
11076 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

FedCau: A Proactive Stop Policy for
Communication and Computation

Efficient Federated Learning
Afsaneh Mahmoudi , Graduate Student Member, IEEE, Hossein S. Ghadikolaei ,

José Mairton Barros Da Silva Jr. , Member, IEEE, and Carlo Fischione , Senior Member, IEEE

Abstract— This paper investigates efficient distributed training
of a Federated Learning (FL) model over a wireless network
of wireless devices. The communication iterations of the dis-
tributed training algorithm may be substantially deteriorated
or even blocked by the effects of the devices’ background
traffic, packet losses, congestion, or latency. We abstract the
communication-computation impacts as an ‘iteration cost’ and
propose a cost-aware causal FL algorithm (FedCau) to tackle this
problem. We propose an iteration-termination method that trade-
offs the training performance and networking costs. We apply
our approach when workers use the slotted-ALOHA, carrier-
sense multiple access with collision avoidance (CSMA/CA), and
orthogonal frequency-division multiple access (OFDMA) pro-
tocols. We show that, given a total cost budget, the training
performance degrades as either the background communication
traffic or the dimension of the training problem increases. Our
results demonstrate the importance of proactively designing
optimal cost-efficient stopping criteria to avoid unnecessary
communication-computation costs to achieve a marginal FL
training improvement. We validate our method by training and
testing FL over the MNIST and CIFAR-10 dataset. Finally,
we apply our approach to existing communication efficient
FL methods from the literature, achieving further efficiency.
We conclude that cost-efficient stopping criteria are essential for
the success of practical FL over wireless networks.

Index Terms— Federated learning, communication protocols,
cost-efficient algorithm, latency, unfolding federated learning.

I. INTRODUCTION

THE recent success of artificial intelligence and large-scale
machine learning heavily relies on the advancements of

Manuscript received 11 April 2022; revised 22 October 2022,
16 March 2023, 2 August 2023, and 15 December 2023; accepted
8 March 2024. Date of publication 25 March 2024; date of current
version 12 September 2024. The work of José Mairton Barros Da
Silva Jr. was supported in part by European Union’s Horizon Europe
Research and Innovation Program under the Marie Skłodowska-Curie
Project FLASH under Grant 101067652, in part by the Ericsson
Research Foundation, and in part by the Hans Werthén Foundation.
The work of Carlo Fischione was supported in part by Digital Futures
and VR. The associate editor coordinating the review of this article
and approving it for publication was H. Yang. (Corresponding author:
Afsaneh Mahmoudi.)

Afsaneh Mahmoudi and Carlo Fischione are with the School of Electrical
Engineering and Computer Science, KTH Royal Institute of Technology,
10044 Stockholm, Sweden (e-mail: afmb@kth.se; carlofi@kth.se).

Hossein S. Ghadikolaei is with Ericsson, 164 83 Stockholm, Sweden
(e-mail: hossein.shokri.ghadikolaei@ericsson.com).

José Mairton Barros Da Silva Jr. is with the Department of Informa-
tion Technology, Uppsala University, 751 05 Uppsala, Sweden (e-mail:
mairton.barros@it.uu.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2024.3378351.

Digital Object Identifier 10.1109/TWC.2024.3378351

distributed optimization algorithms [1]. The main objective
of such algorithms is better training/test performance for
prediction and inference tasks, such as image recognition [2].
However, the costs of running the algorithms over a wireless
network may hinder achieving the desired training accuracy
due to the communication and computation costs. The state-
of-the-art of such algorithms requires powerful computing
platforms with vast amounts of computational and commu-
nication resources. Although such resources are available in
modern data centers that use wired networks, they are not
easily available in wireless devices due to communication and
energy resource constraints. Yet, there is a need to extend
machine learning tasks to wireless communication scenarios.
Use cases as machine leaning over IoT, edge computing,
or public wireless networks serving many classes of traffic [3].

One of these prominent algorithms is Federated Learn-
ing (FL), which is a new machine learning paradigm where
each individual worker has to contribute to the learning process
without sharing their own data with other workers and the
master node. Specifically, FL methods refer to a class of
privacy-preserving distributed learning algorithms in which
individual workers [M] execute some local iterations and share
only their parameters, with a central controller for global
model aggregation [4]. The FL problem consists in optimizing
a finite sum of M differentiable functions fj , j ∈ [M], which
take inputs from Rd for some positive d and give their outputs
in R, i.e., {fj : Rd 7→ R}j∈[M] with corresponding local
parameters {wj ∈ Rd}j∈[M]. The common solution to such a
problem involves an iterative procedure wherein at each global
communication iteration k, workers have to find the local
parameter {wj

k}j∈[M] and upload them to a central controller.
Then, the master node updates the model parameters as wk+1

and broadcasts it to all the nodes to start the next iteration [5].
The FL algorithm alleviates computation and privacy by

parallel computations at workers using their local private
data [5]. However, such an algorithm introduces a communi-
cation cost: parameter vectors, such as weight and bias, must
be communicated between the master and the workers to run a
new iteration. The weights can be vectors of huge sizes whose
frequent transmissions and reception may deplete the battery
of wireless devices. Therefore, every communication iteration
of these algorithms suffers some costs,1 e.g., computation,

1Throughout the paper, we use “communication-computation cost” and
“iteration cost” interchangeably.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8826-2088
https://orcid.org/0000-0001-6737-0266
https://orcid.org/0000-0002-4503-4242
https://orcid.org/0000-0001-9810-3478

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11077

latency, communication resource utilization, and energy. As we
argue in this paper, the communication cost can be orders
of magnitude larger than the computation costs, thus making
the iterative procedure over wireless networks potentially very
inefficient. Moreover, due to the diminishing return rule [6],
the accuracy improvement of the final model gets smaller with
every new iteration. Yet, it is necessary to pay an expensive
communication cost to run every new communication iteration
of marginal importance for training purposes.

In this paper, we investigate the problem of FL over wireless
networks to ensure an efficient communication-computation
cost. Specifically, we define our FL over wireless networks as
follows. We consider a star network topology and focus on
avoiding the extra communication-computation cost paid in
FL training to attain a marginal improvement. We show that a
negligible improvement in training spends valuable resources
and hardly results in test accuracy progress. We propose
novel and causal cost-efficient FL algorithms (FedCau) for
both convex and non-convex loss functions. We show the
significant performance improvements introduced by Fed-
Cau through experimental results, where we train the FL
model over the wireless networks with slotted-ALOHA,
CSMA/CA, and OFDMA protocols. We apply FedCau on
top of two well-known communication-efficient methods,
Top-q [7], and LAQ [8] and the results show that FedCau
algorithms further improve the communication efficiency of
other communication-efficient methods from the literature.
Our extensive results show that the FedCau methods can save
the valuable resources one would spend through unnecessary
iterations of FL, even when applied on top of existing methods
from literature focusing on resource allocation problems [5],
[9], [10], [11].

A. Literature Survey

Cost-efficient distributed training is addressed in the liter-
ature through communication-efficiency [4], [12], [13], [14],
[15], [16], [17], [18], [19] or tradeoff between computation
and communication primarily by resource allocation [11],
[20]. Mainly, we have two classes of approaches for
communication-efficiency in the literature focusing on 1) data
compression, like quantization and sparsification of the local
parameters in every iteration, and 2) communication iteration
reduction.

The first class of approaches focuses on data compres-
sion, which reduces the amount of information exchanged in
bits among nodes, thereby saving communication resources.
However, we may need more iterations to compensate for
quantization errors than the unquantized version. Recent stud-
ies have shown that proper quantization approaches, together
with some error feedback, can maintain the convergence of the
training algorithm and the asymptotic convergence rate [12],
[13]. However, the improved convergence rates depend on
the number of iterations, thus, requiring more computation
resources to perform those iterations. Sparsification is an
alternative approach to quantization to reduce the amount of
exchanged data for running every iteration [14]. A prominent
example of this approach is top-q sparsification, where a

node sends only the q most significant entries, such as the
ones with the highest modulus, of the stochastic gradient
[12], [15].

The second class of approaches focuses on the reduction
of the communication iterations by eliminating the communi-
cation between some of the workers and the master node in
some iterations [16]. The work [16] has proposed lazily aggre-
gated gradient (LAG) for communication-efficient distributed
learning in master-worker architectures. In LAG, each worker
reports its gradient vector to the master node only if the gra-
dient changes from the last communication iteration are large
enough. Hence, some nodes may skip sending their gradients
at some iterations, which saves communication resources.
LAG has been extended in [17] by sending quantized versions
of the gradient vectors. In [19], local SGD techniques reduce
the number of communication rounds needed to solve an opti-
mization problem. In a generic FL setting, adding more local
iterations may reduce the need for frequent global aggregation,
leading to a lower communication overhead [4]. Moreover,
it allows the master node to update the global model with only
a (randomly chosen) subset of the nodes at every iteration,
which may further reduce the communication overhead and
increase the robustness. The work in [18] has improved the
random selection of the nodes and proposed the notion of
significance filter, where each worker updates its local model
and transmits it to the master node only when there is a
significant change in the local parameters. Furthermore, [18]
has shown that adding a memory unit at the master node and
using ideas from SAGA [21] reduce the upload frequency of
each worker, thus improving the communication efficiency.

The two classes mentioned above present opportunities for
reducing the cost of running distributed training algorithms
and adapting them to wireless communication protocols. How-
ever, these classes focus primarily on the complexity of the
iterative algorithm in terms of bits per communication round
or the number of communication rounds [9]. Moreover, they
neglect other crucial costs associated with solving federated
learning (FL) problems, such as latency [3] and energy con-
sumption [20]. These costs can render distributed algorithms
ineffective in bandwidth or battery-limited wireless networks,
where latency and energy consumption are critical factors.

Recent works have explored the co-design of optimization
problems and communication networks, particularly in the
context of computational offloading [10], [11], [22]. These
works have addressed task offloading, resource allocation opti-
mization, and joint learning of wireless resource allocation and
user selection. In contrast to existing literature, our approach
differs by proactively designing stopping criteria to optimize
tradeoffs rather than treating them as hyper-parameters set
through cross-validations. This distinction makes our approach
original and distinct from current state-of-the-art algorithms.

In our preliminary works, we have characterized the overall
communication-computation of solving a distributed gradient
descent problem where the workers had background traffic
and followed a channel from medium access control (MAC)
protocols using random access, such as slotted-ALOHA [23]
or CSMA/CA [24] in the uplink. Going beyond such papers,
to achieve a cost-aware training workflow, we need to consider

11078 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

the diminishing return rule of the optimization algorithms,
which reveals that as the number of iterations increases, the
improvement in training accuracy decreases. Then, we need
to balance iteration cost and achievable accuracy before the
algorithm’s design phase. This paper constitutes a major step
in addressing this important research gap. Previously in [23]
and [24], we proposed a cost-efficient framework considering
the cost of each iteration of gradient descent algorithms along
with minimizing a convex loss function. However, the theory
of these papers was only limited to convex loss functions, the
iteration costs did not consider the FedAvg algorithm and the
computation latency, and there was no adequate study between
the achievable test accuracy and the iteration costs. Hence,
this paper proposes a new and original study compared to our
preliminary works by

1) Considering FedAvg algorithm;
2) Assuming both convex and non-convex loss functions;
3) Developing a novel theoretical framework for FedAvg

that includes the communication-computation costs.
We apply the proposed framework to several wireless
communication protocols and other communication-efficient
algorithms for which we show original training and testing
results.

B. Contributions

We investigate the trade-off between achievable FL loss and
the overall communication-computation cost of running the
FL over wireless networks as an optimization problem. This
work focuses on training a cost-efficient FedAvg algorithm in
a “causal way”, meaning that our approach does not require
the future information of the training to decide how much
total cost, e.g., computation, latency, or communication energy,
the training algorithm needs to spend before terminating the
iterations. Different than our approach, most papers in the liter-
ature aim to train the FedAvg algorithm in resource-constraint
conditions and propose the best resource allocation policies
“before” performing the training [11], [20]. These approaches
rely mainly on approximating the future training information
by using some lower and upper bounds of that information.
In this work, we propose to train the FedAvg algorithm
in a causal, communication, and computation efficient way.
To this end, we utilize the well-known multi-objective opti-
mization approach according to the scalarization procedure
in [25]. Therefore, we propose FedCau to improve the FedAvg
algorithm by training in a cost-efficient manner without any
need to know the future training information or any upper and
lower bounds on them. To the best of our knowledge, this is
the first work that considers such causal approaches to train
the FedAvg algorithm in a communication and computation
efficient manner. The main contributions of this work are
summarized as:
• We propose a new multi-objective cost-efficient optimiza-

tion that trades off model performance and communi-
cation costs for an FL training problem over wireless
networks;

• We develop three novel causal solution algorithms, named
FedCau, for the multi-objective optimization above, one

with a focus on original FL and the others with a focus
on stochastic FL. We establish the convergence of these
algorithms for FL training problems using both convex
and non-convex loss functions;

• We investigate the training and test performance of
the proposed algorithms using MNIST and CIFAR-10
datasets, over the communication protocols: slotted-
ALOHA, CSMA/CA, and OFDMA. We consider these
protocols because they are the dominant communication
protocols in most wireless local area networks, such as
IEEE 802.11-based products [26], or fixed assignment
access protocol like OFDMA [27];

• We apply our proposed FedCau on top of top-q sparsi-
fication and lazily aggregated quantized gradient (LAQ)
methods showing vast applications of the FedCau [7], [8];

• The experimental results highlight the ability of our pro-
posed FedCau to achieve efficient and accurate training.
We conclude that a co-design of distributed optimization
algorithms and communication protocols is essential for
the success of cost-efficient FL over wireless networks,
including its applications to edge computing and IoT.

The rest of this paper is organized as follows. Section II
describes the general system model and problem formulation.
In Section III, we derive some useful results and propose
our non-causal and causal FL algorithms (FedCau), which
are by design intended to run over communication networks.
In the analysis, we consider both convex and non-convex loss
functions. In Section IV, we apply our algorithms to slotted-
ALOHA, CSMA/CA, and OFDMA. In Section V, we analyze
the performance of the FedCau algorithms. We then conclude
the paper in Section VI. We moved all the proofs and extra
materials to the Appendix.

Notation: Normal font w, bold font small-case w, bold-
font capital letter W , and calligraphic font W denote scalar,
vector, matrix, and set, respectively. We define the index set
[N] = {1, 2, . . . , N} for any integer N . We denote by ∥·∥ the
l2-norm, by |A| the cardinality of set A, by [w]i the entry i of
vector w, by w T the transpose of w, and 1x is an indicator
function taking 1 if and only if x is true, and takes 0 otherwise.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we represent the system model and the
problem formulation. First, we discuss the FedAvg algorithm,
and afterward, we propose the main approach of this paper.

A. Federated Learning

Consider a star network of M workers that cooperatively
solve a distributed training problem involving a loss function
f(w). Consider D as the whole dataset distributed among each
worker j ∈ [M] with Dj data samples. Let tuple (xij , yij)
denote data sample i of |Dj | samples of worker j and w ∈ Rd

denote the model parameter at the master node. Considering∑M
j=1 |Dj | = |D|, and j, j′ ∈ [M], j ̸= j′, we assume Dj ∩

Dj′ = ∅, and defining ρj := |Dj |/|D|, we formulate the
following training problem

w∗ ∈ arg min
w∈Rd

f(w) =
M∑

j=1

ρjfj(w), (1)

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11079

where fj(w) :=
∑|Dj |

i=1 f(w; xij , yij)/|Dj |. Optimization
problem (1) applies to a large group of functions as convex
and non-convex (such as deep neural networks).

The standard iterative procedure to solve problem (1) with
the initial vector w0 is

wk =
M∑

j=1

ρjw
j
k, k = 1, . . . ,K. (2)

For a differentiable loss function f(w), we choose to per-
form (2) by the Federated Averaging (FedAvg) algorithm.

Initializing the training process with w0, Federated Aver-
aging (FedAvg) is a distributed learning algorithm in which
the master node sends wk−1 to the workers at the beginning
of each iteration k ≥ 1. Every worker j ∈ [M] performs
a number E of local iterations, i = 1, . . . , E, of stochastic
gradient descent [7] with data subset of ξj

k ≤ |Dj |, and
computes its local parameter wj

i,k, considering the initial point
of wj

0,k = wk−1, [28], for any k = 1, . . . ,K,

wj
i,k = wj

i−1,k −
αk

ξj
k

ξj
k∑

n=1

∇wf(wj
i−1,k; xnj , ynj), (3)

where wj
k = wj

E,k. Then each worker transmits wj
k to the

master node for updating wk according to (2). Note that in
FedAvg, when E = 1 and we use the exact gradient vector in
the place of the stochastic gradient, we achieve the basic FL
algorithm. Considering the FedAvg solver (3) for the updating
process in (2), and without enforcing convexity for f(w),
we use the following Remark throughout the paper.

Remark 1: (Theorem 11.7 of [29]) Consider Any Differen-
tiable Loss Function f(w): Rd 7→ R with Lipschitz contin-
uous gradient ∇wf(w), i.e., ∥∇wf(w1) − ∇wf(w2)∥ ≤
L∥w1 − w2∥, for some constant 0 < L < ∞, and let
w1, . . . ,wk be the sequence obtained from the FL algorithm
updates in Eq. (2). Then, by αk ≥ γ∥∇wf(wk)∥2 and for an
appropriate constant γ > 0, the following inequality holds:
f(w1) ≥ . . . ≥ f(wk).

The workers use the FedAvg algorithm (3) to compute their
local parameters wj

k, while the master node performs the itera-
tions of (2) until a convergence criteria for ∥f(wk)− f(w∗)∥
is met [30]. We denote by K the first iteration at which the
stopping criteria of the FedAvg algorithm is met, namely

K := the first value of k | ∥f(wk)− f(w∗)∥ < ϵ , (4)

where ϵ > 0 is the decision threshold for terminating the
algorithm at iteration K and f(w∗) is the optimum of the
loss function at the optimal parameter w∗. The state-of-the-
art literature defines the threshold ϵ independently before
training. However, an optimal threshold must be designed to
optimize communication-computation resources in solving (1).
Since knowing f(w∗) beforehand is not realistic, we propose
an alternative approach to find K in (4) without this prior
knowledge. Our main contribution is determining K as a
function of the communication-computation cost and the loss
function of the FedAvg algorithm (3). We will substantiate this
significant result in Section II-B.

Let ck > 0, k = 1, 2, . . . denote the cost of performing a
complete communication iteration k. Accordingly, when we
run FedAvg, namely an execution of (2) and (3), the complete
training process will cost

∑K
k=1 ck. Some examples of ck in

real-world applications are:
• Communication cost: ck is the number of bits transmitted

in every communication iteration k;
• Energy consumption: ck is the energy needed for perform-

ing a global iteration to receive wk at a worker and send
{wj

k}j∈[M] to the master node over the wireless channel;
• Latency: ck is the overall delay to compute and send

parameters from and to the workers and the master node
over the wireless channel [11].

Considering latency as the iteration cost, the term ck for
running every training iteration of the FedAvg algorithm (3)
is generally given by the sum of four latency components:

1) ℓ1,k: communication latency in broadcasting parameters
by master node;

2) ℓ2,k: the computation latency in computing wj
k for every

worker j;
3) ℓ3,k: communication latency in sending wj

k to master
node;

4) ℓ4,k: computation latency in updating parameters at the
master node.

See Section IV for more detailed modeling of the components
of ck for slotted-ALOHA, CSMA/CA, and OFDMA protocols.

B. Problem Formulation

To solve optimization problem (1) over a wireless network,
the FedAvg algorithm (3) faces two major challenges:

1) Computation-communication cost: It lacks the incorpo-
ration of computation and communication costs related
to local parameters and model updates. These costs
depend on factors such as computation power, com-
munication protocols, energy consumption, and overall
communication resources of the local device;

2) Number of iterations: The termination iteration K in (4)
significantly impacts the communication-computation
cost of the algorithm (3). A lower K would con-
sume fewer resources while leading to a negligi-
ble degradation in training performance, compared
to a higher K that can result in substantial
communication-computation costs without significant
improvements in training optimality.

The termination iteration K in (4) strongly impacts the overall
training costs for solving the optimization problem (1). Thus,
selecting an appropriate value for K is crucial to prevent
potentially adverse effects on communication-computation
resource utilization in FedAvg (3) over wireless networks.

We propose an original optimization of the termination
iteration K in the FedAvg algorithm (3) to tackle the men-
tioned challenges. By explicitly considering the cost of training
iterations, we aim at obtaining an optimal stopping iteration
that solves the following optimization problem.

minimize
K

[
f(wK),

K∑
k=1

ck

]
(5a)

11080 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

subject to wk =
M∑

j=1

ρjw
j
k, k = 1, . . . ,K (5b)

wj
0,k = wk−1, k = 1, . . . ,K

wj
i,k = wj

i−1,k−

αk

ξj
k

ξj
k∑

n=1

∇wf(wj
i−1,k; xnj , ynj), k ≤ K, (5c)

where
∑K

k=1 ck quantifies the overall iteration-cost expendi-
ture for the training of loss function f(w) when transmitting
in a particular wireless channel in uplink. Note that (5a)
represents a multi-objective function, which aims at min-
imizing the training loss function f(w), and the overall
iteration cost

∑K
k=1 ck. Note that the values of ck, for

k ≤ K, can be, in general, a function of the parame-
ter wk, but neither ck nor wk are optimization variables
of problem (5a). Optimization problem (5) states to devote
communication-computation resources as efficiently as pos-
sible while performing FedAvg algorithms (3) to achieve
an accurate training result for loss function f(w). Thus,
by solving optimization problem (5a), we can obtain the
optimal number of iterations for FedAvg algorithm (3), which
minimizes the communication-computation costs while also
minimizing the loss function of FedAvg.

Remark 2: We have formulated optimization problem (5)
according to the “unfolding method” of iterative algo-
rithms [31], where it is ideally assumed that the optimizer
knows beforehand (before iterations (2) and (3) occur) what
the cost of each communication iteration in (2) would be and
when they would terminate. Such an ideal formulation cannot
occur in the real world since it assumes knowledge of the
future, thus being called “non-causal setting”. However, this
formulation is useful because its solution gives the best optimal
value of the stopping iteration k∗. In this paper, we show that
we can convert such a non-causal solution of problem (5)
into a practical algorithm in a so-called “causal setting”.
We will show that the solution to the causal setting given by
the practical algorithm is very close to k∗.

Solving (5) presents several challenges: it is multi-objective,
involves integer variables, and contains non-analytical objec-
tive and constraint functions with non-explicit dependencies
on K. Additionally, the problem is non-causal, making it
difficult to determine the optimal K without knowing wk’s
in advance. Thus, addressing such non-explicit and non-causal
optimization problems can be highly challenging [25]. In the
next section, we propose a practical solution to problem (5).

III. SOLUTION ALGORITHMS

In this section, we present preliminary technical results,
propose an iterative solution to (5), and demonstrate that the
proposed methods achieve optimal or sub-optimal solutions
while converging in a finite number of iterations.

A. Preliminary Solution Steps

In this subsection, we develop some preliminary results to
arrive at a solution to the optimization problem (5). We start

by transforming (5) according to the scalarization procedure of
multi-objective optimization [25]. Specifically, we define the
joint communication-computation cost and the loss function
of FedAvg algorithm (3) as a scalarization of the overall
iteration-cost function

∑K
k=1 ck and the loss function f(wK).

Note that such a joint cost is general in the sense that,
depending on the values of ck, it can naturally model many
communication-computation costs, including constant charge
per computation and mission-critical applications.

We transform the multi-objective optimization problem (5)
into its scalarized version as

k∗ ∈ arg min
K

G(K) (6a)

subject to wk =
M∑

j=1

ρjw
j
k, k ≤ K (6b)

wj
0,k = wk−1, k ≤ K (6c)

wj
i,k = wj

i−1,k−

αk

ξj
k

ξj
k∑

n=1

∇wf(wj
i−1,k; xnj , ynj), k ≤ K, (6d)

where G(K) and C(K) are defined as

G(K) := (βC(K) + (1− β)f(wK)) , (7)

C(K) :=
K∑

k=1

ck. (8)

C(K) is the iteration-cost function representing all the costs
the network spends from the beginning of the training until
the termination iteration K and β ∈ (0, 1) is the scalarization
factor of the multi-objective scalarization method [25].

The following lemma states that if G(K) is monotonically
decreasing, we can find k∗ where G(K) is minimized.

Lemma 1: Consider optimization problem (6). Let G(K)
be a non-increasing function of all K ≤ k∗. Then, k∗ indicates
the index at which the sign of discrete derivation [32] of G(K)
changes for the first time, i.e.

k∗ ∈ min{K|G(K + 1)−G(K) > 0} (9)
Proof: See Appendix A-A in [33]. □

In the following section, we present three algorithms to solve
optimization problem (6). First, we discuss the non-causal set-
ting for characterizing the minimizer, then, introduce a causal
setting to design algorithms that achieve practical minimizers
for convex and non-convex loss functions. Finally, we establish
the optimality and convergence of the algorithms.

B. Non-Causal Setting

An ideal approach to solve problem (6) is an exhaustive
search over the discrete set of K ∈ [0, +∞). However,
this approach requires knowing in advance the sequences
(f(wk))k and (ck)k for all k ∈ [0, +∞), which is not
practical as the sequence of parameters (wk)k, and conse-
quently (f(wk))k, are not available in advance. For analytical
purposes, our non-causal setting assumes that all these values
are available at k = 0, enabling us to find the ultimate

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11081

Algorithm 1 Cost-Efficient Batch FedCau
1: Inputs: w0, (xij , yij)i,j , αk , M , {|Dj |}j∈[M], ρj .
2: Initialize: kc = +∞, G(0) = +∞
3: Master node broadcasts w0 to all nodes
4: for k ≤ kc do ▷ Global iterations
5: for j ∈ [M] do
6: Calculate fj

k :=
∑|Dj |

i=1 f(wk; xij , yij)/|Dj |
7: Set wj

0,k+1 = wk

8: for h ∈ [E] do ▷ local iterations
9: Compute wj

h,k+1 ← wh−1,k+1 − αk∇wfj
k

10: end for
11: Set wj

k+1 = wj
E,k+1

12: Send wj
k+1 and fj

k to the master node
13: end for
14: Wait until master node collects all {wj

k+1}j and set wk+1 ←∑M
j=1 ρjwj

k+1
15: Calculate f(wk) :=

∑M
j=1 ρjfj

k
16: Calculate ck and G(k)
17: if G(k) < G(k − 1) then ▷ Evaluating (9)
18: Master node broadcasts wk+1 to the workers
19: else
20: Set kc = k, Break and go to line 24
21: end if
22: Set k ← k + 1
23: end for
24: Return wkc , kc, G(kc)

minimizer k∗. While this approach is not feasible in practice,
we investigate it to establish a benchmark for the perfor-
mance evaluation of subsequent causal solution algorithms
(see Section V).

C. FedCau for Convex Loss Functions

Here, we propose an approximation of the optimal stopping
iteration k∗, referred to as kc. Our analysis demonstrates that
kc can be practically computed using a causal setting scenario.
Under certain conditions, we establish that kc corresponds
to k∗ or k∗ + 1. Specifically, when k∗ = Kmax, with
Kmax denoting the maximum allowable number of iterations,
we have kc = k∗, otherwise, kc = k∗ + 1 (see Section III-E).
Thus, we develop three implementation variations of FedAvg
algorithm (3), Algorithms 1-3, with our causal termination
approach, FedCau, for solving (6). Algorithms 1 and 2 are
batch and mini-batch implementations using convex loss func-
tions, while Algorithm 3 considers non-convex loss functions.

In the batch update of Algorithm 1, workers compute
{wj

k, f j
k}j∈[M] and transmit them to the master node (see

lines 6-12). We assume that the local parameter of each worker
consists of the value of local FL model wj

k and the local loss
function f j

k .2 The master node updates wk and f(wk) upon
receiving all local parameters {wj

k, f j
k}j∈[M] from workers

at each iteration k (see lines 14-15). Then, the iteration cost
ck, representing the iteration cost, is calculated. To prevent
termination in the first iteration, we initialize G(0) = +∞,
and subsequently, the multi-objective cost function G(k) is
updated (line 16). A comparison between G(k) and its pre-
vious value G(k − 1) is made (see line 17) to determine the
termination of iterations (see lines 19-24).

2We assumed that fj
k ∈ R and wj

k ∈ Rd, then the communication
overhead, in term of the number of bits, for transmission of fj

k is negligible
compared to the local FL model wj

k . Thus, we consider the local parameters
to consist of both the local FL model and the local loss function value.

In FedAvg, there are many scenarios where specific workers
can upload their local parameters to the master node, result-
ing in implicit sub-sampling and approximations of f(wk)
denoted as f̂(wk). This sub-sampling results in approximating
the joint communication-computation and FL cost function,
Ĝ(K). Algorithm 2 employs mini-batch updates to avoid
excessive resource consumption for marginal test accuracy
improvements. It leverages the descent property of FedAvg
algorithm (3) for a monotonic decreasing loss function f(w),
as described in Remark 1. Algorithm 2 aims at achieving
non-increasing sequences of f(wk)k and G(k)k≤k∗ .

Algorithm 2 introduces partial worker participation and
fairness in training FedCau. Mn

k represents the node selection
subset at each communication iteration k, and Fair-count[j]
denotes the counter for the number of successfully-sent local
parameters by worker j ∈ Mn

k . We introduce a “Fairness-
Factor” Ff ≤ Kmax that restricts workers from transmitting
more than Ff local parameters until all workers satisfy Ff

local parameter transmission. At the first communication iter-
ation k = 1, once a worker j ∈ Mn

1 successfully transmits
its local parameter wj

1, it is removed from the selected node
subset Mn

1 (see lines7-21). Thus, worker j will not transmit
any packets until all workers send their local parameters. The
master node computes the resource used to perform the first
communication iteration as Ts. It considers Ts as a benchmark
to determine T ≤ Ts as the maximum allowable time slots for
future iterations k = 2, . . . ,K (see line 25).3 Note that in k =
1, low-power workers have a higher probability of transmitting
their local parameter, and the latency T is smaller compared
to full worker participation. After completing communication
iteration k = 1, partial worker participation begins at k ≥
2 when the master node updates M2

k+1 (see line 26).
For k ≥ 2, the selected workers j ∈ Mn

k have a time
budget T to compute and transmit their local parameters.
This constraint creates competition among the selected work-
ers to communicate with the master node. However, some
workers may fail to send their local parameters. To address
this challenge, we introduce the set Ma

k, which contains the
indexes of the successful workers js ∈ Mn

k that managed
to transmit during iteration k (see line 31). Additionally, the
fairness counter of each successful worker, Fair-count[js],
is increased (see line 32) to influence future selections for
communication iterations. Afterward, the master node updates
the global parameter by the local parameters it has received,
wj

k, j ∈ Ma
k, and then replaces the missing local parameters

by the values of the previous iteration, for the local parameters
wj′

k = wj′

k−1, j
′ /∈ Ma

k
4 and local functions f j′

k = f j′

k−1, j
′ /∈

Ma
k (see lines 30-31). Algorithm 2 utilizes this replacement

strategy to ensure the non-increasing behavior of G(k), k =
1, . . . , k∗, and maintain a descent sequence of f̂(wk), k =
1, . . . , k∗. Since Algorithm 2 considers convex loss functions,
the replacement of missing parameters guarantees the descent
behavior of the sequence f̂(wk), k = 1, . . . , k∗ (Lemma 2).
Additionally, the master node updates the selected workers

3Here, we allocate an equal portion of the resource to each iteration.
However, one can assign a different portion of resources to each iteration,
which is out of the scope of this paper.

4For simplicity, we use the notation fj
k := fj(wk).

11082 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

Algorithm 2 Stochastic Cost-Efficient Mini-Batch FedCau.
1: Inputs: w0, (xij , yij)i,j , ρj , Ff , αk , M , {|Dj |}j∈[M]

2: Initialize: kc = +∞, Ts = +∞, js = 0, Ĝ(0) = +∞, M1
n = {[M]}, and

Fair-Count = 1M×1, ts
1 = 1

3: Master node broadcast w0 to all nodes
4: for k ≤ kc do ▷ Global iterations
5: Ma

k = {}
6: for j ∈ [M] do

7: Calculate fj
k :=

∑|Dj |
i=1 f(wk; xij , yij)/|Dj |

8: Set wj
0,k+1 = wk

9: for h ∈ [E] do ▷ local iterations
10: Compute wj

h,k+1 ← wh−1,k+1 − αk∇wfj
k

11: end for
12: Set wj

k+1 = wj
E,k+1

13: if j ∈ Mn
k then ▷ Partial participation

14: Send wj
k+1 and fj

k to the master node
15: end if
16: end for
17: if k = 1 then master node:
18: for ts

1 ≤ Ts do until Mn
k = {} ▷ Computing Ts

19: Ma
k ←M

a
k ∪ {js}

20: Mn
k ←M

n
k \M

a
k ▷ Worker participation

21: end for
22: Set Ts = ts

1

23: Set wk+1 ←
∑M

j=1 ρjwj
k+1 ▷ Global update

24: Calculate f(wk) :=
∑M

j=1 ρjfj
k and G(k)

25: Set a time budget T ≤ Ts, and ts
k = 0

26: Set Mn
k+1 = {[M]}

27: else ▷ if k ≥ 2
28: for ts

k ≤ T do ▷ Assigning time budget T

29: Every node j ∈ Mn
k send wj

k+1

30: if Successful node js ∈ Mn then
31: Ma

k ←M
a
k ∪ {js}

32: Fair-Count[js] = Fair-Count[js] + 1
33: end if
34: end for
35: Master node set ▷ Global update with replacements

wk+1 ←
∑

j∈Ma
k

ρjwj
k+1 +

∑
j′ /∈Ma

k
ρj′w

j′
k

36: Master node calculate

f̂(wk) :=
∑

j∈Ma
k

ρjfj
k +

∑
j′ /∈Ma

k
ρj′f

j′
k−1 and Ĝ(k)

37: Master node update
Mn

k = {j|Fair-Count[j] < Ff} ▷ Fairness evaluation

38: if Mn
k = {} then

39: Mn
k+1 = {[M]} ▷ Update partial participation

40: Fair-Count = 0M×1
41: end if
42: end if
43: if Ĝ(k) < Ĝ(k − 1) then ▷ Evaluating (9)
44: Master node broadcast wk+1 to the workers
45: else
46: Set kc = k, and ŵkc ← wk+1

47: Break and go to line 51 ▷ Terminating the training
48: end if
49: Set k ← k + 1, and ts

k+1 = 1
50: end for
51: Return ŵkc , kc, Ĝ(kc)

based on the fairness factor, ensuring fair worker participation
for the upcoming communication iterations (see lines 37-40).
This process requires the master node to retain a memory of all
previous local parameters. The remaining part of Algorithm 2
(lines 43-51) handles parameter updates and checks for the
potential stopping iteration kc, similar to lines 12-20 in
Algorithm 1.

Lemma 2: Let f j
k be the local loss function at the com-

munication iteration k for each worker j ∈ [M]. Suppose

that fj(w) be a convex function w.r.t. w. Then, Algorithm 2
guarantees the decreasing behavior of f̂(wk),∀k.

Proof: See Appendix A-B in [33]. □
As explained above, Algorithm 2 allows for both full and

partial participation, offering fairness in worker participation
based on the parameter T . The distinction between full and
partial participation lies in the fact that in partial participation,
the update of the global parameter wk depends on the new
local parameters from the subset Mn

k . However, it remains
uncertain which workers within the subset successfully trans-
mit their local parameters and which ones fail, particularly
when workers possess non-iid training data. To address this
challenge, we introduce the fairness-factor Ff to mitigate the
impact on the global update. The value of Ff can be tailored
to the specific training application, enabling customization of
the partial participation scheme.

Another challenge in the partial participation of Algorithm 2
is determining the appropriate time budget T for each iteration.
Algorithm 2 suggests selecting a value for T < Ts by causally
computing Ts in the first iteration, considering full worker
participation and excluding background traffic. However, the
choice of T depends on the specific learning application, such
as healthcare, autonomous driving, or video surveillance. One
should consider a suitable time budget of T based on the
requirements of the learning application. For latency-sensitive
scenarios like autonomous driving, where quick decisions are
crucial to prevent accidents, a smaller value of T is preferred.

D. FedCau for Non-Convex Loss Functions

Here, we extend Algorithms 1 and 2 to include non-convex
loss functions. We consider FedAvg [5], where each worker j
performs E ≥ 1 local iterations over its local data subset,
ξj
k ≤ |Dj |. The master node updates the global parameter

wk+1 by averaging and broadcasting the local parameters to
the workers. Additionally, the master node calculates F̃ (wk)
by averaging the local loss functions of the workers [5].

We design a cost-efficient algorithm which optimizes G̃(K),
an estimate of the multi-objective cost function G(K) defined
as G̃(K) := βC(K) + (1 − β)F̃ (wK), where recall that
C(K) is the iteration-cost function at K. We design such
an estimate since the stochastic nature of the sequences of
(F̃ (wk))k, arises from the local updates by ξj

k ≤ |Dj | using
mini-batches, results in a stochastic sequence of (G̃(k))k. This
sequence (G̃(k))k hinders the application of Algorithms 1, 2
and might lead to their early stopping at a communication
iteration. Thus, we need to develop an alternative algorithm.

We propose a causal approach to establish non-increasing
upper and lower bounds, Gu(K) and Gl(K), for the stochas-
tic sequence (G̃(k))k. As this sequence is not necessarily
non-increasing and may have multiple local optimum points,
we aim at obtaining an interval ku

c ≤ kc ≤ kl
c, where ku

c

and kl
c represent the stopping iteration for Gu(K) and Gl(K)

functions, respectively. According to the definition of G(K)
function, we define Gu(K), and Gl(K) functions as

Gu(K) := βC(K) + (1− β)Fu(wK), (10a)
Gl(K) := βC(K) + (1− β)Fl(wK) , (10b)

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11083

Algorithm 3 Stochastic Non-Convex Cost-Efficient Mini-
Batch FedCau.
1: Inputs: w0, (xij , yij)i,j , αk , M , {|Dj |}j∈[M], ρj , E, ξj

k

2: Initialize: ku
c = kl

c = 0, kl
max = 2

3: Master node broadcasts w0 to all nodes
4: for k ≥ 1 do ▷ Global iterations
5: Ma = {}

Each node j calculates: ▷ local iterations
6: for j ∈ [M] do
7: if k = 0 then
8: Randomly select a subset of data with size ξj

k

9: F j
0 :=

∑ξ
j
k

i=1 F (w0; xij , yij)/ξj
k

10: end if
11: Set wj

0,k+1 = wk , F j
0,k+1 = F j

k

12: for i ∈ [E] do
13: Randomly select a subset of data with size ξj

k

14: wj
i,k+1 ← wiE−1,k+1 − αk∇wF j

iE−1,k+1

15: F j
i,k+1 =

∑ξ
j
k

i=1 F (wj
i,k+1; xij , yij)/ξj

k

16: end for
17: Set wj

E,k+1 = wj
k+1, and F j

k+1 = F j
E,k+1

18: Send wj
k+1 and F j

k+1 to the master node
19: end for

Master node calculates: ▷ Global update with replacement
20: Ma ←Ma ∪ {Successful workers}
21: wk+1 ←

∑
j∈Ma

ρjwj
k+1 +

∑
j′ /∈Ma

ρj′w
j′
k

22: F̃ (wk) :=
∑

j∈Ma
ρjF j

k +
∑

j′ /∈Ma
ρj′F

j′
k−1

23: Update C(k)
24: if k ≤ 2 then
25: Set Fu(wk) = Fl(wk) = F̃ (wk)
26: else ▷ Update Fu(wk) and Fl(wk)
27: if F̃ (wk) ≥ F̃ (wk−1) then
28: Set Fu(wk) = F̃ (wk)

29: if F̃ (wk) ≥ Fu(wk−1) then
30: ku

max = max
ku<k

{ku|Fu(wku) > F̃ (wk)}

31: Update (Fu(wi))i=ku
max,...,k as (11)

32: end if
33: Calculate δu

k = Fu(wk)− Fu(wk−1)

34: Set Fl(wk) = Fl(wk−1) + δu
k

35: Update (Gu(K))K=ku
max,...,k and Gl(k)

36: else ▷ F̃ (wk) < F̃ (wk−1)
37: if F̃ (wk) < Fl(wkl

max
) then

38: Set Fl(wk) = F̃ (wk)

39: Update (Fl(wi))i=kl
max,...,k

as (11)

40: Calculate δl
k = Fl(wk)− Fl(wk−1)

41: Set Fu(wk) = Fu(wk−1) + δl
k

42: Update (Gl(K))
K=kl

max,...,k
and Gu(k)

43: Set kl
max = k

44: else ▷ If F̃ (wk) ≥ Fl(wkl
max

)

45: Set Fu(wk) = F̃ (wk)

46: Calculate δu
k = Fu(wk)− Fu(wk−1)

47: Set Fl(wk) = Fl(wk−1) + δu
k

48: Update Gu(k) and Gl(k)
49: end if
50: end if
51: end if

▷ Evaluate (9) for Gl and Gu

52: kl
c = min{K|Gl(K) > Gl(K − 1)}

53: ku
c = min{K|Gu(K) > Gu(K − 1)}

54: if ku
c ̸= 0, kl

c ̸= 0 then
55: Break and go to line 60 ▷ Terminating the training
56: else
57: Master node broadcast wk+1 to the workers
58: Set k ← k + 1
59: end if
60: end for
61: Return kl

c, ku
c , (wk)

k=kl
c,...,ku

c

where Fu(wK) and Fl(wK) represent the estimation of
the loss function at upper and lower bounds. To obtain

the sequences of (Gu(k))k and (Gl(k))k, the master node
computes the upper and lower bounds for F̃ (wk) while
ensuring the monotonic decreasing behavior of (Fu(wk))k

and (Fl(wk))k to satisfy Remark 1. In the following, we now
concentrate on the process of obtaining the bounds for F̃ (wk).

Algorithm 3 shows the steps required for the cost-efficient
FedAvg with causal setting and non-convex loss func-
tion F (w). Lines 3-18 summarize the local and global
iterations of FedAvg. Here, we introduce Ma as the set of
workers which successfully transmit their local parameters
to the master node (see line 20). We initialize Fu(wk) =
Fl(wk) = F̃ (wk), k ≤ 2 for the first two iterations (see
line 25). For iterations k ≥ 3, if the new value of loss
function fulfils F̃ (wk) ≥ F̃(wk−1), the algorithm updates
Fu(wk) = F̃ (wk) (see line 28). Then, the algorithm checks
if F̃ (wk), which is now equal to Fu(wk), is greater than the
previous value of Fu(wk−1) (see line 29). This checking is
important because we must develop a monotonic decreasing
sequence of Fu(wi)i=1:ku

c
. When F̃ (wk) ≥ F̃u(wk−1), the

master node returns to the history of Fu(wi)i=1:k−1 and
checks for i < k, when the condition Fu(wi) > Fu(wk) is
satisfied. Since at each communication iteration k we carefully
check the monotonic behavior of Fu(wk), we are sure that if
we find the proper maximum communication iteration i that
fulfills i < k, for which Fu(wi+1) < Fu(wk) < Fu(wi),
we have the result of Fu(wj) < Fu(wk), j < i. Let us
define this communication iteration i as ku

max (see line 30).
Thus, it is enough to find such i to update the sequence of
Fu(wi1), i1 = i, . . . , k.

Now, we need to update the sequences of Fu(wi2), i2 =
ku

max, . . . , k to obtain the monotonic decreasing upper bound.
We choose the monotonic linear function because it satisfies
the sufficient decrease condition (see [29], Section 11.5).
Therefore, we satisfy the decreasing behavior for Fu(wk) and
the upper bound behavior, which means that the maximum val-
ues of F̃ (wk) are always lower than Fu(wk). Thus, we update
the sequences of Fu(wi), i = ku

max, . . . , k according to (11),
with k1 = ku

max, k2 = k, and Fu(ki) = Flinear(ki), ki ∈
[k1, k2]. We define FApxt(k) as the linear approximation of
F (wk) in an interval k ∈ [k1, k2]

FApxt(ki) = aki + b, k1 ≤ ki ≤ k2, (11)

where

a =
F̃ (wk2)− F̃ (wk1)

k2 − k1
, (12a)

b = F (wk2)−ak2. (12b)

Next, we need to update Fl(wk). Here, let us define
the difference between two consecutive values of Fu(wk)
and Fu(wk−1) as δu

k , and the difference between Fl(wk)
and Fl(wk−1) as δl

k. Then, we update the correspond-
ing values for (Gu(K))K=ku

max,...,k and Gl(k), respectively
(see lines 34-35). Afterward, we need to check the condi-
tion at which F̃ (wk) < Fl(wkl

max
), where kl

max represents
the last communication iteration at which the value of
F̃ (wkl

max
) has been considered as Fl(wkl

max
). If F̃ (wk) <

F̃ (wkl
max

), we need to update the lower bound sequences (see

11084 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

lines 37-38) to avoid over-decreasing the lower bound func-
tion Fl(wk) by the approximation of line 34. Subsequently,
we need to calculate δl

k = Fl(wk) − Fl(wk−1), then update
Fu(wk) = Fu(wk−1) + δl

k and the value of kl
max = k (see

lines 41-43).
The last condition to check is when Fl(wkl

max
) < F̃ (wk) <

F̃ (wk−1). In this condition, the monotonic decreasing behav-
ior of F̃ (wk) is satisfied, whereas the decreasing behavior
is not satisfied for the lower bound Fl(wk). Thus we set
Fu(wk) = F̃ (wk), and δu

k = Fu(wk)−Fu(wk−1), Fl(wk) =
Fl(wk−1)+δu

k , and update Gu(k) and Gl(k) (see lines 45-48).
Finally, lines 52-61 show when to stop the algorithm.

E. Optimality and Convergence Analysis

In this subsection, we investigate the existence and opti-
mality of the solution to problem (6) and the convergence of
the algorithms that return the optimal solutions. We are ready
to give the following proposition, which provides us with the
required analysis of Algorithms 1, and 2.

First, we start with the monotonic behavior of G(K), K ≤
k∗. In practice, we have this desired monotonically decreasing
behavior, as we show in the following proposition:

Proposition 1: Consider G(K) defined in Eq. (7). Define
∆k := fk−1 − fk, ∆0 = f0, by choosing β as

0 <
1

1 + maxk ck

∆0

≤ β ≤ 1
1 + mink ck

∆0

< 1, k ≤ k∗, (13)

the function G(K), K ≤ k∗, is non-increasing at K.
Proof: See Appendix A-C in [33]. □

Remark 3: The previous proposition implies that, without
loss of generality, we can assume that maxk ck is high enough
and mink ck is close to zero (setting the initial cost to zero,
for example). Thus β can, in practice, vary between 0 and
1, without restricting the applicability range of the multi-
objective optimization.

Proposition 2: Optimization problem (6) has a finite opti-
mal solution k∗.

Proof: See Appendix A-D in [33]. □
Proposition 2 implies that when G(K) is monotonically
decreasing with K, k∗ is equal to Kmax. According to
the training setup, the maximum number of iterations is
set as Kmax at the beginning of the training. Thus, mono-
tonically decreasing G(K) results in k∗ = Kmax, which
means that the value of the FL loss function is dominant in
G(K), and the FedCau procedure is similar to the FedAvg
method.

The following Theorem clarifies an important relation
between the non-causal and causal solutions of Algo-
rithms 1 and 2.

Theorem 1: Let k∗ be the solution to optimization prob-
lem (6), and let kc denote the approximate solution obtained
in the non-causal and causal settings of Algorithm 1, and 2,
respectively. Then, the following statements hold

kc ∈ {k∗, k∗ + 1} , (14a)
f(wkc

) ≤ f(wk∗) , and (14b)
G(kc) ≥ G(k∗) . (14c)

Proof: See Appendix A-E in [33]. □
Remark 4: Note that k∗ and kc are fundamentally different.

kc is obtained from Algorithms 1 or 2, while k∗ is the optimal
stopping iteration that we would compute if we knew before-
hand the evolution of the iterations of FedAvg algorithm (3),
thus non-causal. Nevertheless, we show that the computation
of the stopping iteration kc that we propose in the causal
setting of Algorithms 1 and 2 is almost identical to k∗.

Theorem 1 is a central result in our paper, showing that
we can develop a simple yet close-to-optimal algorithm for
optimization problem (6). In other words, Algorithms 1 and 2
in causal setting solve problem (6) by taking at most one extra
iteration compared to the non-causal to compute the optimal
termination communication iteration number.

Next, we focus on the convergence analysis of Algorithm 3.
From Section III-D, we define Fu(wk) and Fl(wk) as the
upper and lower bound functions for F̃ (wk), respectively,
such that for every k ≥ 1, inequalities Fl(wk) ≤ F̃ (wk) ≤
Fu(wk) hold. The following remark highlights the important
monotonic behavior of Fu(wk) and Fl(wk).

Remark 5: The proposed functions Fu(wk) and Fl(wk)
are monotonic decreasing w.r.t. k, i.e., Fu(wk) < Fu(wk−1),
and Fl(wk) < Fl(wk−1) for ∀k ≥ 1. These results hold
because we consider a linear function, which is monotonically
decreasing, w.r.t. k, for updating each value of Fl(wk) and
Fu(wk) for k ≥ 1. Since the monotonically decreasing linear
function fulfills the sufficient decreasing condition (see [29],
Section 11.5), we claim that Fu(wk) and Fl(wk) are mono-
tonic decreasing w.r.t. k.

Remark 5 indicates that we can apply the batch FedCau
update of Algorithm 1 to obtain the causal stopping point
for Gu(K) and Gl(K) denoted as ku

c and kl
c, respectively.

Therefore, according to Proposition 2, there are finite optimal
stopping iterations for minimizing Gu(K) and Gl(K). Thus,
Theorem 1 is valid for ku

c and kl
c, and we guarantee the

convergence of Gu(K) and Gl(K). The following Proposition
characterizes the relation of causal stopping iteration kc of
G̃(K) with ku

c and kl
c.

Proposition 3: Let kc, ku
c , and kl

c be the causal stopping
iterations for minimizing G̃(K), Gu(K), and Gl(K), respec-
tively. Then, the inequalities ku

c ≤ kc ≤ kl
c hold.

Proof: See Appendix A-F in [33]. □
Proposition 3 characterizes an interval in which kc can take

values to stop Algorithm 3. As ku
c ≤ kc ≤ kl

c, it is enough
that we find ku

c and terminate the algorithm. However, the
maximum allowable number of iterations is kl

c, which can be
achieved if the resource budget allows us. Using Proposition 3,
we can obtain a sub-optimal kc by applying the FedCau update
Algorithm 3 to non-convex loss functions.

Lemma 3: Let Fu(wk) and Fl(wk) be respectively the
upper bound and the lower bound of F̃ (wk) obtained from
the stochastic non-convex cost-efficient mini-batch FedCau
Algorithm 3. Let us define F̃max := maxk∈[2,K] F̃ (wk)
and F̃min := mink∈[2,K] F̃ (wk). Assuming that |F̃ (wk)| <

∞, k = 1, . . . ,K, then |Fu(wk)−Fl(wk)| ≤ F̃max− F̃min is
the tightness between the upper bound Fu(wk) and the lower
bound Fl(wk).

Proof: See Appendix A-A. □

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11085

Lemma 3 specifies that the maximum distance between the
upper and lower bound functions Fu(wk) and Fl(wk), k =
1, . . . ,K, is determined by the variations of non-convex
sequence F̃ (wk), k = 1, . . . ,K. In the following Proposition,
we investigate the tightness of the interval (ku

c , kl
c).

Proposition 4: Let Kmax, ku
c and kl

c be the maximum num-
ber of iterations, the causal stopping iteration for minimizing
Gu(K), and the causal stopping iteration for minimiz-
ing Gl(K), respectively. Recall the definition of ku

max in
line 29 of Algorithm 3. Then,

kl
c = 1+

max
{

ku
c , ku

max+
⌈

(1− β)
βckd

{
Fu(wku

max
)− F̃ (wkd

)
}⌉}

,

(15)

where, for k ∈ [ku
c + 1, Kmax],

kd := the first value of k | F̃ (wk) > Fu(wk−1). (16)
Proof: See Appendix A-B. □

Proposition 4 denotes that the tightness of the interval (ku
c , kl

c)
is mainly determined by ck and the variations of the non-
convex sequence F̃ (wk), k = ku

c + 1, . . . ,Kmax.
To summarize, FedCau is applicable for both full and partial

worker participation, as well as when f(wk) is monotoni-
cally decreasing and not monotonic decreasing. Specifically,
we have used the FedCau theory to propose Algorithm 3
that obtains a suboptimal solution for kc when f(wk) is not
monotonically decreasing.

F. Complexity Analysis of Algorithms 1-3

In this part, we analyze the computation complexities of
Algorithms 1-3 and compare them with the computation com-
plexity of FedAvg. Recall that in FedCau of Algorithms 1-3,
the stopping iteration kc ≤ Kmax, Kmax is the number of
FedAvg global iterations. By assuming the training is done
considering a neural network with Nl number of layers, dN

as the maximum number of neurons, the backpropagation
of local gradients in each worker j after E local iterations,
results in a complexity of O(ENld

3
N). Thus, Algorithm 1 has

the complexity of O(kcE(|D|d + Nld
3
N)), which is less than

or equal to the complexity of FedAvg as O(KmaxE(|D|d +
Nld

3
N)). Similarly, the complexity of Algorithm 2 is obtained

as O(|D|Ed + (kc − 1)F−1
f |D|Ed + EkcNld

3
N). Finally,

the complexity of Algorithm 3, by considering the complex-
ity from the neural network setting we mentioned before,
is obtained as O(|D|Ed(kl

c)
3 + Ekl

cNld
3
N).

IV. APPLICATION TO COMMUNICATION PROTOCOLS

We consider wireless communication scenarios with a
broadcast channel in the downlink from the master node to
the workers. In the uplink, we consider three communication
protocols, slotted-ALOHA [34] and CSMA/CA [26] with a
binary exponential backoff retransmission policy [35], and
OFDMA [27] by which the workers transmit their local
parameters to the master node. We assume that in each
communication iteration k, local parameters are set at the head

of the line of each node’s queue and ready to be transmitted.
Thus, upon receiving wk, each worker j ∈ [M] computes its
local parameter wj

k and puts it in the head of the line of its
transmission queue. In a parallel process, each worker may
generate some background traffic and put them on the same
queue, and send them by the first-in-first-out queuing policy.
We obtain the average end-to-end communication-computation
latency at each iteration k, denoted by ck, for slotted-ALOHA
and CSMA/CA protocols: by taking an average over the
randomness of the protocols. Hence, at the end of each
communication iteration K, the network has faced a latency
equal to

∑K
k=1 ck. It means that we consider each time slot (in

ms) and sum up the spent computation delay and time slots in
each communication iteration k to achieve ck, thus following
the Algorithms 1, 2, and 3 to solve optimization problem (6).

The critical point to consider is that we should choose a
stable network in which packet saturation will not happen.
We only consider the latency of transmitting local parameters,
positioned at the head of line queues, which is influenced
by the number of workers M , transmission probability px,
and packet arrival probability pr at each time slot. Local
parameters at each iteration k are distinct from background
traffic packets influenced by the probability of pr.

Recall the definition of the communication-computation
cost components ℓ1,k, ℓ2,k, ℓ3,k and ℓ4,k in Section II-A. For
ℓ1,k, we consider a broadcast channel with data rate R bits/s
and parameter size of b bits (which includes the payload and
headers), leading to a constant latency of ℓ1,k = b/R s. Also,
it is natural to assume that ℓ4,k is a given constant for updating
parameters at the master node [36]. The computation latency
ℓj
2,k in each iteration k at each worker j ∈ [M] is calculated

as ℓj
2,k = aj

k|D
j
k|/νj

k, where aj
k is the number of processing

cycles to execute one sample of data (cycles/sample), |Dj
k| ≤

|Dj | is a subset of local dataset each worker chooses to
update its local parameter wj

k, and νj
k is the central processing

unit (cycles/s) [37]. Without any loss of generality, we consider
that |Dj

k| = |Dj |, k = 1, . . . ,K. We assume that all the
worker nodes start transmitting their local parameters simulta-
neously. Thus, the network must wait for the slowest worker
to complete its computation. Therefore, ℓ2,k = maxj∈[M] ℓ

j
2,k.

The third term, ℓ3,k, is determined by the channel capacity,
resource allocation policy, and network traffic. We characterize
this term for two batch and mini-batch update cases with a
defined time budget. Further, every specific broadcast channel
imposes a particular R and b, which do not change during the
optimizing process. Therefore, to compute the iteration-cost
function

∑
k ck, we take into account the ℓ3,k and ℓ2,k terms

and ignore the latency terms of ℓ1,k, and ℓ4,k because they do
not play a role in the optimization problem (6) in the presence
of shared wireless channel for the uplink. Note that in this
paper, without loss of generality, ck := ℓ2,k + ℓ3,k, in which
ℓ2,k is independent of the communication channels/protocols.
We wish to obtain the upper bound for communication delay
when the users in the network follow MAC protocols, such
as slotted-ALOHA and CSAMA/CA, to transmit their local
parameters of FedAvg algorithm (3) to the master node [35],
[38]. There are many papers in the literature computing the

11086 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

average transmission delay for MAC protocols. However,
we have a specific assumption that at each communication
iteration k, each worker puts its local parameter at the head
of the line in its queue and makes it ready for transmis-
sion. Note that in FedAvg algorithm (3), the master node
needs to receive all the local parameters to update the new
global parameter wk. Accordingly, we calculate the average
latency of the system while all workers must successfully
transmit at least one packet to the master node. The following
Proposition establishes bounds of the average transmission
latency ℓ3,k.

Proposition 5: Consider random access MAC protocols in
which the local parameters of FedAvg algorithm (3) are head-
of-line packets at each iteration k. Let M , px, and pr be
the number of nodes, the transmission probability at each
time slot, and the background packet arrival probability at
each time slot. Consider each time slot to have a duration
of ts seconds. Then, the average transmission delay, E{ℓ3,k}
is bounded by
M−1∑
i=0

tspi,i+1 ≤ E {ℓ3,k} ≤
M−1∑
i=0

ts

{
pi,i+1 +

pi,i

(1− pi,i)2

}
,

(17)

where

pi,i = p̂ + (1− px)M−i, i = 0, 1

pi,i = iprpx

i−1∑
j=1

(i− 1)!
j!(i− 1− j)!

{
pj

r(1− px)j(1− pr)i−1−j
}

+ p̂ + (1− px)M , i ≥ 2

and

pi,i+1 =

(M − i) (1− px)M−i−1px

i∑
j=1

pj
r(1− px)j(1− pr)i−j ,

where p̂ is the probability of an idle time slot.
Proof: See Appendix A-G in [33]. □

Proposition 5 introduces the bounds for transmission delay,
thus for ck, while considering slotted-ALOHA and CSMA/CA
communication protocols. Recall that ck = ℓ2,k +ℓ3,k, then by
considering the slowest worker in local iteration, the iteration
cost ck is bounded by
M−1∑
i=0

tspi,i+1 + min
j∈[M]

{
|Dj |aj

k

νj
k

}
≤ ck ≤

|D| max
j∈[M]

{
aj

k

νj
k

}
+ ts

M−1∑
i=0

{
pi,i+1 +

pi,i

(1− pi,i)2

}
, (18)

which helps us to design the communication-computation
parameters for FedCau. Note that we consider a setup where
the transmission starts simultaneously for all the workers.
This is an important setup by which we have developed
Algorithms 1-3 and the bounds on the iteration-cost ck in
Proposition 5 and inequalities (18). The assumption that all
workers transmit at each iteration k is only for Algorithm 1.
However, in the updated Algorithm 2, we can consider either

partial or full worker participation, which allows us to skip the
slowest worker and not wait for it at each iteration k. Finally,
in Algorithm 3, we have developed a general approach by
which FedCau can be applied to any scenario, e.g., full or
partial worker participation, non-convex loss functions f(w)
or any G(K) with various local optimum points. Thus, the
assumption that workers start transmissions to the master
node simultaneously does not contradict the cost-efficiency of
FedCau because we have considered various scenarios, like
full or partial worker participation, in Algorithms 1-3.

Finally, in OFDMA, we consider uplink transmissions in
a single-cell wireless system with s = 1, . . . , Sc orthogo-
nal subchannels [39]. Let hs

l , ps
l be the channel gain and

the transmit power of link l on subchannel s by which
worker j sends its local parameters to the master node.
Therefore, the signal-to-noise ratio (SNR) for the uplink is
defined SNR(ps

l , h
s
l) := ps

l h
s
l /σs

l . The corresponding data
rate (bps/Hz) is as Rp(SNR) =

∑Sc

s=1 log2(1 + SNR(ps
l , h

s
l)).

The master node randomly decides at each iteration k
which worker should use which subchannel link, and the
remaining workers will not participate in the parameter
uploading.

V. NUMERICAL RESULTS

In this section, we illustrate our results from the previous
sections. We numerically show the extensive impact of the
iteration costs when running the FedAvg algorithm (3) training
problem over a wireless network. We use a network with
M workers and simulation to implement slotted-ALOHA,
CSMA/CA (both with binary exponential backoff), and the
OFDMA. In each of these networks, we apply our pro-
posed Algorithms 1, 2, and 3. We train the FedCau by the
well-known MNIST dataset with non-iid distribution among
workers and the CIFAR-10 dataset with both iid and non-iid
cases. For the non-iid implementation, we first sort the dataset
w.r.t. the label numbers of yi = i, where i ∈ {0, 1, . . . , 9},
where i is the index of each data sample with size |Di|.
Moreover, in the MNIST dataset, the labels are the same
as the digits, while in CIFAR-10, the labels demonstrate
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Afterward, we assign an equal portion of data to
each worker j ∈ {1, . . . ,M}, starting from the beginning
of the sorted dataset. According to the size of each dataset,
CIFAR-10 with 50000 and MNIST with 60000 data samples,
the data portion of every class in the datasets assigned to each
worker is different. Finally, we apply our proposed FedCau
on top of existing methods from the literature, such as top-q
and LAQ.

A. Simulation Settings

First, we consider solving a convex regression problem over
a wireless network using a real-world dataset. To this end,
we extract a binary dataset from MNIST (hand-written digits)
by keeping samples of digits 0 and 1 and then setting their
labels to -1 and +1, respectively. We then randomly split the
resulting dataset of 12600 samples among M workers, each
having {(xij , yij)}, where xij ∈ R784 is a data sample i, and

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11087

Fig. 1. Illustration of non-causal and FedCau batch update of Algorithm 1 and FedCau mini-batch update of Algorithm 2 with T = 0.3s the presence
of slotted ALOHA and CSMA/CA, and OFDMA for M = 100, px = 1, and pr = 0.2. a) Loss function f(wk) b) Iteration-cost function C(K)
c) Multi-objective cost function G(K), and d) Test accuracy.

Fig. 2. Illustration of the effect of β on the performance of batch FedCau
update of Algorithm 1, M = 50, 100 and CSMA/CA with px = 1,
pr = 0.01. a) The causal iteration-cost C(kc) decreases while β increases.
b) The causal stopping iteration kc is smaller for larger β. c) Test accuracy
also decreases when β increases.

a vectorized image at node j ∈ [M] with corresponding digit
label yij ∈ {−1, +1}. We use the loss function [40]

f(w) =
M∑

j=1

ρj

|Dj |∑
i=1

1
|Dj |

log
(
1 + e−wT xijyij

)
, (19)

where we consider that each worker j ∈ [M] has |Dj | =
|Di| = |D|/M,∀i, j ∈ [M].

Second, we consider a non-convex image classification
problem with the workers using convolutional neural networks
(CNNs) with a cross-entropy loss function. The architecture
of the CNN consists of a convolutional layer, Conv2D(32, (3,
3)), a MaxPooling2D layer with a pool size of (2, 2), a Flatten
layer, two Dense (fully connected) layers with size 64 and 10,
and a final layer that produces probability distributions over
10 classes of the CIFAR-10 dataset. Overall, the CNN has
462410 parameters.

We implement the network with M workers performing
local updates of wj

k,∀j ∈ [M] and imposing computation
latency of ℓ2,k to the system. We assume a synchronous

network in which all workers start the local iteration of
wj

k simultaneously right after receiving wk−1. Note that the
latency counting of ck at each iteration k starts from the
beginning of the local iterations until the uplink process is
complete. Regarding the computation latency, we consider
νk ∈ [106, 3×109] cycles/s, and ak = [10, 30] cycle/sample for
k = 1, . . . ,M . In slotted-ALOHA, we consider a capacity of
one packet per slot and a slot duration of 1 ms. In CSMA/CA,
we consider the packet length of 10 kb with a packet rate of
1 k packets per second, leading to a total rate of 1 Mbps.
We set the duration of SIFS, DIFS, and each time slot to
be 10 µs, 50 µs, and 10 µs respectively [41] and run the
network for 1000 times. In the OFDMA setup, we consider
the uplink in a single cell system with the coverage radius of
rc = 1 Km. There are Lp cellular links on Sc subchannels.
We model the subchannel power gain hs

l = ζ/r3, following the
Rayleigh fading, where ζ has an exponential distribution with
unitary mean. We consider the noise power in each subchannel
as −170 dBm/Hz and the maximum transmit power of each
link as 23 dBm. We assume that Sc = 64 subchannels, the
total bandwidth of 10 MHz, and the subchannel bandwidth of
150 KHz. We define ck as the latency caused by the slowest
worker to send the local parameters to the master node.

B. Performance of FedCau Update From Algorithms 1, 2
and Non-Causal Approach

Fig. 1 characterizes the non-causal and causal behaviors
along with the performance of FedCau update of Algorithms 1
and 2 for slotted-ALOHA and CSMA/CA protocols. The
general network setup has M = 100, px = 1, pr = 0.2,
and the mini-batch time budget of T = 0.3s. We observe that
while the behavior of f(wk) is similar across the protocols in
Fig. 1(a), the iteration-cost function C(K) of the batch update
for slotted-ALOHA is much larger among all the setups in
Fig. 1(b). This behavior affects the multi-objective function
G(K) in Fig. 1(c) and causes an earlier stop. However, the
test accuracy is not sacrificed, as shown in Fig. 1(d). From
Fig. 1, we conclude that the batch update of Algorithm 1
satisfies the causal setting and preserves the test accuracy
while optimizing both the loss function f(wk) and the latency
over the communication protocols.

11088 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

Fig. 3. Illustration of the mini-batch FedCau update of Algorithm 2 for CSMA/CA, px = 1, pr = 0.01, and M = 50. a) C(kc) for Ff = 10,
T = 0.5, 0.9, 1.1s, b) Test accuracy for Ff = 10, T = 0.5, 0.9, 1.1s, c) Test accuracy for T = 0.5s FedCau vs FedAvg, d) Test accuracy for T = 0.9s
FedCau vs FedAvg, e) Test accuracy for T = 1.1s FedCau vs FedAvg, f) Iteration-cost function C(kc) for T = 1.1s vs different fairness factor Ff , and
g) Test accuracy for T = 1.1s vs Ff .

Fig. 2 characterizes the effect of β on the performance of
batch FedCau update of Algorithm 1 with M = 50, 100 and
CSMA/CA protocol for parameter upload. Fig. 2(a) shows
that C(kc) decreases while β takes the values between
(0, 1). This decreasing behavior is a valid result since the
higher values of β increase the effect of the term C(K) in
scalarized version (6). Since C(K) is an increasing func-
tion of K, the higher values of C(K) result in stopping
at the smaller causal iterations, called kc. Finally, Fig. 2(c)
demonstrates the test accuracy we achieve while chang-
ing β. Since kc decreases as β increases, the corresponding
test accuracy decreases. Therefore, choosing β ∈ [0.2, 0.5]
gives us a lower causal iteration cost and sub-optimal test
accuracy.

Fig. 3 represents the mini-batch FedCau update of
Algorithm 2 and the FedAvg baseline for CSMA/CA with
px = 1, pr = 0.01 and M = 50. Figs. 3(a)-3(b)
show the results for M = 50, with T = 0.5, 0.9, 1.1s.
Fig. 3(a) highlights that with a smaller time budget, C(kc)
decreases, while Fig. 3(b) shows the similarity in the test
accuracy. Fig. 3(c)-3(e) compare the test accuracy of FedCau
in Algorithm 2 with the FedAvg by assigning the time bud-
get T = 0.5, 0.9, 1.1 respectively. For the time budget T =
0.5, 0.9, 1.1s, the test accuracy of FedAvg is lower than the
results of mini-batch FedCau update of Algorithm 2 with a
similar time budget T . These results highlight the role of Ff

combined with T , where Ff ensures participation fairness,
especially for the smaller T , such as T = 0.5. Therefore,
with the equal T , the FedCau in Algorithm 2 outperforms
FedAvg in test accuracy and fairness in worker participation.
Figs. 3(f)-3(g) reveal the behavior of the mini-batch Fed-
Cau causal latency and test accuracy for M = 50, and
T = 1.1s w.r.t. Ff . Fig. 3(a) demonstrates that the causal
latency increases for small and large fairness factors Ff .
Meanwhile, Fig. 3(g) shows that the test accuracy decreases
while Ff increases due to the lack of participation fairness.
For smaller Ff , the participation fairness results in better

Fig. 4. Illustration of the batch FedCau update Algorithm 1: iteration-cost
C(k∗) and C(kc) and the bounds of Eq. (17) vs transmission probability px,
arrival probability pr , and network size M .

test accuracy, while a higher causal latency arises from more
frequent transmission of low-power workers.

C. Impact of Communication Parameters on FedCau
Performance

Fig. 4 characterizes the iteration-cost function C(K) for the
same setup as in Fig. 1. The iteration-cost function for slotted-
ALOHA is larger than CSMA/CA, as we see in Figs. 4(a)
and 4(c). On the other hand, the iteration-cost function for
CSMA/CA increases exponentially when the probability pr

increases, as shown in Fig. 4(b). This result also holds for
the bounds of the iteration cost in Eq. (17), as Fig. 4 shows.
Furthermore, the results from Fig. 4(c) show that C(kc)
increases on a slower rate than M increases, such that

C(kc2)− C(kc1)
M2 −M1

< 1, M2 > M1, (20)

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11089

Fig. 5. Illustration of the effect of number of local iterations E on the
performance of mini-batch FedCau update of Algorithm 3 for non-convex
loss functions with CIFAR-10 iid dataset and CSMA/CA, M = 50, 100,
px = 0.8, and pr = 0.01.

where M2 and M1 are number of workers, and C(kc2)
and C(kc1) are the total communication-computation with
the stopping causal iterations kc2 and kc1 , respectively.
Thus, considering full worker participation as the worst case
when investigating the scalability, we conclude that the total
communication-computation cost of FedCau is scalable in M .

D. Performance of Non-Convex FedCau From Algorithm 3

The experimental results presented in Fig. 5 investigate
the impact of the number of local iterations (E) on the
performance of mini-batch FedCau updates of Algorithm 3.
The study focuses on the CIFAR-10 iid dataset and CNN
architecture, employing CSMA/CA with different values of
M = 50 and M = 100, along with px = 0.8 and pr = 0.01.
Fig. 5(a) reveals distinct behaviors in the causal test accuracy
concerning E for M = 50 and M = 100. While the
changes in test accuracy are less pronounced for M = 50,
the corresponding values are lower than M = 100. Fig. 5(b)
showcases the causal stopping iterations (ku

c and kl
c), which

decrease as E increases. Additionally, the tightness of the
interval (ku

c , kl
c) established in Proposition 4 is validated,

according to the variations in the non-convex sequences of
F̃ (wk). Moreover, Fig. 5(c) shows the causal iteration-cost
C(K) as a function of E, which increases as E increases. This
observation highlights the significant impact of computation
latency on the performance of the FedCau. Based on the
findings in Fig. 5, selecting E = 10 as the optimal number
of local iterations is recommended, which provides the best
accuracy with a lower causal iteration cost compared to E >
10. These results offer valuable insights into selecting E and
understanding the trade-off between E, test accuracy, iteration
cost, and causal stopping iterations.

Fig. 6 compares the performance of mini-batch FedCau
update of Algorithm 3 in iid and non-iid data distribution
of CIFAR-10, for non-convex loss functions with CSMA/CA,
M = 100, E = 10, px = 0.8, and pr = 0.01. Fig. 6(a)

Fig. 6. Performance comparison of CIFAR-10 iid and non-iid data in
mini-batch FedCau of Algorithm 3 for non-convex loss functions with
CSMA/CA, M = 100, E = 10, Kmax = 200, px = 0.8, and pr = 0.01.
a) Test accuracy of CIFAR-10 iid and non-iid dataset obtained by the lower
bound causal stopping iteration kl

c. b) Loss function F̃ (wk) with its upper
bound Fu(wk) and lower bound Fl(wk) for iid data, and c) non-iid data.
d) Comparison between FedCau and FedAvg.

compares the test accuracy of training the mini-batch FedCau
update of Algorithm 3 by iid and non-iid data obtained by
kl

c, the highest test accuracy achieved by Algorithm 3 for
any non-convex loss function. We observe that for the iid
case, with kl

c = 160, the test accuracy is higher than the
case for non-iid with kl

c = 93. Figs. 6(b) and 6(c) show
the loss functions F̃ (wk) and the corresponding upper and
lower bounds Fu(wk) and Fl(wk). The comparison between
Fig. 6(b) and Fig. 6(c) reveals that the iid case results in
a lower value of loss function and a higher test accuracy,
as shown in Fig. 6(a). Moreover, the difference between the
upper bound and the lower bound functions Fu(wk) and
Fl(wk) are small in Figs. 6(b) and 6(c), which shows the
high tightness of the bounds. Fig. 6(d) compares the test
accuracy of FedCau and FedAvg with stopping iterations kl

c

and Kmax = 200 after 100 realizations to have smoother
curves. Notably, FedAvg with Kmax = 200 increases the total
iteration cost by 55% (non-iid) and 20% (iid), but the test
accuracy improvement over FedCau is only 2.2% (non-iid)
and 0.65% (iid). We observe that non-iid FedCau terminates
at iteration kl

c = 93 while the FedAvg test accuracy curve
becomes flat at iteration k = 101. Moreover, the test accuracy
of non-iid FedCau with kl

c = 93 is 1.2% higher than non-iid
FedAvg at iteration k = 101. The communication costs
of the local parameters for every extra iteration are high;
thus, stopping the training at a proper iteration saves a huge
amount of communication resources (14.7Mbits per iteration
per worker). As a result, FedCau, with the knowledge of when
to terminate the training, i.e., kl

c = 93, is significantly superior
to FedAvg in terms of saving communication-computation
resources and achieving higher test accuracy.

E. Performance of FedCau Update From Algorithm 1 on Top
of LAQ and Top-q

We choose LAQ because it achieves the same linear conver-
gence as the gradient descent while effecting major savings in
the communication resources [8]. Among all the compression

11090 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

TABLE I
COMPARISON BETWEEN FEDCAU AND FEDAVG WITH AND WITHOUT

LAQ AND TOP-q, M = 50, AND Kmax = 200

methods, we choose top-q sparsification because it suffers
the least from non-i.i.d. data, and the training converges.
Moreover, applying top-q for the logistic regression classifier
trained on MNIST, the convergence does not slow down [7].
Despite the previous numerical results, which characterize
the overall latency as the iteration-cost ck, k ≥ 1, here we
consider the number of bits per each communication iteration
as ck, k ≥ 1. In LAQ, b shows the element-wise number of bits
for the local parameters, and we train the FedAvg algorithm
over the MNIST dataset. Moreover, in the top-q method,
we change the percentage of the dimension of each local
parameter as 0 < q ≤ 1, but considering that each element
contains 32 bits. TABLE I compares FedAvg and FedCau with
and without considering the communication-efficient methods
LAQ and Top-q. In Table I, FedCau LAQ with b = 2 achieves
94.2% test accuracy, using the least number of bits (total cost
of 4.56Mbits).

To explore the trade-off between communication cost and
test accuracy in the FedAvg baseline, we examine three stop-
ping iterations, namely 55, 56, 57, and 60, which are close to
the FedCau stopping iteration of kc = 56. We set these FedAvg
stopping iterations because we have obtained kc in FedCau.
We choose the stopping iterations close to kc for FedAvg for
fair comparison and to show the superiority of FedCau in test
accuracy and overall communication cost. We highlight that
these stopping iterations for FedAvg cannot be set beforehand
in practice. When terminating FedAvg at iteration 55, the
achieved accuracy is 2.32% lower than FedCau, while offering
a 1.82% reduction in communication cost. Similarly, FedAvg,
with a stopping iteration of 57, requires a 1.82% increase in
communication cost to achieve a marginal improvement of
0.14% in test accuracy compared to FedCau. Furthermore,
considering FedAvg at stopping iteration 60, FedCau signifi-
cantly saves 7.2% in the total cost with only a minor reduction
of 0.382% in test accuracy compared to FedAvg. These
findings highlight the effectiveness of FedCau in selecting
the appropriate stopping iteration, ensuring that terminating
the training before kc proves inefficient in terms of test accu-
racy while continuing after kc becomes costly with minimal
improvements in accuracy. Moreover, the results for FedAvg
with stopping iteration of 56, the same as FedCau, show that
FedCau with causal termination kc outperforms FedAvg in test
accuracy. Furthermore, we compare FedCau LAQ b = 2 and
kc = 57 with FedAvg LAQ b = 2 and stop iterations of 55 and

60. The test accuracy results indicate that FedCau LAQ with
b = 2 outperforms FedAvg by increasing the test accuracy by
3.07% at the cost of 3.6% higher iteration cost. Thus, FedCau
achieves the optimal causal stopping iteration in the context
of LAQ with b = 2, considering the trade-off between test
accuracy and iteration cost. Furthermore, comparing FedCau
with FedAvg at a stopping iteration of 60, FedAvg achieves a
test accuracy of 94.46% with an iteration cost of 4.8 Mbits.
Compared to FedCau at kc = 57, FedAvg incurs a 5.27%
increase in iteration cost while gaining only a marginal 0.26%
improvement in test accuracy. This comparison highlights that
beyond kc, the increase in iteration cost becomes significantly
higher compared to the increase in test accuracy.

We conclude that FedCau obtains the optimal stopping
iteration regarding the iteration cost and the achievable
test accuracy, even when applying it on top of existing
communication-efficient methods, such as LAQ and top-q.

VI. CONCLUSION

In this paper, we proposed a framework to design cost-aware
FL over networks. We characterized the communication-
computation cost of running iterations of generic FL
algorithms over a shared wireless channel regulated by slotted-
ALOHA, CSMA/CA, and OFDMA protocols. We posed the
communication-computation latency as the iteration-cost func-
tion of FL. We optimized the iteration-termination criteria to
minimize the trade-off between FL’s achievable objective value
and the overall training cost. To this end, we proposed a causal
setting, FedCau, utilized in two convex scenarios for batch and
mini-batch updates, and for non-convex scenarios as well.

The numerical results showed that in the same background
traffic, time budget, and network situation, CSMA/CA has
less communication-computation cost than slotted-ALOHA.
We also showed that the mini-batch FedCau update could per-
form more cost-efficiently than the batch update by choosing
the proper time budgets. Moreover, the numerical results of the
non-convex scenario provided a sub-optimal interval of the
causal optimal solution close to the optimal interval, which
provides many opportunities for non-convex FL problems.
In the end, we applied the FedCau method on top of the
existing methods like top-q sparsification and LAQ with char-
acterizing the iteration cost as the number of communication
bits. We concluded that FedCau, with or without LAQ and
top-q, obtains the causal termination iteration and, compared
to FedAvg, achieves a significantly better trade-off between
test accuracy and the total iteration cost of training.

Our future work will extend the FedCau update of
non-convex scenarios and design communication protocols for
cost-efficient FL considering power allocation.

APPENDIX A

A. Proof of Lemma 3

The proof is directly obtained from the definitions of
Fu(wk), Fl(wk), δu

k and δl
k in Algorithm 3. Recall

that Fu(wk) = F̃ (wk) (see line 24, 27, 30, 44) or
Fu(wk) = Fu(wk−1) + δl

k (see line 40) and the same
arguments considering are valid for Fl(wk) = F̃ (wk) or

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11091

Fl(wk) = Fl(wk−1) + δu
k (see lines 24, 33, 37, 46). Thus,

by assuming a finite sequence of |F̃ (wk)|, k = 1, . . . ,K,
the inequality |Fu(wk) − Fl(wk)| ≤ F̃max − F̃min is the
tightness between the upper bound Fu(wk) and the lower
bound Fl(wk).

B. Proof of Proposition 4

The stopping iteration kc given by Algorithm 3 is in the
form of an interval of kc ∈ [ku

c , kl
c]. This interval’s tightness

depends on different scenarios, as we explain in the following.
Assuming that Algorithm 3 has obtained ku

c , after which we
face several situations for updating Fl(wk) according to the
behavior of F̃ (wk) for k ≥ ku

c + 1. There are three different
scenarios, which are explained in the following:
• F̃ (wk) < F̃ (wk−1) and F̃ (wk) > Fl(wk−1): According

to Algorithm 3 (see lines 44-47), for k = ku
c +1, we have

Fu(wk) = F̃ (wk) and Fl(wk) = Fl(wk−1) + δu
k where

δu
k = Fu(wk) − Fu(wk−1) = F̃ (wk) − Fu(wk−1).

Moreover, since k ≥ ku
c + 1, the inequality of Gu(k) >

Gu(k) gives us

Gu(k)−Gu(ku
c) = (βC(k) + (1− β)Fu(wk))

− (βC(k − 1) + (1− β)Fu(wk−1)) = βck

− (1− β)(Fu(wk−1)− Fu(wk)) > 0. (21)

Then, we compute Gl(k) as in Eq (10b):

Gl(k) = βC(k) + (1− β)Fl(wk)
= βC(k − 1) + βck + (1− β) (Fl(wk−1) + δu

k)
= βck + βC(k − 1)+

(1− β)
(
Fl(wk−1)− Fu(wk−1) + F̃ (wk)

)
= βck + Gl(k − 1)−

(1− β)
(
Fu(wk−1)− F̃ (wk)

) (21)
> Gl(k − 1).

(22)

Therefore, kl
c = ku

c + 1.
• F̃ (wk) < F̃ (wk−1) and F̃ (wk) < Fl(wkl

max
): Accord-

ing to Algorithm 3 (see lines 36-44), for k = ku
c + 1,

we have Fl(wk) = F̃ (wk), and Fu(wk) = Fu(wk−1)+
δl
k, where δl

k = Fl(wk) − Fl(wk−1) = F̃ (wk) −
Fl(wk−1). Thus, we calculate Gl(k) as

Gl(k) = βC(k) + (1− β)Fl(wk)

= βC(k − 1) + βck + (1− β)F̃ (wk)
= βC(k − 1) + βck+
(1− β) (Fu(wk) + Fl(wk−1)− Fu(wk−1))
= (1− β) (−Fu(wk−1) + Fu(wk)) +

Gl(k − 1) + βck

(21)
> Gl(k − 1), (23)

which results in kl
c = ku

c + 1.
• F̃ (wk) > Fu(wk−1) (see lines 28-34 in Algorithm 3): In

this case, the update of Fu(wk) and Fl(wk) are according

to the linear update we proposed in Section III-D in the
revised manuscript. Thus, the update of δu

k is as

δu
k =

F̃ (wk)− Fu(wku
max

)
k − ku

max

, k ≥ ku
c + 1, (24)

and Fl(wk) = Fl(wk−1) + δu
k , and Fu(wk) = F̃ (wk).

Next, we calculate Gl(k) as

Gl(k) = βC(k) + (1− β)Fl(wk)
= βC(k − 1) + βck + (1− β)(Fl(wk−1) + δu

k)
= Gl(k − 1) + βck + (1− β)δu

k , (25)

where Gl(k) − Gl(k − 1) = βck + (1 − β)δu
k . Thus, kl

c

is obtained when βck > −(1− β)δu
k ,

−δu
k =

Fu(wku
max

)− F̃ (wk)
k − ku

max

<
β

1− β
ck, k ≥ ku

c + 1,

(26)

where kl
c is

kl
c = ku

max +

⌈
(1− β)

Fu(wku
max

)− F̃ (wk)
βck

⌉
+ 1.

(27)

Therefore, according to the mentioned scenarios, we
obtain

kl
c = 1+

max
{

ku
c , ku

max +
⌈

(1− β)
βckd

{
Fu(wku

max
)− F̃ (wkd

)
}⌉}

,

(28)

where, for k ∈ [ku
c + 1, Kmax],

kd := the first value of k | F̃ (wk) > Fu(wk−1). (29)

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-
spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,
Jul. 2015.

[2] O. Simeone, “A very brief introduction to machine learning with
applications to communication systems,” IEEE Trans. Cogn. Commun.
Netw., vol. 4, no. 4, pp. 648–664, Dec. 2018.

[3] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[4] P. Kairouz et al., “Advances and open problems in federated learn-
ing,” Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210,
2021.

[5] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[6] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso,
“Deep learning’s diminishing returns: The cost of improvement is
becoming unsustainable,” IEEE Spectr., vol. 58, no. 10, pp. 50–55,
Oct. 2021.

[7] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[8] J. Sun, T. Chen, G. B. Giannakis, Q. Yang, and Z. Yang, “Lazily
aggregated quantized gradient innovation for communication-efficient
federated learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 4, pp. 2031–2044, Apr. 2022.

11092 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

[9] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” 2018, arXiv:1812.07210.

[10] Q. Fan and N. Ansari, “Application aware workload allocation for
edge computing-based IoT,” IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[11] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication net-
works,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949,
Mar. 2021.

[12] S. U Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4447–4458.

[13] S. Di, D. Tao, X. Liang, and F. Cappello, “Efficient lossy compression
for scientific data based on pointwise relative error bound,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 2, pp. 331–345, Feb. 2019.

[14] K. Yuan, Q. Ling, and Z. Tian, “Communication-efficient decentralized
event monitoring in wireless sensor networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 8, pp. 2198–2207, Aug. 2015.

[15] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., 2018, pp. 1299–1309.

[16] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 5050–5060.

[17] J. Sun et al., “Communication-efficient distributed learning via lazily
aggregated quantized gradients,” in Adv. Neural Inf. Process. Syst., 2019,
pp. 3370–3380.

[18] K. Hsieh et al., “GAIA: Geo-distributed machine learning approaching
LAN speeds,” in Proc. 14th {USENIX} Symp. Netw. Syst. Design
Implement. (NSDI), 2017, pp. 629–647.

[19] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” 2018, arXiv:1807.06629.

[20] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical fed-
erated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6535–6548, Oct. 2020.

[21] A. Defazio et al., “SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 27. Red Hook, NY, USA: Curran
Associates, 2014, pp. 1–9.

[22] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, Jan. 2021.

[23] A. Mahmoudi, H. S. Ghadikolaei, and C. Fischione, “Cost-efficient
distributed optimization in machine learning over wireless networks,”
in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–7.

[24] A. Mahmoudi, H. S. Ghadikolaei, and C. Fischione, “Machine learning
over networks: Co-design of distributed optimization and communica-
tions,” in Proc. IEEE 21st Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), May 2020, pp. 1–5.

[25] S. Boyd et al., Convex Optimization. Cambridge, U.K.: Cambridge Univ.
Press, 2004.

[26] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under high
traffic conditions: Throughput and delay analysis,” Comput. Commun.,
vol. 25, no. 3, pp. 313–321, Feb. 2002.

[27] D. Bankov, A. Didenko, E. Khorov, and A. Lyakhov, “OFDMA uplink
scheduling in IEEE 802.11ax networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018, pp. 1–6.

[28] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” 2019, arXiv:1907.02189.

[29] I. Griva et al., Linear and Nonlinear Optimization, 2nd ed. Philadelphia,
PA, USA: SIAM, 2008.

[30] D. Bertsekas et al., Parallel and Distributed Computation: Numer-
ical Methods, vol. 23. Englewood Cliffs, NJ, USAL: Prentice-Hall,
1989.

[31] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in Proc. IEEE
Int. Workshop Signal Process. Syst. (SiPS), Nanjing, China, Oct. 2019,
pp. 266–271.

[32] H.-G. Weigand, “A discrete approach to the concept of derivative,” ZDM,
vol. 46, no. 4, pp. 603–619, Aug. 2014.

[33] A. Mahmoudi, H. S. Ghadikolaei, J. M. B. Da Silva Júnior, and C.
Fischione, “FedCau: A proactive stop policy for communication and
computation efficient federated learning,” 2022, arXiv:2204.07773.

[34] D. Bertsekas et al., Data Networks, vol. 2, 2nd ed. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[35] Y. Yang and T. S. P. Yum, “Delay distributions of slotted ALOHA
and CSMA,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1846–1857,
Nov. 2003.

[36] F. S. Samani, H. Zhang, and R. Stadler, “Efficient learning on high-
dimensional operational data,” in Proc. 15th Int. Conf. Netw. Service
Manage. (CNSM), Oct. 2019, pp. 1–9.

[37] V.-D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Efficient federated learning algorithm for resource allocation in wireless
IoT networks,” IEEE Internet Things J., vol. 8, no. 5, pp. 3394–3409,
Mar. 2021.

[38] E. Casini, R. De Gaudenzi, and O. R. Herrero, “Contention resolu-
tion diversity slotted ALOHA (CRDSA): An enhanced random access
scheme for satellite access packet networks,” IEEE Trans. Wireless
Commun., vol. 6, no. 4, pp. 1408–1419, Apr. 2007.

[39] T. D. Hoang and L. Bao Le, “Joint prioritized scheduling and resource
allocation for OFDMA-based wireless networks,” IEEE Trans. Wireless
Commun., vol. 17, no. 1, pp. 310–323, Jan. 2018.

[40] K. Koh et al., “An interior-point method for large-scale ℓ1-regularized
logistic regression,” J. Mach. Learn. Res., vol. 8, no. Jul, pp. 1519–1555,
2007.

[41] IEEE Standard for Information Technology—Telecommunications—
Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, Standard IEEE Std 802.11-2016, 2016,
pp. 1–3534.

Afsaneh Mahmoudi (Graduate Student Member,
IEEE) received the bachelor’s degree from the
Sharif University of Technology, Tehran, Iran, in
2015, and the master’s degree in electrical engi-
neering from the University of Tehran, Tehran, in
2018. She is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering and
Computer Science, KTH Royal Institute of Technol-
ogy, Stockholm, Sweden. Her research area focuses
on federated learning, cell-free massive MIMO,
machine learning, and optimization.

Hossein S. Ghadikolaei received the B.Sc. degree
in electrical engineering from the Iran University
of Science and Technology in 2009, the M.Sc.
degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2011,
and the Ph.D. degree in electrical engineering and
computer science from the KTH Royal Institute of
Technology, Stockholm, Sweden, in 2018. He is cur-
rently with Ericsson Research, Kista, Sweden. His
research interests include distributed optimization
and machine learning, with applications in commu-

nication networks. He was a recipient of the IEEE Communications Society
Stephen O. Rice Prize, in 2018, the Premium Award for the Best Paper in
IET Communications, in 2014, and the Program of Excellence Award from
KTH, in 2013, among others. He was selected as an Exemplary Reviewer for
the IEEE TRANSACTIONS ON COMMUNICATIONS, in 2017 and 2018, and
served as an Associate Editor of IEEE COMMUNICATIONS LETTERS.

MAHMOUDI et al.: FedCau: A PROACTIVE STOP POLICY 11093

José Mairton Barros Da Silva Jr. (Member, IEEE)
received the B.Sc. (Hons.) and M.Sc. degrees in
telecommunications engineering from the Federal
University of Ceará, Brazil, in 2012 and 2014,
respectively, and the Ph.D. degree from the KTH
Royal Institute of Technology, Stockholm, Sweden,
in 2019. He is currently an Assistant Professor with
the Division of Computer Systems, Uppsala Uni-
versity, Sweden. He was a Postdoctoral Researcher
at the KTH Royal Institute of Technology, between
2019-2021. He was a Marie Skłodowska-Curie Post-

doctoral Fellow with Princeton University, USA, and KTH Royal Institute of
Technology, between 2022-2023. He is currently a Workshops, Tutorials, and
Symposia Officer of the IEEE Communications Society Emerging Technology
Initiative on Machine Learning for Communication. He has been involved in
the organization of many conferences and workshops, including co-chairing
IEEE ICMLCN 2024, IEEE SECON 2022-2023. He gave several tutorials
at many IEEE flagship conferences, including ICASSP, PIMRC, ICC, and
GLOBECOM. His research interests include distributed machine learning and
optimization over wireless communications.

Carlo Fischione (Senior Member, IEEE) received
the Laurea degree (summa cum laude) in elec-
tronic engineering and the Ph.D. degree in electrical
and information engineering from the University of
L’Aquila, Italy, in May 2001 and 2005, respectively.

He has held various research positions, such as a
Visiting Professor with the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 2015; an
Associate Professor with Harvard University, Cam-
bridge, in 2015; and a Visiting Scholar with the
University of California at Berkeley, CA, USA, from

2004 to 2005, where he was a Research Associate from 2007 to 2008. He
is currently an Honorary Professor with the Department of Mathematics,
Information Engineering, and Computer Science, University of L’Aquila.
He is also a Full Professor with the Department of Electrical Engineering
and Computer Science, Division of Network and Systems Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden. He is also the
Director of the KTH-Ericsson Data Science Micro Degree Program directed to
Ericsson globally. His current research interests include applied optimization,
wireless, sensor networks, the Internet of Things, and machine learning.
He is an ordinary member of the Italian Academy of History Deputazione
Abruzzese di Storia Patria (DASP). He received several awards, such as
the IEEE Communication Society S. O. Rice Award for the 2018 Best
IEEE TRANSACTIONS ON COMMUNICATIONS Paper and the Best Paper
Award of IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS in 2007.
He is a Distinguished Lecturer of the IEEE Communication Society, the
Funding Chair of the IEEE International Conference on Machine Learning
for Communication and Networking (IEEE ICMLCN 2024), and the Chair
of the IEEE Machine Learning for Communications Emerging Technologies
Initiative. He is an Editor of IEEE TRANSACTIONS ON COMMUNICATIONS
(Machine Learning for Communications Area) and IEEE TRANSACTIONS
ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING and
served as an Associated Editor for Automatica (IFAC) from 2014 to 2019.

