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Joint Ultra-Wideband Characterization of Azimuth,
Elevation, and Time of Arrival With Toric Arrays

Alejandro Ramírez-Arroyo , Antonio Alex-Amor , Rubén Medina ,
Pablo Padilla , and Juan F. Valenzuela-Valdés

Abstract— In this paper, we present an analytical framework
for the joint characterization of the 3D direction of arrival (DoA),
i.e., azimuth and elevation components, and time of arrival (ToA)
in multipath environments. The analytical framework is based on
the use of nearly frequency-invariant beamformers (FIB) formed
by toric arrays. The frequency response of the toric array is
expanded as a series of phase modes, which leads to azimuth–time
and elevation–time diagrams from which the 3D DoA and the ToA
of the incoming waves can be extracted over a wide bandwidth.
Firstly, we discuss some practical considerations, advantages
and limitations of using the analytical method. Subsequently,
we perform a parametric study to analyze the influence of the
method parameters on the quality of the estimation. The method
is tested in single-path and multipath mm-wave environments
over a large bandwidth. The results show that the proposed
method improves the quality of the estimation, i.e., decreases
the level of the artifacts, compared to other state-of-art FIB
approaches based on the use of single/concentric circular and
elliptical arrays.

Index Terms— Direction-of-arrival (DoA), time-of-arrival
(ToA), 3D characterization, toric arrays, propagation, wireless
channels.

I. INTRODUCTION

IMPROVING the performance of wireless links requires a
proper characterization and knowledge of multiple channel

parameters: direction of arrival (DoA), time of arrival (ToA),
delay spread, path loss, and K factor, among others [1], [2].
With knowledge of the channel parameters, different scenar-
ios can be effectively distinguished [3], even recreated and
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emulated through the use of post-processing techniques based
on the creation/removal of reflections in the communication
channel [4], [5]. This is fundamental in today’s interconnected
society, considering the huge variety of propagation envi-
ronments associated with different communication scenarios:
5G/6G mobile [6], [7], RIS-aided [8], [9], industrial [10], [11],
and vehicle-to-everything [12], [13], [14], [15], [16] networks.

Among all the channel parameters, DoA and ToA are among
the most noteworthy. A joint estimation of DoA and ToA
is essential because current communication scenarios suffer
from temporal variations of the physical properties of the
channel. Accurate DoA and ToA information can account
for the changes occurring in the channel. In the sub-6 GHz
regime, DoA and ToA estimation techniques have been widely
explored in the literature [17]. Most of the applied techniques
are of narrowband nature [18], [19], [20], [21], [22], [23], [24],
which generally limits their use for modern broadband appli-
cations in the mm-wave frequency range. As a consequence,
new efficient wideband alternatives are being sought that fea-
ture DoA and ToA simultaneously. For instance, narrowband
approximations can be extended towards wideband applica-
tions through the use of time-delay beamformers [25]. These
approaches propose a frequency-dependent phase shift, which
is applied on a narrowband decomposition of the wideband
communication channel. Thus, the combination of narrowband
nature approximations and frequency-dependent phase shifters
leads to wideband approaches. One step beyond, the whole
wideband channel can be considered through the design and
implementation of nearly frequency-invariant beamformers
(FIB), which has proven to be a suitable alternative for (ultra)-
wideband DoA estimation [26], [27], [28]. The objective of
FIB is to parameterize the array coefficients so that the spectral
and spatial dependences can be treated independently [29].
Previous implementations of FIB have ranged from the use
of one-dimensional (1D) arrays [30] to two-dimensional (2D)
configurations based on the use of circular arrays [31], [32],
[33], [34]. Recently, the use of FIB was extended by the
authors to include elliptical geometries [35], [36]. This is
a generalization of previous approaches based on circular
geometries, as circular and linear arrays are subcases included
in the more general elliptical arrays. However, many of the
DoA and ToA estimation methods are only capable to accu-
rately estimate the time of arrival and one of the two spatial
DoA components, i.e., either azimuth or elevation, but not both
at the same time [31], [32], [33], [35], [36]. In this regard, it is
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not so common to find analytical approaches that accurately
estimate azimuth, elevation and time of arrival in one go.

In this paper, we present a novel estimation method for joint
3D DoA (azimuth, elevation) and ToA characterization. The
technique is based on the use of nearly frequency-invariant
toric arrays. Following a similar rationale than in [31], [32],
[33], [34], [35], [36], [37], and [38], the multipath frequency
response, acquired in the different spatial points that are part
of the toric array, can be expanded as a series of phase modes
and a preselected frequency-dependent filter. This leads to
diagrams in the azimuth–time (AoA–ToA) and elevation–time
(EoA–ToA) domains, from which the direction and time of
arrival of the incoming waves can be accurately estimated
in a wideband range of frequencies in either single-path or
multipath environments. This is a remarkable feature of the
proposed method, as a joint 3D-DoA and ToA characterization
is rarely found in the literature. Moreover, the accuracy in the
joint DoA and ToA estimation is improved with respect to
previous state-of-art frequency-invariant beamformers. This is
essentially due to the geometry of the torus. The geometrical
disposal of spatial samples in a toric array efficiently exploits
the arrangement for an optimal estimation. Within a torus,
multiple concentric circular arrays can be defined in horizontal
planes, thus improving the estimation of the azimuth angle.
Then, the optimal vertical plane, which includes a single cir-
cular array, is selected for a precise estimation of the elevation
angle and time of arrival. Finally, it is worth mentioning that
the proposed technique works efficiently in under-sampling
conditions, which can be used to reduce processing time and
the number of samples employed. Thus, the main contributions
of this work are summarized as:

(i) Development of the theoretical framework for the
use of frequency-invariant beamformers in three-
dimensional geometries. The distributions of samples
in three-dimensional spaces provided by toric arrays
allow the development of expressions that lead to a
three-dimensional characterization of the direction of
arrival (azimuth and elevation) and time of arrival.

(ii) Method validation through simulation in the mm-wave
frequency range. This approach can be employed in
wideband single-path and multi-path channels by decou-
pling the spatial and temporal domains given the channel
frequency response of each spatial sample.

(iii) Parametric analysis of the toric geometry. A study of
the geometrical parameters of the torus given the above
framework is performed to define the optimal region of
operation of the method.

These contributions open up the possibility of angular and
temporal characterization of a 3D multipath scenario. This is
achieved by means of the frequency-invariant beamforming
framework proposed for toric arrangements throughout the
paper. Moreover, as it will be detailed later, the proposed
framework improves the quality of the DoA and ToA estima-
tion compared to other state-of-the-art FIB approaches based
on the use of circular and elliptical arrays.

The document is organized as follows. Section II presents
the mathematical framework for the joint characterization of

the azimuth, elevation and time of arrival. It also discusses
some practical considerations, advantages and limitations of
the method. Section III illustrates some numerical examples,
including single-path and multipath scenarios, in order to val-
idate the proposed theoretical framework. A parametric study
on how the main involved parameters affect the performance
of the method is also carried out. Finally, general conclusions
are drawn in Section IV.

II. THEORETICAL FRAMEWORK

A torus is defined as a closed surface formed by the
Cartesian product of two circles. Parametrically, it can be
defined as:

x(ϕ, θ) = (R + ρ sin θ) cosϕ

y(ϕ, θ) = (R + ρ sin θ) sinϕ,

z(ϕ, θ) = −ρ cos θ (1)

where R is the distance from the torus center to the tube
center, and ρ is the tube radius. ϕ is the azimuth angle, which
represents the rotation around the axis of revolution. θ is the
elevation angle, i.e., the rotation angle around the tube. R > ρ
is considered in order to ensure a ring torus shape.

Due to the nature of this geometry, circles can be generated
in the XY plane given a specific z height. Since z(ϕ, θ) only
depends on θ for any value of ϕ, θ can be directly substituted
in x(ϕ, θ) and y(ϕ, θ) as sin(θ) = sin(arccos(−z/ρ)) =√

1− (−z/ρ)2). This expression can be further simplified,
leading (1) to:

x(z, ϕ) = (R±
√

ρ2 − z2) cosϕ

y(z, ϕ) = (R±
√

ρ2 − z2) sinϕ. (2)

An example of circumference in this XY plane is illustrated in
Fig. 1(a) when z = 0. Therefore, several circumferences can
be arranged given the horizontal XY plane for several z values.
Equivalently, two circumferences are found in the vertical
plane formed by the Z-axis and a given angle ϕ. Fig. 1(b)
shows this plane when ϕ = ϕl, which represents a smart
selection of the plane given the ϕ− axis. Mathematically, the
ΦlZ plane is defined by the line that lies in the Cartesian z-axis
with unit direction vector u = ẑ, and the line that crosses
the origin {0,0,0} and the coordinate {cos(ϕl), sin(ϕl), 0}
with unit direction vector v = cos(ϕl)x̂ + sin(ϕl)ŷ. Thus,
the ΦlZ plane is defined by the plane equation sin(ϕl)x −
cos(ϕl)y = 0. Some examples of these arrangements are
illustrated in Fig. 2. These distributions will be analyzed in
detail in later sections. These properties of the torus to define
circumferences in several planes will be used to accurately
estimate the 3D DoA (azimuth ϕ and elevation θ), as well as
the ToA τ in multipath environments.

Now, let us assume an incident spherical wave l character-
ized by the azimuth angle ϕl, elevation θl and time of arrival τl.
This signal impinges on a torus formed by P samples on each
circumference arranged in the XY plane, and P samples on
each circumference of the ΦlZ plane, for a total of P 2 spatial
samples. The estimation of the three previous parameters is
performed in two steps: (i) The first one takes advantage of the
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Fig. 1. Torus geometry: Representation of the circles arranged in (a) the XY plane, and (b) ΦlZ plane.

Fig. 2. Planes where the circular arrays are placed on the torus. P circular
arrays can be found in the XY plane given several heights z (left panel).
For visualization purposes, only five circles are marked in blue in the XY
plane. A single circular array is located in the ΦlZ plane (right panel). The
P circular arrays in the XY plane and the single array in the ΦlZ plane allow
us to estimate the AoA and the pair {EoA, ToA}, respectively.

circumferences located in the XY plane to make an accurate
estimation of ϕl. (ii) The second step makes use of the previous
value of ϕl to accurately estimate θl and τl given the ΦlZ
plane.

A. Azimuth of Arrival (AoA)

In the first step, the frequency response at the center of the
circumferences lying in the XY plane is expressed as

Hl,z(f) = κlej2πfτl,z = κlej2πf(τl+τz), (3)

where κl stands for the complex amplitude for the l-th wave
and τl,z for the delay of the l-th wave for a given height z. The
term τl,z can be expressed as τl,z = τl + τz , where τl is the
delay characterized at the center of the torus (z = 0) and τz is
an additional delay introduced by the height z. According to
the torus geometry, the largest difference between τz values is
given by 2ρ/c, which is the diameter of the torus tube divided
by the wave propagation speed, i.e., the speed of light c. This
is the case for θl = 0◦ and θl = 180◦. For θl = 90◦, the
incident wave impinges on the different circles at the same
time, so the difference between values of τz becomes zero.
Generally, it is satisfied that τl ≫ 2ρ/c, so we can assume
that τl,z ≈ τl. This effect generates a slight temporal spread
in the time domain estimation, which will be analyzed in the
following sections. Regardless of this fact, note that there is
no negative effect on the estimation since the ToA is not yet
estimated in this step.

For each circle at a height z, Hp,l,z(f) reads as the channel
frequency response acquired at the p-th sample. Since the

spatial samples are uniformly distributed around the position
of Hl,z(f), Hp,l,z(f) is given by

Hp,l,z(f) =
(

dl,z

dp,l,z

)γ/2

Hl,z(f) ej2πf∆dp,l,z/c , (4)

where dl,z = c τl,z , and dp,l,z is the distance traveled by the
wave to reach the p-th spatial sample. Therefore, the term
(dl,z/dp,l,z)

γ/2 is the attenuation factor given the distance
between the torus center at a height z, and the p-th sample for
a path loss exponent γ. The complex exponential term stands
for the phase shift introduced by the additional distance to the
center of the torus, where

∆dp,l,z = dl,z − dp,l,z. (5)

According to the torus geometry, the previous term can be
expanded as

∆dp,l,z =dl,z−
√

d2
l,z + rz

2 − 2dl,zrz sin(θl) cos (ϕl − ϕp,z)

(6)

where ϕp,z is the azimuth angle for the p-th sample located
at a height z, which is evenly spaced in the angular domain
ϕ ∈ [0, 2π). The term rz stands for the radius of the circles
deployed at different heights. From (2), it is defined as

rz = R±
√

ρ2 − z2. (7)

Through the expansion in Taylor series, (6) can be approxi-
mated as

∆dp,l,z ≈ rz sin(θl) cos(ϕl − ϕp,z). (8)

which allows us to simplify (4) to

Hp,l,z(f) =
(

dl,z

dp,l,z

)γ/2

Hl,z(f) ej2πfrz sin(θl) cos(ϕl−ϕp,z)/c ,

(9)

As a starting point, a first approach considers sin(θl) = 1 by
fixing elevation incidence angle θl = 90◦. This approximation
is fundamental since it will later allow the decoupling of the
azimuth angular term ϕl from the frequency term f through
the Jacobi-Anger identity. Note that this approach is feasible
because FIBs that have been developed to be robust over
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multiple elevation angles will be applied in later steps [37],
while the accurate estimation of the elevation angle θl is
performed in Section II-B. Additionally, dl,z/dp,l,z ≈ 1 for
dl,z ≫ ∆dp,l,z , i.e. the wave source is far away from the toric
array (plane wave approximation). Note that this approach is
necessary for the development of the theoretical framework
throughout this section. However, numerical simulations and
experiments performed with circular and elliptical arrays have
shown that the characterization of the propagation channel is
feasible, even in the near-field region, i.e. considering spherical
wave propagation [35], [36]. After these two considerations,
(9) can be simplified to

Hp,l,z(f) = Hl,z(f) ej2πfrz cos(ϕl−ϕp,z)/c . (10)

As observed in (10), phase and frequency components are
linked in the complex exponential term. The Jacobi-Anger
identity, given by [39]

ejυ cos α =
∞∑

n=−∞
jnJn(υ)ejnα , (11)

allows us to decouple phase (ϕl) and frequency (f ) terms,
extending (10) to

Hp,l,z(f) = Hl,z(f)
∞∑

n=−∞
jnJn,z

(
2πfrz

c

)
ejn(ϕl−ϕp,z).

(12)

The former step opens up the possibility of a solution based on
nearly frequency-independent beamformers (FIBs). Note that
Jn,z (·) is the Bessel function of the first kind of order n for
the circular array with radius rz .

The former expression can be projected onto basis func-
tions of the form ejmϕp,z that excite the frequency response
Hp,l,z(f) when ϕp,z = ϕl. This method is known as phase-
mode expansion [31], [38], which provides the phase-mode
domain Ĥm,l,z(f):

Ĥm,l,z(f)

=
1
P

P−1∑
p=0

Hp,l,z(f) ejmϕp,z

= Hl,z(f)
+∞∑

n=−∞
jnJn,z

(
2πfrz

c

)
ejnϕl

P−1∑
p=0

ej(m−n)ϕp,z

P
.

(13)

Although the latter expression may seem impractical from
a computational perspective, note that the rightmost term
(1/P )

∑P−1
p=0 ej(m−n)ϕp,z becomes zero when n ̸= m. Oth-

erwise, when n = m this term is one, leading to:

Ĥm,l,z(f) = Hl,z(f) jmJm,z

(
2πfrz

c

)
ejmϕl . (14)

Thus, this expression contains the phase- and frequency-
decoupled terms, ejmϕl and ej2πfτl,z , the latter implicitly
included in Hl,z(f). Additionally, this excited frequency
response Ĥm,l,z(f) includes the frequency-dependent com-
ponent, which can be eliminated by the optimal choice of

an inverse filter Wm,z(f). Mathematically, the phase-mode
response Hm,l,z(f) can be calculated as

Hm,l,z(f) = Ĥm,l,z(f) Wm,z(f)

= Hl,z(f) jmJm,z

(
2πfrz

c

)
Wm,z(f) ejmϕl

= Hl,z(f) ejmϕl = κl ej2πfτl,z ejmϕl , (15)

with

Wm,z(f) =
2

jm
[
Jm,z

(
2πfrz

c

)
− j J ′m,z

(
2πfrz

c

)] , (16)

where J ′m,z (·) is the first derivative of Jm,z (·). This filter
has demonstrated to be an optimal choice since J ′m,z (·)
avoid deep nulls in Wm,z(f), providing larger bandwidth for
the estimation and performing an accurate estimation of the
azimuth angle ϕl for several angles θl [37].

In order to improve the estimation, the phase-mode aver-
age domain between all the circles at different heights z is
calculated, being the phase-mode expansion

Hm,l(f) =
1
P

zP−1∑
z=z0

Hm,l,z(f) ≈ Hl(f)ejmϕl . (17)

The distribution of the P circles in the XY plane is shown
in Fig. 2. These circles are distributed in the range of heights
zi ∈ [−ρ, ρ]. Previous work has shown that the use of mul-
tiple arrays significantly improves the estimation of DoA and
ToA [32], [35], [36]. Hl(f) stands for the frequency response
at the origin. Additionally, note that weights wi with

∑
i wi =

1 might be included in (17) to prioritize a specific subset
of circles within the toric array in the estimation process.
Although the use of weights is not mandatory in this devel-
opment, as the toric geometry ensures a minimum radius rz ,
these weights might be necessary in other three-dimensional
geometries where one of the circle estimations degrades the
overall characterization.

In multipath environments (l > 1), the phase-mode response
for every wave impinging the toric array is the sum of the
individual contribution from each wave, which leads to

Hm(f) =
∑

l

Hm,l(f) =
∑

l

Hl(f) ejmϕl . (18)

The 2-D Discrete Fourier Transform (DFT) of the former
expression provides the joint azimuth DoA and ToA estimation
as:

H̃(ϕ, τ) =
∑
m

∑
k

Hm(f) e−j
(

mϕ
M +

2π(fmin+kfs)τ

K

)
, (19)

where K stands for the number of frequency samples and
frequency spacing fs = B/K with B being the signal
bandwidth and M is the total number of considered phase
modes. The term fmin is the lowest frequency considered in
the bandwidth and m and k are the indexes that characterize M
phase modes and K frequency samples, respectively. The ToA
τl is extracted through the frequency f obtained in ej2πfτl ,
while ϕl is related to the phase-mode domain in the complex
exponential ejmϕl [see (15)]. Consequently, the time domain
resolution and the maximum observable time are given by



10994 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

1/B and (K−1)/B. Similarly, the angular resolution is given
by 2π/M in the phase domain. The previous expression can
be efficiently calculated through the Fast Fourier Transform
(FFT) algorithm. Note that, as a 2D-DFT based method, the
resolution in the angular and time domains is determined by
B and M . Therefore, it is advised to consider ultra-wideband
channels and a high number of phase modes to maximize the
resolution, and thereby mitigate the off-grid phenomena.

B. Elevation of Arrival (EoA) and Time of Arrival (ToA)

The second step takes advantage of the previous estimation
of the azimuth ϕl to accurately estimate the elevation angle
θl and the time of arrival τl. Basically, the same P 2 spatial
samples previously defined to generate P circles with P
samples in the XY plane can be used to form circles in the
planes defined by the ϕ−Z axes. These P circles, also with P
samples per circle, are those contained in perpendicular cuts
to the tube [see Fig. 1(b)].

Similarly to (3), the frequency response at the center of the
tube, given an angle ϕl, is

Hl,ϕl
(f) = ηl ej2πfτl,ϕl , (20)

where ηl is the complex attenuation, and τl,ϕl
is the delay of

the wave l from the source to the tube center at ϕl. Therefore,
the frequency response at the p-th sample reads

Hp,l,ϕl
(f) =

(
dl,ϕl

dp,l,ϕl

)γ/2

Hl,ϕl
(f) ej2πf∆dp,l,ϕl

/c , (21)

with

∆dp,l,ϕl
= dl,ϕl

−
√

d2
l,ϕl

+ ρ2 − 2dl,ϕl
ρ cos (θl − θp,ϕl

).

(22)

After Taylor’s series expansion (8), we arrive to

Hp,l,ϕl
(f) =

(
dl,ϕl

dp,l,ϕl

)γ/2

Hl,ϕl
(f) ej2πfρ cos(θl−θp,ϕl)/c ,

(23)

Note that, by choosing the ring coincident with the ϕl esti-
mation, we ensure to align the wave incidence plane with the
distribution of the P tube samples. Thus, the sine dependent
variable term that appeared in eqs. (6), (8) and (9), becomes
constant and is removed from eq. (23). Visually, the chosen
circular array laying in the ΦlZ plane is illustrated in Fig. 2.
This fact ensures the correct estimation of θl and τl,ϕl

as the
optimal estimation is provided when the plane of incidence
coincides with the plane where the spatial sampling lies [35].

Therefore, considering a negligible attenuation between the
edge and the center of the tube, Hp,l,ϕl

(f) is given by

Hp,l,ϕl
(f) = Hl,ϕl

(f) ej2πfρ cos(θl−θp,ϕl)/c , (24)

The former expression is similar to the one proposed in (10),
with the difference of: (i) considering a radius ρ; (ii) the cosine
term depends on the elevation θl; and (iii) the considered
center is that of the tube and not that of the torus. Hence,
a development in the form of basis functions ejmθp,ϕl , and

the choice of an optimal Wm,ϕl
(f) filter, similar to that in

(11)-(16), results in

Hm,l,ϕl
(f) = ηl ej2πfτl,ϕl ejmθl . (25)

The summation of the multiple incident waves (18) leads to
Hm,ϕl

(f). Finally, the application of the 2-D FFT to Hm,ϕl
(f)

provides the joint angular-time domain for the DoA elevation
angle θ and the ToA at the center of the tube τϕl

, i.e.,
H̃(θ, τϕl

). According to the torus geometry, the delay at the
center of the tube, τl,ϕl

, is related to the delay at the center
of the torus, τl, as follows:

τl − τl,ϕl
=

R |sin(θl)|
c

. (26)

This last step completely characterizes the DoA and ToA of
the l-th wave by extracting the angles ϕl, θl, and the time τl.

C. Considerations of the Method

Subsections II-A and II-B have presented the theoretical
framework for the 3D characterization of the communication
channel. Although the method has been shown to work cor-
rectly in 2D scenarios with several geometries, due to some
simplifications that are carried out, it is necessary to perform
a correct assignment of the considered parameters. These
approximations involve the appearance of artifacts, i.e. spectral
contributions in H̃(ϕ, τ) and H̃(θ, τϕl

) that may mislead with
the real incident wave. As long as these artifacts are controlled,
the characterization can be properly performed. For this pur-
pose, we define a metric ∆, which indicates the difference
between the power of the incident signal and the largest
artifacts. Therefore, ∆ shows the array response of the toric
geometry when a wave with certain parameters (ϕl, θl, τl)
impinges on the array given the joint angular-time domains
H̃(ϕ, τ) and H̃(θ, τϕl

). If the value of ∆ is greater than
0 dB, the incident signal is distinguishable from the artifacts
[35, Fig. 3]. Thus, large ∆ values maximize the dynamic range
when characterizing the communication channel.

Concerning the number of spatial samples P , it must be cho-
sen in such a way that we ensure compliance with the Nyquist
spatial sampling theorem, i.e., a separation between samples
less than half wavelength. Otherwise, spatial aliasing appears,
which translates into an increase in the level of the artifacts.
Fundamentally, this depends on the radii considered for the
circles in the different planes of the torus. In Section II-A,
the boundary is given by the outer circle when z = 0, where
rz = R + ρ, while in Section II-B, the considered radius is
directly ρ.

Given the maximum value of rz , we can ensure that the
sampling theorem is satisfied on the torus with P equispaced
samples per circle if

2(R + ρ) sin(π/P ) < λ/2. (27)

Regarding the number of phase modes M , it can be demon-
strated that Jn(·) ≈ 0 for a sufficiently large order n [33], [39].
Thus, M must be chosen so that it is lower than the above
threshold. Otherwise, the denominator in (16) would tend to
zero, generating numerical instabilities in the method.
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Logically, the greater the number of filters, the greater the
required computational time. The number of raw Wm,z(f)
filters needed is M × P in the first step. However, by taking
advantage of the reflection (mirror) symmetry of the torus
on the z-axis, the number of filters can be decreased to
M × (P/2 + 1). Also, by taking advantage of the symmetry
of the Bessel functions for positive and negative indexes m
[J−m(x) = (−1)mJm(x)], the total number of filters is
reduced to (M/2+1)× (P/2+1). In the second step, only a
single circle is considered, thus, M/2+1 filters are needed in
this case. In total, (M/2 + 1)× (P/2 + 2) filters are required
for a joint characterization of the AoA, EoA and ToA.

III. VALIDATION OF THE METHOD

This Section discusses and validates several aspects of the
method presented in Section II. Specifically, a parametric
study shows the main implications of the different parameters
involved in the joint characterization of the AoA, EoA and
ToA. According to the torus geometry, several aspect ratios,
i.e., R/ρ, and sizes are considered to show the good per-
formance of the method for diverse cases. Later, the joint
estimation is validated through simulations at several fre-
quency ranges for different scenarios based on both single-path
and multipath scenarios.

A. Parametric Analysis

Regarding the physical geometry of the torus, R, ρ and P
are the main parameters to be considered. As previously stated,
these are directly related to the Nyquist spatial sampling
theorem [see (27)]. In order to analyze the effect of fulfilling
this theorem, it is considered a case with a single-path scenario
impinging the toric array with τl = 15 ns (dl = 4.5 m), and
ϕl = 180◦ for several values of θl. The torus size is given by
R = 0.5 m and ρ = 0.25 m, with a frequency range that goes
from 28 GHz to 32 GHz (B = 4 GHz) and K = 200 frequency
samples. M = 300 phase modes are considered. Given R, ρ,
and fmax = 32 GHz (λmin = 9.37 mm), the Nyquist theorem
is satisfied even for outer circles (rz = 0.75 m) if P > 1006.
For 336 < P < 1006, it is exclusively satisfied for some inner
circles. If P < 336, it is not fulfilled even for the inner circles
(rz = 0.25 m).

For the given parameters, Fig. 3 illustrates the value of
the metric ∆ when the number of samples P is varied.
Note that a higher value of ∆ implies a better DoA and
ToA estimation, as the level of the artifacts is reduced. For
the case θl = 90◦, the quality of the estimation is optimal
due to the approximation performed in (10). However, even
non-coincident waves in the elevation plane (θl ̸= 90◦) provide
good results for ∆.

Concerning the number of spatial samples P , a flat behavior
is observed in Fig. 3 when the Nyquist theorem is fulfilled
(P > 1006). This implies that the estimation will not improve
even if the number of samples is increased. In an intermediate
region (336 < P ≤ 1006), even though sampling is not
performed correctly for the outer circles, a flat behavior is
still observed until the sampling theorem is no longer satisfied
for about half of the circles, i.e., rz = R. This fact contrasts

Fig. 3. Relation between the power of the estimated wave and artifacts
(∆) as a function of the number of spatial samples P for several incident
elevation angles θl. Parameters of the considered scenario: R = 0.5 m,
ρ = 0.25 m, ϕl = 180◦ and τl = 15 ns. Non-compliance with the spatial
sampling theorem increases the artifacts, thus decreasing the value of ∆ in
the estimation.

Fig. 4. Relation between the power of the estimated wave and artifacts (∆)
as a function of the number phase modes M for several elevation angles θl.
Parameters of the considered scenario: R = 0.75 m, ρ = 0.25 m, ϕl = 180◦

and τl = 15 ns.

with estimation on single arrays, where not complying with
the sampling theorem dramatically increases the artifacts [35].
The geometry of the torus, which supports estimation from
concentric circles [see (17)], allows the number of P sensors
to be reduced below the sampling theorem, compensating for
this decrease with the larger number of arrays deployed. When
P is further reduced (P < 336), the value of ∆ begins to
significantly decay. In any case, note that despite the presence
of artifacts, ∆ > 0 dB, which makes the incident wave
distinguishable from the artifacts even for a reduced number
of samples.

In a second study, the influence of the number of phase
modes M in the DoA and ToA estimation is analyzed. All the
parameters remain the same as in the previous experiment,
except from the torus geometry. The parameters of the torus
are: R = 0.75 m, ρ = 0.25 m and P = 1440. Fig. 4
shows the value of ∆ when varying the number of considered
phase modes M . Above a certain threshold, approximately
M > 700 in this case, Jn(·) ≈ 0. This causes numerical
instabilities in the computation of the filter Wm,z(f) [eq.
(16)] as the denominator approaches zero. As a result, the
quality of the estimation significantly degrades. In the range
300 < M < 600, an almost flat region is found, showing that,
regardless of the number M chosen, the estimation performs
correctly. Finally, if M is even more decreased, the estimation
tends to degrade, besides decreasing the angular resolution
(see Sec. II-A). Ideally, one should operate in the nearly
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Fig. 5. Normalized array gain given a toric array with R = 0.5 m,
ρ = 0.25 m, P = 720, K = 200, M = 300 and f ∈ [28, 32] GHz
for azimuth, elevation and time domains. (a) Azimuth (AoA) domain
for ϕl ∈ [0◦, 360◦] with 20◦ steps (θl = 90◦, τl = 25 ns).
(b) Elevation (EoA) domain for θl ∈ [0◦, 180◦] with 10◦ steps
(ϕl = 180◦, τl = 25 ns). (c) Time (ToA) domain for τl ∈ (0 ns, 50 ns)
with 5 ns steps (ϕl = 180◦, θl = 90◦).

flat region where ∆ approaches the maximum. This region
depends exclusively on the 2πfrz/c argument of the Bessel
function, so a prior analysis of the optimal working regions is
essential.

From a single AoA/EoA/ToA domain perspective, the array
gain of the toric geometry can be obtained by averaging
a single dimension of the phase-mode Hm,l(f) [see (17)]
or Hm,l,ϕl

(f) [see (25)], given the pairs {ϕl, τl} or {θl,
τl,ϕl

}, respectively. Fig. 5 shows the normalized array gain
for several ϕl, θl and τl values given the AoA/EoA/ToA
domains. The high directivity, whether in angular or tem-
poral domain, is illustrated across the three domains, which
will enable accurate simultaneous characterization of azimuth,
elevation and time of arrival. Finally, to demonstrate the
potential of the toric geometry, the metric ∆ is compared
with previous two-dimensional geometrical approaches that
make use of frequency-independent beamformers and phase-
mode transformations. For this purpose, we consider the same
incident wave (ϕl and τl) as in the previous experiments, and
the same frequency range, B and K. Fig. 6 shows the value
of ∆, given the azimuth (AoA) – time (ToA) domain, for

Fig. 6. Degradation of the estimation as θl increases for the joint AoA
(ϕl = 180◦) and ToA (τl = 15 ns) values. Four different geometries are
considered: (i) elliptical array, (ii) rotated elliptical array, (iii) circular array,
and (iv) toric array.

different elevation angles θl given four different geometries:
(i) elliptical array, (ii) rotated elliptical array, (iii) circular
array and (iv) toric array. Therefore, Fig. 6 compares the
performance of FIBs combined with phase-mode transforma-
tions for several arrangements. Specifically, the theoretical
framework for elliptical arrangements has been developed in
our previous works [35], [36], while the framework for circular
arrangements is based on [32], [37]. The number of phase
modes is fixed to M = 300. Both elliptical arrays have a
semi-major axis of 0.5 m, an eccentricity of 0.7, and P = 720.
Additionally, the rotated ellipse includes an angle rotation
of 45◦. The single circular array has a radius of 0.5 m,
and P = 720. The toric array parameters are R = 0.5 m,
ρ = 0.25 m and P = 720. It can be appreciated that the
toric array estimation outperforms all other geometries. This
is due to the joint estimation based on the use of the concentric
circular arrays that are discerned in the toroid geometry itself.
Note that this sample distribution will later allow us to perform
the accurate estimation of the elevation angle θl, while in the
other geometries, it is not possible due to the two-dimensional
distribution of the samples. The application of the two-stage
method might imply the presence of propagation errors if θl

is calculated based on an inaccurate characterization of ϕl,
or vice versa when ϕl is initially calculated with an unknown
θl. Nevertheless, Fig. 6 illustrates the robustness of the method
given the characterization for several angles.

In summary, the proposed method is shown to improve
the quality of the estimation by decreasing the level of the
artifacts compared to other geometries, such as single circles
or ellipses, even enabling the estimation with under-sampling
conditions due to the use of several arrays, i.e., several FIBs,
simultaneously.

B. Single-Path Characterization

Once some of the key parameters for the method have been
analyzed, this Section illustrates some examples of the 3D
joint characterization of the AoA (ϕl), EoA (θl), and ToA
(τl). Let us assume a frequency range f ∈ [58, 62] GHz with
B = 4 GHz and K = 200 frequency samples. According
to Section II-A, for R = 0.25 m and ρ = 0.125 m,
P = 720 spatial samples and M = 300 phase modes are
enough to reduce the level of the artifacts and ensure a proper
estimation. Let us assume a wave impinging the toric array
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Fig. 7. Joint azimuth (ϕl = 45◦), elevation (θl = 90◦), and time
(τl = 20 ns) of arrival estimation for a toric array. (a) Azimuth–time
domain. (b) Elevation–time domain. Parameters of the scenario: R = 0.25 m,
ρ = 0.125 m, P = 720, M = 300 and f ∈ [58, 62] GHz.

with τl = 20 ns, ϕl = 45◦, and θl = 90◦. Fig. 7(a)
shows the azimuth–time domain extracted from the phase-
mode transformation. As observed, the value of the metric ∆
is maximum around the correct values of the AoA (ϕl = 45◦)
and ToA (τl = 20 ns). The level of the artifacts is below
−30 dB, so they do not appear in the figure. This effect is
obtained due to the joint estimation of the multiple concentric
circles contained in the torus.

Given the azimuth estimation, the circumference lying on
this angle ϕl is chosen. Fig. 7(b) illustrates the elevation–time
domain. Note that the value of ∆ is maximum at the EoA
(θl = 90◦) and ToA (τl,ϕl

= 19.25 ns). According to eq. (26),
the exact time of arrival should be 19.17 ns, appearing this
difference due to the temporal resolution 1/B. Nonetheless,
this value is within the resolution range of the method, being
a correct τl,ϕl

estimation. In Fig. 7(b), the level of the artifacts
is below −23 dB.

In a second experiment for the single-path scenario, we con-
sider a wave with ϕl = 160◦, θl = 110◦, and τl = 30 ns.
The additional parameters remain identical to the previous
experiment. Figs. 8(a) and 8(b) illustrate the azimuth–time
and elevation–time domains, respectively, for the joint esti-
mation of this incident wave. As observed, the maximum
value of ∆ coincides with the AoA, EoA and ToA positions
in both figures. Artifacts amplitude appears 20.3 dB and
18.4 dB below the correct estimation in Figs. 8(a) and 8(b),
respectively. Note that the temporal dispersion explained in
Section II-A due to an elevation θl ̸= 90◦ is not appreciable
because of the high working frequencies (fc = 60 GHz),
since the physical size of the array decreases notably, being
τl,z ≈ τl. Therefore, the estimation τl performed in the first
step can be considered as reliable taking into account high

Fig. 8. Joint azimuth (ϕl = 160◦), elevation (θl = 110◦), and time
(τl = 20 ns) of arrival estimation with a toric array. (a) Azimuth–time
domain. (b) Elevation–time domain. Parameters of the scenario: R = 0.25 m,
ρ = 0.125 m, P = 720, M = 300 and f ∈ [58, 62] GHz.

frequencies in the mm-wave band with small array sizes where
τl ≫ 2ρ/c. The two previous experiments have shown the
ability to correctly identify waves in the three-dimensional
space and in the mm-wave frequency range.

C. Multipath Characterization

The previous section has validated the performance of the
FIB for the 3D channel characterization in a single-path
scenario. According to (18), for a multipath scenario (l > 1),
the spectral response of the beamformer is directly the sum
of the responses of each incident wave. However, in practice,
the amplitude of the spectral response is actually dependent
on the elevation θl due to the assumption made in (10).
This fact was corroborated in Fig. 6 with differences of up
to 30 dB when going from θl = 90◦ to θl = 130◦. This
implies that, under the assumption of a set of L incident
waves with similar θl, the DoA-ToA domain provides a correct
characterization of the scenario. However, if this set of waves
has θl different from each other, the waves with θl close to 90◦

may fade the rest of the incident waves. Therefore, estimation
in multipath environments with several θl values, i.e., the most
general case, can be performed based on a subtraction strategy
of the previously estimated waves. Given the estimation of
the l-th path, the influence of the previous l − 1 paths
can be removed as

∑L
n=l Hp,l,z(f) =

∑L
n=1 Hp,l,z(f) −∑l−1

n=1 Hp,l,z(f). If the estimation is performed correctly, the
effect of the substracted l−1 waves is removed from H̃(ϕ, τ)
and H̃(θ, τϕl

). In case that the subtraction is not effective due
to the temporal (1/B seconds) and angular (2π/M radians)
resolution values, one can proceed to reconstruct Hp,z(f) as a
discretized set of waves based on a low-complexity search with
expectation-maximization algorithms such as Space Alternat-
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Fig. 9. Joint azimuth, elevation, and time of arrival estimation for a toric array with R = 0.25 m, ρ = 0.125 m, P = 720, M = 300, K = 200 and
f ∈ [58, 62] GHz. A multipath environment with L = 3 waves is considered. AoA: {ϕ1 = 270◦, ϕ2 = 225◦, ϕ3 = 315◦}. EoA: {θ1 = 90◦, θ2 = 60◦,
θ3 = 120◦}. ToA: {τ1 = 30 ns, τ2 = 20 ns, τ3 = 40 ns}. Left, central and right panels show the estimation for the 1st, 2nd and 3rd wave, respectively.

ing Generalized Expectation-maximization (SAGE) [34], [40].
Thus, by employing this approach, the off-grid phenomena can
be mitigated.

To summarize the rationale previously described,
Algorithm 1 presents a pseudocode that illustrates the
main steps to be followed in a general multipath environment.
The method, originally based on DoA and ToA estimation
for circular arrays, has been generalized to toric arrays where
the geometry of the torus has been exploited to define circles
in multiple planes. Through an appropriate choice of the
parameters involved in the method, good performance of the
characterization will be obtained.

In order to validate the multipath characterization, a scenario
with L = 3 waves is simulated. The first, second and third
wave parameters are: first (ϕ1 = 270◦, θ1 = 90◦, τ1 = 30 ns),
second (ϕ2 = 225◦, θ2 = 60◦, τ2 = 20 ns), and third
(ϕ3 = 315◦, θ3 = 120◦, τ3 = 40 ns), respectively. For a
frequency range f ∈ [58, 62] GHz with K = 200 frequency
samples, a toric array with R = 0.25 m, ρ = 0.125 m,
P = 720, M = 300 is chosen. Fig. 9 shows the whole process
for the multipath estimation of the three waves. Each column
illustrates the estimation of the l-th wave. For the first path
(left column), H̃(ϕ, τ) domain is maximum around the pair
{ϕ1, τ1}. Note that the other two waves are not visible in
a dynamic range of 30 dB due to the amplitude difference
introduced by the different values of θl (see Fig. 6). According
to ϕ1 estimation, H̃(θ, τϕ1) is calculated by taking into account
the samples distributed through the ring with ϕ = 270◦. This
domain is maximum for the pair {θ1, τ1,ϕ1}. The appearance
of two vertical lines denotes the presence of two additional
waves. In this first step, the estimation does not converge

Algorithm 1 Joint Characterization of Azimuth, Elevation and
Time of Arrival Based on Toric Arrays. Multipath Case

Input: Channel Frequency Response samples
at the toric array, i.e., Hp,z(f).

Output: Azimuth, Elevation and Time of Arrival
{ϕl, θl, τl}.

1 for l = 1 : L
2 Azimuth of Arrival (AoA)
3 if l > 1
4 Hp,z(f) =

∑L
n=l Hp,l,z(f)

5 end
6 Ĥm,z(f) = 1/P

∑P−1
p=0 Hp,z(f) ejmϕp,z

7 Hm,z(f) = Ĥm,z(f) Wm,z(f)
8 Hm(f) =

∑
z Hm,z(f)

9 H̃(ϕ, τ) = 2-D FFT{Hm(f)}
10 ϕl = arg max

ϕ,τ

(
H̃(ϕ, τ)

)
11 Elevation of Arrival (EoA) and Time of Arrival (ToA)
12 Choose Hp,ϕl

(f) based on the estimated ϕl

13 Ĥm,ϕl
(f) = 1/P

∑P−1
p=0 Hp,ϕl

(f) ejmθp,ϕl

14 Hm,ϕl
(f) = Ĥm,ϕl

(f) Wm,ϕl
(f)

15 H̃(θ, τϕl
) = 2-D FFT{Hm,ϕl

(f)}
16 {θl, τl,ϕl

} = arg max
θ,τϕl

(
H̃(θ, τϕl

)
)

17 τl = R |sin(θl)|/c + τl,ϕl

18 end

correctly for the two additional waves (l = 2, 3) because the
plane of incidence is not close to the ring at ϕ = 270◦.



RAMÍREZ-ARROYO et al.: JOINT ULTRA-WIDEBAND CHARACTERIZATION OF AZIMUTH, ELEVATION, AND ToA 10999

Given the first path estimation, we can proceed to estimate
the second path after subtracting the first path from the signal
Hp,z(f). After the application of the phase mode transforma-
tion, the inverse filter and the 2D-FFT, we arrive at H̃(ϕ, τ).
In this case, the two previously hidden waves are now visible
(central column). Note that a slight time dispersion, previously
stated in Sect. II-A, is observed since θl ̸= 90◦. This dispersion
is not particularly high due to the size of the array, where it
is satisfied that τl ≫ 2ρ/c. Generally, the physical size of
the array, and therefore ρ, decreases for higher frequencies,
which implies a lower dispersion. Nonetheless, the estimation
of τ2 is performed from τ2,ϕ2 , thus avoiding the uncertainty
of the dispersion. Given ϕ2 = 225◦, H̃(θ, τϕ2) points out
the values of θ2 and τ2,ϕ2 . No spectral amplitude is found
around τ = 30 ns since the first wave (l = 1) has been
previously subtracted, while the third wave (l = 3) appears
around τ = 40 ns, although with high artifact amplitude in
the elevation domain. This is because the azimuth estimation
plane in the central panel (ϕ2 = 225◦) is far from the plane
where the third wave is located (ϕ3 = 315◦). Finally, the third
path (right column) is estimated in the same way as in the
two previous cases, thus obtaining the trio of values formed
by (τ3, ϕ3, θ3).

IV. CONCLUSION

This work proposes a method for the joint 3D DoA (azimuth
ϕ, elevation θ) and time of arrival (τ) characterization of
communication channels. The method is based on the use of
frequency-invariant (wideband) beamformer, originally devel-
oped for circular arrays and now extended to toric arrays.
Through a phase-mode expansion of the channel frequency
response in a toric array, this response can be approximated
by a function that only depends on the ToA and the DoA
coincident with the plane where the circle is located. By taking
advantage of the torus definition, a closed surface formed
by the Cartesian product of two circles, several arrays can
be defined in multiple planes. Therefore, under an optimal
distribution of spatial sampling in the torus, it is possible to use
the same sampling to define circular arrays in several planes.
Thus, an optimal choice of the samples generates multiple
beamformers which are able to estimate the triplet {ϕ, θ, τ}.

A parametric analysis of the variables involved has been per-
formed, showing the optimal working range of these variables.
Multiple simulations have been carried out for frequencies in
the mm-wave range (30 GHz and 60 GHz) providing good
results regarding the 3D propagation channel characterization
in both, single-path and multipath scenarios.

Given the trend in the industry to move into the mm-wave
frequency range and the growing number of propagation sce-
narios for cellular communications, the present method arises
as a powerful tool to fully characterize these 3D environments.
In addition, future research includes the selection of samples
from the toric array based on oblique planes passing through
the center of the torus. These planes generate circles, known as
Villarceau circles, which define new circular arrays in relation
to those already shown in this work, and which could improve
the response of the frequency-invariant beamformers.
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