

u[k]
. (9)

The set MNtNRF in constraint (8c) is the Riemann circle
manifold defined as

MNtNRF≜
{
x∈CNtNRF | |xi|=1, (i=1, . . . , NtNRF)

}
. (10)

The second term ℓu in the objective function (8a) is a
regularizer introduced to control eventual losses in total sum
rate resulting from the outage-centric approach, with the
scalar µ ∈ R+ denoting, as usual, a hyper-parameter to be
determined later. Details of the motivation to employ such
regularizer are explained in the next section.

III. PROPOSED HYBRID BEAMFORMING DESIGN

In this section, we propose methods to solve the problem
(8), starting however with a brief comparative review of the
approach generally taken in related literature, with the aim of
establishing a reference for the future purpose of performance
assessment.

A. Conventional Approach: Per-carrier Outage Minimization

In conventional methods [29], [30], rather than attempting
to solve the original optimization problem (8), the latter is
first divided into K sub-problems with µ = 0, which implies
that the multi-band nature of OFDM is not explicitly taken
into account. In addition, as described in [31], the mismatch
between the estimated and actual CSI (due to post-estimation
path blockages), and the lack of an analytical expression of the
rate distribution, requires the relaxation of each sub-problem
into

minimize
V,f [k]

∑
u∈U

Pr
{
Ru[k] <

ru
K

}
, (11a)

subject to
∑
u∈U

∥Vbfb,u[k]∥22 ≤ Pmax,b

K
, ∀b ∈ B, (11b)

Vb ∈ MNtNRF , ∀b ∈ B. (11c)

Notice that the solution of this problem is bound to be sub-
optimal in terms of outage probability itself, since the latter
objective is not minimized over the ensemble of subcarriers,
leading to the allocation of powers that are oblivious to
sum-rate distributions, including effects of both frequency
selectivity and blockages. Although a beamforming scheme
that inherently integrates optimal power allocation based on
numerical evaluations of sum-rate distributions over all sub-
carriers was proposed in [31], the latter is based on a fully
digital architecture (i.e., NRF = Nt and Vb = INt ) and still
maintains the focus on outage minimization (i.e., µ = 0),
exposing the method to degradation in total system data rate.

In contrast to [31], the proposed formulation in equation
(8) enables the suppression in data rate loss. Furthermore,
if solved directly in a hybrid fashion, the alternative also
results in the optimum power allocation across subcarriers,
yielding a cost-effective mechanism to reduce the sum-of-
outage probability while maintaining a high total system data
rate. This motivates our key contribution, introduced in the
next subsection.

B. Proposed Regularization

In principle, the regularizer ℓu, ∀u can be any outage
function that returns a larger value at a lower data rate. In
order to evaluate sum-rate distribution properly, however, the
regularizer must be stochastic so as to enable the design hybrid
beamforming under a stochastic learning framework only.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3337344

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

We therefore consider the regularizer defined by

ℓu ≜ Pr

{∑
k∈K

Ru[k] < r̂u

}
, (12)

where r̂u ∈ R+ denotes the predicted data rate at the u-th UE.
This regularizer implicates that the proposed approach im-

proves data rates by minimizing rate loss probability calcu-
lated as the difference between achievable

∑
k∈K Ru[k] and

predicted data rates r̂u
2.

In what follows, we show an example of a predicted data
rate. Given that minimization of rate loss, defined as the dif-
ference between achievable and ideal data rates, is equivalent
to SRM, the predicted data rate r̂u can be determined by
hybrid beamformers designed with basis on estimated CSI
ĥu[k] consisting of unblocked estimated paths only, which can
be achieved by solving the following SRM problem

maximize
V,f [k],∀k∈K

∑
u∈U

∑
k∈K

log2{1 + Γ(ĥu[k], f [k],V)}, (13a)

subject to
∑
u∈U

∑
k∈K

∥Vbfb,u[k]∥22 ≤ Pmax,b, ∀b ∈ B, (13b)

Vb ∈ MNtNRF , ∀b ∈ B, (13c)

whose solution can be obtained via the quadratic transform
(QT) [35] and any hybrid beamforming designs [13], [15].

Let f̂ [k], ∀k and V̂ denote the optimal solutions for the
optimization problem (13). Then, the predicted data rate r̂u
can be calculated as r̂u =

∑
k∈K log2{1+Γ(ĥu[k], f̂ [k], V̂)},

which can be taken as the ideal data rate for the u-th UE, such
that we may hereafter set ru ≪ r̂u

3.

C. Proposed Approach: Empirical Risk Minimization

In order to evaluate the data rate distribution numerically, we
introduce the indicator function 1(·) with zu ∈ R+, denoting
the scalar representing the data rate, defined as [31]

1

(
zu |

∑
k∈K

Ru[k]

)
=

{
0 if

∑
k∈K Ru[k] ≥ zu

1 otherwise
, (14)

which substituted into problem (8) yields

minimize
V,f [k],∀k∈K

∑
u∈U

Eωc
b,u

[
t1

(
ru, r̂u |

∑
k∈K

Ru[k]
)]

, (15a)

subject to
∑
u∈U

∑
k∈K

∥Vbfb,u[k]∥22 ≤ Pmax,b,∀b ∈ B, (15b)

Vb ∈ MNtNRF , ∀b ∈ B, (15c)

where Eωc
b,u

[·] denotes the expectation of channel realization
caused by path blockages, and the function t1 is defined as

t1(ru, r̂u | zu) ≜ (1− µ)1(ru | zu) + µ1(r̂u | zu). (16)

2Notice that the convex combination of the regularizer and outage proba-
bility is tighter than the weighted rate approach ru → (1− µ)ru + µr̂u for
both standard outage minimization (µ=0) and rate maximization (µ = 1).

3Although the predicted data rate is determined based on the optimization
problem (13) to focus on balancing outage minimization and rate maximiza-
tion rather than hardware limitations in this paper, the total system data rate
can be improved by any predicted data rate greater than the target rate.

Since the indicator function in (14) is not smooth, the
gradient of the objective (15a) can not be directly evaluated.
To circumvent this problem, we introduce the following gen-
eralized smooth-hinge surrogate function ν(·), defined as [31]

ν

(
zu |

∑
k∈K

Ru[k]

)
=


0 if 1−

∑
k∈K

Ru[k]
zu

< 0

1−
∑
k∈K

Ru[k]
zu

otherwise
. (17)

Thanks to the above, the following cost function tν(·) can
be defined as

tν(ru, r̂u | zu) ≜ (1− µ)ν(ru | zu) + µν(r̂u | zu), (18)

which introduced into objective (15a) enables the original
optimization problem (8) to be rewritten as the following ERM
problem

minimize
V,f [k],∀k∈K

∑
u∈U

Eωc
b,u

[
tν

(
ru, r̂u |

∑
k∈K

Ru[k]
)]

, (19a)

subject to
∑
u∈U

∑
k∈K

∥Vbfb,u[k]∥22 ≤ Pmax,b,∀b ∈ B, (19b)

Vb ∈ MNtNRF , ∀b ∈ B, (19c)

that can be solved efficiently, for instance by stochastic ap-
proximation approaches [36].

D. Proposed Solver: Block Stochastic Gradient Descent

If information on the path gain coefficients gcb,u, the AoDs
θcb,u and ϕc

b,u, the time delays τc, and the blockage probabili-
ties pcb,u are available, channels with various blockage patterns
can be generated as training data for stochastic optimization.
In turn, referring on the mini-batch approach [36], the ERM
problem in equation (19) can be reduced to an equivalent
problem by replacing the expectation value with an empirical
mean calculated over the training the data hm

u [k], namely

minimize
V,f [k],∀k∈K

1

M

M∑
m=1

∑
u∈U

tν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
, (20a)

subject to
∑
u∈U

∑
k∈K

∥Vbfb,u[k]∥22 ≤ Pmax,b,∀b ∈ B, (20b)

Vb ∈ MNtNRF , ∀b ∈ B, (20c)

where Rm
u [k] ≜ log2{1 + Γ(hm

u [k], f [k],V)}, and M ∈ N+

denotes the mini-batch size.
Although baseband beamforming vectors for all subcarriers

f [k], ∀k ∈ K and analog beamforming matrices Vb, ∀b ∈ B
should be updated to minimize the empirical risk, it is dif-
ficult to calculate the gradient of the objective function for
all variables. Fortunately, such nonconvex multivariate ERM
problems with manifold constraints can be solved via MSGD,
using either an alternate update approach [29] or BMSGD
algorithms [30].

Since, however, the contributions in [29] and [30] do not
incorporate optimal power allocation over the subcarriers, nor
do they account for the summation inside the hinge function,
we introduce in the sequel a new, purpose-built BMSGD
approach to update such variables efficiently and thus solve
problem (20).
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1) Baseband Beamforming Design: First, the gradient of
the objective function (20a) is calculated for each beamform-
ing vector f [k′], k′ ∈ K, with all the remaining beamforming
vectors f [k], k ∈ K\k′ and analog beamforming matrix V
fixed, using

∇k′tν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
(21)

=


0 if r̂u ≤

∑
k∈K

Rm
u [k]

−βu
∇fΓ

m
u [k′]

1+Γm
u [k′] if ru ≤

∑
k∈K

Rm
u [k]

−Λu
∇fΓ

m
u [k′]

1+Γm
u [k′] otherwise,

,

where βu ≜ 1−µ
r̂u loge 2 , Λu ≜ 1

loge 2 · ( µ
ru

+ 1−µ
r̂u

), Γm
u [k] ≜

Γ(hm
u [k], f [k],V), and ∇fΓ

m
u [k′] denotes the gradient of the

SINR for the baseband beamforming vector f [k′], given by

∇fΓ
m
u [k′] =

Am
u [k′]f [k′]

fH[k′]Ām
u [k′]f [k′] + σ2

u[k
′]

(22)

− fH[k′]Am
u [k′]f [k′](

fH[k′]Ām
u [k′]f [k′] + σ2

u[k
′]
)2 Ām

u [k′]f [k′],

with

Am
u [k] ≜ diag (eu)⊗VHhm

u [k]hm
u

H [k]V, (23)

Ām
u [k] ≜ diag (ēu)⊗VHhm

u [k]hm
u

H [k]V, (24)

where eu ∈ {0, 1}U denotes the vector of length U with only
the u-th element equal to 1, and ēu ∈ {0, 1}U denotes its
complement, such that eu + ēu = 1U .

With possession of the gradient in equation (21), the corre-
sponding baseband beamforming vector f [k′] is updated as

f (i)[k′]= f (i−1)[k′]−αf
i [k

′]

M

M∑
m=1

∑
u∈U

∇k′tν

(
ru,r̂u |

∑
k∈K

Rm
u [k]

)
,

(25)
where αf

i [k] ∈ R+ and f (i)[k] ∈ CUBNRF denote the learning
rate, and the baseband beamforming vector at the i-th iteration
and the k-th subcarrier, respectively.

On the matter of baseband beamforming, similarly to the
fully digital approach of [31], after updating one vector
f [k′], k′ ∈ K, the vectors for all subcarriers f [k], ∀k ∈ K are
projected onto the feasible region by normalizing to satisfy
power constraints. The baseband beamforming for each sub-
carrier is sequentially updated following these operations with
the same training dataset hm

u [k], with m = {1, . . . ,M}, ∀k, u,
in order to combine the beamforming design with power
allocation over subcarriers based on the stochastic learning
of blockage effects.

2) Analog Beamforming Design: After updating all base-
band beamforming vectors, the analog beamforming matrix is
updated using the same training dataset. The received signal is
rewritten using the relation vec(AXB) = (BT ⊗ A)vec(X)
so as to enable the calculation of the gradient of the objective
function (20a) for the analog beamforming, which is given by

yu[k] =
{
(xu[k]fu[k])

T ⊗ hH
u [k]

}
vec(V) (26)

+
∑

u′∈U\u

{
(xu′ [k]fu′ [k])T ⊗ hH

u [k]
}
vec(V) + nu[k].

The analog beamforming vector vec(V), which has a sparse
structure representing CoMP transmission, can be decom-
posed into the non-sparse vector v ≜ vec(Ṽ) ∈ CBNtNRF

and the matrix W ∈ {0, 1}B
2NtNRF×BNtNRF , where Ṽ ≜

[V1, . . . ,VB ] ∈ CBNt×BNRF satisfying vec(V) = Wv. The
Euclidean gradient of the objective function (20a) for the
analog beamforming vector v can be calculated as

∇vtν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
(27)

=


0 if r̂u ≤

∑
k∈K

Rm
u [k]

−βu

∑
k∈K

∇vΓ
m
u [k]

1+Γm
u [k] if ru ≤

∑
k∈K

Rm
u [k]

−Λu

∑
k∈K

∇vΓ
m
u [k]

1+Γm
u [k] otherwise

,

where ∇vΓu[k] denotes the gradient of the SINR for the
analog beamforming vector, given by

∇vΓu[k]=
Bm

u [k]v

vHB̄m
u [k]v+σ2

u[k]
− vHBm

u [k]v · B̄m
u [k]v

(vHB̄m
u [k]v+σ2

u[k])
2
, (28)

with

Bm
u [k] ≜ WH

(
f∗u [k]f

T
u [k]⊗ hm

u [k]hm
u

H[k]
)
W, (29)

B̄m
u [k] ≜ WH

( ∑
u′∈U\u

f∗u′ [k]fTu′ [k]⊗ hm
u [k]hm

u
H[k]

)
W. (30)

Unlike the previous baseband beamforming process, here
updates based on Euclidean gradients is insufficient, since
manifold optimization [37] must be performed to satisfy the
unit modular constraints (20c) defined by the Riemann circle
manifold in (10). In this case, the tangent space at a given
x ∈ MNtNRF can be defined as in [29], while the Riemann
gradient can be expressed as an orthogonal projection of the
Euclidean gradient

∇Rie
v tν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
= ∇vtν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
−R

{
∇vtν

(
ru, r̂u |

∑
k∈K

Rm
u [k]

)
◦ v∗

}
◦ v, (31)

such that the analog beamforming vector can be updated as

v(i)=Retr

[
v(i−1)− αv

i

M

M∑
m=1

∑
u∈U

∇Rie
v tν

(
ru, r̂u |

∑
k∈K
Rm

u [k]
)]
,

(32)
where αv

i ∈ R+ and v(i) ∈ CBNtNRF denote the learning
rate and the analog beamforming vector at the i-th iteration,
respectively, and Retr[·] is a retraction operation to satisfy the
unit modular constraints in equation (20c).

We summarize the proposed OutMin hybrid beamforming
design in Algorithm 1, where f ini[k] and vini denote the initial
baseband and analog beamforming for stochastic learning,
respectively.
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Algorithm 1 BMSGD-based hybrid beamforming design

Input: gcb,u, ϕc
b,u, θcb,u, τc, Ts, pcb,u, f ini[k], vini, ∀b, u, c, k

Output: fopt[k], ∀k, vopt

1: Initializing v(0) = vini

2: Initializing f (0)[k] = f ini[k], ∀k
3: for i = 1, 2, . . . , IBMSGD do
4: Generate training data hm

u [k],m=1, ...,Mmini, ∀u, k
5: Determine update order randomly K′={k1, . . . , kK}
6: for k′ = k1, k2, . . . , kK do
7: Update f (i)[k′] following equation (25)
8: Projection of f (i)[k], ∀k onto the feasible region
9: end for on k′

10: Update the vector v(i) following equation (32)
11: Retraction v(i) = Retr(v(i))
12: Projection of f (i)[k], ∀k onto the feasible region
13: Go to line 14 if convergence before i = IBMSGD
14: end for on i
15: fopt[k] = f (i)[k], ∀k
16: vopt = v(i)

3) Initial Beamforming Design: It is well-known [38] that
the convergence behavior of stochastic learning methods can
be significantly affected by the initial point used to kick-
start the optimization process. It is therefore worthwhile to
briefly discuss a suitable initialization alternative, especially in
the case of hybrid designs where the unit modular constraint
imposed onto the analog beamforming component makes the
design of initializers more challenging.

In order to satisfy such constraints, we first select analog
beamforming vector among the column vectors of the DFT
matrix D ≜ [d1, · · · ,dNt

] ∈ CNt×Nt , and then align them
with the estimated channels via the inner products ∥ĤH

b [k]di∥2
between the channel matrix Ĥb[k] ≜

[
ĥb,1[k], . . . , ĥb,U [k]

]
∈

CNt×U and each i-th column di ∈ CNt of the DFT matrix.
Denoting the indices of the columns of the DFT matrix

by D, and the indices of vectors assigned to the analog
beamformer by V , we can concisely describe the j ∈
{1, 2, . . . , NRF}-th column of the initial analog beamformer
at the b-th BS as

[Vini
b ]j = argmax

di,i∈D\V

∑
k∈K

∥ĤH
b [k]di∥2. (33)

Finally, the initial baseband beamformer is then obtained
based on the maximum ratio transmission (MRT) criterion to
maximize signal-to-noise ratio (SNR), which contributes to
both outage minimization and rate maximization, namely

f iniu [k] = (ĥH
u [k]V

ini)∗, (34)

where Vini ≜ blkdiag(Vini
1 , . . . ,Vini

B ) and f iniu [k] is normal-
ized to satisfy the power constraints, considering equal power
allocation over the subcarriers.

E. Learning Rates for Convergence Guarantee
It is well known that sufficient conditions for the conver-

gence of stochastic learning algorithms with shrinking learning
rates αi are [39]

∞∑
i=1

αi → ∞,

∞∑
i=1

α2
i < ∞. (35)

In turn, the Lipschitz criterion [38] ensures the convergence
of the BMSGD algorithm by adjusting the learning rate
via αi = ρ/(

√
i · L⋆), where ρ ∈ R and L⋆ denote the

scaling coefficient and lower bound of the Lipschitz constant,
respectively. In what follows we therefore derive a lower
bound on the Lipschitz constants L⋆

f and L⋆
v , to be respectively

used in baseband and analog beamforming, so as to obtain the
learning rates αf

i [k], ∀k and αv
i , that ensure the convergence

of Algorithm 1.
Let ∇2f be the Hessian of a generic objective function,

then, as discussed in [29], it can be shown using the Taylor
theorem that the lower bound on the Lipschitz constant is given
by

L⋆ =
∑
u∈U

λmax(∇2f), (36)

where λmax(·) denotes the largest eigenvalue.
It follows that the largest eigenvalues of the Hessians ∇2

k′tνu

and ∇2
vtνu

of the objective function (20a) with respect to
the baseband and the analog beamformers for the u-th UE,
respectively, satisfy the following inequalities:

λmax(∇2
k′tνu

) ≤ 3Λu
(BNtNRF)

2

σ4
u[k

′]
∥ĥu[k

′]∥42
∑
b∈B

Pmax,b,

(37a)

λmax(∇2
vtνu

) ≤ 5ΛuBNtNRF

(∑
b∈B

Pmax,b

)2∑
k∈K

∥ĥu[k]∥42
σ4
u[k]

,

(37b)

such that the corresponding learning rates that ensure conver-
gence, are given by

αf
i [k

′]=ρ

(√
i3(BNtNRF)

2
∑
b∈B

Pmax,b

∑
u∈U

Λu
∥ĥu[k

′]∥42
σ4
u[k

′]

)−1

,

(38a)

αv
i =ρ

(√
i5BNtNRF

(∑
b∈B

Pmax,b

)2∑
u∈U

Λu

∑
k∈K

∥ĥu[k]∥42
σ4
u[k]

)−1

.

(38b)

Proof: See Appendix.

F. Learning Rates for Performance Improvement

Although the learning rates in (38) guarantee convergence,
they may be quite small depending on the tightness of the
inequalities in (37), which may either cause excessive delays
or, when combined with the shrinking criterion may lead to
a premature termination prior to sufficient learning, resulting
in sub-optimal local solutions. To mitigate this problem, we
propose in the sequel alternative (heuristic) learning rates
which are later shown via simulations to lead to lower outage
probabilities.

The key idea is to tune the learning rates considering
that the gradient at the first iteration is steeper for larger
target rates. Therefore, in order to avoid undesirable updates
caused by exceedingly steep gradients, the proposed learning
rates consist of the inverse function of the target rate, while
subsequently maintaining the shrinking strategy [39] to satisfy

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3337344

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

the convergence criteria (35). Mathematically, the alternative
learning rates are given by

αf
i [k

′] = αv
i =

(
fi(i) · ft

(∑
u∈U

(1− λ)ru + λr̂u
U

))−1

, (39)

where fi ≜ 3
√
(·) and ft ≜

√
(·) are defined from the results

of the hyperparameter tuning.
It will be shown in Section IV-A that the learning rates

obtained from equation (39) lead to a convergence behavior
similar to that obtained via hyperparameter optimization ap-
proaches such as Optuna [40], which is the current SotA.

G. Computational Complexity

The most expensive step of the proposed algorithm is
the computation of the SINR expression for gradients and
sum rates

∑
k∈K Ru[k], ∀u. It is clear from equations (22)

and (28) that the complexity orders of the gradient cal-
culations for the baseband and analog beamformers are
O(max{KUB2N2

RF,KBNtNRF}) and O(KB2N2
t N

2
RF),

respectively, considering the block diagonal structure of matrix
V, the sparsity of matrix W, and all the subcarriers.

The proposed algorithm must also recalculate the sum rate
over subcarriers

∑
k∈K Ru[k] for each beamformer update,

resulting in K times sum rate calculation at each iteration (i =
1, . . . , IBMSGD). In the first update of the baseband beamform-
ing vector f (i)[k1] in Algorithm 1, the complexity order of the
sum rate calculation is the same as that of gradients. In sub-
sequent update phases, the SINR expression, consisting of the
beamformer updated via equation (25) in the previous phase,
requires the complexity order O(max{UB2N2

RF, BNtNRF}).
For the remaining K − 1 subcarriers, calculations of the
SINR require only scalar multiplications (i.e., normalizations),
whose complexity order is O((K − 1)BU). Therefore, the
complexity order of sum rate calculations is O(max{K(K −
1)BU, 2KUB2N2

RF, 2KBNtNRF}) in total at each iteration.
From the above, the complexity order of the proposed algo-

rithm is O(max{K(K−1)BU, 2KUB2N2
RF,KB2N2

t N
2
RF})

owing to the SINR expression, which is common for both data
rates and gradient expressions4. Considering mmWave sys-
tems, which usually employ large or massive antenna arrays,
such that the inequalities N2

t > 2U and B
UN2

t N
2
RF − 1 > K

typically hold, the computational complexity of the proposed
hybrid beamforming design is O(KB2N2

t N
2
RF), which is the

same order as the conventional design of [29], on a per-
subcarrier basis.

IV. PERFORMANCE ASSESSMENT

In this section, we evaluate the proposed OutMin hybrid
beamforming scheme, contrasting its performance with those
of the comparable hybrid alternating minimization (AltMin)
approach of [15], as well as with SotA fully digital beam-
forming techniques such as the MRT, the minimum mean
square error (MMSE) [21], [22], and the conventional OutMin
methods of [28], [31].

4Notice that the complexity order to calculate the learning rates in (38)
is O(UKBNt) owing to norm calculations for the channels ĥu[k], ∀u, k,
and the training data generation step requires additions only. Therefore, the
complexity of the proposed algorithm is determined by gradient calculations.

In order to serve as a reference lower bound on the achiev-
able outage probability, comparisons with an ideal CoMP-
SRM transmission scheme with perfect knowledge of the
actual CSI hb,u[k], ∀b, u, k and their instantaneous blockages
is also offered.

In our computer simulations we consider a square cell with a
width of 100 [m] and B = 4 BSs located at the corners, which
cooperatively serve U = 2 single-antenna UEs randomly
located within the cell. Each BS is equipped with an UPA with
Nh

t = 4 horizontal and Nv
t = 4 vertical antenna elements, but

only NRF = 2 RF chains in the case of hybrid methods 5.
The maximum transmit power per BS is set to Pmax,b = 30

[dBm], and a total of K = 36 subcarriers with W = 240 [kHz]
subcarrier spacing operating at the 28 [GHz] band is assumed,
which leads to a sampling period of Ts = 1/ (WK) = 0.115
[µs] 6. Pulse shaping is performed with a root-raised cosine
roll-off filter with the roll-off rate of 0.8, and the equivalent
pulse response p(dTs−τc) is calculated using the raised cosine
roll-off filter. It is also assumed that the time delay of each
cluster τc follows a uniform distribution in the interval [0, DTs]
as [14], where D = K/4 = 9.

The blockage probability pcb,u of each path follows an
independent equivalence uniform distribution in the interval
[0.2, 0.6] [16], [18], and the AWGN variance at the u-th UE
and the k-th subcarriers is given by

10 log10(σ
2
u[k])=10 log10(1000κT )+10 log10(W )+NF,(40)

where κ denotes the Boltzmann constant, T = 293.15 [K]
denotes the physical temperature, and NF = 5 [dB] is the
noise figure.

The MRT and MMSE beamformers are designed based on
estimated CSI and equal power allocation, which is optimal
under unpredictable CSI errors [41]–[43], to keep fair compar-
isons. Then, these beamformers are computed by normalizing
to the power constraint the expressions

Fb[k] = Ĥ∗[k], (41)

Fb[k] =
(
Ĥ[k]ĤH[k] + U

Kσ2
u[k]

Pmax,b
IBNt

)−1

Ĥ[k], (42)

where the matrices are respectively defined as
Fb[k] ≜ [fb,1[k], . . . , fb,U [k]] ∈ CBNt×U and
Ĥ[k] ≜

[
ĥ1[k], . . . , ĥU [k]

]
∈ CBNt×U .

The hybrid AltMin beamformer [15] is obtained via the
solution of following the Frobenius minimization problem

minimize
V,Fb[k],∀b,k

∑
b∈B

∑
k∈K

∥Fopt
b [k]−VbFb[k]∥2F, (43a)

subject to
∑
k∈K

∥VbFb [k]∥22 ≤ Pmax,b, ∀b ∈ B, (43b)

Vb ∈ MNtNRF , ∀b ∈ B, (43c)

where Fopt
b [k] ∈ CBNt×U denotes a pre-calculated fully

digital beamformer, which for the sake of a fair comparison is

5For the fully-digital methods, obviously NRF = Nt = 16.
6Although we consider only 36 subcarriers to reduce the computational

complexity to a level compatible with laptop computers, the sampling period
is still much shorter than typical blocking times, which are on the order of
milliseconds [17], [18].
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here given by the proposed baseband beamformer of Section
III-D1, with NRF = Nt and Vb = INt , ∀b.

In turn, the fully digital MSGD-based OutMin beamformer,
is obtained from the optimization problem (11) with Nt =
NRF and Vb = INt

, ∀b. Notice that this beamforming achieves
the upper bound on the performance of the conventional hybrid
beamforming proposed in [29].

As for the fully digital BMSGD-based OutMin approach
[31], the beamformers are designed with basis on the optimiza-
tion problem (8) with µ = 0, Nt = NRF, and Vb = INt

, ∀b.
We remark that in all fully digital beamforming designs based
on stochastic learning, the initial beamformer is obtained via
the MMSE approach summarize by equation (42), and the
mini-batch size is set to M = 16 in all stochastic learning
approaches.

In the ideal CoMP-SRM scheme, fully digital beamforming
is designed via the optimization problem (13) with Nt = NRF,
Vb = INt , ∀b, and actual CSI hu[k], as described in equation
(6), including realizations of blockage patterns ωc

b,u, ∀b, u, c.
Note that CoMP transmissions in [27] can achieve the same
outage probabilities and total system data rate as the ideal
scheme if worst-case optimization is solved with fully digital
architecture NRF = Nt and realizations of blockage patterns
ωc
b,u, ∀b, u, c.

A. Convergence Behavior
Let us start by assessing the convergence of the proposed

approach, capturing in particular the effects of the beamformer
initialization methods described in Section III-D3, the learning
rate mechanisms of Section III-E, and the hyperparameter µ.
To this end, we first compare in Fig. 3 the convergence be-
havior of the proposed OutMin beamforming design algorithm
at the target rate of ru = 20 [Mbps], ∀u, and the specific
hyperparameter µ = 0.1, with the various initialization and
learning rate adaptation schemes.

The horizontal and vertical axes of this figure correspond
to the number of iterations (i.e., training-dataset generations)
and the objective function in equation (19a), respectively. The
values of the objective function with learning rates that ensure
the convergence in equations (38a) and (38b) are denoted
by lines without markers. Conversely, convergence behaviors
determined by tuned learning rates are denoted by lines
with markers. Curves with dotted line show the convergence
behavior with randomly initialized analog beamforming and
the initial baseband beamforming following equation (34).

The results confirms that Algorithm 1 converges to local
optimal points regardless of the initialization method employed
under the learning rates satisfying the convergence criterion.
The effectiveness of the initialization method described at
Section III-D3 is also corroborated.

The gap between lines with and without markers shows
the gain due to learning rate tuning. In particular, it is
found that if learning rates are tuned via Optuna, the best
convergence behavior is obtained, which confirms both the
necessity of the hyperparameter tuning, and the effectiveness
of the proposed method. For instance, the tuning results for the
proposed approach with initialization via the DFT codebook
are αf

i [k] = 0.0228, αv
i = 0.9837, ∀k, i.

0 100 200 300 400 500 600 700 800 900

Num. of iterations

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

L
os

s
(O

b
je
ct

iv
e

F
u
n
ct

io
n
)

Loss vs. Iterations (B, U , NRF )=(4, 2, 2)

T
u
n
in

g
It
er

at
io

n
s

Learning rate: Lipschitz, Initialization: Random
Learning rate: Lipschitz, Initialization: DFT codebook
Learning rate: Tuning (38), Initialization: DFT codebook
Learning rate: Tuning Optuna, Initialization: DFT codebook

Fig. 3. Convergence behavior with different initial beamforming designs and
learning rates at the target rate of 20 [Mbps].
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Fig. 4. Comparison of convergence behavior with different hyperparameters.

Building onto the findings of Fig. 3, in what follows,
the performance of the proposed approach with initialization
via the DFT codebook and learning rates as in equation
(39) is further assessed, considering the balance between the
performance and complexity. In particular, the impact of the
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hyperparameter µ on the convergence behavior of both the
outage probability and the data rate achieved by Algorithm 1
are evaluated in Figs. 4(a) and 4(b), respectively.

For outage probability, Fig. 4(a) confirms that the proposed
algorithm converges to local optimum points within only a few
iterations, regardless of the hyperparameter values, although
the level of outage actually achieved is found to be lower
for lower values of µ, as can be trivially expected from the
objective function in equation (8a).

In turn, the vertical axis in Fig. 4(b) corresponds to the total
effective data rate for all users

∑
u∈U Ru,eff , with the effective

rate for each user defined as

Ru,eff ≜


0 if

∑
k∈K

Ru[k] < ru,∑
k∈K

Ru[k] otherwise.
(44)

It can be seen from the results of Fig. 4(b) that, complemen-
tary to the findings in Fig. 4(a), a higher effective aggregate
rate is achieved with larger values of µ in the range where
0 ≤ µ ≤ 0.4, again as expected from the formulation of the
problem (8), such that altogether, the results of Fig. 4 demon-
strate that the proposed regularized formulation is suitable for
hybrid beamforming design to improve both outage probability
and data rate.

To elaborate, we emphasize that the results of the proposed
method with µ = 0 are equivalent to SotA OutMin approaches
such as those in [28], [31], which achieve the lowest outage
probabilities at the expense of decreased data rates. In con-
trast, the proposed regularized OutMin approach achieves low
outage probabilities, comparable to those of previous methods
[28], [31], while avoiding data rate losses.

In the following subsection, the proposed approach with
µ = 0.1 is evaluated in more detail, considering different
values of target rates.

B. Outage and Rate Performance
The improvement achieved with the proposed method in

terms of both outage probability and effective data rate is
assessed under various system conditions in Fig. 5. To that
end, we first compare the outage probabilities of the proposed
and SotA schemes directly in Fig. 5(a), with the performances
of fully digital and hybrid beamforming methods depicted in
white and black markers, respectively. The results confirm
that all BMSGD-based OutMin approaches achieve lower
outage probabilities than SotA alternatives based on other
techniques. In particular, it is found that despite relying only
on statistical path blockage information, the BMSGD-based
OutMin methods come closest to the performance of the ideal
CoMP-SRM with full and instantaneous knowledge of path
blockages, achieving nearly the same result for low target
rates.

As a highlight, the wide gap between the performance of
the proposed approach and the fully-digital MSGD-OutMin
[28], [29] approach demonstrates the effectiveness of the joint
beamforming and power allocation approach here introduced.

It can also be clearly observed that methods such as the
MRT, MMSE, and SRM with estimated CSI, which ignore
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Fig. 5. Outage probability and effective data rate comparison with SotA.

blockages altogether, are found to result in poor outage perfor-
mances compared to the proposed scheme and to all BMSGD-
based OutMin methods in general.

In order to further elucidate the advantage of the proposed
scheme over other BMSGD-based methods [31], we compare
in Fig. 5(b) the sum effective data rates achieved by the
various techniques. These results indicate that, unlike the Out-
Min approach without regularization, the proposed approach
outperforms the MMSE and SRM methods without blockage
information in terms of both outage probability and total
system data rates.

In addition, the narrower performance gap between the fully
digital and hybrid variations of the proposed method than the
that of the AltMin approach [15] illustrates the small loss in
performance paid for the significant reduction in the number
of RF chains achieved by the technique here contributed.
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Fig. 6. cumulative distribution functions (CDFs) of achievable data rates with target rates.

C. Data Rate Statistics

Given that outage probability and sum rate are opposite
performance metrics – in the sense that a high sum rate at
the expense of a high outage is as undesirable as a low outage
at the cost of a low sum rate – we conclude our performance
assessment by evaluating the CDFs of the data rates achieved
by the various methods compared, as shown in Fig. 6, for four
distinct target rates.

It is found that the rate CDFs for the beamformers that are
oblivious to target rates, such as the MRT, the MMSE, and
the SRM with estimated CSI, are similar in all figures, in the
sense that they do not exhibit a reduction in the likelihood of
rates below the target. For this reason, the lines corresponding
to the latter three methods are shown in grey, not to disturb the
visibility of the better-performing and more recent alternative
schemes. In contrast, the curves for all OutMin schemes have a
“knee shape” in the vicinity of the target rate, clearly showing

a reduction in that region of their respective CDFs, which
of BMSGD-based schemes remarkably come close to the
curve corresponding to the ideal CoMP-SRM, the only method
assumed to have full and perfect knowledge of instantaneous
blockages.

The CDFs in the whole region, including the non-outage
region, show that the proposed hybrid approach achieve higher
data rates than the fully digital SotA technique [31] with
comparable outage probabilities, despite the significant sav-
ings in the number of RF chains, which is reduced from
NRF = Nt = 16 to NRF = 2. The results also confirm
that the OutMin approaches achieve higher data rates than
the conventional SRM approach with probabilities of about
80% and 70% at target rates of 8 [Mbps] and 20 [Mbps],
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respectively, thanks to the proposed regularization7.

V. CONCLUSION

We proposed new schemes to jointly optimize hybrid beam-
formers and the per-carrier allocation of transmit powers, with
aim at mitigating the effect of random path blockages in CoMP
systems using OFDM in mmWave channels. Our designs are
based on a newly formulated sum-of-outage minimization
problem with manifold constraints, per-user sum data rates,
and a regularizer corresponding to the ideal data rate. In order
to enable efficient solution, the latter problem is transformed
into an ERM problem, solved via a stochastic learning method
here introduced, which requires only knowledge of path
blockage probabilities. To further improve the convergence
behavior of the proposed technique, beamforming initialization
and learning rate adaptation schemes are also contributed.
Numerical results confirm that under realistic conditions, the
proposed approach outperforms SotA methods in terms of
convergence, outage probability, total system data rate, and
requirements in number of RF chains.

A possible future work might aim to reduce the complexity
of the blockage-robust hybrid beamforming design, aiming
at enabling practical mmWave systems employing a larger
antenna array and more UEs. In addition, since the stochastic
approach may require a large amount of training data, owing
to mini-batch size tuning and imperfect knowledge of channel
gains and angles, the design of deterministic approach with
comparable performance remains as a possible target for future
work.
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APPENDIX

Then, the Hessian of the objective function tνu
for the

baseband and analog beamformers for the u-th UE are given
by

∇2
k′tνu

=

[
∂2tνu

∂f∗[k′]∂fT[k′]
∂2tνu

∂f∗[k′]∂fH[k′]
∂2tνu

∂f [k′]∂fT[k′]
∂2tνu

∂f [k′]∂fH[k′]

]
(45a)

= −Su

[
∂

∂fT[k′]

(∇f∗Γu[k
′]

1+Γu[k′]

)
∂

∂fH[k′]

(∇f∗Γu[k
′]

1+Γu[k′]

)
∂

∂fT[k]

(∇fΓu[k
′]

1+Γu[k′]

)
∂

∂fH[k]

(∇fΓu[k
′]

1+Γu[k′]

) ]
,

∇2
vtνu

=

[
∂2tνu

∂v∗∂vT

∂2tνu
∂v∗∂vH

∂2tνu
∂v∂vT

∂2tνu
∂v∂vH

]
(45b)

= −Su

∑
k∈K

[
∂

∂vT

(∇v∗Γu[k]
1+Γu[k]

)
∂

∂vH

(∇v∗Γu[k]
1+Γu[k]

)
∂

∂vT

(∇vΓu[k]
1+Γu[k]

)
∂

∂vH

(∇vΓu[k]
1+Γu[k]

) ] ,

where ∇f∗ and ∇v∗ denote conjugate gradients for the base-
band and analog beamforming, respectively, and the scalar Su

takes the value βu or Λu.

7The performance behavior is determined by the spectrum efficiency rather
than the specific target rate with the given bandwidth. Therefore, considering
the balance between the simulation time and reasonable rate, we chosen these
rates.

To calculate the largest eigenvalues for Hessian of these, we
consider a scalar function Γ ∈ R in the form

Γ =
xHHx

xHH̄x+ σ2
, (46)

where x ∈ CN and σ2 ∈ R are given vector and scalar,
respectively, while H ∈ CN×N and H̄ ∈ CN×N are positive
semi-definite matrices, respectively.

Then, the partial derivative and conjugate partial derivative
of the scalar function Γ ∈ R with respect to the vector x are
respectively given by

∇xΓ≜
∂Γ

∂x
=
( HTx∗

xHH̄x+σ2
− xHHx

(xHH̄x+σ2)2
H̄Tx∗

)
, (47)

∇x∗Γ≜− ∂Γ

∂x∗ =
( Hx

xHH̄x+σ2
− xHHx

(xHH̄x+σ2)2
H̄x

)
, (48)

Hence, the Hessian of the function − log2(1 + Γ) with
respect to the vector x is calculated as

HΓ = −β

[
∂

∂xT

(∇x∗Γ
1+Γ

)
∂

∂xH

(∇x∗Γ
1+Γu

)
∂

∂xT

(∇xΓ
1+Γ

)
∂

∂xH

(∇xΓ
1+Γ

) ] , (49)

with

∇x∗Γ

1+Γ
=

Hx− xHHx

xHH̄x+ σ2
H̄x

xH(H+ H̄)x+ σ2
, (50a)

∇xΓ

1+Γ
=

HTx∗ − xHHx

xHH̄x+ σ2
H̄Tx∗

xH(H+ H̄)x+ σ2
, (50b)

where β ≜ 1/ log2 ∈ R+.
Define the matrix Φ ≜ H+H̄. Then, the partial derivatives

of the vector in equation (50a) with respect to the vectors xT

and xH are given by

∂

∂xT

(∇x∗Γ

1+Γ

)
=
H

ξ
−ΦxxHH

ξ2
−HxxHH̄

ξ · ξ̄
+
xHHx

ξ · ξ̄2
H̄xxHH̄

− xHHx

ξ · ξ̄
H̄+

ΦxxHHxxHH̄

ξ2 · ξ̄
, (51a)

∂

∂xH

(∇x∗Γ

1+Γ

)
=− ΦxxTHT

ξ2
− HxxTHT

ξ · ξ̄

+
xHHx

ξ · ξ̄2
H̄xxTHT +

ΦxxHHxxTHT

ξ2 · ξ̄
,

(51b)

where ξ ∈ R and ξ̄ ∈ R are defined as ξ ≜ xHΦx + σ2 and
ξ̄ ≜ xHH̄x+ σ2, respectively.
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Similarly, the partial derivatives of the vector in equation
(50b) are given by

∂

∂xT

(∇xΓ

1+Γ

)
=− ΦTx∗xHH

ξ2
−HTx∗xHH̄

ξ · ξ̄

+
xHHx

ξ · ξ̄2
H̄Tx∗xHH̄+

ΦTv∗vHHvvHH̄

ξ2 · ξ̄
,

(52a)
∂

∂xH

(∇xΓ

1+Γ

)
=

HT

ξ
− (HTx∗xTH̄T + xHHx · H̄T)

ξ · ξ̄

+
xHHx

ξ · ξ̄2
H̄Tx∗xTH̄T

+
ΦTx∗xHHxxTH̄T

ξ2 · ξ̄
−ΦTx∗xTHT

ξ2
.

(52b)

In turn, Hessian HΓ in equation (49) can be written as

HΓ=− β

ξ

[
H 0
0 HT

]
︸ ︷︷ ︸

≜Q1

+
β

ξ2

[
ΦxxHH ΦxxTHT

ΦTx∗xHH ΦTx∗xTHT

]
︸ ︷︷ ︸

≜Q2

+
β

ξ · ξ̄

[
HxxHH̄ HxxTH̄T

HTx∗xHH̄ HTx∗xTH̄T

]
︸ ︷︷ ︸

≜Q3

− βxHHx

ξ · ξ̄2

[
H̄xxHH̄ H̄xxTH̄T

H̄Tx∗xHH̄ H̄Tx∗xTH̄T

]
︸ ︷︷ ︸

≜Q4

+
βxHHx

ξ · ξ̄

[
H̄ 0
0 H̄T

]
︸ ︷︷ ︸

≜Q5

− βxHHx

ξ2 · ξ̄

[
ΦxxHH̄ ΦxxTH̄

ΦTx∗xHH̄ ΦTx∗xTH̄T

]
︸ ︷︷ ︸

≜Q6

, (53)

From the triangle inequality, the largest eigenvalue of the
Hessian HΓ satisfies

λmax(HΓ) ≤λmax(−Q1) + λmax(Q2) + λmax(Q3) (54)
+ λmax(−Q4) + λmax(Q5) + λmax(−Q6),

where the matrices Q1 through Q6 are rank 1 and positive
semi-definite.

Next, notice that the largest eigenvalues of the matrices
−Q1, −Q4, and −Q6 are zero, while the largest eigenvalues
of the remaining matrices are given by

λmax(Q2) = β
2R

{
Tr(ΦxxHH)

}
ξ2

, (55a)

λmax(Q3) = β
2R

{
Tr(HxxHH̄)

)
}

ξ · ξ̄
, (55b)

λmax(Q5) = β
xHHx

ξ2 · ξ̄
λmax(H̄), (55c)

where the relation

λmax

([
X 0
0 XT

])
= λmax(X), (56)

was used in (55c).
In baseband beamforming design, it is considered that x =

f [k′], H = Am
u [k′], β = Su, and H̄ = Ām

u [k′], such that the
largest eigenvalue of the matrix Q3 becomes

λmax(Q3) = Su

2R
{
Tr(Am

u [k′]f [k′]fH[k′]Ām
u [k′])

}
ξm[k′] · ξ̄m[k′]

(57)

= Su

2R
{
Tr(Ām

u [k′]Am
u [k′]f [k′]fH[k′])

}
ξm[k′] · ξ̄m[k′]

=0,

where ξm[k′] = (fH[k′]Φm
u [k′]f [k′] + σ2

u[k
′])2, ξ̄m =

(fH[k′]Ām
u [k′]f [k′] + σ2

u[k
′])2, Φm

u [k′] = Ām
u [k′] + Am

u [k′],
and the identity Tr(AB) = Tr(BA) and Ām

u [k]Am
u [k] =

0, ∀k were used.
In turn, the expression of the largest eigenvalue of the matrix

Q2 can be simplified as follows

λmax (Q2) = Su

2R
{
Tr(Φm

u [k′]f [k′]fH[k′]Am
u [k′])

}
(fH[k′]Φm

u [k′]f [k′] + σ2
u[k

′])2

= Su
2Tr(Am

u [k′]Am
u [k′]f [k′]fH[k′])

(fH[k′]Φm
u [k′]f [k′] + σ2

u[k
′])2

≤ Λu
2Tr(Am

u [k′]Am
u [k′])

σ4
u[k

′]
λmax(f [k

′]fH[k′])

≤ Λu
2Tr(VVHVVH)

σ4
u[k

′]
∥hm

u [k′]∥42∥f [k′] ∥22

≤ Λu
2 (BNtNRF)

2

σ4
u [k

′]
∥ĥu[k

′]∥42
∑
b∈B

Pmax,b, (58)

where Tr (AB) ≤ λmax (A)Tr (B), βu < Λu and
Tr(VVH) = BNtNRF were used.

The final inequality in (58) follows from two facts. First,
channels hm

u [k′] affected by path blockages have smaller l2-
norms than their corresponding estimated channels ĥu[k

′].
Secondly, under power constraints, the square value of the
l2-norm of the baseband beamformer ∥f [k]∥22 is less than the
total maximum transmit power under power constraints.

Similarly, the largest eigenvalue of the matrix Q5 becomes

λmax(Q5) ≤ Λu
fH[k′]Am

u [k′]f [k′]

σ4
u[k

′]
λmax

(
Ām

u [k′]
)

= Λu

Tr
(
fu[k

′]fHu [k′]Am
u [k′]

)
σ4
u[k

′]
∥VHhm

u [k′]∥22

≤ Λu

Tr
(
VHV

)
σ4
u[k

′]
∥VH∥22∥hm

u [k]∥42
∑
b∈B

Pmax,b

≤ Λu
(BNtNRF)

2

σ4
u [k

′]
∥ĥu[k]∥42

∑
b∈B

Pmax,b. (59)

The largest eigenvalue of the Hessian then satisfies

λmax(∇2νu) ≤ λmax(Q2) + λmax(Q5) (60)

= 3Λu
(BNtNRF)

2

σ4
u[k

′]
∥ĥu[k

′]∥42
∑
b∈B

Pmax,b,

which is the same as in equation (37a).
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Tr(Bm
u [k]Bm

u [k]vvH)=Tr
(
WH(f∗u [k]f

T
u [k]⊗hu[k]h

H
u [k])WWH(f∗u [k]f

T
u [k]⊗hu[k]h

H
u [k])WvvH

)
≤ Tr

(
WvvHWH

)
λ2
max(f

∗
u [k]f

T
u [k])λ2

max

(
hu [k]h

H
u [k]

)
≤ BNtNRF

(∑
b∈B

Pmax,b

)2

∥ĥu[k]∥42, (62a)

Tr(B̄m
u [k]Bm

u [k]vvH) = Tr
(
WH

∑
u′∈U\u

(f∗u′ [k]fTu′ [k]⊗ hu[k]h
H
u [k])WBm

u [k]vvH
)
BNtNRF

(∑
b∈B

Pmax,b

)2

∥ĥu[k]∥42, (62b)

Tr(B̄m
u [k]) = Tr

(
WH

∑
u′∈U\u

(f∗u′ [k]fTu′ [k]⊗ hu[k]h
H
u [k])W

)
≤

(∑
b∈B

Pmax,b

)2

∥ĥu[k]∥42, (62c)

In analog beamforming, it is considered that x = v, H =
Bm

u [k], and H̄ = B̄m
u [k]. Then, the largest eigenvalues of the

matrices Q2, Q3, and Q5 are given by

λmax(Q2) ≤ Λu

∑
k∈K

2RTr(Bm
u [k]Bm

u [k]vvH)

σ4
u[k]

, (61a)

λmax(Q3) ≤ Λu

∑
k∈K

2RTr(B̄m
u [k]Bm

u [k]vvH)

σ4
u[k]

, (61b)

λmax(Q5) ≤ Λu

∑
k∈K

vHBm
u [k]v

σ4
u[k]

λmax

(
B̄m

u [k]
)
. (61c)

Using the bounds on the trace operator for the rank 1
positive semi-defined matrices given by equation (62), on the
top of this page, we obtain

λmax(Q2)≤2ΛuBNtNRF

(∑
b∈B

Pmax,b

)2∑
k∈K

∥ĥu[k]∥42
σ4
u[k]

,

(63a)

λmax(Q3)≤2ΛuBNtNRF

(∑
b∈B

Pmax,b

)2 ∑
k∈K

∥ĥu[k]∥42
σ4
u[k]

,

(63b)

λmax(Q5)≤ΛuBNtNRF

(∑
b∈B

Pmax,b

)2 ∑
k∈K

∥ĥu[k]∥42
σ4
u[k]

,

(63c)
such that the largest eigenvalue of the Hessian satisfies

λmax(∇2νu)

≤ λmax(Q2) + λmax(Q3) + λmax(Q5)

= 5ΛuBNtNRF

(∑
b∈B

Pmax,b

)2∑
u∈U

∑
k∈K

∥ĥu[k
′]∥42

σ4
u[k

′]
, (64)

which is the same as in equation (37b).
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