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Multivariate Extreme Value Theory Based Channel
Modeling for Ultra-Reliable Communications
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Abstract—Attaining ultra-reliable communication (URC) in
fifth-generation (5G) and beyond networks requires deriving
statistics of channel in ultra-reliable region by modeling the
extreme events. Extreme value theory (EVT) has been previously
adopted in channel modeling to characterize the lower tail of
received powers in URC systems. In this paper, we propose a mul-
tivariate EVT (MEVT)-based channel modeling methodology for
tail of the joint distribution of multi-channel by characterizing the
multivariate extremes of multiple-input multiple-output (MIMO)
system. The proposed approach derives lower tail statistics
of received power of each channel by using the generalized
Pareto distribution (GPD). Then, tail of the joint distribution
is modeled as a function of estimated GPD parameters based
on two approaches: logistic distribution, which utilizes logistic
distribution to determine dependency factors among the Fréchet
transformed tail sequence and obtain a bi-variate extreme value
model, and Poisson point process, which estimates probability
measure function of the Pickands angular component to model
bi-variate extreme values. Finally, validity of the proposed models
is assessed by incorporating the mean constraint on probability
measure function of Pichanks coordinates. Based on the data
collected within the engine compartment of Fiat Linea, we
demonstrate the superiority of proposed methodology compared
to the conventional extrapolation-based methods in providing the
best fit to the multivariate extremes.

Index Terms—Multivariate extreme value theory, wireless
channel modeling, MIMO, spatial diversity, ultra-reliable com-
munication, 6G.

I. INTRODUCTION

Ultra-reliability is one of the most important features of the
fifth generation (5G) and beyond networks with the goal of
providing a reliable and resilient communication infrastructure
that can support a wide range of applications and use cases,
including industrial automation, self-driving cars, and remote
medical procedures [1]-[4]. In the current terminology of 5G
standards, ultra-reliability is commonly associated with low la-
tency and creates an ultra-reliable low latency communication
(URLLC). However, this tight coupling should be relaxed in
certain scenarios such as health monitoring or disaster recovery
applications where ultra-reliability is essential, but the allowed
latency can be larger than the typical 1 milliseconds (ms)
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[5]. Fulfillment of the reliability requirements of 10−9-10−5

packet error rate (PER) in ultra-reliable communication (URC)
has been widely used in previous studies [4]-[10]. URC
necessitates fundamental breakthrough in the derivation of the
channel lower tail distribution by using novel statistical tools,
such as extreme value theory (EVT) [11], [12], power law
expression based on the extrapolation of the channel data [4],
[5], and data-driven learning framework [6]. Different forms
of diversity techniques can be applied in URC to reduce the
required signal-to-noise-ratio (SNR) for achieving a certain
reliability. Among the diversity techniques, spatial diversity is
the most viable solution to achieve high reliability over fading
channels by utilizing multiple transmission antennas [13].
Consequently, towards achieving ultra-reliability in spatial
diversity, the key is to obtain a proper multi-channel mod-
eling approach that characterizes the statistics of multivariate
extreme events for the systems with multiple input multiple
outputs (MIMO) connections [14].

Ultra-reliability can be achieved through different forms of
diversity techniques, including time diversity [15], frequency
diversity [16], interface diversity [17], or spatial diversity
[4], [18], [19]-[21]. In [15], a combination of the stochastic
geometry and the queueing analysis is proposed to derive
the URLLC achievable ratio through the concept of effective
bandwidth, which transforms the constraints of delay and
reliability into the constraint of the achievable transmission
rate. The authors in [16] explore the diversity aspects of
random access schemes where users transmit over multiple
orthogonal Rayleigh fading subchannels and are treated as
diversity branches by a maximum ratio-combining (MRC)
receiver. The authors in [17] consider a trade-off between
transmission latency and reliability by allocating coded frag-
ments of the encoded payload message to different interfaces
according to their bit rate, latency, and reliability properties.
[19] proposes a statistical model by incorporating the time of
arrival (TOA), angle of arrival (AOA), and angle of departure
(AOD) of each multi-path component to estimate the joint
magnitude and phase PDFs of measured data for realistic
model parameters. A survey presented in [20] investigates the
main properties of massive MIMO channels based on different
configurations of an antenna array, which directly affect the
channel models and system performance. On the other hand,
[21] provides a survey of the most critical concepts in propa-
gation channel modeling for MIMO systems by classifying the
channels into physical models focusing on double-directional
propagation and analytical models considering the channel
impulse response and antenna properties. Nevertheless, an
essential building block of an ultra-reliable wireless system
is a model of the wireless channel at the physical layer that
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captures the statistics of rare events, and extensive fading dips
[4], [18].

Current studies on the statistical modeling of the wireless
channel operating in the ultra-reliable communication region
are categorized into four folds: 𝑎) Extrapolation of a wide
range of commonly used average statistics-based wireless
channel models such as Rayleigh and Rician towards the
ultra-reliability region [4], [5]; 𝑏) Recommendation of the
usage of new channel parameters by incorporating extreme
reliability requirements into the communication [22], [18];
𝑐) Usage of a non-parametric statistical learning algorithm
to estimate the probability density function (PDF) of the
channel distribution [23]; and 𝑑) Application of the EVT to
characterize the statistics of the channel tail distribution by
deriving the statistics of extreme events happening rarely [11],
[12]. In [4], a simple power-law expression is proposed to
extrapolate the cumulative distribution function (CDF) of the
commonly used average statistics channels to the ultra-reliable
regime of operation. In addition, the authors in [4] apply
the power-law results to analyze the performance of receiver
diversity schemes and obtain a new simplified expression
for MRC applicable for an ultra-reliable communication. In
[5], two performance measures, average reliability (AR) for
dynamic environments and probably correct reliability (PCR)
for the static environments, have been proposed based on the
extrapolation-based channels in [4] with the goal of selecting a
transmission rate guaranteeing ultra-reliability. However, these
extrapolated distributions cannot accurately estimate the lower
tail distribution, and therefore, result in several orders of mag-
nitude differences in the estimated PER [11], [12]. Also, the
channels in [4] are assumed independent and non-identically
distributed (i.n.i.d.), which is not a realistic assumption. In
[22], [18], the authors have modified the definitions of coher-
ence time and distance to the time and distance over which a
channel is predictable with a given reliability, respectively. Ac-
cordingly, the authors in [18] use a standard spatially indepen-
dent quasi-static Rayleigh fading model of wireless channels to
examine channel dynamics in the URC context. Nevertheless,
none of these frameworks derives ultra-reliability statistics
by proposing a channel modeling methodology. In [23], the
authors propose a non-parametric statistical learning algorithm
that utilizes kernel density estimation (KDE) to estimate the
PDF of channel distribution and accordingly, selects a proper
transmission channel rate that meets the requirements of ultra-
reliability. However, the proposed data-driven non-parametric
approach requires a massive number of training samples, about
10×𝜖−1, to meet the targeted error probability 𝜖 . Only recently
in [11], [12], we have proposed a novel channel modeling
methodology based on EVT to derive the statistics of the
lower tail distribution while efficiently dealing with a massive
amount of data. EVT is a unique and robust framework to
develop techniques for modeling the statistics of rare events
based on the implementation of mathematical limits as finite-
level approximation [4], [14], [24].

EVT has been used at the data link and network layers
to model the tail statistics of queue length and delay [25]-
[27] and derive closed-form asymptotic expressions for the
throughput, bit error rate (BER), and PER over different fading

channels [28]-[31]. Moreover, block maxima EVT models
have been applied to model the maximum end-to-end (E2E)
latency by using the generalized extreme value (GEV) distri-
bution for virtual reality (VR) applications in Terahertz [32].
Furthermore, EVT has been used to derive the distribution
of the maximum end-to-end SNR in an opportunistic relay
selection-based cooperative relaying network consisting of a
large number of independent and non-identical relay links [33].
Additionally, EVT and federated learning (FL) approaches
have been combined in [34] to propose a Lyapunov-based
distributed transmit power and resource allocation procedure
for vehicular users (VUEs), while the statistics of the queue
lengths exceeding a high threshold are characterized by using
the GPD. However, these upper layer studies assume the aver-
age statistic-based channel models such as Rayleigh, Rician,
or Nakagami fading; therefore, their usage may not be suitable
in a system operating at URC [4], [11], [12]. To fill this gap,
in [11], we have used EVT techniques at the physical layer
to determine the optimum threshold below which the received
power samples are considered extreme events and included
in the tail distribution, then model the channel tail distri-
bution by using the generalized Pareto distribution (GPD),
and finally, assess the validity of the proposed EVT-based
model by using the probability plots. Additionally, in [12],
we have extended [11] to model the tail of the non-stationary
channel distribution by first determining an external factor
causing non-stationarity and, accordingly, dividing the channel
data into multiple stationary sequences to apply the EVT
techniques initially presented in [11] and model the parameter
of the fitting distribution as a change-point function of time.
Additionally, recently, in [35], [36], we have proposed a novel
EVT-based framework dealing with a relatively low number
of data samples to estimate the optimal transmission rate and
validate it by assessing the outage probability so that reliability
constraints are met with given confidence for ultra-reliable
communications. Nevertheless, we have not considered spatial
diversity to address the reliability constraints in more than
one dimension and assess the dependency between extreme
events. Therefore, there is a lack of studies focusing on channel
modeling strategies in the ultra-reliable regime of operation by
discovering the inter-relation of extreme events. Multivariate
extreme value theory (MEVT) is a robust statistical discipline
that develops techniques to model the relation of rare events
based on the multidimensional limiting relations [4], [14], [24].

The goal of this paper is to propose a novel channel model-
ing methodology based on MEVT for a system using spatial
diversity in MIMO-URC to derive the lower tail statistics
of the received signal power in multiple dimensions while
efficiently dealing with a massive amount of corresponding
data. We focus on the two-dimensional or bi-variate case to
highlight the main concepts and issues of MEVT without
increasing the complexity of the notation required for an
entire multivariate perspective. The modeling approach adapts
MEVT to (i) fit GPD to the tail distribution of the received
power samples exceeding a given threshold in each sequence
and derive the scale and shape parameters of GPD while
the thresholds are determined optimally; (ii) apply Fréchet
transformation to each data sequence so that the marginal
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distributions of the resulting variables are Fréchet; (iii) deter-
mine the dependency factor between the Fréchet transformed
sequences; (iv) apply the logistic distribution approach and
Poisson point process approach to fit bi-variate GPD (BGPD)
to the tail of the joint distribution of the Fréchet transformed
sequences, considering the dependency factor; and (v) assess
the validity of the fitted BGPD model by checking the mean
constraint on the probability measure function. MEVT extends
the ideas of univariate EVT to the analysis of dependent
extreme events for multiple random variables by introducing
several features of MEVT that are not available in EVT anal-
ysis, including modeling dependence structures and modeling
the joint distribution of multiple extreme events. The original
contributions of the paper are listed as follows:

• We propose a comprehensive channel modeling method-
ology for a system operating at URC based on MEVT for
the first time in the literature. The methodology consists
of techniques for deriving the lower tail statistics of
each channel data sequence by using Uni-variate GPD
(UGPD), fitting BGPD to the tail of the joint probability
distribution by using the logistic distribution-based and
Poisson point process-based approaches, and assessing
the validity of these two proposed models by incorpo-
rating the probability measure function of the Pichanks
coordinates.

• We propose novel techniques based on the logistic dis-
tribution to fit BGPD to the tail of a joint probability
distribution of channel data, for the first time in the liter-
ature. We first determine the dependency factor among the
Fréchet transformed sequences, and then derive a closed-
form expression for the BGPD model. These techniques
are original and contribute to the advancement of statis-
tical models for analyzing joint probability distributions
of extreme channel samples.

• We propose novel techniques based on Poisson point
process approach to represent the Fréchet transformed
channel tail data using their pseudo-polar Pickands pairs,
radial and angular components, for the first time in the
literature. We use these representations to determine the
probability measure function of the Pickands angular
component and the corresponding BGPD model.

• We introduce a novel approach for assessing the validity
of the derived BGPD models for the joint distribution
of the channel tail based on the verification of the mean
constraint on the corresponding probability measure func-
tion of the Pickands coordinates obtained from BGPD
approaches, for the first time in the literature.

• Based on the data collected within the engine compart-
ment of Fiat Linea using one transmitter and two receivers
under various engine vibrations and driving scenarios, we
demonstrate the superiority of the proposed methodology
for deriving the tail statistics of multivariate extremes
compared to the conventional extrapolation-based models
of the average statistics channels to the ultra-reliable
region, in terms of the modeling accuracy.

The rest of the paper is organized as follows. Section II de-
scribes the system model and assumptions considered through-

out the paper. Section III describes the basics of uni-variate
and multivariate EVT together with the theorems used in the
development of the proposed multivariate channel modeling
approach. Section IV presents the proposed channel modeling
framework based on MEVT for characterizing the joint multi-
channel tail distribution in the ultra-reliable region. Section V
provides the channel measurement setup and the performance
evaluation of the proposed algorithm in determining the
optimum threshold, fitting BGPD to the joint probability
distribution of the extremes, and comparing the proposed
methodology to the conventional methods in terms of the
estimation accuracy. Finally, concluding remarks and future
works are given in Section VI.

II. SYSTEM MODEL

We consider MIMO for a single transmitter (Tx)-receiver
(Rx) pair communicating over a stationary channel, i.e., the
parameters of the channel distribution are fixed over a vast
period. If the channel is non-stationary according to the
Augmented Dickey-Fuller (ADF) test results [12], the external
factors causing time variation are determined such that the
sequence is divided into 𝑀 groups, each of which can be
considered stationary, as explained in detail in [12]. Then, the
tail distribution of each stationary sequence is modeled by
using the GPD. The GPD is used in EVT to estimate the tail
of distribution by modeling the probabilistic distribution of
the values exceeding a given threshold [14], [24], [37]-[42].
Please note that the same procedure can be applied to multiple
transmitter and receiver pairs. The transmit power is assumed
to be fixed and known in advance. Therefore, estimating the
received signal power is equivalent to estimating the squared
amplitude of the channel state information [5], [11].

Ultra-reliability is defined as communication with target
packet error probability in the range of 10−9-10−5. We assume
that the outage is the only source of packet error and is
defined as the received power being less than a predefined
threshold [4], [43], [44]. Since the main focus is on modeling
the channel behavior in the ultra-reliable region by employing
the distributions, modeling and validation techniques adopted
from extreme value theory in an offline manner, the delay
required for collecting a large number of empirical samples
is not considered in the first step of the study. The design of
a real-time URLLC system based on these statistics requires
the consideration of a limited amount of data requiring the
inclusion of confidence intervals in the parameter estimation
or usage of transfer learning techniques, but it is out of the
scope of this paper and subject to future work.

In order to model the multivariate extremes of received
powers, the sequences of measured received power samples
at Tx-Rx pairs are converted into a sequence of independent
and identical distributed (i.i.d.) samples by removing their
dependency via declustering approach [11]. Upon applying
EVT to the resulting sequence of i.i.d. samples in each
pair, the optimum threshold is determined for each sample
sequence. Determining an optimum threshold is of paramount
importance as it determines the number of samples that are in-
cluded in the channel tail and considered as an extreme value.
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Then, the parameters of the Pareto distribution associated with
the optimum threshold are estimated by using the maximum
likelihood estimator (MLE). A multivariate version of GPD,
i.e., a family with which to approximate a joint distribution
on regions where we observe joint extreme values, is obtained
by using the MEVT.

III. BACKGROUND

EVT is a robust framework that models the probabilistic
distribution of extreme events occurring rarely. EVT has been
applied in different fields, including hydrology to quantify
risks of extreme floods, rainfalls, and waves [24], and finance
to estimate losses due to extreme events [37]. However, it has
been recently used in the telecommunication field to analyze
the behavior of extreme values either in network traffic,
worst-case delay, queue lengths, throughput, and BER/PER
of URLLC [35], [25], [45], or in channel modeling to statis-
tically derive the lower tail of the received power for URC
systems [11]-[12]. In the following, Section III-A presents the
uni-variate technique for modeling the extremes of a single
process. Section III-B gives the general modeling technique
of multivariate extremes to describe the extreme value inter-
relationships of two or more processes. Sections III-B1 and
III-B2 present bi-variate extreme value techniques based on
the logistic family distribution and Poisson point process
approach, respectively. Finally, Section III-B3 provides tech-
niques to assess the validity of the proposed bi-variate extreme
value modeling techniques.

A. Uni-variate Extreme Value Theory
Uni-variate EVT (UEVT), in general, focuses on the repre-

sentation and modeling techniques for the extremes of a single
process. UEVT is used for modeling extreme events in two
main ways. The first concerns models for block maxima by
using the (GEV) distribution given by

𝐹 (𝑧) = exp
{
−
[
1 + 𝜉

( 𝑧 − 𝜇

𝜎

) ]−1/𝜉 } (1)

where 𝜇, 𝜉, and 𝜎 are the location, shape, and scale parameters
of the GEV distribution, respectively [14, Theorem 3.3]. The
second uses EVT to characterize the tail of a distribution,
i.e., the extremes of a sequence, by modeling the probabilistic
distribution of values exceeding a given threshold through the
generalized Pareto distribution (GPD).

Assume that {𝑥1, ..., 𝑥𝑁 } is an i.i.d. stationary sequence,
where 𝑥𝑖 denotes the 𝑖𝑡ℎ received power for 𝑖 ∈ {1, ..., 𝑁},
and 𝑁 is the total number of received power samples. Then,
according to the EVT, the tail distribution of the power
sequence, i.e., the probabilistic distribution of the power values
exceeding a given threshold 𝑢, can be expressed as

𝐺 (𝑙) = 1 −
[
1 + 𝜉𝑙

�̃�

]−1/𝜉
, (2)

where 𝑙 is a non-negative value denoting the exceedance below
threshold 𝑢, i.e., (𝑙 = 𝑢−𝑋), 𝑋 denotes any 𝑥𝑖 below threshold
𝑢; 𝐺 (𝑙) expresses the GPD; and 𝜉 and �̃� = 𝜎 + 𝜉 (𝑢 − 𝜇)
are shape and scale parameters of the GPD, respectively. It
should be noted that 𝜇 and 𝜎 are the location and scale
parameters of the GEV distribution fitted to the CDF of
𝑚𝑁 = 𝑚𝑖𝑛{𝑥1, ..., 𝑥𝑁 }, respectively [11, Theorem 1], [46].

B. Bi-variate Extreme Value Theory

When studying the extremes of two or more processes,
the individual process can be modeled by using uni-variate
techniques. However, the possible dependency between the ex-
treme events requires the investigation of their joint behavior.
Bi-variate EVT (BEVT) allows us to estimate the probability
of exceeding thresholds simultaneously and analyze the inter-
dependence of two variables in the extreme value region [47].

In the following, we provide the Theorems and Corollar-
ies required to develop our channel modeling methodology.
Theorem 1 incorporates BEVT applications to investigate the
general form of BGPD models that are valid to estimate
the bi-variate tail distribution. Then, based on Theorem 1,
we obtain the logistic family distribution-based BGPD and
Poisson point process-based BGPD models in Theorems 2 and
3, respectively. Also, we define the Fréchet transformation in
Definition 1 as the input of BEVT in Theorem 1 is required to
be Fréchet distributed. Additionally, the definition of Pseudo-
polar Pickands coordinate transformation is provided in Def-
inition 2 to be used in the Poisson point process approach
in Theorem 3. Moreover, the constraints on the Pickands
coordinates are defined in Definition 3, which will be used to
estimate the probability density function and the probability
measure function of the BGPD model in Theorem 2. Finally,
Theorems 4 and 5 express the requirements of a valid BGPD
model based on the mean constraint on the probability measure
functions of the Pickands coordinates corresponding to the
BGPD models obtained in Theorems 2 and 3, respectively.

Definition 1 (Fréchet transformation). Suppose
(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) are independent realizations of a
random variable (𝑋,𝑌 ) with joint distribution 𝐹 (𝑥, 𝑦). For
optimum thresholds 𝑢𝑥 and 𝑢𝑦 , each marginal distribution of
𝐹 has an approximation of the form (2), with the parameters
(�̃�𝑥 , 𝜉𝑥) and (�̃�𝑦 , 𝜉𝑦) for 𝑋 and 𝑌 , respectively. Let’s apply
Fréchet transformation to variables 𝑋 and 𝑌 to induce new
variables �̃� and 𝑌 , given by

�̃� = −
(
log

{
1− 𝜁𝑥

[
1+ 𝜉𝑥 (𝑢𝑥 − 𝑋)

�̃�𝑥

]−1/𝜉𝑥 })−1
, 𝑋 < 𝑢𝑥 , (3)

and

𝑌 = −
(
log

{
1−𝜁𝑦

[
1+

𝜉𝑦 (𝑢𝑦 − 𝑌 )
�̃�𝑦

]−1/𝜉𝑦 })−1
, 𝑌 < 𝑢𝑦 . (4)

where 𝜁𝑥 = 𝑃𝑟 (𝑋 < 𝑢𝑥) and 𝜁𝑦 = 𝑃𝑟 (𝑌 < 𝑢𝑦). Then, the
joint distribution function of 𝑥 and �̃�, �̃�, has margins that
are approximately standard Fréchet distribution, i.e., �̃� (𝑥) =
𝑒𝑥𝑝(−1/𝑥), 𝑥 > 0, �̃� ( �̃�) = 𝑒𝑥𝑝(−1/�̃�), �̃� > 0, where 𝑥 and �̃�

are any realizations from �̃� and 𝑌 , respectively [14].

Theorem 1. Let us define 𝑀∗
𝑛 = (𝑀∗

�̃�,𝑛
, 𝑀∗

�̃�,𝑛
), where 𝑀∗

�̃�,𝑛
=

max𝑖=1,...,𝑛{�̃�𝑖}/𝑛, and 𝑀∗
�̃�,𝑛

= max𝑖=1,...,𝑛{𝑌𝑖}/𝑛, and ( �̃�𝑖 , 𝑌𝑖)
are independent vectors with standard Fréchet marginal dis-
tributions as expressed in (3) and (4), respectively, and 𝑛 is
the number of realizations in the tail of 𝑋 or 𝑌 . Then,

𝑃𝑟{𝑀∗
�̃�,𝑛 ≤ 𝑥, 𝑀∗

�̃�,𝑛 ≤ �̃�} 𝑑−→ 𝐺 (𝑥, �̃�), (5)
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where
𝑑−→ denotes limit of distribution, and 𝐺 is a bi-variate

non-degenerate distribution function with the form

𝐺 (𝑥, �̃�) = exp{−𝑉 (𝑥, �̃�)}, 𝑥 > 0, �̃� > 0 (6)

𝑉 (𝑥, �̃�) = 2
1∫

0

max(𝜔
𝑥
,
1 − 𝜔

�̃�
)𝐻 (𝑑𝜔), (7)

and 𝐻 is a distribution function on [0, 1] satisfying the mean
constraint

1∫
0

𝜔𝐻 (𝑑𝜔) = 1/2. (8)

Any family of distributions that arise as limits in (5) can be
considered the class of bi-variate extreme value distributions
[14], [48].

Proof. Please refer to [49] for the proof. □

Theorem 1 implies that the class of bi-variate extreme
value distributions is in one-to-one correspondence with the
set of distribution functions 𝐻 on [0, 1] satisfying (8). If
the probability measure 𝐻 is differentiable with probability
density ℎ, integral (7) is simplified to

𝑉 (𝑥, �̃�) = 2
∫ 1

0
max(𝜔

𝑥
,
1 − 𝜔

�̃�
)ℎ(𝜔)𝑑𝜔. (9)

This assumes that the thresholds 𝑢𝑥 and 𝑢𝑦 are small enough
to justify the limit (5) as an approximation [14].

Theorem 1 also implies that for generating a class of BGPD
models expressed in (6), it is required to obtain a parametric
family for 𝐻 over [0, 1] whose mean is 0.5 for every value
of the parameter. However, in practice, it is hard to find
parametric families whose mean is parameter-free and for
which the integral (9) is tractable. Two approaches that can
be utilized to model the bi-variate extreme value distribution
are the logistic family and the Poisson point process, which
will be discussed in the following.

1) BGPD Based on Logistic Family:

Theorem 2. Let ( �̃�, 𝑌 ) be independent vectors with standard
Fréchet marginal distributions as expressed in (3) and (4). The
logistic family 𝐺 (𝑥, �̃�) is a standard class expressing BGPD
of �̃� and 𝑌 as:

𝐺𝑙 (𝑥, �̃�) = exp
{
−𝑉 (𝑥, �̃�)

}
, (10)

where
𝑉 (𝑥, �̃�) =

(
𝑥−1/𝛼 + �̃�−1/𝛼)𝛼, (11)

𝛼 ∈ (0, 1) denotes the dependency factor between variables 𝑥

and �̃� with the constraint 𝑥, �̃� > 0, and 𝑥 and �̃� are expressed
as (3) and (4), respectively, for large enough thresholds 𝑢𝑥
and 𝑢𝑦 [14], [48].

Proof. Please refer to [14], [24], [49] for the proof. □

The variables 𝑥 and �̃� of the logistic distribution family in
(10) are exchangeable and have correlation 𝜌 = 1−𝛼2 [24]. The
𝛼 value very close to 1 denotes strong dependence between
the variables 𝑥 and 𝑦, even at moderately extreme levels.

2) BGPD Based on Poisson Point Process:

Definition 2 (Pickands coordinates). Let ( �̃�, 𝑌 ) be inde-
pendent vectors with standard Fréchet marginal distributions
as expressed in (3) and (4). Let’s define the transformation
𝑇𝑃 (𝑥, �̃�) by

𝑇𝑃 (𝑥, �̃�) :=
(−𝑥
𝑛

+ −�̃�
𝑛
,

−𝑥/𝑛
−𝑥/𝑛 − �̃�/𝑛

)
=: (𝜔, 𝑟).

where 𝑛 ∈ 𝑁 , is the length of vector �̃� or 𝑌 . 𝑇𝑃 (𝑥, �̃�) is called
transformation with respect to the Pickands coordinates (𝜔, 𝑟),
where 𝜔 is pseudo-polar angular component measuring angle
in [0, 1] scale, and 𝑟 is pseudo-polar radial component mea-
suring the distance from the origin [14]. This transformation
is one-to-one with the inverse

𝑇−1
𝑃 (𝜔, 𝑟) =: 𝑟

(
𝜔, 1 − 𝜔

)
=: (𝑥, �̃�).

The pseudo-polar Pickands mapping has the same geo-
metrical interpretation as standard polar coordinates with
the difference that polar coordinates use the Euclidian norm
for the angular and radial component, while the Pickands
coordinates use the sum norm [49]-[50].

Theorem 3. Assume that ( �̃�,𝑌 ) be a vector of independent bi-
variate observations with standard Fréchet margins satisfying
(5). Let 𝑁𝑛 denote a sequence of point processes defined as

𝑁𝑛 = {(𝑛−1𝑥1, 𝑛
−1 �̃�1), ..., (𝑛−1𝑥𝑛, 𝑛

−1 �̃�𝑛)}. (12)

where 𝑥𝑖 and �̃�𝑖 are the 𝑖𝑡ℎ realization of �̃� and 𝑌 , respectively.
Then, 𝑁𝑛 converges to 𝑁 , i.e., 𝑁𝑛

𝑑−→ 𝑁 , where 𝑁 is a non-
homogeneous Poisson process on space 𝐴 defined by

𝐴 = {(0,∞) × (0,∞)\(0, 𝑥) × (0, �̃�)},

denoting space {(0,∞)×(0,∞)} excluding sub-space {(0, 𝑥)×
(0, �̃�)}. Therefore, according to Poisson point process limit, the
bi-variate extremes are modeled as

𝐺 𝑝𝑝 (𝑥, �̃�) → 𝑃𝑟{𝑁 (𝐴) = 0} = exp{−Λ(𝐴)}, (13)

where the intensity measure of Poisson point process, Λ(𝐴),
given by [14], [50]

Λ(𝐴) = −2
∫ 1

𝜔=0
max

( 𝜔

−𝑥/𝑛 ,
1 − 𝜔

−�̃�/𝑛
)
𝐻𝑝𝑝 (𝑑𝜔), (14)

has the same form as function 𝑉 (𝑥, �̃�) in (7), and the prob-
ability measure function 𝐻𝑝𝑝 (𝑑𝜔) =

∫ 1
0 ℎ𝑝𝑝 (𝜔) 𝑑𝜔 with the

probability density function ℎ𝑝𝑝 (𝜔) of the angular component
𝜔 based on Definition 2 [14], [47], [50].

Proof. Let 𝑟 and 𝜔 denote the Pickands coordinates of 𝑥 and
�̃� given by

𝑟 =
−𝑥
𝑛

+ −�̃�
𝑛
, 𝑎𝑛𝑑 𝜔 =

−𝑥/𝑛
𝑟

, (15)

where 𝑥 and �̃� have standard marginal Fréchet distributions.
Then, the intensity function of 𝑁 on space 𝐴 in Theorem 3 is
[14], [47], [50]

𝜆(𝑟, 𝑤) = 2
𝑑𝑟

𝑟2 𝐻𝑝𝑝 (𝑑𝜔). (16)
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Additionally, let 𝑁𝑛 be the point process defined as (12) with
intensity function 𝜆(𝑟, 𝜔) in (16). Then, Λ(𝐴) in Theorem 3
is given by

Λ(𝐴) =
∫
𝐴

2
𝑑𝑟

𝑟2 𝐻𝑝𝑝 (𝑑𝜔) =

∫ 1

𝜔=0

∫ 𝑟𝑚𝑎𝑥

−∞
2
𝑑𝑟

𝑟2 𝐻𝑝𝑝 (𝑑𝜔),

where 𝑟𝑚𝑎𝑥 is the maximum of − �̃�/𝑛
𝜔

and − �̃�/𝑛
1−𝜔

, depending
on how 𝑟 is defined based on 𝜔 =

− �̃�/𝑛
𝑟

or 1 − 𝜔 =
− �̃�/𝑛
𝑟

.
Therefore,

Λ(𝐴) =
∫ 1

𝜔=0

∫ 𝑟=max{ − �̃�/𝑛
𝜔

,
− �̃�/𝑛
1−𝜔

}

−∞
2
𝑑𝑟

𝑟2 𝐻𝑝𝑝 (𝑑𝜔)

= −2
∫ 1

𝜔=0
max

( 𝜔

−𝑥/𝑛 ,
1 − 𝜔

−�̃�/𝑛
)
𝐻𝑝𝑝 (𝑑𝜔).

(17)

□

Remark 1. The Pickands probability measure 𝐻𝑝𝑝 (𝜔) has
the following property [50]- [53]:∫

[0,1]
𝜔 𝐻𝑝𝑝 (𝑑𝜔) =

∫
[0,1]

(1 − 𝜔) 𝐻𝑝𝑝 (𝑑𝜔). (18)

The fact expressed in Remark 1 will be used in Theorem 5 to
assess the validity of the Poisson point process-based BGPD.

3) BGPD Model Assessment: Any distribution function 𝐻

defined on the space [0, 1] in (7) that satisfies the mean
constraint in (8), gives rise to a valid limit in (5) [14].
Therefore, if 𝐺 (𝑥, �̃�) is a valid model to estimate the tail of bi-
variate extremes, its corresponding probability measure func-
tion 𝐻 (𝜔) should satisfy the 0.5 mean constraint according to
Theorem 1.

Definition 3 (Pickands constraints). Let ( �̃�, 𝑌 ) be inde-
pendent vectors with standard Fréchet marginal distributions
as expressed in (3) and (4), and corresponding Pickands
coordinates (𝑟, 𝜔). Then, for a radial cut-off point 𝑟0 < 0
close to 0, we have the following Pickands constraints [49]:

1) Conditional on 𝑟 > 𝑟0, the radial and angular compo-
nents of the Pickands coordinates (𝜔, 𝑟), are indepen-
dent.

2) Conditional on 𝑟 > 𝑟0, the radial component of the
Pickands coordinates is uniformly distributed. Therefore,

𝑃𝑟 (𝑟 ≥ 𝑅 |𝑟 > 𝑟0) =
𝑅

𝑟0
, 𝑟0 ≤ 𝑅 ≤ 0. (19)

Theorem 4. If the BGPD model based on the logistic distribu-
tion family 𝐺𝑙 (𝑥, �̃�), given by (10), is a valid model to estimate
the tail of the bi-variate extremes, the mean constraint defined
in (8) should be satisfied on 𝐻𝑙 (𝜔) =

∫
ℎ𝑙 (𝜔) 𝑑𝜔, where

ℎ𝑙 (𝜔) =
𝜙(𝜔)
𝜇

, (20)

𝜇 =
∫
𝜙(𝜔)d𝜔 > 0, and 𝜙(𝜔) is the Pickands density function

given by

𝜙(𝜔) = |𝑟 |
( 𝜕2

𝜕𝑥𝜕�̃�
𝐺𝑙

) (
𝑇−1
𝑃 (𝜔, 𝑟)

)
, 𝑟 > 𝑟0, (21)

where 𝐺𝑙 is the BGPD expressed as (10) and 𝑟0 is the optimum
cut-off point obtained based on the constraints on the Pickands
coordinates in Definition 3.

Proof. Please refer to [49] and [50] for the proof. □

Theorem 5. If the BGPD model 𝐺 𝑝𝑝 (𝑥, �̃�) based on the
Poisson point process approach given by (13) is a valid
model to estimate the tail of the bi-variate extremes, the mean
constraint defined in (8) is always satisfied for the 𝐻𝑝𝑝 (𝜔)
function in (14).

Proof. Let 𝑟 and 𝜔 denote the Pickands coordinates of 𝑥 and
�̃� based on Definition 2. Then, referring to (18), we have

2
∫
[0,1]

𝜔 𝐻𝑝𝑝 (𝑑𝜔) =
∫
[0,1]

𝐻𝑝𝑝 (𝑑𝜔),

where
∫
[0,1] 𝐻𝑝𝑝 (𝑑𝜔) = 1, and therefore, the 0.5 mean

constraint defined in (8) is satisfied for the probability measure
function 𝐻𝑝𝑝 (𝜔). □

IV. PROPOSED CHANNEL MODELING METHODOLOGY

We propose a novel BEVT-based channel modeling method-
ology with the goal of estimating the joint lower tail statistics
of multiple channels in the ultra-reliable regime. The method-
ology consists of the following steps: The sequences of mea-
sured received power samples are converted into sequences of
i.i.d. samples by removing their dependency via declustering,
where the samples are divided into multiple clusters, each
of which includes consecutive dependent observations, and
clusters are separated by a specific sample gap to ensure the
independency between clusters [11]. Upon applying EVT to
the resulting sequence of i.i.d. samples, the optimum thresh-
olds are determined. Since the bi-variate analysis is restricted
to the time intervals in which both thresholds are exceeded,
we keep only the exceedances that occur in the same time
interval. Otherwise, we ignore the exceedance in any sequence.
Thereafter, the parameters of the UGPD associated with the
optimum thresholds are estimated by using the MLE. Then,
we assess the validity of the fitted UGPD model to the tail
distribution by using the probability plots, including the prob-
ability/probability (PP) plot and the quantile/quantile (QQ)
plot. Afterward, we model the inter-relationship of bi-variate
extremes based on Theorem 1 by applying two methods,
logistic distribution and Poisson point process. In the logistic
distribution approach, upon determining the dependency factor
𝛼 between the Fréchet transformed variables in Definition 1,
we model the tail of the joint PDF based on Theorem 2
and verify the model according to Theorem 4 by using the
doubled-transformed data to the Pickands coordinate based on
Definition 2. In the Poisson point process approach, based
on Theorem 3, we transform the data sequence in two steps:
First, based on the Fréchet transformation in Definition 1, and
second, based on Pickands coordinates in Definition 2. Then,
we determine the probability measure of the Pickands angular
coordinate 𝐻𝑝𝑝 (𝜔) and the intensity measure of Poisson point
process Λ(𝐴). Finally, we assess the validity of the Poisson
point process-based bi-variate model based on Theorem 5. The
proposed algorithm for the bi-variate extremes is depicted in
Fig. 1 and explained in detail next.
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Fig. 1. Flowchart of the proposed multi-channel modeling framework.

A. Modeling the Uni-variate Extremes
1) Declustering Approach: In the declustering approach,

first, we assume a low enough threshold 𝑢 and start the first
cluster by the first sample 𝑥𝑖 below this threshold. Then, all
the successive samples below threshold 𝑢 followed by the
first sample of the initial cluster are assigned to the first
cluster. Right after observing a sample over 𝑢, we let the
cluster continue for 𝑚𝑔 more consecutive values and then,
if no value below 𝑢 is detected, close the cluster. The next
cluster starts with the following value below the threshold
𝑢. Upon determination of the clusters of samples, we extract
the minimum value of each cluster, apply EVT to the i.i.d.
cluster minima, and model their tail distribution by using
GPD. The declustering approach is based on the fact that the
minimum values of the clusters are far enough to be considered
independent and identically distributed [11], [14].

2) Optimum Threshold Determination: Determination of
the optimum threshold is of paramount importance as it
specifies where the tail of the distribution starts and distin-
guishes between extreme events happening rarely and non-
extreme values. The optimum threshold of each uni-variate
case is determined by using the mean residual life (MRL) and
parameter stability methods. Based on the MRL method, 𝑢

is the optimum threshold if 𝑢 is the highest threshold below
which the expected value of samples exceeding 𝑢 is a linear
function of 𝑢, i.e., 𝐸 (𝑢 − 𝑋 |𝑋 < 𝑢) is linear against 𝑢. The
remarkable advantage of the MRL method is its simplicity, as
it can be applied to the data sequence prior to the estimation of
the UGPD parameters. However, due to the lower precision of
the MRL method compared to the parameter stability method,
it is sometimes difficult to obtain the optimum threshold
explicitly. Therefore, the MRL method is usually utilized as
a complementary method or in the case that the optimum
threshold determination does not require high precision. The
parameter stability method states that the optimum threshold
𝑢 is the highest threshold below which the estimated shape

and modified scale parameters of the UGPD fitted to the tail
distribution associated with a variety of thresholds is a linear
function of the threshold. It is worth noting that the modified
scale parameter is defined as 𝜎∗ = �̃�𝑢 − 𝜉𝑢. Additionally, the
linearity relation is assessed by using the R-squared statistical
measure, denoted by 𝑅2 [11]-[12].

3) Model Validity Assessment: The validity of the GPD
model is assessed by using probability plots, i.e., probabil-
ity/probability (PP) and quantile/quantile (QQ) plots. These
plots are graphical techniques used to assess the validity of
the models fitted to the empirical values. In the PP plot, we
plot the empirical CDF of the occurrence of an extreme value
versus the corresponding CDF obtained by the GPD, while in
the QQ plot, we plot the empirical extreme quantile versus the
corresponding value obtained by the inverse of GPD [11]. If
the GPD appropriately models the extreme values exceeding
threshold 𝑢, then both PP and QQ plots should fit the unit
diagonal line, i.e., the 45◦ line [14], [37].

B. Evaluation of the Correlation Coefficient
The first step in the bi-variate extreme analysis is to assess

the amount of dependence in the tails [47]. However, since the
bi-variate analysis is restricted to those time intervals in which
both thresholds 𝑢𝑥 and 𝑢𝑦 are exceeded, before determining
the correlation among the tail samples, we are required to
revise the tail samples by removing those exceedances hap-
pening in one sequence but not in the other one, at the same
time interval [14]. Accordingly, we consider a time interval
consisting of 𝑀 samples and check if 𝑢𝑥 and 𝑢𝑦 are exceeded
simultaneously in sequences 𝑋 and 𝑌 , respectively. If so,
we capture the minima of clusters; otherwise, we ignore the
minima of each cluster [14], [47]. Then, EVT is applied to the
obtained exceedances to determine the UGPD parameters.

Upon determining the extremes of each sample sequence,
if the extremes of the two sequences are independent, no bi-
variate modeling like (5) is required. Otherwise, the existence
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of correlation among the tail samples suggests the requirement
of investigating the inter-relationship of the extreme values of
receivers. On the other hand, correlation among the received
powers in the total samples is used to assess the feasibility of
the spatial diversity. If the correlation coefficient among the
total samples is between 0.1 and 0.5, the spatial diversity is
suggested [54]. Otherwise, the employment of spatial diversity
is pointless due to the concurrent fading at different links. If
the spatial diversity is feasible and the correlation among the
tail samples is high enough, we are required to analyze the
bi-variate tail characteristics for a URC system.

C. Modeling the Multivariate Extremes Based on the Logistic
Distribution Approach

1) Data Conversion Based on the Fréchet Transformation:
Applying the Fréchet transformation by using the Definition 1
on the obtained tail sequences 𝑋 and 𝑌 from Section IV-A,
we induce variables �̃� and 𝑌 whose marginal distribution
functions have Fréchet distribution for 𝑥 < 𝑢𝑥 and 𝑦 < 𝑢𝑦 ,
approximately. This transformation is required as the input of
the bi-variate extreme modeling approach is expected to have
the Fréchet distribution [14], [24].

2) Determining the Dependency Factor 𝛼: To determine
the dependency parameter 𝛼 of the logistic model in (11),
we either estimate the correlation coefficient 𝜌 between the
variables 𝑥 and �̃� and then, calculate 𝛼 as

√︁
1 − 𝜌, or directly

estimate it by MLE, where the log-likelihood function is
defined as

𝑙 (𝑥, �̃� |𝛼) =
𝑛∑︁
𝑖=1

ln 𝑣𝛼 (𝑥𝑖 , �̃�𝑖), (22)

where,

𝑣𝛼 (𝑥, �̃�) =
𝜕2

𝜕𝑥𝜕�̃�
𝑉 (𝑥, �̃�), (23)

and 𝑉 (𝑥, �̃�) is the logistic distribution function defined in (11).
3) BGPD Model Based on the Logistic Distribution: The

bi-logistic family of distributions formulated in (11) is used
to model the bi-variate extremes based on Theorem 1. Upon
obtaining the dependency parameter 𝛼, as well as the Fréchet
transformed variables 𝑥 and �̃�, we build function (11) and
then, by taking the exponential of its negative function, we
determine the BGPD as expressed in (10). If this BGPD
model is reliable to characterize the tail of the bi-variate
distribution, the mean constraint on the probability measure
function defined in Theorem 4 should be satisfied.

D. Modeling the Multivariate Extremes Based on the Poisson
Point Process Approach

1) Pseudo-polar Pickands Coordinates Transformation: In
Poisson point process-based approach for modeling the bi-
variate extremes, it is required first to transform the data from
Cartesian to the polar coordinate: (𝑥, �̃�) → (𝑟, 𝜔). To this
end, we apply pseudo-polar Pickands transformation based on
Definition 2 that induces two new variables, radial component
𝑟 and angular component 𝜔.

2) Determining the Probability Measure Function of the
Radial and Angular Components: The CDF of the probability
measure function of the angular component 𝐻𝑝𝑝 (𝜔) is deter-
mined based on Theorem 3. This probability measure will be
used in the next step to determine the intensity of Poisson point
process Λ(𝐴) and, later, to assess the validity of the proposed
Poisson point process-based BGPD, according to Theorem 5.

3) BGPD Model Based on the Poisson Point Process:
Upon determining the angular component probability measure
function 𝐻𝑝𝑝 (𝜔), we compute the density function of the
Poisson point process Λ(𝐴) for the defined space 𝐴 based
on Theorem 3. Λ(𝐴) is actually equivalent to 𝑉 (𝑥, �̃�) in
the logistic distribution based-BGPD model. Afterward, the
BGPD model based on the Poisson point process approach is
determined as exp(−Λ(𝐴)).

E. BGPD Model Validation

1) Model Validation for Logistic-based BGPD: According
to Theorem 4, if the logistic-based BGPD is a valid model
to estimate the tail of the bi-variate extremes, the probability
measure function 𝐻𝑙 (𝜔), conditional on {𝜔 : 𝑟 > 𝑟0}, needs
to satisfy the 0.5 mean constraint, i.e.,

∫
𝜔
𝜔 𝐻𝑙 (𝑑𝜔) = 0.5,

where 𝜔 is the Pickands angular component of 𝑥 and �̃�.
To determine 𝑟0 based on Definition 3, a plot of 𝑟 versus

𝜔 for 𝑟 < 𝑟0, referred to as the 𝑟-𝜔 plot, can be utilized to
address the first constraint in Definition 3 by checking the
dependency between 𝑟 and 𝜔. The dependency of 𝑟 and 𝜔

is assessed based on the correlation results in which 𝑟 and
𝜔 are independent if their correlation is less than the critical
value 0.05. Additionally, to address the second constraint in
Definition 3, the distribution of the radial components 𝑟0 < 𝑟 <

0 is expected to be fitted to the uniform distribution, where
𝑃𝑟 (𝑟 > 𝑅 |𝑟 > 𝑟0) = 𝑅

𝑟0
.

2) Model Validation for Poisson Point Process-based
BGPD: According to Theorem 5, the Poisson point process-
based BGPD is, by default, a valid model to estimate
the tail of the bi-variate extremes as its intensity function
𝐻𝑝𝑝 (𝜔) satisfies the mean constraint. Therefore, the constraint∫
𝜔
𝜔 𝐻𝑝𝑝 (𝑑𝜔) = 0.5 is insured in Poisson point process-based

BGPD while determining 𝐻𝑝𝑝 (𝜔).
The complexity of the proposed MEVT-based channel mod-

eling framework is 𝑂 (𝑛 𝑁𝑇𝑥 𝑁𝑅𝑥), where 𝑁𝑇𝑥 and 𝑁𝑅𝑥 are
the number of transmitters and receivers, respectively, and 𝑛

is the number of the training samples for individual channel
sequences.

V. NUMERICAL RESULTS

The goal of this section is to evaluate the performance of
the proposed channel modeling algorithm in estimating the
BGPD model fitted to the joint distribution of the channel data
sequences based on two approaches: the logistic distribution
approach and the Poisson point process approach, and also
compare their performances with the traditional extrapolation-
based approaches to estimate the statistics of the channel tail
for a system operating in the spatial diversity in MIMO-
URC. In the traditional extrapolation-based approach, upon
estimating the distribution of the existing channel data for
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the reliability order of 10−3-100 PER [55]-[56] for individual
channel data sequences, we determine their joint probability
distribution, and then, extrapolate it towards the ultra-reliable
region 10−9-10−5 PER [4].

We have collected channel measurement data within the
engine compartment of Fiat Linea under various engine and
driving scenarios at 60 Gigahertz (GHz) by using a Vector
Network Analyzer (VNA) (R & S® ZVA67). The VNA
is connected to the transmitter and receivers through the
R & S® ZV-Z196 and PE361 port cables, respectively, with
610 millimeter (mm) length as shown in Fig 2. The output
power range at the port can be decreased to −100 dBm to
measure deep fading. The transmitter is an omnidirectional
antenna operating from 58 GHz to 63 GHz with 0 decibel
isotropic (dBi) nominal gain. The receivers are horn antennas
operating between 50-75 GHz with a nominal 24 dBi gain and
11◦ and 9.5◦ horizontal and vertical half power beamwidth,
respectively. The antennas are connected to the coax cables
through the waveguide to the coax adaptor operating at the
frequency span of 50−65 GHz, with insertion loss 0.5 decibel
(dB) and impedance 50 Ohm (Ω).

The data were collected while driving the car at the Koc
University campus and emulating different scenarios, includ-
ing starting/stopping the car, moving up/down on a ramp, and
driving on a flat road. More than 106 successive samples are
captured from each receiver antenna for about 1.5 hours with
a time resolution of 3 ms. We use MATLAB for analyzing
the data and the implementation of the proposed algorithm
as well as the traditional extrapolation-based approach [4].
Meanwhile, the estimation error of the proposed methodology
and the extrapolated-based approach have been reported by
means of the Root Mean Square Error (RMSE) metric.

In the following, first, in Section V-A, we provide the
numerical results in the determination of the optimum thresh-
old over which the tail statistics are derived for two uni-
variate channel data sequences obtained from receivers Rx1
and Rx2, and then, validate the tail model corresponding to
the optimum threshold by means of the probability plots.
Upon determining the correlation among the tail samples
in Section V-B, we apply the logistic distribution approach
to model the tail distribution of the bi-variate extremes in
Section V-C. Next, in Section V-D, we estimate the tail
distribution of the bi-variate extremes by applying the Poisson
point process approach. Afterward, in Section V-E, we assess
the validity of the determined BGPD models based on logistic
distribution and Poisson point process approaches. Finally, we
compare the performance of both proposed methodologies,
logistic distribution-based and Poisson point process-based
approaches, to that of the traditional extrapolation-based tech-
nique in the estimation of the bi-variate channel tail statistics
in Section V-F.

A. UGPD Model

Towards determining the optimum threshold of the GPD
fitted to the tail distribution of samples in each group, the
declustering approach is used to remove the dependency
among the samples and obtain i.i.d. observation for the EVT
input. In this regard, the MRL plot and parameter stability

Fig. 2. Transmitter and receiver antennas in the engine compartment.

method are utilized to determine the thresholds 𝑢𝑥 and 𝑢𝑦 , and
the minimum gaps(mgs) between the samples mg1 and mg2,
for receiver Rx1 and Rx2, respectively. We skip the illustration
of these results and only present the critical information as
the subject of the uni-variate channel tail modeling has been
discussed in our previous paper [11] in detail. According to
the results, for the uni-variate channel data sequence obtained
from receiver Rx1, 𝑢𝑥 = −15 dBm is the optimum threshold
below which the 𝑅2 > 0.95 for all mg1 > 1. Additionally,
𝑢𝑦 = −30 dBm is the optimum threshold below which the
linearity condition is observed for all mg2 > 1 for the uni-
variate channel data of receiver Rx2. Upon determining the
optimum thresholds (𝑢𝑥 and 𝑢𝑦) and minimum gaps mg1 and
mg2 between the clusters, the probability plots, including the
PP plot and QQ plot, are used to validate the accuracy of the
UGPD models fitted to the channel tail distribution of the i.i.d.
samples obtained from receivers Rx1 and Rx2, corresponding
to the optimum thresholds 𝑢𝑥 and 𝑢𝑦 , respectively.

B. Determination of Correlation

To determine the correlation among the tail samples, first,
we have considered the time intervals consisting of 1000
samples, and then, at each interval, obtained those minima
of Rx1 and Rx2 sequences that simultaneously exceed 𝑢𝑥 =

−15 dBm and 𝑢𝑦 = −30 dBm, respectively. The parameters
of UGPD fitted to these new exceedances are (𝜉𝑥 , �̃�𝑥) =

(−0.1469, 4.0367), and (𝜉𝑦 , �̃�𝑦) = (−0.4245, 8.5886) for
receivers Rx1 and Rx2, respectively. The correlation among
the total samples obtained from Rx1 and Rx2 is about 0.2766,
which confirms the applicability of spatial diversity as it is
less than 0.5. Additionally, the 0.3957 correlation coefficient
among the tail samples indicates the existence of correlation
in the tail samples of Rx1 and Rx2 and, therefore, confirms
the necessity of studying the inter-relationships of the extreme
values.

C. BGPD Based on the Logistic Distribution Approach

Fig. 3 illustrates the CDF of the transformed data by
using the Fréchet transformation for the received power tail
samples obtained from receivers Rx1 and Rx2. For small
values of 𝑥 and �̃�, the Fréchet transformation is not able
to fit appropriately to the empirical data. However, as the
transformed variables 𝑥 and �̃� increase and correspond to the
extreme values with extreme fading, the Frećhet distribution

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3323598

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

fits well to the empirical values. This confirms that 𝑥 and �̃�

are the reliable transformed variables for building the BGPD
model.
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Fig. 3. CDF of the received power tail samples transformed based on the
Fréchet transformation: (a) for the transformed samples of receiver Rx1, 𝑥 →
�̃�, and (b) for the transformed samples of receiver Rx2, 𝑦 → �̃�.

Fig. 4 shows the proposed BGPD model determined based
on the logistic distribution approach, 𝐺𝑙 (𝑥, �̃�). Empirical joint
CDF of the tail samples has also been depicted for better
compatibility assessment of the logistic-based BGPD. The
BGPD model obtained by the logistic distribution approach
can estimate the empirical joint CDF with RMSE 0.8655.
Additionally, the estimation accuracy increases as we ap-
proach more extreme values, which confirms the ability of the
proposed methodology to model the worse extreme values.
However, the exact pattern of the empirical CDF has not been
preserved by the logistic-based BGPD model.

D. BGPD Based on the Poisson Point Process Approach

Fig. 4 also depicts the proposed BGPD model determined
based on the Poisson point process approach. It can be seen
that the estimated joint CDF based on the Poisson point
process approach is in good agreement with the corresponding
empirical CDF with an RMSE of 0.8686. Although the Pois-
son point process-based approach for modeling the bi-variate
tail distribution seems to have the same performance as the
logistic distribution-based approach according to the RMSE
results, it preserves the shape of the empirical joint CDF
very well. This is mainly due to the higher complexity of the

Fig. 4. Joint bi-variate CDF of the normalized tail power of empirical,
extrapolation-based, logistic-based BGPD, and Poisson point process-based
BGPD.

additional transformation step as well as integral computation
for determining the density of the Poisson point process Λ(𝐴).

E. Model Validity Assessment

Figs. 5 and 6 are utilized to determine the optimum cut-off
point 𝑟0 for which the Pickands constraints are satisfied and
𝐻𝑙 (𝜔) is defined on 𝑟 > 𝑟0. Fig. 5 illustrates the 𝑟-𝜔 plot of the
Poisson point process approach for determining the optimum
cut-off point 𝑟0. In this figure, the radial component of the
Pickands coordinate is plotted versus the corresponding angu-
lar component, where 𝑟 and 𝜔 are the pseudo-polar Pickands
coordinates of 𝑥 and �̃�. Please note that {(𝑟, 𝜔) |𝑟 < 𝑟0}
correspond to independent pairs and {(𝑟, 𝜔) |𝑟 > 𝑟0} are
matched to dependent pairs of 𝑟 and 𝜔. According to this
plot, 𝑟0 ≈ −0.47 is the minimum radial component above
which the correlation coefficient of Pickands radial and angular
components is less than the critical value 0.05, resulting in
independent 𝑟 and 𝜔 pairs. Therefore, 𝑟0 ≈ −0.47 is the cut-
off radial component that satisfies the first Pickands constraint.

Fig. 6 shows the distribution of the radial component of
the Pickands coordinate for 𝑟 > 𝑟0 where 𝑟 is the pseudo-
polar Pickands radial coordinate of 𝑥 and �̃�, and 𝑟0 ≈ −0.47
is the optimum radial cut-off point captured from Fig. 5. It is
observed that the distribution of the radial components 𝑟 > 𝑟0,
i.e., those radial components independent from their angular
component pairs, fits the uniform distribution, which means
that 𝑃(𝑟 > 𝑅) = 𝑅

𝑟0
, and results in satisfying the second

constraint on Pickands coordinates.
We assess the validity of the proposed BGPD models shown

in Fig. 4 based on the CDF results of Pickands probabil-
ity density functions ℎ𝑙 (𝜔) and ℎ𝑝𝑝 (𝜔) obtained from the
logistic-based for 𝑟 > 𝑟0, and Poisson point process-based
BGPD approaches, respectively. Accordingly, it is observed
that the CDF of the estimated density function of the angular
Pickands coordinate 𝜔, for ℎ𝑙 (𝜔), the 0.5 mean constraint
in (8) is satisfied as

∫
𝜔
𝜔𝐻𝑙 (𝑑𝜔) = 0.5001, indicating the

validity of the BGPD model based on the logistic distribution
approach. On the other hand, referring to the Pickands density
function ℎ𝑝𝑝 (𝜔) obtained from the Poisson point process-

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3323598

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

Fig. 5. 𝑟-𝜔 plot. The Horizontal black line corresponds to 𝑟0 ≈ −0.47.
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Fig. 6. The distribution of the radial component of the Pickands coordinate
for 𝑟 > 𝑟0.

based BGPD approach, the 0.5 mean constraint is satisfied
as

∫
𝜔
𝜔𝐻𝑝𝑝 (𝑑𝜔) = 0.5064 for the derived 𝐻𝑝𝑝 (𝜔).

F. Comparison with Conventional Tail Estimation Method

Fig. 4 additionally illustrates the CDF of the normalized
power values for the traditional extrapolation-based approach
compared to the empirical and the proposed BGPD models
based on the logistic distribution and Poisson point process ap-
proaches. To derive the traditional extrapolation-based model,
we first extract the observations from Rx1 and Rx2 corre-
sponding to the reliability order of 10−3-100 PER. Then, upon
fitting a variety of distributions to the samples in each obser-
vation sequence, the best-fitting distribution is determined as
the Gaussian distribution according to the Akaike information
criterion/Bayesian information criterion (AIC/BIC) metric. It
is worth noting that Gaussian and Rician distribution had
almost the same AIC/BIC for both sequences. However, for
the sake of simplicity and without loss of generality, we opt to
continue with the Gaussian distribution in our analysis as its
joint PDF calculation is more straightforward. Then, we deter-
mine the joint bi-variate CDF of the Gaussian distribution for
variables 𝑋 and 𝑌 , corresponding to the received power values
obtained from Rx1 and Rx2, respectively. Upon determining
the joint CDF of 𝑋 and 𝑌 , we extrapolate it towards the ultra-
reliable region based on the tail approximation approach in
[4]. According to the results illustrated in Fig. 4, the proposed
BGPD models outperform the extrapolated Gaussian model

remarkably for a URC system, where the reliability order is
in the range of 10−9-10−5. The RMSE of the extrapolated bi-
variate Gaussian model is 7.8177 × 1009, indicating the supe-
riority of the proposed model with a significant improvement
in the estimation of the tail distribution for the ultra-reliability
region, where the reliability orders are in the range of 10−9-
10−5.

VI. CONCLUSIONS

In this paper, we introduce a novel framework based on
the extreme value theory with the goal of estimating the
multivariate channel tail statistics for a MIMO-URC. The
proposed methodology utilizes MEVT to model the tail of
the joint probability distribution by using two methods for
modeling bi-variate extreme values: the logistic distribution
approach, which uses the logistic distribution to determine
dependency factors and obtain a model, and the Poisson point
process approach, which estimates the probability measure
function of the Pickands angular component to model the
bi-variate extreme values. The proposed multi-dimensional
channel modeling methodology achieves a significantly better
fit to the empirical data in the lower tail than the conven-
tional extrapolation-based approach. In the future, we are
planning to extend this work by determining the estimated
BGPD parameters and optimum transmission rate for a delay-
constrained real-time communication system leading to the
design of a MIMO-URLLC system. Since the derivation of the
statistics requires a large amount of data, such real-time system
design requires either the inclusion of confidence intervals in
the parameter estimation or the adoption of transfer learning
techniques, such as knowledge-assisted training, where the
digital twin of a real network is built with network topology,
channel and queueing models for offline training, which is
then fine-tuned in the real environment with a smaller amount
of data.
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