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Uplink Performance Optimization of
Limited-Capacity Radio Stripes

Ioannis Chiotis , Graduate Student Member, IEEE, and Aris L. Moustakas , Senior Member, IEEE

Abstract— Cell-free (CF) massive multiple-input multiple-
output (mMIMO) is a network architecture beyond fifth
generation (B5G), which has the potential to deliver significantly
higher spectral efficiency (SE) and energy conservation, when
compared to the traditional cellular MIMO layout. Radio stripes
form a particular realization of CF mMIMO topologies, which
at a relatively modest deployment cost, promise to distribute
part of the computational load of the centralized processing unit
(CPU), while maintaining the same performance. However, the
limited-capacity fronthaul (FH) network effect has not yet been
adequately studied in this context. In this paper, we develop
an uplink sequential processing algorithm that is optimal in the
sense of locally minimizing the mean-squared error (MSE) at
every antenna processing unit (APU). The performance is further
enhanced by applying an effective Compare-and-Forward (CnF)
strategy or by minimizing the compression error covariance
trace, given the fronthaul capacity constraint. Additionally,
we study the case where the radio stripe arrangement uses a
distributed setup of access points (APs), aiming at minimizing
path attenuation even more effectively. Based on analytical
equations and simulation results, we conclude that throughput is
maximized when the classic radio stripe setup is combined with
the proposed algorithm and the CnF technique.

Index Terms— B5G, user-centric radio stripe, cell-free massive
MIMO, limited-capacity fronthaul, spectral efficiency, optimal
sequential processing, distributed processing.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (mMIMO) is
one of the most promising architectures for high data

rates [3], [4], [5], [6]. Nevertheless, conventional mMIMO can
be impeded by strong signal fluctuations and poor performance
of the users at the cell edges. One innovative idea that tackles
these issues is the so-called Cell-Free (CF) mMIMO [7], [8],
[9] network topology. This refers to a distributed mMIMO

Manuscript received 9 August 2023; revised 17 December 2023 and
16 February 2024; accepted 6 April 2024. Date of publication 29 April
2024; date of current version 12 September 2024. This work was supported
in part by the National Recovery and Resilience Plan “Greece 2.0” funded
by European Union under the NextGenerationEU Program under Project
MIS 5154714. An earlier version of this paper was presented in part at
IEEE MeditCom 2022 [DOI: 10.1109/MeditCom55741.2022.9928628] and
in part at IEEE ISNCC 2023 [DOI: 10.1109/ISNCC58260.2023.10323670].
The associate editor coordinating the review of this article and approving it
for publication was X. Tao. (Corresponding author: Ioannis Chiotis.)

Ioannis Chiotis is with the Department of Physics, National and
Kapodistrian University of Athens, 15784 Athens, Greece (e-mail:
ioachiotis@phys.uoa.gr).

Aris L. Moustakas is with the Department of Physics, National and
Kapodistrian University of Athens, 15784 Athens, Greece, and also with the
Archimedes/Athena Research Unit, 15125 Athens, Greece.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2024.3392178.

Digital Object Identifier 10.1109/TWC.2024.3392178

setup that is capable of implementing coherent service to all
the nearby user equipment (UEs), yet avoiding the creation
of cell boundaries, a key factor that provides additional
macro-diversity, reduces path loss and overcomes inter-cell
interference limitations.

The original CF mMIMO layout consists of a centralized
processing unit (CPU) that is directly connected to multiple
access points (APs), via dedicated fronthaul (FH) connections,
essentially through a star-like topology that can jointly serve
a smaller number of distributed UEs [8], [9], [10]. To achieve
that, all APs act coherently and serve all the UEs of the
network in the same frequency-time frame via time-division
duplex (TDD) operation. Although this architecture, especially
when combined with minimum mean-squared error (MMSE)
processing [9], leads to significantly higher spectral efficiency
(SE) [8] and energy efficiency (EE) [11], [12] when compared
to collocated mMIMO, it is noticeably more costly to realize,
since it demands significant capital expenditures to lay a
dense network of long wires that will connect each individual
AP to the CPU. This factor, coupled with the increased FH
signaling and computational complexity, greatly confines
the scalability of these systems, making their practical
implementation quite challenging.

The need for decentralization and scalability directed
researchers to more distributed signal processing approaches
[9], [13], [14], [15], [16], [17], [18], [19], [20], that can be
applied to CF mMIMO architectures and thus can alleviate
most of the aforementioned issues. Another promising direc-
tion is that of the so-called radio stripes [1], [2], [7], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. A radio stripe
is actually a piece of flexible material (e.g. fibre or copper
wire) [23] that provides sequential connectivity, power supply
and data transfer to many antenna processing units (APUs).
Each APU integrates a small number of antennas (conventional
λ/2 dipoles [23] or more advanced, e.g. uniplanar antennas
that employ spoof surface plasmon polariton [31]), henceforth
referred to as APs, and is responsible for fast processing the
data they collect. This serial interconnection of the APUs
essentially allows for sequential signal processing, a key
feature that can offer the benefits of a classic CF mMIMO,
yet providing low infrastructure cost, reduced FH signaling
and a decentralized architecture.

A. Motivation and Related Work
In most cases, the computational complexity and the

increased FH signaling of the centralized CF mMIMO systems
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escalate rapidly with the number of UEs, thus producing
practical issues (i.e. limited scalability). The initial idea
to mitigate these drawbacks was to equip the APs with
some computational capabilities, in order to perform part
of the overall signal processing [9], [14], [20], [32], [33].
Another well-known concept towards that direction is the
so-called dynamic cooperation clustering (DCC) [34], [35],
which essentially allows each UE to be served only from a
subset of APs, according to a specif criterion. That UE-AP
association problem is the subject of many researches, as it
determines the counterbalancing relation between the network
performance [7], [36] and the required FH signaling, com-
putational complexity [14], [15], [17], [18], [34], [37] and
power consumption [11]. Nevertheless, state-of-the-art studies
have shown that there are methods capable of achieving near-
optimal rates, while sustaining scalability [13], [14], [38] and
low-capacity requirements [13].

However, despite the above mentioned benefits that the
advanced CF mMIMO approaches can offer, the need for
extensive FH link installations still remains. Daisy chain
architectures, i.e. radio stripes [1], [2], [7], [21], [22], [23],
[24], [29], form a versatile and cost-effective alternative for
deploying the CF mMIMO FH network in dense environ-
ments, while thanks to their structure, they also allow for
decentralized processing. The simplest algorithm for use in
radio stripes was observed in [7], where authors demonstrated
a sequential method of performing the maximum ratio (MR)
combining/precoding. Nevertheless, the first uplink algorithm
that truly allowed the serially connected APUs to cooperate,
was the normalized linear MMSE (N-LMMSE) [1], [22].
That scheme enabled every APU to improve each UE’s soft
estimation, by combining information originated from both
its assigned APs and the preceding APU. By applying this
methodology, it was possible to gradually mitigate multi-
user interference, thus making radio stripes more competitive
against conventional setups that use maximum ratio com-
bining (MRC) [22]. Another innovative algorithm was the
regularized zero-forcing (C-RZF) [39], which was capable
of achieving almost optimal results, while keeping latency
and FH signaling at low levels. Ultimately, the optimum
performance of radio stripes was achieved by the optimal
sequential linear processing (OSLP) algorithm [21], which
performed equally to the level 4 (L4) centralized MMSE [9].
Nevertheless, recent studies [28] have shown that by employ-
ing the OSLP, or even suboptimal MR combiners, jointly with
an access point selection (APS) strategy, can actually lead to a
higher network throughput. However, that is done by solving
a compute-intensive bi-objective [28] optimization problem
which requires knowledge over the instantaneous signal-to-
interference-plus-noise ratio (SINR) of each user, a metric
that has to be calculated at the CPU, thus distorting the
sequential procedure. Finally, a near-optimal [as per the bit-
error-rate (BER) metric] sequential uplink algorithm, based
on the Gaussian message detection (GMD) [40] method and
which ensures a constant FH signaling and a low complexity
that scales linearly with the number of UEs, was examined
in [29].

Besides the focus on strategies that only intend to achieve
higher UE rates, radio stripes extend to other research ares as
well. For instance, in [30], authors model an uplink transmis-
sion channel for line-of-sight (LOS) communications, mainly
at the millimeter wave (mmWave) band, whereas in [26],
multiple phase-synchronized radio stripes are used for sensing
reasons, namely to jointly locate and synchronize terminal
devices. Also, their applicability for efficient wireless energy
transfer (WET) purposes is examined in [27].

Despite the progress towards that direction, none of the
above works takes into account the limited capacity that
is inherent in every link between the APUs. Nevertheless,
there are numerous papers that analyze the impact of finite
capacity on both cellular [41], [42] and CF [43], [44], [45],
[46], [47] mMIMO implementations. For instance, in [43],
authors examined the application of a max-min optimization
problem under the presence of uniformly distributed compres-
sion noise [48, Ch. 2]. Later, by employing the Bussgang’s
decomposition, they calculated the optimal step size ∆opt [46]
that maximizes the signal-to-distortion-noise ratio (SDNR).
This solution was then used in [47], for further investigation
towards the throughput and the energy efficiency improvement
of the system under study. However, their approach included
perfect hardware, scalar compressions and equal bit allocations
for each transmission. The impact of finite-capacity on the
SE and EE of a CF mMIMO setup, under the assumption
of hardware impairments, vector quantization and Gaussian
compression noise, was seen in [44].

Finally, the analysis of the effects of the limited-capacity
constraint on a radio stripe system has recently been studied
in a small number of works. In particular, its impact on the
downlink performance of a radio stripe was investigated in [24]
and [49], while, in [1] and [2], the current authors dealt
with the same effects for the uplink scenario. Specifically,
in [1], we introduced the Compare-and-Forward (CnF) strategy
and applied it to the suboptimal N-LMMSE algorithm [22],
whereas in [2], we derived the generalization of the OSLP
algorithm [21], also considering all the finite-capacity links
between the APUs, and compared it with the N-LMMSE, with
and without the application of CnF.

B. Contributions

In this paper we build upon [1] and [2] to analyze the
effects that a finite-capacity FH link has on a radio stripe
network and to propose ways to mitigate its impact. Specif-
ically, we optimize the compression noise covariance matrix,
taking into account the finite-capacity restriction. We also
optimize the performance of the distributed radio stripe setup
of Fig. 1b, and compare it to that of Fig. 1a. Furthermore,
we discuss the complexity of the algorithms and show that the
CnF strategy not only offers higher throughput, but also can
significantly lower the average total latency. In conclusion, the
main contributions of our work can be summarized as follows:
• By considering the existence of a limited-capacity radio

stripe network, we develop an uplink sequential pro-
cessing algorithm that includes the incurred compression
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Fig. 1. Radio stripe models.

noise, appearing at each APU, and which is proved to be
optimal in the sense of minimizing the produced MSE.

• In addition to the standard radio stripe setup, we also
propose and optimize the performance of a novel arrange-
ment (Fig. 1b) that embeds APUs with a distributed
number of APs. This layout not only allows for a larger
number of independent antennas per APU, but also brings
these antennas closer to the UE terminals.

• We introduce a novel CnF strategy (Algorithm 1) which,
by assigning each UE to a specific dynamic cluster of
APUs and thus avoiding unnecessary signal compres-
sions, can ensure a higher throughput and a reduced
service latency to the majority of the users in the network.

• We derive the optimal quantization noise covariance
matrix (Algorithm 2), which subject to the fronthaul
link capacity constraints minimizes its trace, thus further
suppressing the MSE locally at each APU.

• We discuss about the complexity and latency issues of
the above algorithms and derive achievable SE expres-
sions for each individual case. Finally, using this metric,
we numerically evaluate the performance of every ana-
lyzed algorithm and radio stripe setup.

C. Paper Outline
In Section II, we briefly present the system model for

the uplink case of a classic CF mMIMO, including both
pilot and payload signal transmissions. We also derive some
basic distortion-rate expressions that will be used later on.
Section III includes the derivation of the optimal sequential
processing algorithm (OSPA) as well as closed-form expres-
sions for the uplink per-user SINR. In Section IV, we further
augment our algorithm by proposing a CnF strategy that
enables dynamic cooperation clustering, thus leading to a user-
centric system. An alternative quantization error suppression
scheme is investigated in Section V, while in Section VI we
discuss about the complexity and latency issues of the derived
algorithms and present the numerical results. Ultimately, the
paper is concluded in Section VII.

D. Notations
The superscripts (.)∗, (.)†, (.)T and (.)−1 stand for

the conjugate, conjugate transpose, transpose and inverse,

respectively. Notations E{.}, tr(.), |.|, ∥.∥ and ≜ denote the
expected value, the trace of a matrix, the absolute value of a
scalar, the l2 norm of a vector and definitions, respectively.
Boldface lowercase letters (e.g. v) denote column vectors,
boldface uppercase letters (e.g. B) denote matrices and IL

denotes the L×L identity matrix. Circularly-symmetric vari-
ables that follow complex normal distribution with covariance
matrix R and zero mean are represented as CN (0,R),
while block-diagonal matrices as diag(B1,B2, . . . ,BK), with
B1,B2, . . . ,BK being square matrices placed on the diagonal
block. Also, the set {1, 2, . . . ,M} is denoted as [M]. Finally,
we use standard notations for differential entropy, mutual
information and complexity.

II. RADIO STRIPE NETWORK MODEL

We envision a general radio stripe architecture, comprising
of M APUs (the M th is the CPU), each one connected with
L single-antenna APs (either distributed along the stripe using
part of the total capacity [1] or collocated on every APU [21],
[22]). In the setup we consider K single-antenna UEs, where
the channel between them and the L APs of each APU m,
where m ∈ [M ], is given by Gm = [gm1,gm2, . . . ,gmK ] ∈
CL×K . Elements gmk ∈ CL are constant over a coherence
interval τc and are drawn from an uncorrelated Rayleigh fading
distribution as

gmk ∼ CN (0,Rmk) (1)

where Rmk ∈ CL×L is the diagonal covariance matrix with
diagonal entries βmkl, for l = 1, 2, . . . , L, which is assumed
to be known at the APUs. The average large-scale fading
coefficient that describes the path loss and shadowing is
denoted by βmk ≜ tr(Rmk)/L.

Henceforward the total communication bandwidth will be
denoted as B and the coherence bandwidth of the channel as
Bc. Thus there are B/Bc independent channel elements in
frequency space. Similarly, the temporal coherence time, e.g.
due to mobility, over which the channel can be assumed to be
constant, will be designated as Tc. Hence, there are τc = BcTc

symbols that can be transmitted over frequency-time space.
From these, τp ≤ τc are allocated to channel training, while
the rest τd = τc − τp to payload data.

A. Fronthaul Compression and Transmission

As seen in Fig. 1, the architectures under study include
communications between APs and APUs, as well as among
successive APUs via wired (non-wireless) FH links. These
links may be through copper, such DSL-based systems,
or optical-based systems. More specifically, in Fig. 1a,
FH interconnections are more simple, as APs are collocated
on each APU and thus pilot and payload signals do not need
compression. Hence, all the available capacity of the radio
stripe is dedicated for the transmission signals, in the form of
quantized IQ samples, only among APUs. However, in Fig. 1b
where APs are also distributed, we need to take into account
the finite-capacity constraint between them and the APUs as
well. In any case, the finite rate of these links necessitates
the quantization to be at a level which can be transmitted via
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the FH link without error. This effectively adds a quantization
noise to the samples, which can then be associated with the
FH link requirements using information theoretic expressions.

Let x ∈ CL be a random vector with zero mean and
variance E{xx†} = P. Provided that the length L of sequence
x is quite large, we will compress that sequence using the
following test channel

x̄ = x + w (2)

where w ∈ CN (0,Σ) represents the quantization noise that
is assumed to be independent of the signal x [42], [44], [50].
Then, given the available rate R of the test channel in (2),
we can relate it with the quantization error covariance matrix
Σ as [50, Ch. 9]

R = I(x; x̄)
= h(x̄)− h(x + w|x)
(a)
= h(x̄)− h(w)
(b)

≤ log2 det
(
PΣ−1 + IL

)
(3)

where (a) derives from the independence between x and w
and (b) from the maximum differential entropy lemma [51,
Ch. 2]. Finally, notice that the application of the upper bound
in (3) overestimates the required FH rate R needed in order
to transfer the compressed signal over the link. Thus, given a
specific link rate, a stronger compression noise is considered.

Consequently, if we assume that the total capacity of each
FH link that interconnects neighboring APUs is C, we can
divide it into two rates. The first rate, denoted by Cap = rC,
is associated with communications between the APs and their
APU, while the second rate, denoted by Capu = (1 − r)C,
regards communications between the APUs, where ratio1 0 ≤
r < 1 will eventually be optimized. For simplicity, we will
assume that each AP uses equal rate Cap/L for both pilot and
payload signal transferring to its assigned APU. Thus, Cap can
be further split into Cp

ap and Cd
ap, so that Cap = Cp

ap + Cd
ap,

which represent the allocated rates for the transmission of pilot
and payload signals from the APs to the APUs, respectively.
Finally, to be more fair, these rates are set to be proportional
of the interval they serve as Cp

ap = τp

τc
Cap and Cd

ap = τd

τc
Cap.

B. Uplink Training Period

Let τp be the duration (in samples) of the uplink training
period, where τp ≤ τc. During that phase, all K UEs
simultaneously transmit τp-length mutually orthogonal pilot
sequences towards the APs. The pilot sequence of each UE k,
where k ∈ [K], is designated as ϕk ∈ Cτp , with ∥ϕk∥

2 = τp.
Also, for simplicity reasons, we do not include the effects
of pilot contamination (K > τp), although, in that case,
the derived equations in the current analysis would remain
the same. Nonetheless, pilot contamination would decrease the
achievable performance of each UE due to the increase
of the channel estimation errors and the FH signaling between

1That ratio equals zero only in case where APs are collocated on their
respective APUs. In every other scenario, r varies between values zero and
one.

the APUs (stronger compression noise). For concreteness,
we only consider the case where K = τp.

The signal vector yp,mτ ∈ CL received at random channel
use τ , where τ is within τp, by the L APs of every APU m
can be written as follows

yp,mτ = Gmψ
T
τ + nm (4)

where ψτ = [
√

ρ1ϕτ1,
√

ρ2ϕτ2, . . . ,
√

ρKϕτK ] ∈ C1×K is
the pilot vector that contains the τ th entry of all pilot signals
ϕ1,ϕ2, . . . ,ϕK and nm the receiver noise vector with inde-
pendent and identically distributed (i.i.d.) CN (0, σ2

n) entries.
Then, all the L APs of each APU m compress their received
signal according to (2). The instantaneous quantized signal
ȳp,mτ that finally reaches the mth APU is

ȳp,mτ = Gmψ
T
τ + nm + wp

m (5)

with wp
m ∈ CL ∼ CN (0,Σp

m) being the quantization error
vector due to the imperfect pilot compression. Therefore,
according to (3) and given that the available FH rate for the
transmission of the instantaneous yp,mτ from the L APs (of
each APU m) to the APU m is Cp

ap/τp, the covariance matrix
Σp

m is calculated as
Cp

ap

τp
=

1
τc

log2 det
(
E{yp,mτy

†
p,mτ ′}Σp−1

m + IL

)
=

L

τc
log2

(∑K
i=1 ρiβmi + σ2

n

pm
+ 1

)
(6)

where Σp
m = pmIL and the expectation in (6) has been

calculated over many coherence intervals τc. Hence, each entry
of Σp

m can be expressed as

pm =
∑K

i=1 ρiβmi + σ2
n

2
Cap

L − 1
(7)

At the end of the uplink training period, the total quantized
pilot matrix Ȳp,m received by each APU m is represented as

Ȳp,m = GmΦT + Nm + Wp
m (8)

where Φ = [ψ†1,ψ
†
2, . . . ,ψ

†
τp

]† ∈ Cτp×K is the total pilot
matrix. Also, Nm ∈ CL×τp expresses the additive white Gaus-
sian noise matrix and Wp

m ∈ CL×τp the pilot quantization
error matrix at the mth APU, both assumed to contain i.i.d.
complex Gaussian elements with zero mean and variance σ2

n

and pm, respectively. Using (8), the MMSE channel estimate
ĝmk ∈ CL is given as [5, Sec. 3]

ĝmk =
√

ρkτpRmkΨ−1
mky̌p,mk (9)

where y̌p,mk and Ψmk are given from

y̌p,mk = Ȳp,m
ϕ∗k√
τp

=
√

ρkτpgmk+Nm
ϕ∗k√
τp

+Wp
m

ϕ∗k√
τp

(10)

Ψmk = E{y̌p,mky̌
†
p,mk}=ρkτpRmk+(σ2

n+pm)IL (11)

The error that results from the imperfect channel esti-
mation is denoted as g̃mk = gmk − ĝmk and it is
independent from the channel estimation ĝmk, with ĝmk ∼
CN (0, ρkτpRmkΨ−1

mkRmk) and g̃mk ∼ CN (0, R̃mk).
The covariance matrix R̃mk is defined as

R̃mk =E{g̃mkg̃
†
mk}=Rmk−ρkτpRmkΨ−1

mkRmk (12)
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C. Uplink Payload Period

During the uplink payload period, all K users simultane-
ously transmit their data towards the APs for a duration of
τd = τc − τp samples. For each channel use τ within τd, the
instantaneous compressed signal ȳm received by the mth APU
is

ȳm = Gmq + nm + wd
m (13)

where q = [q1, q2, . . . , qK ]T ∈ CK ∼ CN (0,Q) is
the transmitted message vector, with the covariance Q =
diag(ρ1, ρ2, . . . , ρK) being the transmitted power matrix of
all UEs. Also, wd

m is the quantization error vector due to
the imperfect compression of ym, assumed to contain i.i.d.
CN (0, dm) entries. In a similar way to (6), (7), it derives that
dm is equal to pm.

Furthermore, considering that Gm = Ĝm + G̃m, with
Ĝm = [ĝm1, ĝm2, . . . , ĝmK ] being the channel estimation
matrix and G̃m = [g̃m1, g̃m2, . . . , g̃mK ] the channel error
matrix, (13) can be rewritten as

ȳm = Ĝmq + ξm (14)

where the total noise vector ξm = G̃mq + nm + wd
m is

distributed as CN (0,Ωm), with Ωm to be given as

Ωm =
K∑

i=1

ρiR̃mi + (σ2
n + dm)IL (15)

III. SEQUENTIAL PROCESSING ANALYSIS

As discussed in the previous section, radio stripe geometries
of Fig. 1 require that the estimated signal vector, at a given
APU, is transmitted via a finite-capacity link to the next APU
in the line. This next APU may then combine the received
vector with the payload signals which has collected from the
L APs associated with it. The final outcome may then be
transmitted further, via the next finite-capacity link, to the next
APU. That process keeps on until the signal estimation vector
finally reaches the CPU. Thus, we can see that at each step,
the estimated signal vector gets degraded due to the addition
of quantization noise from the finite-capacity links, yet at the
same time, it also gets improved due to the addition of new
information.

In the present section we propose an optimal uplink process-
ing algorithm, which combines, at each APU m, the noisy soft
estimation vector from APU m−1 with the payload signal that
has obtained from its L APs. The algorithm is a generalization
of [21], taking also into account all the finite-capacity links
and it is optimal in the sense of minimizing the MSE at each
APU. However, and in contrast to [21], our case involves the
addition of the compression noise right after the combining
process, thus leading to an inferior performance than this of
a centralized processing system with infinite-capacity links
(equivalent to the OSLP algorithm in [21]). Hence, perfor-
mance enhancement is not guaranteed for every user at each
step of the proposed algorithm, an affect that we manage to
counterbalance with the introduction of two novel strategies
in Sections IV and V.

To describe the algorithm, we must first define a number
of quantities. Assume that ŝm ∈ CK is the signal soft
estimation vector at the mth APU, where m ∈ [M ], prior
to its compression.2 After its compression and transmission
via the mth finite-capacity link, it is denoted with s̄m ∈ CK .
These two vectors are associated, according to (2), as follows

s̄m = ŝm + wm (16)

where wm ∈ CK is the quantization noise vector that
is inserted to ŝm due to the imperfect compression. Then,
considering a separate quantizer for each entry ŝm,k of ŝm

[41], [42], [44], the variance of each element wm,k ∼
CN (0, E{|wm,k|2}) within the vector wm can be calculated,
based on (3), as

E{|wm,k|2} = ϵE{|ŝm,k|2}, ∀k ∈ [K] (17)

where ϵ = (2
Capuτc

N − 1)−1 and N is the total number of
complex scalars exchanged between the APUs.3

Remark 1: Since we have assumed that each element within
ŝm is compressed via a different quantizer, one can elicit
that quantization noises are independent with each other,
a condition that serves two purposes. The first purpose is the
simplicity of the calculations, while the second is that this
design enables us to apply the CnF strategy without altering
the compression error variances E{|wm,k|2} (see Sections IV
and V). However, from an information theoretic point of view,
we know that since the correlation between the elements of
ŝm is neglected, this design leads to suboptimal results. Even
so, optimality could still be achieved by applying the reverse
water-filling method, for a high-resolution regime [50, Ch. 10].

Then, at each APU m, we can express s̄m as a linear
combination of all the received signals ȳm′ and all the
quantization error vectors wm′ , which have been inserted at
each finite-capacity link m′, where m′ ≤ m. Thus, s̄m can be
written as follows

s̄m = B
0

mῡm + Γ
0

mωm (18)

where ωm = [w†
1,w

†
2, . . . ,w

†
m]† ∈ CmK and ῡm =

[ȳ†1, ȳ
†
2, . . . , ȳ

†
m]† ∈ CmL, which can also be written as

ῡm = Ĥmq + ζm (19)

where Ĥm = [Ĝ†
1, Ĝ

†
2, . . . , Ĝ

†
m]† ∈ CmL×K and ζm =

[ξ†1, ξ
†
2, . . . , ξ

†
m]† ∈ CmL. In addition, matrices B

0

m ∈

CK×mL and Γ
0

m ∈ CK×mK contain all the linear coefficients
that multiply the received signals and the quantization noise
vectors, respectively. Both of these matrices will be set itera-
tively below.

At APU 1, B
0

1 corresponds to the familiar MMSE matrix,
while taking also into account the effect of the forthcoming
compression. Thus, this matrix is given by

B
0

1 = γϵQĜ†
1

(
Ĝ1QĜ†

1 + Ω1

)−1

(20)

2In case where m = M , no further compression is needed.
3For simplicity purposes, in the present work, we assume that side infor-

mation, which accompanies each soft estimation ŝm, is transferred between
APUs without distortion. However, we take into account the impact that side
information has on each compression error variance via the number N of the
total complex scalars transmitted, as seen in (17).
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where γϵ = (1 + ϵ)−1. Also, Γ
0

1 = IK , since the quantization
noise is added after the combining process at APU 1.

Based on the above, at APU m, the incoming estimate s̄m−1

is combined linearly with ȳm, producing ŝm as

ŝm = A0
ms̄m−1 + B0

mȳm (21)

Consequently, upon the transmission of the above estimation
via the mth finite-capacity link to the APU m+1, an additional
quantization error vector wm will be attached to it forming s̄m,
as seen in (16). By observing (16), (18) and (21), it derives
that

B
0

m =
[
A0

mB
0

m−1,B
0
m

]
(22)

Γ
0

m =
[
A0

mΓ
0

m−1, IK

]
(23)

with A0
m ∈ CK×K , B0

m ∈ CK×L being the combining
matrices of each APU m. Then, optimality is achieved when

B0
m = γϵ (Q−Λm−1) Ĝ†

mJ−1
m (24)

A0
m = γϵ

(
IK −B0

mĜmγ−1
ϵ

)
QĤ†

m−1B
0†
m−1F

0−1
m−1 (25)

where the factor γϵ stems from optimizing s̄m rather than ŝm.
Also, matrices F0

m, Jm and Λm are defined as

F0
m = B

0

m

(
ĤmQĤ†

m +Km

)
B

0†
m + Γ

0

mSmΓ
0†
m (26)

Jm = Ĝm(Q−Λm−1)Ĝ†
m + Ωm (27)

Λm = QĤ†
mB

0†
mF0−1

m B
0

mĤmQ (28)

with Km = diag(Ω1,Ω2, . . . ,Ωm) and Sm =
diag(Σ1,Σ2, . . . ,Σm). Also, notice that Σm represents
the covariance matrix of each wm and is determined as
diag(E{|wm,1|2}, E{|wm,2|2}, . . . , E{|wm,K |2}). Finally,
by observing (16), (18), (22), (23) and (26) it derives that
F0

m = Sm + Σm, where Sm = E{ŝmŝ†m}.
Proof: The proof that matrices B0

m and A0
m are the

MMSE solution of (18) is given in Appendix A.
In order for APU m to evaluate B0

m and A0
m, apart

from the local matrices Ĝm, Ωm and Σm, it also requires
previously created information. This information is acquired
from the APU m − 1 through the K × K Hermitian matri-
ces B

0

m−1Ĥm−1Q and F0
m−1 and amounts to K2 complex

scalars. Thus, in each coherence interval τc, the overall infor-
mation transmitted between two successive APUs, including
the soft estimation vector ŝm, totals to N = Kτc complex
scalars. Furthermore, these matrices can also be used to
evaluate the SINR0

m,k, for all m ∈ [M ] and k ∈ [K], based
on the channels and noises up to APU m as

SINR0
m,k =

∣∣∣∣[B0

mĤmQ
]

k,k

∣∣∣∣2
ρk [F0

m]k,k −
∣∣∣∣[B0

mĤmQ
]

k,k

∣∣∣∣2
(29)

Notice that SINR0
m,k refers to the SINR of s̄m,k, considering

also the mth quantization error. However, the final SINR0
M,k

of each UE k at the CPU (m = M) expresses the quality of

ŝM,k and thus it is calculated as

SINR0
M,k =

∣∣∣∣[B0

MĤMQ
]

k,k

∣∣∣∣2
ρk [SM ]k,k −

∣∣∣∣[B0

MĤMQ
]

k,k

∣∣∣∣2
(30)

Proof: The proof that B
0

m−1Ĥm−1Q and F0
m−1 are Her-

mitian matrices is given in Appendix B, while in Appendix A
we show how they can be evaluated at each APU.

IV. THE CNF STRATEGY

In the previous section, we proposed an uplink sequen-
tial processing algorithm that can be applied to radio stripe
architectures and can optimally combine, at each APU m,
the collected payload signal (compressed or not) with the
compressed soft estimation vector s̄m−1 that APU m has
received from APU m−1. This processing method, in contrast
with related works that regard conventional CF mMIMO
layouts with imperfect FH [43], [44], [45], [46], [47], requires
multiple compressions until all the signals reach the CPU.
A key consequence of this successive signal acquisition and
quantization procedure is that for some UEs k ∈ Pm, where
Pm ⊆ {1, 2, . . . ,K}, the addition of new information to the
scalar estimate s̄m−1,k may not be able to counterbalance
the quantization noise wm,k that will be added due to its
compression, leading to

SINR0
m,k < SINR0

m−1,k, ∀k ∈ Pm (31)

In this case, it is advantageous, for each APU m, not to
evaluate the renewed signal estimate ŝm,k for these specific
UEs k ∈ Pm, but instead to relay their incoming ones s̄m−1,k

without adding new information or compression noise. It is
important to point out that this comparison only has meaning
in limited-capacity-link schemes, since when no quantization
noise is present, it is always advantageous to add new infor-
mation at each APU.

Remark 2: In practice, avoidance of the transmission chain
has the advantage that no further compression noise will be
attached to the already amplified signal, an idea that was first
suggested in [1] for the N-LMMSE algorithm. In particular,
by matching each UE k to a specific dynamic cooperation
cluster Dk of APUs, based on the APS scheme of (31), led
to the formation of the user-centric network in Fig. 2. This
action, as will be shown later on, not only will ensure a higher
throughput to most users, but also will greatly reduce the total
latency of the system.

Next, we will analyze how this methodology can be applied
to the OSPA algorithm. Since every APU m has access to both{
B

0

m−1Ĥm−1Q,F0
m−1

}
and

{
B

0

mĤmQ,F0
m

}
information,

it can thus evaluate both SINR0
m−1,k and SINR0

m,k, for every
k ∈ [K], which correspond to signal estimates s̄m−1,k and
s̄m,k, respectively. Then, for each UE k individually, it can
transmit to APU m + 1 the soft estimation that leads to
the higher SINR value, meaning that it can either form and
transmit ŝm,k or relay s̄m−1,k, along with their respective
side information. This action will not only benefit UE k, but
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Fig. 2. Example of how different subsets Dk ⊆ {1, 2, . . . , M} of APUs
serve their assigned UEs k, where k = 1, 4, 9, 18, when the CnF strategy is
applied.

also all the other users, as each soft estimation is a linear
combination of all the other UEs’ combined signals. To make
that comparison, we define a diagonal matrix Θm as follows

Θm = diag
[
1
{

SINR0
m,k − SINR0

m−1,k

}]
(32)

where 1
{

x
}

is zero when x < 0 and one otherwise. Consid-
ering the above matrix, (18) can be rewritten as

s̄m = (IK −Θm + ΘmA0
m)s̄m−1 + ΘmB0

mȳm + Θmwm

(33)

This means we may now redefine iterative operators B
0

m and
Γ

0

m in the following way

Bm =
[
AmBm−1,Bm

]
(34)

Γm =
[
AmΓm−1,Θm

]
(35)

where matrices A0
m and B0

m are now given as

Am = IK −Θm + ΘmA0
m (36)

Bm = ΘmB0
m (37)

Additionally, as seen in Appendix A, the construction of
matrices F0

m and B
0

mĤmQ also involves the matrices B0
m,

A0
m and Σm. Hence, according to (34) and (35), side infor-

mation matrices will also have to be recalculated using this
time the redefined matrices Bm, Am and ΘmΣm. These new
matrices, now denoted as BmĤmQ and Fm, are the ones that
APU m+1 will eventually receive, from APU m, and use for
its local computations. Finally, since APU 1 and CPU always
serve all UEs, Θ1 and ΘM are always identity matrices.

Following the above manipulations, the SINR0
m,k in (29) is

replaced by4

SINRm,k =

∣∣∣∣[BmĤmQ
]

k,k

∣∣∣∣2
ρk [Fm]k,k −

∣∣∣∣[BmĤmQ
]

k,k

∣∣∣∣2
(38)

The above procedure may be iterated all the way to the CPU
where the decoding of the signal takes place. By treating
all noise sources as being zero-mean complex Gaussian and
independent of every message signal qk [42], we can evaluate

4Notice that the SINRm,k of (38) is the actual SINR value that APU m+
1 will compare to SINR0

m+1,k , for all UE k ∈ [K], in order to derive Θm+1.

Algorithm 1 The Application of CnF to OSPA

1) Begin: set ŝ0 = 0, B
0

0Ĥ0Q = 0, F0
0 = IK

2) for m = 1 : M do
a) Compute Λm−1, Jm, B0

m, A0
m, B

0

mĤmQ,{
ŝm|B0

m,A0
m

}
, F0

m

b) if m = 1 then transmit ŝ1, B
0

1Ĥ1Q, F0
1

elseif 1 < m < M then
i) Compute SINRm−1,k and SINR0

m,k for every
k ∈ [K]

ii) Compute Θm using the results of step (i)
iii) Using Θm, compute Bm, Am, Fm, BmĤmQ,

{ŝm|Bm,Am}
iv) Transmit {ŝm|Bm,Am}, BmĤmQ, Fm

end if
end for

3) Output: ŝM , B
0

MĤMQ and SM

the achievable per-user SEk (lower bound of the ergodic
channel capacity of UE k) as [5]

SEk =
τd

τc
E {log2(1 + SINRM,k)} (39)

where the expectation is over the channel estimations and the
decision, at each APU m, to either transmit ŝm,k or relay
s̄m−1,k. Also, since every UE is always served from the
M th APU, the SINRM,k is calculated exactly as in (30). The
above strategy is summarized in the form of a pseudocode in
Algorithm 1.

V. THE ERROR MINIMIZATION STRATEGY

In Section III, we assumed that the compression of each soft
estimation element ŝm,k, for k = 1, 2, . . . ,K, was performed
independently, thus neglecting the correlation between them.
This allowed us to use a simple expression for the quantization
error covariance matrix Σm, which in turn was used in the
derivation of the optimal combining matrices B0

m and A0
m,

as seen in Appendix A. Moreover, after applying the CnF
strategy, the final covariance matrix of the soft estimation ŝm

that APU m would ultimately transmit to APU m + 1 could
differ from the one that was used to derive Σm. Nevertheless,
due to the simplified structure of the aforementioned quantizer,
that change did not affect the diagonal elements of Σm and
thus we did not have to calculate them over again after the
application of CnF.

Since the MSEm expression for the mth APU in (50)
depends on Σm through the tr (Σm) and on the
previous APUs’ error covariance matrices through the
tr(A0

mΓ
0

m−1Sm−1Γ
0†
m−1A

0†
m), it is possible to further reduce

it as well as to reduce every upcoming MSEm′ , where
m′ > m, by minimizing the term tr (Σm), subject of course
to the limited-capacity constraint of the corresponding mth
link. The procedure for this minimization appears in the next
Proposition.

Proposition 1: Let rm1 ≥ rm2 ≥ · · · ≥ rmK be the
eigenvalues and Um the unitary matrix with the corresponding
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eigenvectors of Sm, where Sm can also be expressed as
Sm = Umdiag(rm1, rm2, . . . , rmK)U†

m. Then, it can be
shown that the minimum tr (Σm), under the constraint R =
1
τc

log2 det(SmΣ−1
m +IK), is achieved when the matrices Σm

and Sm are simultaneously diagonalizable in the common
eigenvector basis (i.e. Σm = Um∆mU†

m). In this case,
the minimum tr (Σm) reduces to

∑K
k=1 xmk, where xm1 ≥

xm2 ≥ · · · ≥ xmK are the diagonal elements of ∆m that are
computed as

xmk =
−rmk +

√
r2
mk + 4rmkλ

2
, ∀k ∈ [K] (40)

with the coefficient λ to be obtained as

R =
1
τc

K∑
i=1

log2

1 +
2√

1 + 4λ
rmi

− 1

 (41)

Proof: As tr(Σm) has K degrees of freedom, the mini-
mization of that function leads to various covariance matrices
Σm. To distinguish the appropriate solution for our case,
we will exploit the limited-capacity restriction that each link
between two successive APUs is subjected to. Namely, the
minimum rateR needed for the transmission of each vector ŝm

from APU m to APU m+1 is associated with any compression
variance Σm as

R =
1
τc

log2 det
(
SmΣ−1

m + IK

)
=

1
τc

log2 det
(
Σ−1

m + S−1
m

)
+

1
τc

log2 det (Sm) (42)

The above expression acts as a constraint for the aforemen-
tioned degrees of freedom, allowing us to conclude to a
unique solution. Using the method of Lagrange multipliers,
that problem can be formulated as follows

min
{xm1,xm2,...,xmK ,λ}

L(xmk, λ)

=
K∑

j=1

xmj + λ
[
ln det

(
SmΣ−1

m + IK

)
− τcRln2

]
(43)

where λ ≥ 0 is the Lagrange multiplier for the explicit
constraint of (42). Moreover, since Σm and Sm are positive
semi-definite matrices, it is obvious that xmk + rmk ≥ 0, for
every k ∈ [K]. Hence, term ln det(SmΣ−1

m + Ik) is lower
bounded [52] as

K∑
i=1

ln
(

rmi

xmi
+ 1
)
≤ ln det(SmΣ−1

m + IK) (44)

Comparing (43) and (44), it derives that the minimum
L(xmk, λ) is achieved in case where Σm and Sm are simul-
taneously diagonalizable. In that occasion, the minimization
problem of (43) reduces to

min
{xm1,xm2,...,xmK ,λ}

L(xmk, λ)

=
K∑

j=1

xmj + λ

[
K∑

i=1

ln
(

rmi

xmi
+ 1
)
− τcRln2

]
(45)

To further minimize the Lagrangian function, we will find
the stationary points of (45) by differentiation. That is done

Algorithm 2 Compression Error Covariance Trace Minimiza-
tion

1) Begin: set ŝ0 = 0, B
0

0Ĥ0Q = 0, F0
0 = IK , γϵ = 1

2) for m = 1 : M do
a) Compute Λm−1, Jm, B0

m, A0
m, B

0

mĤmQ,{
ŝm|B0

m,A0
m

}
and Sm

b) Using Sm, compute the optimal Σm

c) Compute F0
m = Sm + Σm

d) if m < M then transmit ŝm, B
0

mĤmQ, F0
m

end for
3) Output: ŝM , B

0

MĤMQ and SM

by setting all partial derivatives equal to zero, leading to the
following K + 1 equation system

x2
mk + rmkxmk − rmkλ = 0, ∀k ∈ [K]
K∑

i=1

log2

(
rmi

xmi
+ 1
)
− τcR = 0

(46)

By solving the above equation system for every non-negative
eigenvalue xmk, where k ∈ [K], yields (40) and (41).

Notice that since R is the transmission rate of the K
complex symbols that represent each ŝm, the total capacity
(in bits/s/Hz) that is allocated for the transmission of all these
soft estimations along with their respective side information,
in each coherence interval τc, is calculated as Capu =
RNK−1. The aforementioned minimization technique is sum-
marized in the form of a pseudocode in Algorithm 2.

Remark 3: It is worth pausing for a moment and comparing
the optimization procedures discussed so far. Starting from
Section III, we minimized the total MSEm in (50) with
respect to the matrices A0

m and B0
m, including the total

square error due to compression, i.e. tr (Σm), which also
depends on these matrices. Next, in Section IV, the resulting
SINRs for each user at the mth APU are compared to the
respective SINRs achieved at APU m − 1, while afterwards
the data corresponding to the highest per-user SINR is sent
to the next APU. In the present section, to minimize the
total MSE E

{
∥s̄m − q∥2

}
appearing in (50), we proceed

in two steps. First, we minimize the MSE E
{
∥ŝm − q∥2

}
with respect to A0

m and B0
m, which essentially is the MSEm

in (50) in the absence of the quantization noise term tr (Σm).
Then, we minimize that noise term over all users jointly,
subject to the capacity constraint of the link between APUs
m and m + 1, i.e. R = 1

τc
log2 det(SmΣ−1

m + IK), where
Sm is the covariance matrix of ŝm. However, in this case,
we do not apply the CnF strategy, since the optimization
over the Σm depends on the statistics of all UEs’ signals.
Nevertheless, we shall see that this method performs better
than no optimization at all.

VI. PERFORMANCE ANALYSIS

A. Complexity and Latency Issues

In this subsection, we discuss the complexity of the applied
algorithms and their service latency. Both of these aspects
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will be analyzed within the duration of a single coherence
interval τc.

Starting with the main algorithm of Section III, its complex-
ity can be analyzed as follows. At first, the F0

m−1 ∈ CK×K

matrix is inverted and then the Λm−1 ∈ CK×K matrix is
formed, with O(K3) complexity. This is also the complexity
for the formulation of the matrices A0

m and B0
m, as K ≫ L.

Subsequently, notice that for each temporal instance, the final
K-dimensional data vector estimate ŝm, at the mth APU, is the
result of multiplication of the fixed matrices A0

m and B0
m on

the vectors s̄m−1 and ȳm respectively, as seen in (21). Hence,
since K ≫ L, the complexity of these operations for the entire
payload period τd is O(K2τd), a result that is typical for
similar studies [21]. Hence, the total complexity ends up to
be O(K2τd +K3). However, notice that since τd > K for all
instances we are studying, the complexity for the formation of
the matrices A0

m and B0
m is subdominant. Additionally, when

CnF (Algorithm 1) is applied to the OSPA, the complexity
remains the same, as the K × K Θm matrix that multiplies
A0

m and B0
m, as seen in (36) and (37), is diagonal.

Moving on to Algorithm 2, it should be mentioned that
has a similar complexity with that of Algorithm 1, with one
additional evaluation, namely the optimization of the K ×K
covariance matrix Σm of the quantization noise wm. This
optimization involves the diagonalization of Sm, which has
O(K3) complexity, and subsequently the optimization of its
eigenvalues, using (40) and (41), with O(K) complexity.

An alternative sequential processing concept that can reduce
the complexity at each APU is this of the MRC algorithm.
In that case, the estimate ŝmrc

m is given as

ŝmrc
m = s̄mrc

m−1 + Ĝ†
mΩ−1

m ȳm = Ĥ†
mK−1

m ῡm +
m−1∑
i=1

wi (47)

It is easy to see that the above corresponds to the updating
algorithm appearing in (21), where A0

m = IK , B0
m =

Ĝ†
mΩ−1

m and hence is by construction suboptimal to the
MMSE solution discussed in Section III. However, since APU
m does not require any previous information in order to form
the local combining matrix, the FH signaling in each link
between the APUs reduces from N = Kτc to N = Kτd

complex symbols. Additionally, since Ωm is an L×L diagonal
matrix and Ĝ†

m is a K × L matrix, the complexity here is
O(KLτd), which is substantially less than this of the OSPA,
as K ≫ L in most cases.

Next, we discuss about the issue of latency, which is the
total time Ttot that is required in order for the entire signal of
each UE, transmitted within a coherence interval τc, to reach
the CPU so that it can be fully decoded. Assuming that
the processing time at each APU is tp (also considering the
combining delay at the CPU) and that the coherence time is Tc,
then the total delay time of each UE will be Ttot = Tc +Mtp.

The above hold for both the standard OSPA algorithm,
discussed in Section III, as well as the Algorithm 2, which
was introduced in Section V. However, in the case of CnF
(Algorithm 1), the total delay time of each UE differenti-
ates, as it is jointly dependent on their distance from the
CPU and the given radio stripe’s capacity (commentary of

Fig. 3. Radio stripe setups used for the simulation, where scheme (a) realizes
Fig. 1a and scheme (b) realizes Fig. 1b. Black dots represent the UEs, red
dots the APs and blue squares the APUs.

figures 4 and 8). More specifically, when the SINR of a UE
k is maximized, then their soft estimation can be directly
transmitted to the CPU, thus reducing their service latency
to T k

tot = Tc + (mk + 1)tp, where mk + 1 ≤ M . Notice that
APU mk is the final APU (except the CPU that always adds
information) that adds information to the soft signal estimate
of UE k, i.e. is the APU that marks the transmission point
of that specific UE, as demonstrated in Fig. 4. Hence, the
UEs located far from the CPU and whose performance is
maximized from the very first APUs, gain lower latency than
the UEs close to it. This behaviour can be seen clearly in
Fig. 8, where the number of users served by each APU falls
linearly with distance.

B. Numerical Results

We consider the two geometries of Fig. 1, both placed at a
fixed horizontal distance of 4 m away from the UEs, as shown
in Fig. 3. The users have an intermediate distance of 2 m
between each other, while the radio stripe’s components are
equally distributed lengthwise of them, so that they occupy
the exact same space extent.

To evaluate the performance of all the above mentioned
algorithms, under the limited-capacity restriction, we use the
3GPP Urban Microcell model [53, Table B.1.2.1-1], which
matches well with outdoor radio stripe applications and which
calculates the large-scale fading between the kth UE and the
lth AP of the mth APU as

βmkl(dB) = −36.7 log10 (dmkl)− 26 log10 (fc)− 22.7 (48)

where fc (GHz) is the carrier frequency and dmkl (m) is the
direct distance between UE k and the lth AP of the mth APU.
Moreover, noise power σ2

n is given as

σ2
n (W) = bandwidth× kB × T0 × noise figure (49)

where kB = 1.384×10−23 (Joule per Kelvin) is the Boltzmann
constant and T0 = 290 (K) the noise temperature. The rest of
the parameters are summarized in Table I.

In Fig. 4, we numerically verify the uplink SE of (39) that is
achieved for two specific UEs, located roughly at one-third and
at two-thirds of the total layout distance, at each APU. The
curves have iteratively been derived using 500 independent
random-fading channel instantiations. Specifically, we plot the
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TABLE I
SUMMARY OF PARAMETERS USED IN THE SIMULATION

Fig. 4. The uplink SE achieved for UEs k1 = 27 and k2 = 54 at each
APU m (normalized value), when the MRC, OSPA and CnF OSPA algorithms
are applied to the setup of Fig. 3a. Here, K = 80, M = 40, L = 4 and
C = 300 bits/s/Hz.

SE for the plain OSPA, CnF OSPA and MRC algorithms for a
radio stripe setup with M = 40 APUs, each one having L =
4 collocated APs. Initially, the achievable throughput of each
UE increases as their soft signal estimate acquire additional
and higher quality signal. However, in contrast to infinite-
capacity scenarios [21] where this rising trajectory continues
until the CPU for all UEs, at some APU (specific for each UE),
the performance of the plain OSPA and MRC algorithms, starts
to deteriorate due to increased compression noise. In fact,
compression noise, for the case of the plain OSPA, is so
severe that even the suboptimal MRC algorithm manages to
surpass its SE, as it requires much less FH signaling in order to
function. Nonetheless, by avoiding unnecessary compressions,
CnF OSPA can sustain the peak performance of each UE,
thus preserving the benefits of the OSPA and rendering MRC
inferior in any case. An additional key observation of this plot
is that the CnF strategy substantially reduces the latency of
some UEs, especially of those who are far from the CPU.
This is achieved by transmitting to the CPU the current soft
estimate of each UE when it reaches its peak performance
(transmission point). These transmitted “optimum” estimates
are also used from all the intermediate APUs in order to assist
in the formation of all the remaining soft estimations.

Fig. 5 illustrates the average per-user uplink SE that is
achieved as the number of APs varies (the total length of
the radio stripe is kept fixed), when the CnF OSPA, OSPA
and MTrace algorithms are applied to the fully distributed
(FD) setup of Fig.3b, for 3 different capacity allocation ratio r
scenarios. The number of UEs is set to K = 80, the capacity to

Fig. 5. Average per-user uplink throughput achieved as L varies, when
the CnF OSPA, OSPA and MTrace algorithms are applied to the setup of
Fig. 3b, for three different capacity allocation ratios r. Here, K = 80,
C = 500 bits/s/Hz and product M × L ≈ 160 (fixed).

C = 10 Gbps [e.g. optical multi-mode 3 (OM3) fiber] and the
product M × L ≈ 160 is kept fixed. The results demonstrate
that, as the number of APs increases, every curve reaches a
maximum point beyond which any AP addition leads to a
performance drop. That occurs because on one hand a scarce
number of APs begets poor interference mitigation, but on the
other hand a relatively large number confines the available
transmission rate of both pilot and payload signals, thus
inducing stronger compression errors pm and dm [see eq. (7)].
As curves in Fig. 5a and 5b indicate, the optimum trade-off
between these two counterbalancing effects is obtained when
r = 0.15 and L = 7 (M = 23) for the case of the CnF
OSPAFD and when r = 0.30 and L = 23 (M = 7) for the
cases of the OSPAFD and MTraceFD.

In Fig. 6, we consider the same setups as in Fig. 5, but this
time fixed to M = 7 APUs and L = 23 APs for the cases
of the OSPAFD and MTraceFD algorithms and M = 23 APUs
and L = 7 APs for the case of the CnF OSPAFD (optimal
settings of Fig. 5). The plot shows the impact of various
capacity allocation ratios on the average per-user uplink SE,
when the radio stripe capacity is set to C = 10 Gbps. The
curves validate the results of Fig. 5, as the maximum average
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Fig. 6. Average per-user uplink throughput achieved as capacity allocation
ratio r varies, when the CnF OSPA (M = 23, L = 7), OSPA (M = 7,
L = 23) and MTrace (M = 7, L = 23) algorithms are applied to the setup
of Fig. 3b. Here, K = 80 and C = 500 bits/s/Hz.

performance is achieved when r, for each case separately, lies
quite close to the previously found optimum values.

In Fig. 7, we observe the effect of the FH capacity C on
the average per-user uplink SE, for six different radio stripe
arrangements (all have product M×L ≈ 160 fixed for equality
reasons) that serve K = 80 UEs. The solid curves refer
to the optimized and fully distributed setups of Fig. 6, each
one corresponding to one of the three algorithms. The dashed
curves refer to three collocated-AP (CL) radio stripe layouts
(see Fig. 3a) that share the same physical properties, yet
each one utilizing a different algorithm. Furthermore, as this
architecture does not allow for a big number of collocated
APs, L is always set to 4. The plot stresses the great potential
of the OSPA algorithm, as for a relatively large capacity (when
quantization errors are small and thus capacity is considered
to be unbounded), it behaves equivalently to the centralized
MMSE (C-MMSE) arrangement, provided that both setups
have the same AP distribution. However, the most important
highlight of the plot is that the CnF OSPA algorithm, combined
with the collocated-AP setup (black dashed curve), can achieve
superior performance than any other scheme, irrespective of
the available capacity of the radio stripe. This derives from two
main reasons: The first is the aggressive dynamic cooperation
clustering that the CnF strategy enables, which can effectively
reduce the amount of redundant compressions throughout
the sequential procedure. In addition to that, classic radio
stripe topology of Fig. 3a ensures the elimination of pm and
dm compression errors, a robust combination that leads to
the aforementioned result. Nonetheless, distributed-AP radio
stripes can still be useful in low-capacity regimes, if the
MTrace and plain OSPA are the only options.

In Fig. 8, we investigate the percentage of UEs that each
APU m serves, for the 3 collocated-AP radio stripe cases
(dashed curves) of Fig. 7 and for 3 different capacity scenarios.
The number of UEs considered for the results is also set to
K = 80. It is evident that the less available capacity, the
more drastic CnF becomes and the more rapidly starts to
diminish the number of UEs that each APU serves. In practice,
that means that when a UE k′ is served by the APU that
offers them the highest value of SINR (i.e. the APU that is

Fig. 7. Average per-user uplink throughput achieved as total capacity C
varies, when the CnF OSPA, OSPA and MTrace algorithms are applied to
both setups of Fig. 3. For the cases of the distributed-AP radio stripes, values
of M , L and r have been chosen optimally based on the aforementioned
results. Here, K = 80 and product M × L ≈ 160 (fixed).

Fig. 8. Percentage of users that each APU serves as a function of each APU
m (normalized value), when the CnF OSPA, OSPA and MTrace algorithms
are applied to the setup of Fig. 3a, for three different capacity scenarios. Here,
K = 80, M = 40 and L = 4.

closer to them), then at some point, all the subsequent APUs
(except the CPU) will always offer them a worse trade-off
between payload information and compression noise. Thus,
from this point on (specific APU for each user), the CnF
strategy prevents all the subsequent APUs from providing
service to UE k′ (as well as to all the other UEs prior to
UE k′), a fact that justifies the strictly decreasing behaviour
of every curve. This is exactly the point, also mentioned as
transmission point in Fig. 4, that the soft estimate of UE k′ has
reached its maximum potential and thus can be immediately
transmitted to the CPU, improving this way the latency of
the users, especially of those who are far way from the CPU.
Besides UE and APU positioning, that critical point strongly
depends on the contextual capacity of the radio stripe, since it
determines how severe the impact of the quantization noise on
all forming SINRs will be. Nevertheless, due to the small-scale
fading randomness, that linear behaviour may not rigorously
apply for each individual scenario.

Finally, Fig. 9 demonstrates the average per-user uplink
SE achieved as the number of UEs and APUs grows simul-
taneously, when all the three algorithms are applied to the
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Fig. 9. Average per-user uplink throughput achieved as K and M vary,
when the CnF OSPA, OSPA and MTrace algorithms are applied to the setup
of Fig. 3a. Small plot demonstrates the percentage performance improvement
that the CnF OSPACL gains over the other two algorithms. Here, L = 4 and
C = 500 bits/s/Hz.

arrangement of Fig. 3a. Here, the capacity is set to C =
10 Gbps and the number of APs to L = 4. As one would
expect, average performance drops as the entire system scales
up, an effect that is provoked by both the surging UE data
(due to K increase) and mandatory compressions (due to M
increase). The key highlight in this plot is the usefulness of
the CnF OSPACL, which by effectively reducing the number of
redundant compressions, manages to offer better results than
the other two algorithms, particularly when the system is quite
large. For instance, in the extreme case where M = 200 and
K = 100, CnF ensures 6.1 times higher throughput than
the plain OSPACL and 2.9 times higher throughput than the
MTraceCL. Hence, this enhancing ability of the CnF strategy
pushes the uplink performance of the average user closer,
as compared to the other algorithms, to the optimal solid curve
(ideal no-noise-and-error throughput) regardless of the layout’s
parameters.

VII. CONCLUSION

This paper models the impact of finite-capacity on the
uplink performance of a cell-free massive MIMO topol-
ogy that uses a consecutively-implemented fronthaul network
with radio stripes. Within this context, we have analyzed a
sequential processing algorithm that can optimally suppress
interference-plus-noise, including compression noise, locally
at each APU. To further mitigate the effect of quantization
distortion, we have proposed two novel and capacity-efficient
strategies, which can be used jointly with the OSPA and
which are capable of augmenting its performance under any
scenario tested. Moreover and in parallel with the classic
radio stripe scheme, we have also examined an alternative
arrangement, which, by leveraging its distributed-AP structure,
could potentially lead to more optimized results.

Numerical simulations conclude that when the OSPA is
combined with the CnF strategy, it has the potential to outper-
form any other algorithm tested, offering improved throughput
and reduced latency to the majority of the network users,
especially to those who lie far from the CPU. That is achieved
thanks to the user-centric DCC framework that CnF enables,

which by choosing the most suitable APUs to serve each UE,
avoids redundant compressions, an action that it is rather vital
in extensive layouts or, in general, when the radio stripe’s
capacity is scarce when compared with the contextual FH
requirements. Finally, our results showcase the importance of
combining the CnF OSPA with the classic radio stripe setup,
namely the one that includes collocated APs, regardless of the
under study implementation.

APPENDIX A
OPTIMAL COMBINING MATRICES DERIVATION

In this section we will prove that the matrices B0
m and A0

m

are optimal in the sense of minimizing the mean-squared error
between the compressed soft estimation s̄m and the message
vector q. Using (18), the MSEm = E

{
∥s̄m − q∥2

}
can be

analyzed as follows

MSEm = E
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ĜmQĜ†
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where h.c. signifies the hermitian conjugate of the term in
the same parenthesis. In the above equation, the second line
derives from (22) and (23), while the final equation results
from expanding the expression E{∥s̄m − q∥2} = tr[E{(s̄m −
q)(s̄m−q)†}] and rearranging terms. Furthermore, from (18)
and (21) follows that ŝm = A0
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m−1ωm−1 and thus tr(Σm) = tr(E{ŝmŝ†m})ϵ also
depends on A0

m and B0
m. Going through the same algebra as

above, we find that tr(E{ŝmŝ†m}) is simply the first five lines
of the last equality in (50). Hence, the MSEm is reformatted
as
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where γ−1
ϵ = 1+ ϵ. Since (51) contains quadratic expressions

of B0
m and A0

m, the MSEm can readily be minimized by
setting the gradient, with respect to the elements of B0

m and
A0

m, equal to zero. Defining the matrices ∇AMSEm and
∇BMSEm as [∇AMSEm]i,j = ∂MSEm

∂[A0
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and ∇BMSEm =
∂MSEm

∂[B0
m]i,a

, for i, j ∈ [K] and a ∈ [L], we have
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m−1Ĥm−1QĜ†
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Solving the above linear system of equations for the matrices
A0

m and B0
m, we conclude to the expressions given in (24)

and (25).
Furthermore, in order for each APU m to calculate the B0

m

and A0
m, it needs to have knowledge over local information

as well as over the matrices F0
m−1 and B

0

m−1Ĥm−1Q that
has received from APU m− 1. Then, according to (22), (23)
and (26), it can evaluate these matrices as
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APPENDIX B
PROOF OF HERMITIAN MATRICES

Here we show that the matrices F0
m and B

0

mĤmQ, which
are exchanged between the APUs as side information, are
Hermitian and thus they can be represented by 2K2 real-
valued symbols. From (26), we observe that F0

m = F0†
m , thus

making the Jm and Λm Hermitian according to (27) and (28),
respectively. By analyzing (55), B
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mĤmQ becomes
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Considering the above equation and due to the fact that Λm−1

and J−1
m are Hermitian matrices, it derives that B

0

mĤmQ is
also Hermitian.
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