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Abstract—We propose a versatile feedback scheme for both
single- and multi-user multiple-input multiple-output (MIMO)
frequency division duplex (FDD) systems. Particularly, we propose
utilizing a Gaussian mixture model (GMM) with a reduced number
of parameters for codebook construction, feedback encoding, and
precoder design. The GMM is fitted offline at the base station
(BS) to uplink training samples to approximate the channel
distribution of all possible mobile terminals (MTs) within the
BS cell. Subsequently, a codebook is constructed, with each
element based on one GMM component. Extracting directional
information from the codebook or exploiting the GMM’s sample
generation ability facilitates joint precoder design for a multi-user
MIMO system using state-of-the-art precoding algorithms. After
offloading the GMM to the MTs, they can easily determine their
feedback by selecting the index of the GMM component with the
highest responsibility for their received pilot signal. This strategy
exhibits low complexity and supports parallelization. Simulations
demonstrate that the proposed approach outperforms conventional
methods, which either estimate the channel and utilize a Lloyd
codebook or use a deep neural network to determine the feedback
in terms of spectral efficiency or sum-rate. The performance
gains can be exploited to deploy systems with fewer pilots or
feedback bits.

Index Terms—Gaussian mixture models, machine learning, feed-
back, codebook design, precoding, frequency division duplexing.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communication
systems, channel state information (CSI) has to be acquired
at the base station (BS) in regular time intervals. In frequency
division duplex (FDD) mode, the BS and the mobile terminal
(MT) transmit in the same time slot but at different frequencies.
This breaks the reciprocity between the instantaneous uplink
(UL) CSI and downlink (DL) CSI. Accordingly, acquiring
DL CSI in FDD operation is difficult [2]. The most common
solution is to avoid direct feedback of the CSI by using only a
small number of feedback bits, i.e., limited feedback systems
are considered [3]–[5].

In conventional approaches, firstly the DL CSI is estimated
at the MT and subsequently the feedback information is
determined. For instance, the feedback can be used as an
index for a predefined codebook of precoders or can represent
quantized information (channel directions) about the DL CSI
[3]–[5]. Thus, conventional methods heavily rely on accurate
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CSI estimation. To obtain accurate DL CSI at the MTs, many
pilots typically need to be sent from the BS to the MTs.
However, in massive MIMO FDD systems with typically
many antenna elements at the BS, the pilot overhead to fully
illuminate the channel is unaffordable [6]. Therefore, algorithms
that yield relatively good system performances with a low pilot
overhead, i.e., in cases where the number of pilots is less than
the number of transmit antennas, are of great interest. It is
desired to potentially circumvent explicit DL CSI estimation
at the MT but instead directly infer the feedback information
from pilot observations.

In this context, in recent work [7]–[13], a variety of end-to-
end deep neural network (DNN) techniques have been proposed,
which process the pilot observations through neural network
modules to a feedback information. In particular, in [7], a DNN
is employed in order to determine the feedback information for
a single stream transmission in a single-user MIMO system,
that outperforms conventional approaches. The work in [8] also
uses a DNN for feedback encoding but supports transmissions
over multiple streams with a single DNN for all signal-to-noise
ratio (SNR) values. A similar approach was used in [9] for the
multi-user case with single-antenna MTs. In [10], a variational
autoencoder was used to provide the BS statistical information
of each MT in combination with a stochastic iterative precoding
algorithm to jointly design the precoders, again for the multi-
user case with single-antenna MTs. More recently, it was
investigated in [11] how existing feedback schemes can be
leveraged in an end-to-end limited feedback approach for the
multi-user single-antenna case. An extension to the multi-user
MIMO (MU-MIMO) case, i.e., MTs with multiple antennas,
was proposed in [12]. Therein, the authors considered the joint
design of the feedback and the precoders but compared their
approach exclusively to non-iterative precoding techniques.
Another end-to-end DNN-based approach was proposed in
[13], where sub-modules of the DNN were inspired by state-
of-the-art iterative precoding algorithms.

Although the aforementioned end-to-end DNN approaches
in [7]–[13] are optimized for a particular setting, they face
some challenges which may potentially hinder their application
in practical systems. Specifically, the DNN approaches are
inflexible and allow support only for either the single- or multi-
user mode, i.e., different task-dependent DNNs are required
for each mode. This includes the adaptation to different SNR
values, number of pilots, and number of users which usually
needs additional and specifically trained networks. Moreover,
the number of DNN parameters in [7]–[13] scales quadratically
with the product of transmit and receive antennas, leading to
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difficulties in the training time and the convergence abilities. In
fact, in [12], [13], only relatively small antenna configurations
are considered which are not in accordance with trends towards
massive MIMO. Even more disadvantageously, the offload
amount in order to communicate the DNN parameters from
the BS to the MTs is drastically increasing in the number
of antennas, the supported SNR range, transmission modes,
and for a varying number of pilots, resulting in unaffordable
signaling overhead.

Machine learning (ML) techniques typically require a
representative dataset of channels stemming from the BS cell
for their training phase. In FDD mode, the MTs would have to
collect large amounts of DL CSI and either need to perform
the training themselves or to share the collected data with the
BS. The corresponding computation and signaling overhead
is generally unaffordable in practice. Recently, in [14], it has
been shown that DL CSI training data can be replaced with
UL CSI training data even for the design of DL functionalities.
This completely eliminates the aforementioned overhead. The
UL CSI can be acquired at the BS during the regular UL
transmission. The observation in [14] was confirmed for various
DL functionalities, e.g., in [8], [15]–[17]. Consequently, in this
work, we also utilize the idea of centrally learning DL-related
functionalities at the BS using UL training data.

Gaussian mixture models (GMMs) are widely adopted in the
wireless communications literature. For example, in [18], [19],
and [20], GMMs are used for predicting channel states, multi-
path clustering, and pilot optimization, respectively. In [21], a
GMM is used to approximate the true but unknown channel
probability density function (PDF) and a powerful channel
estimator is derived. The strong performance is justified by
the universal approximation ability of GMMs, cf. [22]. The
primary motivations for leveraging GMMs in this work to
propose a versatile low-complexity feedback scheme for point-
to-point MIMO and MU-MIMO FDD systems, apart from their
universal approximation property, are the following. On the one
hand, GMMs comprise a discrete latent space, which enables
the clustering of channels and makes the inference of the latent
variable, given an observation, tractable. These properties are
exploited to design a novel codebook and propose a limited
feedback scheme. On the other hand, GMMs are generative
models. Generative models refer to techniques that aim to
learn the underlying distribution of a training data set with the
goal to enable the generation of new samples that resemble
the original distribution. We propose to utilize this sample
generation ability in combination with the feedback information
to enhance the precoder design via a stochastic algorithm.
In recent years, other generative concepts such as generative
adversarial networks [23] and variational autoencoders [24]
also gained a lot of attention. In the context of wireless
communications, these generative models were utilized for,
e.g., channel estimation [25], precoding [10], and as a channel
modeling framework [26], [27].

The contributions of this work are summarized as follows:
1) The GMM can be centrally fitted at the BS using solely

UL training data. We propose to cluster the training
data according to the GMM components and design a
codebook entry per GMM component, which yields a

scenario-specific codebook and supports the single-user
mode. By offloading the GMM to the MTs upon entering
the coverage area of the BS, we propose to use the index,
which represents the GMM component that yields the
highest responsibility of the observed pilot signal of a
MT as feedback information. Thereby, the responsibility
evaluates the probability that the channel to a particular
MT stems from the corresponding GMM component.

2) We further propose two approaches to support the multi-
user mode. By extracting directional information as
relevant features of the constructed codebook, jointly
designing precoders for a MU-MIMO system with an
arbitrary precoding algorithm, cf. [28]–[34], is possible.
Alternatively, we propose to leverage the GMM’s sample
generation ability in order to provide statistical information
of each MT to the BS and design the precoders using a
state-of-the-art stochastic iterative precoding algorithm,
e.g., [35], [36]. Thus, the proposed scheme allows to
influence the complexity of the precoder design at the
BS depending on the selected transmission mode and the
precoding algorithm.

3) The complexity of determining the feedback at the MT
side by using the GMM does not scale with the number of
transmit antennas, in contrast to conventional approaches,
and even allows for parallelization. Due to the analytic
representation of the GMM, the feedback scheme can be
straightforwardly adapted to any SNR, pilot configuration,
and number of users without retraining, which is in
contrast to the end-to-end DNN-based approaches [12],
[13]. Moreover, model-based insights can be leveraged to
drastically decrease the training time and the offloading
overhead, and allow to conveniently scale with larger
antenna dimensions. Thus, the GMM-based feedback
scheme is particularly beneficial for massive MIMO
systems.

4) Despite exhibiting a lower complexity, the proposed GMM-
based feedback scheme provides high robustness against
CSI imperfections and outperforms conventional single-
and multi-user precoding approaches, especially in settings
with a low pilot overhead. With extensive simulations,
we show that the performance gains achieved with our
proposed scheme can be leveraged to deploy system
setups with, e.g., a reduced number of pilots or with a
smaller number of feedback bits, as compared to classical
approaches.

The paper is structured as follows. The system models
are introduced in Section II. In Section III and Section IV,
we discuss conventional methods and present the proposed
approaches. In Section V, we discuss the versatility of the
proposed scheme. In Section VI, channel estimators are
discussed and in Section VII a complexity analysis is provided.
Simulation results are provided in Section VIII, and in Section
IX conclusions are drawn.

Notation: Matrices and vectors are denoted with bold up-
percase and bold lowercase letters, respectively. The transpose
or conjugate transpose of a matrix A is denoted by AT

or AH, respectively. The all-zeros vector and the identity
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matrix with appropriate dimensions are denoted by 0 or I,
respectively. The Euclidean norm of a vector a ∈ CN is
denoted by ∥a∥. The cardinality of a set V is denoted by |V|.
A complex-valued normal distribution with mean vector µ and
covariance matrix C is denoted by NC(µ,C) and ∼ stands
for “distributed as”. The determinant or the trace of matrix A
is given by det(A) and tr(A), respectively. The vectorization
(stacking columns) of a matrix A ∈ Cm×N is written as
a = vec(A) ∈ CmN , and the reverse operation is denoted
by A = unvec(a). The Kronecker product of two matrices
A ∈ Cm1×N1 and B ∈ Cm2×N2 is A⊗B ∈ Cm1m2×N1N2 .

II. SYSTEM AND CHANNEL MODELS

A. Data Transmission – Point-to-Point MIMO System

The DL received signal of a point-to-point MIMO system can
be expressed as y′ = Hx+n′, where y′ ∈ CNrx is the receive
vector, x ∈ CNtx is the transmit vector sent over the MIMO
channel H ∈ CNrx×Ntx , and n′ ∼ NC(0, σ

2
nINrx

) denotes the
additive white Gaussian noise (AWGN). In this paper, we con-
sider configurations with Nrx < Ntx. The BS is equipped with
a uniform rectangular array (URA) and the MT is equipped with
a uniform linear array (ULA). If perfect CSI is known to both,
the transmitter and receiver, and assuming transmit data with
zero-mean Gaussian distribution, the capacity of the MIMO
channel is C = maxQ⪰0,trQ≤ρ log2 det

(
I+ 1

σ2
n
HQHH

)
,

e.g., [37, page 326], where Q ∈ CNtx×Ntx is the transmit
covariance matrix, ρ is the transmit power, and the transmit
vector is given by x = Q1/2s with E[ssH] = INtx

[3]. The
optimal transmit covariance matrix Q⋆ achieves the capacity
and can be obtained by decomposing the channel into Nrx

parallel streams and employing water-filling [38]. Since channel
reciprocity does not hold in FDD systems, only the MT could
compute the optimal transmit covariance matrix Q⋆ if the
DL CSI is estimated perfectly. This makes some form of
feedback from the MT to the BS necessary. Ideally, the MT
would feed the complete DL CSI back to the BS, which is
infeasible in general. Instead, a small number of B bits is
fed back to the BS. The B feedback bits are commonly used
for encoding an index k⋆ ∈ {1, 2, · · · , 2B} that specifies an
element from a set of 2B pre-computed transmit covariance
matrices Q = {Q1,Q2, . . . ,Q2B}. Finally, the BS employs
the transmit covariance matrix Qk⋆ for data transmission [3].

B. Data Transmission – Multi-user MIMO System

We consider a single-cell MU-MIMO system in the DL,
where linear precoding is adopted. The system consists of a
BS equipped with Ntx transmit antennas and J MTs. Each MT
j ∈ J = {1, 2, . . . , J} is equipped with Nrx antennas. Let the
transmit signal vector corresponding to MT j be sj ∈ Cdj ,
where dj is the number of data streams. We assume that
E[sj ] = 0 and E[sjs

H
j ] = Idj

. Furthermore, the symbols sent
to each MT are assumed to be independent of each other.
The overall precoded DL data vector is x =

∑J
j=1 Mjsj

where Mj ∈ CNtx×dj is the precoding matrix applied at the
BS to process the transmit signal of MT j (without loss of
generality dj = Nrx,∀j is set in the following, if not mentioned

otherwise). The precoders satisfy the transmit power constraint
tr(

∑J
j=1 MjM

H
j ) = ρ. Thus, the received signal at MT j is

y′
j = HjMjsj +

J∑
m=1,m ̸=j

HjMmsm + n′
j , ∀j ∈ J (1)

where Hj ∈ CNrx×Ntx is the MIMO channel from the BS to
MT j and n′

j ∈ CNrx ∼ NC(0, σ
2
j INrx

) denotes the AWGN
of MT j. The instantaneous achievable rate of MT j can be
written as

Rinst
j = log2 det

(
I+HjMjM

H
j HH

j

×
( ∑
m ̸=j

HjMmMH
mHH

j + σ2
j I
)−1

)
. (2)

If the BS had access to the perfect DL CSI of each of
the MTs, it could employ common non-iterative algorithms
such as block diagonalization (BD) [28], regularized block
diagonalization (RBD) [29], or regularized channel inversion
(RCI) [30], [31], or iterative algorithms such as the iterative
weighted minimum mean square error (WMMSE) algorithm
[32]–[34], in order to jointly design the precoders Mj of all
MTs, j ∈ J . However, for the considered limited feedback,
each MT j is assumed to encode an index k⋆j with B bits,
representing quantized information regarding the DL CSI, and
feeds this information back to the BS.

In the seminal work [5], such a limited feedback system
was investigated, where quantized information regarding the
CSI of each MT is fed back to the BS after determining the
best entry of a randomly generated MT-specific codebook. The
random quantization codebook of each MT is assumed to be
perfectly known to the BS [5]. Then, BD was employed at the
BS in order to jointly design the precoders. Multi-user systems
with J = Ntx

Nrx
≥ 2 were considered, i.e., the total number of

receive antennas JNrx equals the number of transmit antennas
Ntx, in order to omit having to select a subset of MTs for
transmission [5]. We will also consider such setups in our
simulations.

C. Pilot Transmission Phase

In the pilot transmission phase, the DL received signal of
each MT j ∈ J is

Yj = HjP +Nj ∈ CNrx×np (3)

where np is the number of transmitted pilots and
Nj = [n′

j,1,n
′
j,2, . . . ,n

′
j,np

] ∈ CNrx×np with n′
j,l ∼

NC(0, σ
2
j INrx

),∀l. The pilot matrix P ∈ CNtx×np is a 2D-
DFT (sub)matrix, constructed by the Kronecker product of two
discrete Fourier transform (DFT) matrices, P = Ph⊗Pv, where
each column pp of P , for p ∈ {1, 2, . . . , np}, is normalized
such that ∥pp∥2 = ρ to fulfill the power constraint, since we
employ a URA at the BS, see e.g., [39]. In this work, we
consider np ≤ Ntx, i.e., the number of pilots is less than or
equal to the number of transmit antennas. For what follows, it
is convenient to vectorize (3), yielding yj = Ahj + nj , with
the definitions hj = vec(Hj), yj = vec(Yj), nj = vec(Nj),
A = PT ⊗ INrx

and nj ∼ NC(0,Σ) with Σ = σ2
nINrxnp

. In
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case of a point-to-point MIMO system, we drop the index j
for notational convenience and end up with

y = Ah+ n ∈ CNrxnp . (4)

D. Channel Model and Data Generation

The QuaDRiGa channel simulator [40], [41] is used to
generate CSI for the UL and DL domains in an urban macrocell
(UMa) scenario. The carrier frequencies are 2.53GHz for the
UL and 2.73GHz for the DL, such that there is a frequency gap
of 200MHz. The BS uses a URA with “3GPP-3D” antennas
and the MTs use ULAs with “omni-directional” antennas. The
BS covers a 120◦ sector and is placed at 25m height. The
minimum and maximum distances between MTs and the BS are
35m and 500m, respectively. In 80 % of the cases, the MTs
are located indoors at different floor levels. The outdoor MTs
have a height of 1.5m. A QuaDRiGa MIMO channel is given
by H =

∑L
ℓ=1 Gℓe

−2πjfcτℓ with ℓ being the path number, L
the number of multi-path components (MPCs), fc the carrier
frequency, and τℓ the ℓth path delay. The number L depends on
whether there is line of sight (LOS), non-line of sight (NLOS),
or outdoor-to-indoor (O2I) propagation: LLOS = 37, LNLOS =
61, or LO2I = 37 [41]. The coefficients matrix Gℓ consists of
one complex entry for each antenna pair and comprises the
attenuation of a path, the antenna radiation pattern weighting,
and the polarization. The generated channels are post-processed
to remove the path gain [41]. In the following, we denote by

H = {hm = vec (Hm)}Mm=1 (5)

the training dataset consisting of M channels from the scenario
described above.

III. POINT-TO-POINT MIMO SYSTEM:
CODEBOOK DESIGN & FEEDBACK ENCODING

A. Conventional Codebook Construction and Encoding Scheme

In an offline training phase, one can construct a codebook
Q with K = 2B elements. A standard codebook construction
approach uses Lloyd’s algorithm [4], [42]. Given a training
dataset of channels H, see (5)), the iterative Lloyd clustering
algorithm alternates between two stages until a convergence
criterion is met. Note that we use the channel matrix H and
its vectorized expression h interchangeably in the following
for ease of notation. We write {Q(i)

k }Kk=1 for the codebook in
iteration i. The two stages in iteration i are:

1) Divide the training dataset H into K clusters V(i)
k :

V(i)
k = {h ∈ H | r(H,Q

(i)
k ) ≥ r(H,Q

(i)
j ) for j ̸= k}.

(6)
2) Update the codebook:

Q
(i+1)
k = argmax

Q⪰0

1

|V(i)
k |

∑
vec(H)∈V(i)

k

r(H,Q) (7)

subject to tr(Q) ≤ ρ

where for a channel matrix H and a covariance matrix Q,

r(H,Q) = log2 det

(
I+

1

σ2
n

HQHH

)
(8)

is the spectral efficiency. The optimization problem in stage
2) is solved via projected gradient ascent (PGA), cf. [8], [43].
To initialize the algorithm, stage 1) is replaced with a random
partition of H in the first iteration.

Lau’s heuristic [4]: In order to avoid solving the costly
optimization problem in stage 2) in every iteration, a heuristic
for the codebook update is given in [4]: A representative
matrix S

(i)
k = 1

|V(i)
k |

∑
vec(H)∈V(i)

k

HHH is calculated for

every cluster V(i)
k , and then the matrices S

(i)
k are decomposed

into Nrx parallel streams and water-filling is employed, yielding
the updated codebook entries Q

(i+1)
k . However, as attested by

the simulation results in [1], the heuristic approach leads to a
performance loss as compared to the PGA approach. Thus, we
will restrict our analysis to the PGA approach in this work.

In the online phase, following the pilot transmission phase,
the MT is assumed to estimate the DL channel Ĥ and then uses
it to determine the best codebook entry Qk⋆ of the commonly
shared codebook Q via:

k⋆ = argmax
k∈{1,...,2B}

log2 det

(
I+

1

σ2
n

ĤQkĤ
H

)
. (9)

The feedback consists of the index k⋆ encoded by B bits and
the BS employs the transmit covariance matrix Qk⋆ for data
transmission.

B. Proposed Codebook Construction and Encoding Scheme

The channel characteristics of the whole propagation envi-
ronment of a BS cell can be described by means of a PDF fh.
This PDF fh describes the stochastic nature of all channels in
the whole coverage area of the BS. The channel of any MT
within the BS cell is a realization of a random variable with
PDF fh. The main problem is that this PDF is typically not
available analytically. In this setting, ML approaches play an
increasingly important role. They aim to implicitly learn the
underlying PDF from representative data samples stemming
from the BS cell, cf. [8], [11]. In contrast, motivated by
universal approximation properties of GMMs [22], we fit
a GMM f

(K)
h with K components in order to approximate

the unknown channel PDF fh, similar as in [21], [44] in an
analytic form. In this work, the training data set stems from
a stochastic-geometric channel simulator [40], similarly as in
[11], [21]. Alternatively, training data can be acquired, for
instance, from a measurement campaign [44] or by using a
ray-tracing software [16]. In [45], it was shown that a GMM
can be even learned from imperfect data. The analysis with
these different training data sources and data imperfections is
out of the scope of this work.

A GMM is a PDF of the form [46, Subsection 2.3.9]

f
(K)
h (h) =

K∑
k=1

p(k)NC(h;µk,Ck) (10)

where every summand is one of its K components. Maximum
likelihood estimates of the parameters of a GMM, viz., the
means µk, the covariances Ck, and the mixing coefficients
p(k), can be computed using a training dataset H, see (5),
and an expectation maximization (EM) algorithm, see [46,
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Subsection 9.2.2], which can be summarized with the following
four steps: i) Initialize the parameters of the GMM and calculate
the initial value of the log-likelihood; ii) E-step: Determine the
responsibilities, which evaluate the probability that a given data
point belongs to (or is explained by) a particular component
of the GMM; iii) M-step: Update the parameters using the
current responsibilities; iv) Evaluate the log-likelihood with
the updated parameters and repeat the E-step and M-step until
the convergence of the log-likelihood.

After a GMM is fitted, we can determine the likelihood that
a particular channel h stems from one of the components by
evaluating the responsibilities [46, Section 9.2]:

p(k | h) = p(k)NC(h;µk,Ck)∑K
i=1 p(i)NC(h;µi,Ci)

. (11)

Due to the joint Gaussianity of each GMM component
and the AWGN, the approximate PDF of the observations is
straightforwardly computed using the GMM from (10) as

f (K)
y (y) =

K∑
k=1

p(k)NC(y;Aµk,ACkA
H +Σ), (12)

which is also a GMM (GMM of the observation). Since GMMs
allow to calculate the responsibilities by evaluating Gaussian
likelihoods, we can compute:

p(k | y) = p(k)NC(y;Aµk,ACkA
H +Σ)∑K

i=1 p(i)NC(y;Aµi,ACiAH +Σ)
. (13)

The idea of the proposed method is to compute a codebook
transmit covariance matrix Qk for every component of the
GMM and to use the responsibilities p(k | y) to determine the
feedback index. In detail, in an offline training phase, we take
K = 2B as the number of GMM components, use a training
dataset of channels H to fit a K-components GMM f

(K)
h , and

compute a codebook Q = {Qk}Kk=1 of transmit covariance
matrices—one matrix for every GMM component—exclusively
at the BS. We explain the codebook construction in another
paragraph below. During the online phase, when the objective
is to determine a feedback index, we bypass explicit channel
estimation and directly determine a feedback index using the
responsibilities computed via y:

k⋆ = argmax
k

p(k | y), (14)

i.e., the highest responsibility of the observed pilot signal of
a MT serves as the feedback information. Thus, we find the
feedback index k⋆ without requiring (estimated) CSI. Note,
we thereby also avoid the evaluation of the log2 det in (9).
Furthermore, the knowledge of the codebook at the MT is not
required. The MT only requires the parameters of the GMM
to compute (14).

We can think of p(k | y) as an approximation of p(k | h)
from (11) because of the fixed noise covariance of every
component. That is, since there is a true underlying channel
h leading to the current observation y = Ah + n, the
responsibility p(k | y) can be seen as an approximation of
the probability p(k | h) that the channel h stems from the
kth GMM component. To investigate the influence of using

p(k | y) instead of p(k | h), it is interesting to look at the
performance of the feedback information calculated as

k⋆ = argmax
k

p(k | h). (15)

Note that this approach is infeasible in practice because the
channel h would have to be known in the online phase.
Nevertheless, it serves as a baseline for the performance
analysis.

Proposed codebook construction: Once the training dataset
H has been used to fit a K-components GMM, we cluster
the training data according to their GMM responsibilities, i.e.,
channels exhibiting high similarities measured in terms of the
responsibilities are assigned to the same component and thereby
form a cluster. That is, we partition H into K disjoint sets
denoted by

Vk = {h ∈ H | p(k | h) ≥ p(j | h) for k ̸= j} (16)

for k = 1, . . . ,K. We now determine the codebook Q =
{Qk}Kk=1 by computing every transmit covariance matrix Qk

such that it maximizes the summed rate in Vk:

Qk = argmax
Q⪰0

1

|Vk|
∑

vec(H)∈Vk

r(H,Q) (17)

subject to tr(Q) ≤ ρ

where r(H,Q) is the spectral efficiency defined in (8). This
optimization problem is solved via a PGA algorithm similar
as in Section III-A, cf. [8], [43]. Analogously, we can replace
the optimization problem in (17) with Lau’s heuristic from [4]
(cf. III-A) to compute a transmit covariance matrix for every
GMM component, which degrades the performance [1]. Thus,
we again restrict our analysis to the PGA approach.

In summary, the GMM is used twice: Once for codebook
construction (done offline) and afterwards for the determination
of a feedback index (done online). For the latter, it is not
necessary to estimate the channel and evaluating (9) is avoided.
This is particularly beneficial for the online computational
complexity, which is discussed in Section VII. Moreover, the
GMM of the observations, see (12), can be straightforwardly
adapted at the MT to any SNR and pilot configuration, by
simply updating the means and covariances, cf. (12), without
retraining.

IV. MULTI-USER MIMO SYSTEM:
FEEDBACK ENCODING & PRECODER DESIGN

A. Conventional Method

In [5], the authors considered limited feedback in the MU-
MIMO setting, where BD was applied as precoding algorithm
and a uniform power allocation policy was adopted, i.e., no
water-filling across streams was conducted. Accordingly, the
feedback conveys information regarding the spatial direction of
each MT’s channel to the BS, and no magnitude information
is fed back.

Consider the singular value decomposition (SVD) of the
(estimated) channel Ĥj = UjSjV

H
j of MT j, where Sj

contains the singular values in descending order on its diagonal,
and let V̄ H

j contain the first Nrx rows of V H
j , cf. e.g., [47].
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Given the matrix V̄ H
j , the idea from [5] is to feed back the

information regarding V̄ H
j to the BS by using a random quan-

tization codebook [48]. In particular, each MT-specific random
quantization codebook is fixed beforehand and is known to
the BS. That is, the codebook Q = {W1,W2, · · · ,WK} of
a particular MT consists of K = 2B sub-unitary matrices
(i.e., WH

k Wk = INrx
, for k = 1, . . . ,K) which are chosen

independently and are uniformly distributed over the Grassmann
manifold [5], [49]. The elements of the random quantization
codebook are thus constructed by generating an Ntx × Nrx

dimensional matrix with i.i.d. complex Gaussian entries and
then computing an Ntx×Nrx dimensional subspace spanned by
the matrix using the procedure described in [50]. The selection
method considered in [5] was the chordal distance metric, i.e.,
k⋆j = argmink

(
Nrx − tr(V̄ H

j WkW
H
k V̄j)

)
, and other metrics

were not investigated in [5]. We also considered the chordal
distance in our simulations but found that using a capacity
inspired selection metric (like in [47]) performed consistently
better. Thus, we used the same evaluation principle per MT
as in (9), but replaced the transmit covariance matrices by
ρ

Nrx
WkW

H
k :

k⋆j = argmax
k

log2 det

(
I+

ρ

σ2
nNrx

ĤjWkW
H
k ĤH

j

)
.

(18)
In this way, we also account for the SNR compared to the
chordal distance metric, which does not depend on the SNR.
For the sake of brevity, we will not show the results obtained
by using the chordal distance metric in Section VIII, since we
compare to the consistently better baseline.

Each MT reports k⋆j to the BS and the BS then represents
each MT’s channel by H̃j = WH

k⋆
j
. Given the quantized

directional information regarding each MT’s channel, the
BS can employ a common precoding algorithm in order to
jointly design the precoders. The authors of [5] focused their
analysis on BD and adopted the uniform power allocation
policy. In contrast, we will consider a broad range of precoding
algorithms, including non-iterative algorithms, RBD with the
uniform power allocation policy [29] (an extension of BD), RCI
[31], and the iterative WMMSE algorithm [34, Algorithm 1],
in order to jointly design the precoders Mj of all MTs j ∈ J .

B. Proposed Subspace-based Method

Inspired by the approach from [5], we propose to use the
following approach to obtain quantized information regarding
each MT’s channel. Each transmit covariance matrix of the
Lloyd codebook, cf. Section III-A, or the GMM codebook,
cf. Section III-B, contains quantized information regarding the
spatial directions of each MT’s channel and power loadings
per stream. We can extract the directional information of each
codebook entry by simply performing an SVD of each transmit
covariance matrix, that is,

Qk = XkTkX
H
k , (19)

where Tk contains the singular values in descending order,
and taking the matrix X̄k which collects the first Nrx vectors
of Xk, as the respective directional information. Accordingly,

we have Q = {X̄1, X̄2, · · · , X̄K}, which thus constitutes a
directional codebook. Note that, we have to ensure to take
a codebook at sufficiently large SNR in order to guarantee
that the matrices Qk all have a rank larger than or equal to
Nrx. In our simulations this was the case with the codebooks
constructed for an SNR of 25 dB.

The described subspace-based method can be used in
combination with both, the Lloyd codebook, cf. Section III-A,
and the proposed GMM-based codebook, cf. Section III-B.
In case of the subspaces extracted from the Lloyd codebook,
the feedback per MT is calculated after channel estimation by
evaluating

k⋆j = argmax
k

log2 det

(
I+

ρ

σ2
nNrx

ĤjX̄kX̄
H
k ĤH

j

)
. (20)

When using the GMM-based approach each MT determines
its feedback by simply evaluating the responsibilities:

k⋆j = argmax
k

p(k | yj). (21)

In both cases, each MT reports k⋆j to the BS which represents
each MT’s channel using the subspace information associated
with the respective codebook entry H̃j = X̄H

k⋆
j
. The BS can

then employ RBD with the uniform power allocation policy,
RCI, or the iterative WMMSE algorithm [34, Algorithm 1], in
order to jointly design the precoders Mj of all MTs j ∈ J .

C. Proposed Generative Modeling-based Method
As an alternative to the aforementioned subspace-based

method, the channel matrix of each MT may be modeled
as a random variable, similar as in [35], [36], and the
average/ergodic achievable rate Rj = E[Rinst

j ] of each MT
j ∈ J is considered (note that the expectation is taken with
respect to the channel distribution). Then, the ergodic sum-rate
maximization problem can be written as [35], [36]

max
{Mj |j∈J}

J∑
j=1

E[Rinst
j ] s.t. tr

(∑J

j=1
MjM

H
j

)
= ρ. (22)

In [35], [36], the authors proposed the stochastic WMMSE
(SWMMSE) algorithm. It was shown that the algorithm is
guaranteed to converge to the set of stationary points of the
stochastic sum-rate maximization problem almost surely [35],
[36]. In each iteration step, the SWMMSE algorithm requires
channel samples that represent statistical information about
each MT.

The discussed conventional methods are unable to perform
the SWMMSE iterations since they are lacking of a generative
model, i.e., a model that learns the underlying PDF of the
channels and allows to generate new samples that resemble
the original channel distribution. In contrast, the proposed
GMM approach is able to generate samples following the
channel’s distribution due to the GMM’s sample generation
ability. This allows to jointly design the precoders via the
SWMMSE algorithm by exploiting statistical information about
the MTs given their feedback information. In particular, given
the feedback index k⋆j of each MT, see (21), one can draw
samples from the respective GMM components via

hj,sample ∼ NC(µk⋆
j
,Ck⋆

j
), (23)
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Algorithm 1 Generative Modeling-based MU-MIMO Precoder Design

1: Set i = 0, set max. iteration number Imax, and randomly initialize
the precoders such that tr(

∑J
j=1 MjM

H
j ) = ρ.

2: repeat
3: hi

j ∼ NC(µk⋆
j
,Ck⋆

j
),∀j {generate sample of the respective

GMM component for each MT}
4: Hi

j ← unvec(hi
j),∀j

5: Uj ←
(∑J

m=1 H
i
jMmMH

mHi,H
j + σ2

j I
)−1

Hi
jMj , ∀j

6: Wj ←
(
I−UH

j Hi
jMj

)−1
, ∀j

7: Zj ←Mj , ∀j
8: Aj ← Aj + βI+

∑J
m=1 H

i,H
j UmWmUH

mHi
j , ∀j

9: Bj ← Bj + βZj +Hi,H
j UjWj , ∀j

10: Mj ←
(
Aj + µ⋆I

)−1
Bj , ∀j

11: i← i+ 1
12: until convergence or i ≥ Imax

which represents statistical information about the channel
of MT j. The BS can subsequently design the precoders
exploiting the SWMMSE algorithm based on the generated
samples utilizing the GMM. In order to feed the channel
samples to the SWMMSE algorithm, the channels have to
be reshaped Hj,sample = unvec(hj,sample), cf., [35], [36] for
more details on the SWMMSE. A summary of the proposed
generative modeling-based precoder design method is given in
Algorithm 1.

V. DISCUSSION ON THE VERSATILITY OF THE PROPOSED
FEEDBACK SCHEME

As discussed earlier, after fitting the GMM centrally at
the BS, codebooks to support the point-to-point transmission
mode can be constructed, cf. Section III-B. Then, the GMM
of the channels, cf. (10), is offloaded to every MT within
the coverage area of the BS. In the online phase, the BS
regularly sends pilots to the MTs. Depending on the SNR
and the pilots, the GMM of the observations, cf. (12), can be
straightforwardly constructed from the offloaded GMM of the
channels. With the help of the GMM of the observations, the
received observations at each MT are processed to a feedback
index k⋆j by evaluating the responsibility via (21). Given the
feedback information of each MT at the BS, the BS can decide
for the point-to-point or multi-user mode. In case of the point-
to-point mode, the BS can simply select the codebook entry
Qk⋆

j
, cf. (17), associated with MT j that should be served for

data transmission, and no further processing is required. In the
multi-user mode, the BS can represent each MT’s channel using
the subspace information associated with the respective X̄H

k⋆
j

extracted from the high SNR codebook, cf. (19), and jointly
design the precoders for multi-user transmission using either
non-iterative (RBD or RCI) or iterative approaches (WMMSE),
thereby influencing the required processing time for designing
the precoders. Alternatively, the BS can exploit the generative
modeling capability of the GMM and design the precoders
using the SWMMSE via sampling, cf. (23). The proposed
versatile feedback scheme is summarized as a flowchart in
Fig. 1, where red (blue) colored nodes represent processing
steps that are performed at the BS (MTs).

This flexibility is not provided by the discussed state-of-the-
art approaches, since the feedback for the point-to-point mode

Fit GMM and

construct codebook Q

Calculate feedback index: k∗
j = argmax

k
p(k | yj)

Offload

GMM

Send pilots P

MU or P2P?

Feed back k∗
j

Choose

Qk∗
j

∈ Q

P2P

Compute pre-

coders Mj

MU

Data

transmission

Fig. 1: Flowchart of the proposed versatile feedback scheme. Red (blue) colored nodes
are processed at the BS (MTs).

associated with the current SNR is determined by selecting
an element via (9) out of a codebook constructed with this
particular SNR (cf. Section III-A), whereas in the multi-
user case, the codebook entry selection is based on another
codebook, i.e., the random quantization codebook, cf. (18), or
the directional codebook, cf. (20).

VI. BASELINE CHANNEL ESTIMATORS

Conventionally, the DL channel is estimated firstly at each
MT and subsequently, the best fitting codebook entry is
determined. Thus, in this section, we present the baseline
channel estimators which we consider in our simulations. Since
channel estimation takes place at each MT separately, we
present the estimators from a MT perspective and drop the
index j in the following for brevity. The mean squared error
(MSE)-optimal channel estimate for the model (4) is given by
the conditional mean estimator (CME) E[h | y], cf., e.g., [51,
Section 8.1]. However, the true channel PDF is generally not
known and, therefore, the CME can generally not be calculated
analytically. Even if the true channel PDF was known, the
CME E[h | y] might still not have an analytic expression.

In this work, we use the recently proposed GMM-based
channel estimator ĥGMM, see (24), from [21] as a baseline.
The GMM-based channel estimator is proven to asymptotically
converge to the optimal CME as the number of GMM
components K is increased, with the restriction that A is
invertible, see (4). In our case, we would have to fulfil that
np = Ntx. However, even if A is not invertible (np < Ntx)
and for a moderate number for K, the GMM-based channel
estimator is a powerful estimator as shown in [21]. The
GMM-based channel estimator utilizes the same GMM as
found in Subsection III-B. In particular, the MT can use the
GMM (obtained through offloading) to estimate the channel
by evaluating:

ĥGMM(y) =

K∑
k=1

p(k | y)ĥLMMSE,k(y) (24)

with the responsibilities p(k | y) from (13) and

ĥLMMSE,k(y) = CkA
H(ACkA

H +Σ)−1(y −Aµk) + µk.
(25)
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Accordingly, the estimator ĥGMM is given by a weighted
sum of K linear minimum mean square error (LMMSE)
estimators—one for each component. The weights p(k | y) are
the probabilities that the current observation y corresponds to
the kth component.

Another baseline is the LMMSE estimator, which utilizes
the sample covariance matrix Cs =

1
M

∑M
m=1 hmhH

m, which
is calculated using the same set of training samples to fit the
GMM, and calculate channel estimates as (cf. [15], [21]):

ĥLMMSE = CsA
H(ACsA

H +Σ)−1y. (26)

Lastly, compressive sensing approaches commonly assume
that the channel exhibits a certain structure: h ≈ Dt, where
D = Drx ⊗ (Dtx,h ⊗Dtx,v) is a dictionary with oversampled
DFT matrices Drx, Dtx,h, and Dtx,v (cf., e.g., [52]), because we
have a URA at the BS and a ULA at the MT. A compressive
sensing algorithm like orthogonal matching pursuit (OMP) [53]
can now be used to obtain a sparse vector t, and the estimated
channel is then given by

ĥOMP = Dt. (27)

Since the sparsity order is not known, but the algorithm’s
performance crucially depends on it, we use a genie-aided
approach to obtain a bound on the performance of the algorithm.
Specifically, we use the true channel (perfect CSI knowledge)
to choose the optimal sparsity order.

VII. COMPLEXITY ANALYSIS

The responsibilities in (13) are calculated by evaluating
Gaussian densities. Since the GMM’s covariance matrices and
mean vectors do not change for different observations, the in-
verse and the determinant of the densities can be pre-computed.
Therefore, the online evaluation of the responsibilities p(k | y)
in (13) is dominated by matrix-vector multiplications and has a
complexity of O(L2) per GMM component, with L = Nrxnp.

Correspondingly, determining the feedback using the GMM
via (14) has a complexity of O(KN2

rxn
2
p). Recall that in this

case, no channel estimation needs to be conducted. One huge
advantage is, that the complexity does not scale with the number
of transmit antennas Ntx. This is particularly beneficial if the
BS is equipped with many antennas, as it is the case for massive
MIMO systems. Moreover, the proposed method allows for
parallelization with respect to the number of components K,
i.e., all of the K responsibilities can be evaluated in parallel.

When using the conventional approach of first estimating
the channel and then searching for the best codebook entry, the
complexity depends on the channel estimation complexity and
the complexity of the selection method from (9). Among all
considered conventional approaches, the GMM estimator from
(24) in combination with the selection method that maximizes
the rate expression from (9) performed best in our simulations,
cf. Section VIII. Evaluating the GMM estimator from (24)
has a complexity of O(KN2

rxn
2
p +KN2

rxNtxnp), due to the
calculation of the responsibilities p(k | y) and the evaluation
of the LMMSE filters from (25) [21]. The responsibilities
p(k | y) from (13) to determine the feedback using the GMM
according to (14) are the same responsibilities which are needed

Name Online Complexity Covariance Parameters
(Ntx, Nrx) = (32, 16),

(Ktx,Krx) = (16, 4)

Full O(KN2
rxn

2
p)

1
2
KN(N + 1) 8.4 · 106

Kronecker O(KN2
rxn

2
p)

1
2
KrxNrx(Nrx + 1) + 1

2
KtxNtx(Ntx + 1) 9 · 103

TABLE I: Analysis of the number of parameters of the (structured) GMM.

to evaluate the GMM estimator from (24). Evaluating the
GMM estimator further requires the calculation of the LMMSE
filters from (25). Thus, in terms of floating-point operations
(FLOPS) our proposed method from (14) is in any case of lower
complexity for the MT as compared to evaluating the GMM
estimator from (24). In addition to that, with the conventional
approach, the estimated channel has to be further processed
to a feedback index by evaluating (9). The complexity of this
selection method is O(KNtxN

2
rx +KN3

rx), when exploiting
the QR decomposition [54, Section 5.2].

This complexity analysis also holds for the multi-user case
since the feedback is determined at each MT separately by
conducting similar steps, i.e., by first estimating the channel and
then evaluating either (18) in the case of random codebooks,
or (20) in the case of the directional codebook.

Kronecker Approximation for Reducing the Offloading
Amount: In order for a MT to be able to compute feed-
back indices, the parameters of the GMM f

(K)
h need to

be offloaded to the MT upon entering the BS’ coverage
area. As demonstrated in a numerical example in Table I,
the number of GMM parameters can be quite large. This
is mainly due to the large number of parameters of the
GMM’s covariance matrices. In order to reduce the number of
GMM parameters, we can incorporate model-based insights
without influencing the online computational complexity. For
spatial correlation scenarios, a well-known assumption is
that the scattering in the vicinity of the transmitter and
receiver are independent of each other, cf. [55]. Similarly,
as in [21], we use this assumption to constrain the GMM
covariance matrices to a Kronecker factorization with fewer
parameters, i.e., we construct a GMM consisting of covariance
matrices of the form Ck = Ctx,k ⊗ Crx,k. Thus, instead of
fitting a single unconstrained GMM with N ×N -dimensional
covariances, a transmit-side (receive-side) GMM with Ntx×Ntx
(Nrx×Nrx)-dimensional covariances and Ktx (Krx) components
is fitted. Thereafter, a K = KtxKrx-components GMM with
N×N -dimensional covariances is obtained by combinatorially
computing all Kronecker products of the respective transmit-
and receive-side covariance matrices. It was observed in [21]
that the Kronecker GMM performs almost equally well as
compared to the unconstrained GMM. The advantages of the
Kronecker GMM are a lower offline training complexity, the
ability to parallelize the fitting process, and the need for fewer
training samples since the Kronecker GMM has much fewer
parameters.

Table I illustrates exemplarily the difference in the number of
GMM covariance parameters (taking symmetries into account),
where we plug in the simulation parameters of one of the
settings with B = 6, which we consider in Section VIII.
We can see that, with the Kronecker GMM, the number of
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(a) SNR = 0dB SNR, evaluated with perfect CSI.
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(b) SNR = 10 dB, evaluated with perfect CSI.

Fig. 2: Empirical complementary cumulative distribution functions (cCDFs) of the
normalized (by the optimal transmit strategy) spectral efficiencies achieved with different
codebooks and transmit strategies evaluated with perfect CSI, for a system with Ntx = 32,
Nrx = 16, and B = 6 bits.

parameters that need to be offloaded is drastically reduced.
For the remaining settings considered in Section VIII, the
reduction factors due to the Kronecker GMM are in the order
of approximately 102 to 103. For this reason, we solely consider
the Kronecker GMM in Section VIII.

VIII. SIMULATION RESULTS

With trends towards massive MIMO, both the BS and the
MTs are equipped with many antennas [56]. The BS equipped
with a URA has in total Ntx = Ntx,hNtx,v antenna elements,
with Ntx,h horizontal and Ntx,v vertical elements. At the MT,
we have a ULA with Nrx elements. We consider B feedback
bits and thus K = 2B . We generate datasets with 30 · 103
channels for both the UL and DL domain of the scenario
described in Section II-D: HUL and HDL. The data samples
are normalized such that E[∥h∥2] = N = NtxNrx holds for
the vectorized channels. We further set ρ = 1, which allows
us to define the SNR as 1

σ2
n

for all MTs, i.e., when σ2
j =

σ2
n,∀j ∈ J . We split the two sets HUL and HDL into a training

set with M = 20 · 103 samples, and the remaining samples
constitute an evaluation set, viz., HUL

train,HUL
eval,HDL

train, and HDL
eval.

The following transmit strategies are always evaluated on HDL
eval,

i.e., in the DL domain. When we fit the GMM based on HUL
train,

we transpose all elements of the set to emulate a DL, cf. [8],
[15], [17].

A. Point-to-point MIMO

In the single-user case, we depict the normalized spectral ef-
ficiency (nSE) as performance measure. The spectral efficiency
achieved with a given transmit covariance matrix is normalized
by the spectral efficiency achieved with the optimal transmit
covariance matrix, which is given by decomposing the channel
into Nrx parallel streams and employing water-filling [38].
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(a) SNR= 0dB, and np = 8 pilots.
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DNN, y GMM, h GMM, y

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized spectral efficiency, s

P
(n

SE
>

s
)

(b) SNR= 15 dB, and np = 4 pilots.

Fig. 3: Empirical cCDFs of the normalized (by the optimal transmit strategy) spectral
efficiencies achieved with different codebooks and transmit strategies evaluated for a
system with Ntx = 32, Nrx = 16, different SNRs, different number of pilots np, and
B = 6 bits.

The empirical cCDF P (nSE > s) of the normalized spectral
efficiency, corresponds to the empirical probability that nSE
exceeds a specific value s.

We consider the following baseline transmit strategies:
The curves labeled “uni pow cov” represent uniform power
allocation where the transmit covariance matrix is given by
Q = ρ

Ntx
I. In this case, no CSI knowledge or codebook is

used. Moreover, “uni pow eigsp” corresponds to the transmit
strategy where a transmit covariance matrix is calculated by
allocating equal power on the eigenvectors of the channel. That
is, the channel is decomposed into Nrx parallel streams and
ρ

Nrx
power is allocated to each stream. Note that this approach

is infeasible because the BS would require full knowledge of
the DL channel (or its eigenvectors).

In the following, the simulation parameters are Ntx = 32
(Ntx,h = 8, Ntx,v = 4), Nrx = 16 and B = 6 bits, thus
K = 64 (Ktx = 16, Krx = 4). In Fig. 2(a), we set the SNR =
0dB. The conventional codebook construction approach (cf.
Section III-A) is denoted by “Lloyd UL/DL”, depending on
whether HUL

train or HDL
train is used as training data to construct the

codebooks, respectively. With these approaches, the codebook
is known to the BS and the MT and, additionally, perfect
CSI is assumed at the MT. Each MT then selects the best
possible codebook entry by evaluating (9). We can observe
that, using DL or UL training data, results in approximately
the same performance. The proposed codebook construction
and encoding scheme is denoted by “GMM UL/DL”, where
we either use HUL

train or HDL
train as training data to fit the GMM

and to construct the codebook as described in Section III-B.
With our proposed approach, the knowledge of the codebook at
the MT is not required. After offloading the GMM to the MT
and given perfect CSI knowledge, the MT can then determine
the feedback index by evaluating (15). Again, using DL or UL
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Fig. 4: The probability that the nSE of a certain transmit strategy exceeds s = 80% of
the optimal transmit strategy’s spectral efficiency for a varying number of pilots, for a
system with Ntx = 32, Nrx = 16, and B = 6 bits.

training data results in approximately the same performance,
which is in accordance with the findings from [8], [15], [17].
The proposed GMM approach performs slightly worse than
the Lloyd clustering approach, which is a consequence of the
perfect CSI assumption. In Fig. 2(b), we set SNR = 10dB,
and observe similar results.

However, assuming perfect CSI at the MT is not feasible.
In the following, we consider imperfect CSI, i.e., systems
with reduced pilot overhead (np ≤ Ntx). In the remainder, we
consider UL training data exclusively. Thus, we omit writing
“UL” in the legend from now on.

In Fig. 3(a), the SNR = 0dB and we have np = 8. We
depict results for the conventional Lloyd codebook construction
approach (cf. Section III-A), where we first estimate the channel
either via OMP (27), the LMMSE approach (26), or via the
GMM estimator (24), and then select a transmit covariance
matrix by evaluating (9) given the estimated channel: “Lloyd,
ĥOMP”, “Lloyd, ĥLMMSE”, or “Lloyd, ĥGMM”, respectively.
Moreover, we compare to the SNR-independent DNN approach
from [8], denoted by “DNN y”, where a classifier is employed
to directly map the observation to a feedback index that
specifies an element from the Lloyd codebook. During the
training phase, the DNN was provided with input-output pairs
{(Ym = unvec(ym), k⋆m)}Mm=1 for an SNR range of 0 dB
to 25 dB, with 5 dB steps. We employ random search [57]
to determine the hyperparameters of the DNN. The DNN
consists of DCM convolutional modules, which comprise a
convolutional layer, a batch normalization, and an activation
function, where DCM is randomly chosen from the range [2, 5].
Each of the convolutional layers consists of DK kernels, where
DK is randomly chosen within [16, 64]. After a subsequent
two-dimensional max-pooling, the features are flattened, and a
fully connected layer is employed with an output dimension
of K. Depending on the randomly drawn parameters, the
number of DNN parameters is at least the same as or even
higher than the number of GMM parameters, and increases
with the number of pilots. Moreover, note that a separate
DNN per pilot configuration is needed. The complexity of
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(a) RBD, SNR= 5dB, and np = 8 pilots.
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(b) RCI, SNR= 10 dB, and np = 4 pilots.

Fig. 5: Empirical cCDFs of the sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs)
achieved with different feedback approaches and precoding techniques for different SNRs,
different number of pilots np, and B = 6 bits.

the DNN approach is O(KDKNrxnp). Further details can be
found in [8]. As can be seen, estimating the channel via the
GMM estimator gives the best performance when considering
the conventional channel estimation-based approaches. The
DNN approach, which also does not require any codebook
knowledge, similar to our proposed GMM-based feedback
scheme, achieves comparable performance as “Lloyd, ĥOMP”
or “Lloyd, ĥLMMSE”. In contrast, with the proposed approach
(cf. Section III-B) denoted by “GMM, y”, where we bypass
channel estimation and directly evaluate (14) for determining
a feedback index, we achieve even better performance as
compared to any of the conventional approaches. With the
curves “Lloyd, h” and “GMM, h”, we depict the results for
the utopian case of assuming perfect CSI knowledge at the
MT. Although the Lloyd approach performs well if perfect CSI
is available at the MT, the performance suffers significantly
from CSI imperfections (due to noise and low pilot overhead).
In contrast, the proposed GMM-based feedback scheme is
superior in case of imperfect CSI available at the MT, which
resembles practical system deployments. A similar observation
can also be made in Fig. 3(b), where the SNR = 15dB and
we only have np = 4 pilots.

In Fig. 4(a), we set SNR = 0dB and in Fig. 4(b), we
have SNR = 5dB, where we fix s = 0.8, thus, we consider
P (nSE > 0.8) for a varying number of pilots np. We see that
our proposed low-complexity feedback scheme is beneficial
in the low number of pilots regime and outperforms the
conventional approaches, which either require both channel
estimation and the feedback evaluation via (9) or the DNN-
based approach.
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Fig. 6: Empirical cCDFs of the sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs)
achieved with different feedback approaches when RBD is employed for a system with
an SNR = 10 dB, np = 4 pilots, and different bits B.

B. Multi-user MIMO

In this subsection, we present simulation results for the multi-
user setup and depict the sum-rate as performance measure,
which is given by

∑J
j=1 R

inst
j , cf. (2). We depict the results

for 2,500 constellations, where for each constellation, we draw
J MTs randomly from our evaluation set HDL

eval. The empirical
cCDF P (SR > s) of the sum-rate, is used to depict the
empirical probability that the sum-rate (SR) exceeds a specific
value s.

In the following, with “GMM, h” and “GMM, y” we denote
the cases, where either perfect CSI hj is assumed or the
observations yj are used at each MT j to determine a feedback
index using the GMM feedback encoding approach, cf. (21).
We omit the index j in the legend for notational convenience.
The channel of each MT is then represented by the subspace
information extracted from the high-SNR GMM codebook,
cf. Section IV-B. With “Lloyd, h”, “Lloyd, ĥGMM”, “Lloyd,
ĥOMP”, and “Lloyd, ĥLMMSE”, or with “Random, h”, “Random,
ĥGMM”, “Random, ĥOMP”, and “Random, ĥLMMSE”, we denote
the cases where either perfect CSI is assumed at each MT,
or the channel is firstly estimated at each MT and then the
index of the best fitting subspace entry of the high-SNR Lloyd
codebook or of the random codebook, is fed back from each
MT to the BS, cf. Sections IV-B and IV-A.

The above mentioned approaches are evaluated using either
RBD, RCI, or the iterative WMMSE to jointly design the
precoders Mj , ∀j ∈ J . In case of RBD and RCI, the
used regularization factor is JNrxσ

2
n

ρ , and the precoders are
normalized to satisfy the transmit power constraint, cf. [29]–
[31]. In the case of the iterative WMMSE, we use [34,
Algorithm 1]. Additionally, with “GMM samples, h” and
“GMM samples, y”, we denote the cases where we generate
samples which represent each MT’s distribution using the GMM
and feed them to the SWMMSE algorithm, cf. Section IV-C.
In all iterative approaches, we set Imax = 300 iterations.

In the following, the simulation parameters are Ntx = 16
(Ntx,h = 4, Ntx,v = 4), Nrx = 4 and B = 6 bits, thus
K = 64 (Ktx = 16, Krx = 4). Accordingly, we have J = 4
MTs. In Fig. 5(a), the SNR = 5dB and we have np = 8
pilots. In this case, we use RBD in order to jointly design
the precoders. We can observe that the random codebook
performs worst. Even with perfect CSI assumed at the MTs,
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Fig. 7: Empirical cCDFs of the sum-rate (Ntx = 64, Nrx = 4, and J = 16 MTs)
achieved with different feedback approaches when RBD is employed for systems with an
SNR = 5dB, different number of pilots np, and B = 6 bits.

the random codebook approach cannot compete with the
environment-aware approaches. The Lloyd directional codebook
approach yields the best performance, if the GMM-based
channel estimator from (24) is used prior to codebook entry
selection. Similar to the point-to-point MIMO case, we can
observe that the chosen channel estimator significantly impacts
the performance. That is, using the LMMSE estimator from (26)
or the genie OMP from (27) yield worse results as compared to
the GMM-based channel estimator. Furthermore, our proposed
GMM-based feedback approach (“GMM, y”) even outperforms
the best conventional approach (“Lloyd, ĥGMM”). A similar
behavior can be observed in Fig. 5(b), where we increased the
SNR to 10 dB and decreased the number of pilots np = 4, and
use RCI in order to jointly design the precoders.

In the following two figures (Fig. 6 and Fig. 7) we restrict
our analysis to RBD as the precoder design algorithm for sake
of brevity. The purpose of the next two figures is to quantify
the performance gains obtained with our proposed approach
from different perspectives. In particular, in Fig. 6 we have
SNR = 10dB and np = 4, and we consider systems with
B = 4 bits, thus, K = 16 (Ktx = 8, Krx = 2), or B = 8
bits, thus K = 256 (Ktx = 32, Krx = 8) and compare the
performance of our proposed GMM-based feedback approach
(“GMM, y, B ∈ {4, 8}”) to the best performing conventional
Lloyd directional codebook (“Lloyd, ĥGMM, B ∈ {4, 8}”) and
random codebook (“Random, ĥGMM, B ∈ {4, 8}”) approaches,
which use the GMM-based channel estimator in the channel
estimation phase. We can observe that our proposed feedback
approach is superior to the conventional methods. In particular,
our proposed feedback approach with only B = 4 bits (“GMM,
y, B = 4”) even outperforms the conventional Lloyd directional
codebook with twice as much, i.e., B = 8, bits (“Lloyd,
ĥGMM, B = 8”).

In Fig. 7, we consider a system with more transmit antennas
and, accordingly, more MTs. The simulation parameters are
Ntx = 64 (Ntx,h = 8, Ntx,v = 8), Nrx = 4, and B = 6 bits,
thus, K = 64 (Ktx = 16, Krx = 4), and the SNR = 5dB.
Accordingly, we have J = 16 MTs. This time, we depict
the performances for a varying number of pilots np. For a
fixed number of pilots np, our proposed approach (“GMM,
y, np ∈ {2, 6, 12}”) outperforms the conventional approaches
(“Lloyd, ĥGMM, np ∈ {2, 6, 12}” and “Lloyd, ĥOMP, np = 12”).
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Fig. 8: Empirical cCDFs of the sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs)
achieved with different feedback approaches when the iterative WMMSE or the SWMMSE
are employed, for a system with an SNR = 5dB, np = 8 pilots, and B = 6 bits.

Moreover, with only np = 2 pilots, our proposed feedback
approach (“GMM, y, np = 2”), almost achieves the same
performance as the conventional approaches, which require
np = 6 pilots in the case of “Lloyd, ĥGMM, np = 6”, or even
np = 12 in the case of “Lloyd, ĥOMP, np = 12” (i.e., the MTs
are unaware of the GMM and use the OMP channel estimator).
If random codebooks are used, the performance with even a
large pilot overhead, i.e. np = 64 pilots, is poor (“Random,
ĥGMM, np = 64”). Thus, with our proposed approach, systems
with lower pilot overhead can be deployed, which would
inherently increase the system throughput. Additionally, with
fewer pilots, the complexity of determining the feedback index
at the MTs with the proposed GMM-based approach decreases,
cf. Section VII.

So far, we have only considered non-iterative precoding
algorithms, i.e., RBD and RCI. In the remainder, we will focus
our analysis on the iterative WMMSE and the SWMMSE
precoding techniques. Due to the exclusive usage of channel
directional information, i.e., no channel magnitude information
is fed back to the BS, as in [5] (cf. Section IV-A), in case of
random codebooks, or the Lloyd directional codebook from
Section IV-B, or the GMM directional codebook from Section
IV-B, changing the number of streams d impacts the overall
sum-rate which can be achieved using the iterative WMMSE.
In fact, we observed that depending on the SNR, the number
of pilots np, the chosen channel estimator (for the conventional
approaches), and the selected codebook, the performance can
be improved by varying d ∈ {1, 2, · · · , Nrx}, and then setting
d to the value which gives the best average performance. In
a practical deployment, the parameter d can be pre-adjusted
in the offline phase at the BS by emulating a DL system (for
example using the set HUL

eval). However, things are different with
the SWMMSE. There we observed that setting d = Nrx always
yields the best performance. Intuitively, due to the sampling
involved in the design procedure of the SWMMSE, (average)
channel magnitude information is provided to and exploited
by the SWMMSE algorithm, which enables the SWMMSE to
adjust the stream powers accordingly.

In the remainder, the simulation parameters are again
Ntx = 16 (Ntx,h = 4, Ntx,v = 4), Nrx = 4, yielding J = 4
MTs, and B = 6 bits, thus, K = 64 (Ktx = 16, Krx = 4). In
Fig. 8, the SNR = 5dB and we have np = 8 pilots. This is
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Fig. 9: The average sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs) over the
SNR achieved with different feedback approaches when the iterative WMMSE or the
SWMMSE are employed, for np = 8 pilots, and B = 6 bits.

the same simulation setting as in Fig. 5(a), where RBD was
used in order to design the precoders. By comparing Fig. 8 and
Fig. 5(a), we can conclude that by using the iterative precoding
techniques, the performances of the conventional and the pro-
posed feedback approaches are improved tremendously. We can
observe, that also in the case of iterative precoding techniques,
the random codebook approach performs worst. Also in this
case, the Lloyd directional codebook approach yields the best
performance, if the GMM-based channel estimator from (24)
is used prior to codebook entry selection whereas using the
LMMSE estimator from (26) or the genie OMP from (27)
deteriorates the performance. Furthermore, our proposed low-
complexity GMM-based feedback approach (“GMM, y”) again
outperforms the best conventional approach (“Lloyd, ĥGMM”).
With our generative modeling-based approach from Section
IV-C, i.e., the SWMMSE with samples generated by the GMM,
denoted by “GMM samples, h” or “GMM samples, y”, we even
outperform the performance bound of the Lloyd directional
codebook approach (which uses the iterative WMMSE) with
perfect CSI assumed at the MTs (“Lloyd, h”). This shows the
great potential of the generative modeling ability of the GMM.

In Fig. 9, we still consider a setting with np = 8 pilots
but vary the SNR. We depict the sum-rate averaged over
all constellations. We can see, that our proposed GMM-
based feedback approach, with either exploiting directional
information (“GMM, y”) or the generative modeling-based
approach (“GMM samples, y”) outperform the conventional
approaches. We can observe, that in this case, up to an SNR
of ≈ 15 dB, the generative modeling-based method performs
better, and for larger SNR values, the directional approach
is superior. This is illustrated by the arrows in Fig. 9. Thus,
the results suggest that jointly designing the precoders by
solving the ergodic sum-rate maximization problem from (22)
by utilizing the SWMMSE, is beneficial for low to medium
SNR values, and the directional approach, which exploits the
iterative WMMSE, is superior for larger SNR values.
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Fig. 10: The average sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs) over the
SNR achieved with different feedback approaches using the iterative WMMSE or the
SWMMSE, for different number of pilots np (dotted: np = 2, dashed: np = 8, solid:
np = 16), and B = 6 bits.

This observation is also supported by the results in Fig. 10,
where we depict the performances of our proposed approaches
“GMM, y” and “GMM samples, y” and compare them to
the best performing conventional method “Lloyd, ĥGMM”, and
the random codebook-based approach which uses the OMP
estimator “Random, ĥOMP” (i.e., no environment awareness)
for a varying SNR and np ∈ {2, 8, 16}. There, dotted curves
represent np = 2, dashed curves np = 8, and solid curves
np = 16 pilots. The approaches with no environment awareness,
i.e., “Random, ĥOMP” perform worst. Both of our proposed
approaches, i.e., “GMM, y” and “GMM samples, y”, with
only np = 2 pilots, outperform the conventional “Lloyd,
ĥGMM” approach with four times more, i.e., np = 8, pilots.
When the number of pilots is equal to the number of transmit
antennas (large pilot overhead), i.e., np = Ntx = 16, our
proposed approaches which solely require the GMM at the
MTs, at least can compete with the conventional “Lloyd,
ĥGMM” approach, which requires both the GMM and the
Lloyd directional codebook at each MT. For SNRs up to
about 15 dB our proposed generative modeling-based approach
even outperforms the conventional method based on the Lloyd
directional codebook.

Finally, in Fig. 11, we present how the sum-rate evolves over
the number of iterations in the case of the iterative WMMSE
(solid curves), or over the number of drawn samples (per MT) in
the case of the SWMMSE (dashed curves) for a setting with an
SNR = 5dB and np = 8 pilots. In comparison, we depict the
performance of the case, where we applied RBD (dotted curves)
in order to jointly design the precoders. Note that since RBD
is a non-iterative approach, the respective curves are constant
over the iterations. We can observe that in the case of random
codebooks (“Random, ĥGMM”) the performance gains achieved
by using the iterative WMMSE, compared to using RBD, are
relatively small. In contrast, using the Lloyd (“Lloyd, ĥGMM”)
or GMM (“GMM, y”) directional codebook approaches, we
obtain huge performance gains when we use the iterative
precoding techniques. In these cases, already a small number
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Fig. 11: The average sum-rate (Ntx = 16, Nrx = 4, and J = 4 MTs) over the
number of iterations/samples achieved with different feedback approaches and precoding
techniques (dotted: RBD (remains constant, since non-iterative), dashed: SWMMSE, solid:
WMMSE) for a system with an SNR = 5dB, np = 8 pilots, and B = 6 bits.

of iterations is enough to reach the performance maximum.
Interestingly, a small overshoot can be observed. This artefact is
possibly due to the fact that the iterative WMMSE is designed
for perfect CSI, but here we are restricted to using directional
information due to the limited feedback. In contrast, when we
use the generative modeling-based approach (“GMM samples,
y”) we can observe that the performance steadily improves
over the number of drawn samples. We observed this behavior
consistently for different SNR values and numbers of pilots.

IX. CONCLUSION

In this work, we have investigated a novel GMM-based
feedback scheme for FDD systems. In particular, we proposed
to use a GMM for codebook construction, feedback encoding,
and as a generator, which provides statistical information about
the channels of the MTs to the BS. The proposed scheme
exhibits lower computational complexity as compared to state-
of-the-art approaches, and even allows for parallelization at
the MTs. Moreover, the proposed scheme stands out through
its versatility. That is, given the feedback information of
the MTs at the BS, it is flexible in deciding for the single-
user or the multi-user transmission mode. The versatility is
even more pronounced through a convenient adaption at the
MTs to any desired SNR and pilot configuration without
retraining the GMM. This is a huge advantage as compared to
existing end-to-end DNN approaches, which do not provide
this versatility. Numerical results have demonstrated that the
proposed feedback scheme outperforms conventional methods,
especially in configurations with reduced pilot overhead. The
achieved performance gains of the proposed scheme can be
leveraged to deploy systems with lower pilot overhead or even
fewer feedback bits as compared to state-of-the-art methods.
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