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Abstract— Automatic modulation classification (AMC) is a
crucial technique for the design of intelligent transceivers and has
received considerable research attention. Conventional feature-
based (FB) methods have the advantage of low computational
complexity. However, these methods are highly sensitive to the
distribution shifts of the received signal caused by the variation
of channel effects and have rarely been studied in orthog-
onal frequency division multiplexing (OFDM) systems under
unseen synthetic channels with multipath fading effects, carrier
frequency offset (CFO), phase offset (PO) and additive noise.
To solve this problem, this paper proposes a novel FB method
using the error vector magnitude (EVM) features for AMC tasks
(termed as EVM-AMC), which can achieve reliable classification
performance for the communication scenarios considering unseen
synthetic channels in OFDM systems. Specifically, we first pro-
pose the axisymmetric mapping-based self-circulant differential
division (AM-SCDD) algorithm to convert the received signal
into the non-negative spectral quotient (NNSQ) sequence, deeply
suppressing the synthetic channel effects. Subsequently, we derive
the EVM features by analyzing the matched error vectors
between the generated NNSQ sequence and the predefined NNSQ
constellation symbol (NNSQCS) masks. During this process,
a percentile-based filter is utilized to remove the outliers in each
matched error vector. Finally, the feature samples collected from
various channel conditions are sent to the multi-class support
vector machine (SVM) classifiers for training and testing. Two
candidate modulation type sets are employed to evaluate the
performance of the proposed EVM-AMC method under both the
constant and changing channel conditions. Our numerical results
demonstrate that 1) the proposed method exhibits impressive
robustness and generalization when dealing with unseen synthetic
channels, 2) the proposed method yields the best classification
performance when compared to the conventional FB AMC
methods in the presence of channel effects.
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I. INTRODUCTION

UTOMATIC modulation classification (AMC) is an

intermediate process between signal detection and
demodulation, which empowers the receiver to differentiate
the modulation types of the received signal [1], [2]. It plays a
pivotal role in various military and civilian applications, such
as electronic warfare, cognitive radio, spectrum surveillance,
spectrum management, and so on [3], [4], and [5].

Previous AMC methods can be grouped into two categories:
likelihood-based (LB) methods [6], [7] and feature-based (FB)
methods [8]. Traditional LB methods compare the likelihood
ratio of each possible hypothesis against a threshold and
provide the advantage of optimal solutions in the Bayesian
sense [9]. However, they suffer from high computational
complexity and are highly dependent on prior knowledge of
channel conditions [10]. With the rapid development of deep
learning (DL), current FB methods using the deep neural
network (DNN) and convolutional neural network (CNN) for
AMC has gained increasingly interests in both academia and
industry [11], [12], [13], [14], as they can directly extract the
discriminative modulation information and then provide high
classification accuracy. However, the DL based FB methods
require to collect massive well-labeled data for model training
and they are also computational-intensive. For recognizing the
modulation types in a low computational cost manner, this
work gives a special focus on the conventional FB methods,
which usually require extracting certain features from the
received signal such as cyclostationary characteristics [15],
instantaneous features [16], high-order cumulants (HOC) [17],
and their combinations [18]. Although lots of FB AMC
methods have been investigated in many scenarios, this task
is still very challenging for real-world applications [19].

In practical wireless communication systems, the received
signal often experiences the effects of multipath propagation
induced by reflections, diffractions, and scattering [20]. Due to
its great ability against severe channel conditions, orthogonal
frequency division multiplexing (OFDM) is widely applied in
modern wireless communication systems [21]. As a result,
the AMC tasks for OFDM signal are of great significance
for the design of intelligent transceivers in the future [22].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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Previous research efforts of AMC have made remarkable
achievements under additive white Gaussian noise (AWGN)
channel [23], [24], [25], [26], [27], [28]. However, the AMC
task with unknown channel conditions hasn’t been well studied
in current works, especially for OFDM systems. Since the
multipath fading effects can severely distort the received signal
and introduce uncertainties, most existing AMC works usually
exhibit significant performance degradation in such scenarios
due to bad channel generalization. For this reason, some initial
AMC works considering the channel effects are developed by
researchers for OFDM systems [29], [30], [31], [32], [33],
[34], [35], [36].

To improve the classification accuracy in the presence of
the channel effects, Shih et al. proposed an efficient AMC
technique using HOC [31], where a blind channel estimation
method was employed to combat the channel effects during the
feature extraction process. However, the process of channel
estimation is complex and the classification performance is
highly related to the accuracy of estimated channel informa-
tion. Wang et al. in [32] proposed a convolutional neural
network (CNN) based AMC method in multiple-input and
multiple-output (MIMO) systems, where the zero-forcing (ZF)
equalization technique was adopted to enhance the classifi-
cation performance. However, this equalization-based method
is computation-consuming and also performs less well with
imperfect channel state information. In [33], Gupta et al.
investigated a blind AMC method for OFDM system over
frequency-selective fading environments, where the normal-
ized fourth-order cumulants of the fast Fourier transform (FFT)
of both the received signal and its square were extracted
as the modulation-specific features. However, this algorithm
suffers from high computational complexity due to the use
of the Taylor series in the cumulants estimation. In [34],
Huynh-The et al. proposed a symbolwise OFDM modulation
classification network, which employed the data reconstruction
to against the channel deterioration. However, this method is
only evaluated on the dataset with four modulation types and
the same channel conditions. To sum up, these methods [31],
[32], [33], [34] can achieve excellent classification perfor-
mance under certain channel conditions, but if the channel
conditions are different between the runtime and training
stage, they may suffer a significant performance deteriora-
tion [35]. To deal with this problem, recently we proposed a
spectral quotient cumulants-based AMC method [36], which
employed the spectral circular shift division algorithm to
resist the channel effects [37]. However, this method per-
forms badly in the low signal-to-noise (SNR) region and the
received signal model hasn’t taken the carrier frequency offset
(CFO) and phase offset (PO) into consideration. Thus, there
is still an urgent need to develop a reliable and general-
ized AMC method for OFDM systems with unseen channel
conditions.

In this paper, we propose an error vector magnitudes-based
AMC (EVM-AMC) method to achieve reliable classification
performance under unseen synthetic channels.! An extensive

'In this paper, the synthetic channel effects are defined as the joint effects
of the multipath fading channel, AWGN, CFO and PO.
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Fig. 1. OFDM baseband system with the proposed EVM-AMC method.

pool of modulation types including binary phase shift keying
(BPSK), quadrature PSK (QPSK), 8PSK, 16PSK, 8 quadrature
amplitude modulation (QAM), 16QAM, 32QAM, 64QAM,
4 amplitude shift keying (ASK) and 8ASK can be well
classified via the proposed method. The main contributions
are summarized as follows.

e We proposed a novel EVM-AMC method that is applica-
ble to OFDM systems. Compared to other FB methods,
our method achieves superior classification accuracy
when dealing with unknown synthetic channels.

e We presented the axisymmetric mapping-based self-
circulant differential division (AM-SCDD) algorithm to
construct the non-negative spectral quotient (NNSQ)
sequence. The resistance of the NNSQ sequence to the
variation of the CFO, PO and channel effects guarantees
the robustness of the proposed method.

e We proposed an EVM-based feature extractor, which
exploits the modulation-specific information from the
matched error vectors between the generated NNSQ
sequence and the predefined NNSQ constellation symbol
(NNSQCS) masks. To keep the statistical stability of the
EVM features, we employed a simple percentile-based
filter to remove the outliers in each error vector.

The rest of this paper is structured as follows. Section II
describes the OFDM signal model and formulates the AMC
task in this paper. Section III provides the detailed process of
the proposed EVM-AMC method. In Section IV, the experi-
mental setup is introduced in detail. The numerical results and
discussions are given in Section V. Finally, we conclude this
paper in Section VI.

II. PRELIMINARIES

In this section, we first introduce the OFDM signal model
considering the synthetic channels with multipath fading
effects, CFO, PO, and additive noise. Then, for ease of
understanding, we formulate the AMC problem caused by the
change of channel conditions in detail.

A. Signal Model

The overall baseband single-input single-output OFDM
system is given in Fig. 1, where the proposed EVM-AMC
algorithm is applied at the receiver side. In the transmitter,
the binary bits are first modulated by a predefined modula-
tion scheme to generate OFDM symbol with Ny subcarriers,
ie, X = [Xn(0),..., X n(k),..., X0n(No — 1)]T. After
performing N-point inverse fast Fourier transform (IFFT), the
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nt" baseband OFDM signal of the m!* symbol is denoted as

1 N-1 )
m(n) = 5 Y X (k)2 /Y,
k=0

~N,<n<N-1, (1)

where N = pNy and p is the oversampling factor; N, is
the length of the cyclic prefix (CP); X, (k) is the modulated
signal at the k' subcarrier and can be expressed as

Xm(k), 0<k<Ng/2-1
Xm(k)=1 Z, No/2 <k < No(p—1/2)

2)

where k1 = k — No(p — 1) and Z is the zero padding vector.

After passing through the synthetic channel, the m!"

received signal impaired with multipath fading, offsets, and

AWGN can be represented as [33]
L
Ym(n) = eI TAfmn/N+2:m) Z Rt (10— T1) 4 win (1),

=1

—Nyg<n<N-1, 3)

where Af,, is the frequency offset normalized by the sub-
carrier spacing 1/7 (T is an OFDM symbol interval); ®,,
denotes the phase offset within (—m, 7); wy,(n) is the AWGN
and hj , is the [th channel tap with delay 7; of total L in the
m!" transmission. For a Rayleigh multipath fading channel,
the fading coefficient of each path can be denoted as h; ., =
\/levlvm, where P is the expected variance in the [th tap and
vm ~ CN(0,1) is a complex Gaussian variable. As for a
Rician channel, there is a line of sight (LOS) component in
the first tap, hence Ay, = VPI(/Kyf + v1m)/(\/Ks +1)
[38], where K is the Rician-K-factor.

B. Problem Formulation

The objective of AMC is to extract the discriminating
information from the received signal for recognizing the mod-
ulation types. Conventional AMC research attention focuses
on identifying the modulation types of the samples in the
testing dataset that were collected or generated under the same
channel conditions as the training dataset. However, due to the
variation of channel environments, it is unrealistic to assume
that both the training and testing samples suffer from the same
channel effects in practice. Hence, as shown in Fig. 2, the
AMC problem in this paper is formulated as follows.

Assuming D = {(y,,,Om)}", is the training dataset
collected under a specific synthetic channel condition H(-),
where NV, is the total number of samples and ©,, is the
corresponding modulation scheme employed in y,,. With the
aid of the training dataset D, a well-trained classifier €(-) can
be obtained for the subsequent inference.

Considering a different channel condition ’(-) during the
runtime, the receiver will first capture a signal y/, modulated
by ©/, and then feed it into the classifier €’(-) for prediction.
Thus, the predicted result can be denoted as

0, =€ (,,). (4)
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where é;n is the output of the classifier. Since the different
channel conditions can lead to the distribution shifts between
the training signal and the testing signal, C:)’m is probably
different from ©/ . In other words, training an AMC model
in certain channel conditions while applying it to different
channel conditions will lead to performance deterioration.
Therefore, a solution capable of training channel-agnostic

classifiers is urgently needed for the AMC development.

III. PROPOSED EVM-AMC METHOD

In this section, we propose a novel AMC method for OFDM
signals in the presence of unknown CFO, PO, noise, and
channel effects. The architecture of this AMC method consists
of three modules, namely signal preprocessing module, EVM-
based feature extraction module, and multi-class support vec-
tor machine (SVM) classifier module. The detailed operations
of our method are given below.

A. Signal Preprocessing

In a blind OFDM system, the OFDM parameters should
be first estimated for the following AMC process. According
to the cyclostationarity of the oversampled OFDM signals, the
cyclic correlation function in [39] can be employed to estimate
the OFDM sample length IV, the CP length N, as well as
the oversampling factor p. To focus on the AMC methods
itself, it is assumed that these parameters are known as a priori
information in the subsequent process.

Considering the office and residential environments (small
maximum delay scenarios), the CP duration can be two times
the channel maximum delay. To avoid the CFO estimation
errors caused by the multipath effects, we use the second half
of CP to estimate the CFO value, which is given as [40]

Afw=(1/2margl Y voym(nt N}, )
n=—Ng/2

where (-)* denotes the conjugate operator and arg{-} denotes
the inverse tangent function. After the CFO correction and the
removal of CP, the output signal can be written as

L
Gm (n) = I (men/N+®m) Z him@m(n — 1) + W (n),
=1
0<n<N-1, (6)

where ¢ is the residlAJal normalized CFO value which is denoted
as € = Afm — Afm; Wm(n) is the n** additive noise after
performing CFO correction.
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Since the modulation-related information X,,, of the OFDM
signal is in the frequency domain, we perform the FFT
algorithm on the output signal

N-1
Vo) = 3 () 2274,
k=0
0<kE<N-L1L (N

After deleting the zero padding vector, we can
obtain the frequency-domain vector Y,, = [Y,,(0),...,

Yo (k), ..., Y, (No — 1)]7, whose element is denoted as

Vonlh) = {?”Ez))

where ko =k + No(p — 1).

As studied in our previous work [41], the effects of channel
frequency response (CFR) have high correlations at the neigh-
boring subcarriers, which can be suppressed in a self-circulant
differential division manner. Due to the linear transformation
property of the FFT operation, the PO effect remains a constant
on each subcarrier and can also be canceled by the operation of
differential division. Considering the modulation constellation
symbols are symmetric about the coordinate axes,” we propose
the AM-SCDD algorithm to construct the NNSQ sequence X
as

0<k<Ny/2—1

8
No/2<k<N-1, ®

YT=[Y_5,Y 541,--, X 1,X1,...., X5 1,Xs], (9
To(k) = [R{L(k)} + 4IS{Ls ()}, (10)
To(k) =Y m(k)/Y m(ks), (11)

where S is the maximum self-circulant shift step, | - | is
the absolute operator, %{-} and 3{-} denote the real and
imaginary operators, respectively, ks is the index of the
denominator, which is the remainder after division of k£ — s by
Ny. For simplicity, the detailed operations of the AM-SCDD
are summarized in Algorithm 1.

Let © = {6,}! denote the candidate modulation type set of
total 1. Then, the ideal NNSQ values of ©; can be obtained
when Y, (k) and Y,,(si) are the constellation symbols of
©;. After iterating over the set of ®, we can easily obtain
the NNSQCS masks set of different modulation types, which
is denoted as {Yg,}!. As illustrated in Fig. 3, we can find
that the modulation-specific information can be well preserved
in the new signal representation. In the following, we will
introduce the approach to extract the features for AMC task.

B. EVM-Based Feature Extractor

EVM is a popular figure-of-merit adopted by various
communication standards for evaluating the distortions in a
communication system [42]. Since the matched error vectors
between the generated NNSQ sequence and the predefined
NNSQCS masks are highly related to the modulation type of
the transmitted signal, we extract the EVMs from the matched
error vectors as modulation-specific features.

2By performing the axisymmetric mapping scheme, the elements in each
NNSQCS mask can be heavily reduced, thus reducing the computational
complexity for the following feature extraction module.
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Algorithm 1 Axisymmetric Mapping-Based Self-Circulant
Differential Division (AM-SCDD)

Require: The length of OFDM signal: N; The m!* OFDM
signal: y, ; the length of CP: N; the oversampling factor:
p; the maximum self-circulant shift step: S.
Ensure: The NNSQ sequence: Y;
1: Estimating the normalized CFO value via Eq. (5);
2: Correcting the received signal and then removing the CP
to derive y,, of length IV;
3: Performing the FFT operation on y,, to derive Y,,,;
4: Deleting the zero padding vector via Eq. (8);
5: for s=-5;,5s<S5;s++ do
6:
7

for k=0, k < N/p; k++ do
: Calculating the denominator index via mod(k —
s, N/p); _
8: Generating the NNSQ signal of Y (k) via Eq.
(10) and Eq. (11);
9: end for
10: end for
11: Merging the Y, vectors via Eq. (9);
12: return Y.

Firstly, the matched error vectors are derived as
o, =[T-To| 1<i<I, (12)

where Téi is the decided symbol vector of Y in terms of the
NNSQCS mask Ye,, and its k" element can be given as

Td@i (n) = argmin |T(n) — |
TeYo,

13)

In order to stabilize the EVM features, we carry out a
percentile-based outlier filter (POF) method to remove the
outliers from each error vector. Due to the fact that the
outliers are likely to be far away from the ideal NNSQ values,
their error magnitude is much larger than that of the normal
NNSQ value. According to this characteristic, given a specific
percentile @, we identify the top Q% largest numbers of eg,
as outliers and then filter them out. The filtered error vectors
are denoted as

el, =[e5,(0),....e5,(n),....el (Ny = 1))7,  (14)
where NNy is the length of the filtered vectors.
Subsequently, we can extract the EVM from e{_)i as
Ny (.f 2
Ti(eg. (n
B - el o, (15)
Nmea.t,@1,

where T,nqz.0, is the maximum amplitude of the ele-
ments in Y@i. Finally, an EVM-based feature vector = =
[E1,...,E;, ..., Er)T standing for the unknown modulation
type is constructed and this ends the feature extraction module.

C. Multi-Class SVM Classifiers

The SVM is an efficient machine learning algorithm primar-
ily used for classification tasks, which can find a hyperplane
that best separates different classes in the feature space,
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Fig. 3. The visualization of the NNSQ representation for different modulation types via constellation diagram; MCD is the abbreviation of modulation

constellation diagram.

maximizing the margin between the classes [43]. To recognize
multiple modulation types, we use the one-against-one strategy
to train the multi-class SVM classifiers [44], [45]. Thus, a total
of I(I—1)/2 two-class SVM classifiers need to be constructed.

Let ZNi m=1,...,Mand N; = 1,...,I(I—1)/2 denote
the th training vectors in two classes (i.e., ©; and ©;) and
LYi € {—1,1} the corresponding one-hot encoded modulation
type label. Then we train each binary SVM classifier by
solving the primal optimization problem below [46]

1 M

. T

—w w+C

min 5 + ;5

16
€m207m:17"'7M5 ( )

ot { LN (w H(EN) +b) > 1 - &
where C' > 0 and &, are the regularization and soft margin
parameters; w and b are the weight vector and bias of the
decision function; (+) is the function to map the feature data
into a higher-dimensional space. For solving Eq. (16), usually
we can solve the following dual problem

. 1
min -a’Ka-ela
o 2

M )
s.t. { Zm:l Lzlam =0

0<anp,<Cm=1,...,M,

a7

where «,, is the coefficient associated with the m!” training
sample; K is an M by M kernel matrix, whose element can
be constructed as Ky, = LN LYNigp(ENOT(EN). After
solving Eq. (17), we can obtain the optimal w via the primal-
dual relationship, i.e., w = fo:l LYi v, (EN:). Then the
decision function of the N SVM classifier is expressed as

SVM(E) = sgn(wy(E) + b), (18)
where sgn(-) denotes the sign fuction. After yielding the final
predictions from total I(I —1)/2 SVM classifiers, we employ
the voting method designed on the criterion of the max wins
strategy to make a final prediction.

D. Complexity Analysis

Computational complexity is a significant metric to measure
the amount of computing resources required for running a
specific algorithm. Since the key processes of the proposed
EVM-AMC method are the signal preprocessing and feature
extraction, in this subsection, we quantify the computational
complexity of our algorithm in terms of multiplication and
comparison operations of these two processes. Besides, some
discussions of the SVM complexity can be referred to the
literature [47].

According to the Algorithm 1, the multiplication and
comparison computational complexity (MCCC) of the signal
preprocessing is determined by lines 1, 2, 3, and 8. It is
clear that the MCCC involved in line 1 and 2 is O(V,) and
O(N), respectively. The FFT calculation of line 3 requires the
MCCC of O(N log N). The MCCC of line 8 for self-circulant
differential division is O(N,), where N, = 2SN/p is the
length of the NNSQ sequence. As for the feature extraction
module, the generation of matched error vectors requires
the MCCC of O(Zf M;N,), where M, denotes the constel-
lation number of the i*" NNSQCS mask. Then, the POF
operation® requires the MCCC of O(IN.log(N,)), where
N, = N.Q/100. Moreover, the MCCC of the EVM feature
extraction in terms of Eq. (15) is about O(INy). It should
be noted that N typically has the same order of magnitude
as Ny, N, and Ny, but is much larger than I and N,.
Without loss of generality, the MCCC of the EVM-AMC can
be simplified as O(N (log N + ZZI M;)) when considering the
signal preprocessing and feature extraction processes.

IV. EXPERIMENTAL SETUP

In this section, we first configure the OFDM parameter
settings utilized during the simulated dataset generation, where
the synthetic effects of multipath fading channel, CFO, PO,
and additive noise are considered. Then, we introduce some
selected FB AMC methods for performance comparison.
To evaluate the discussed advantages, both the probability

3This process can be deemed as the operation to find the top Q% values
from N NNSQ elements.
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TABLE I

THE MULTIPATH FADING CHANNEL CONDITIONS

Power Path Delay
50ns 100 ns 150 ns 200 ns
Channel Type
Rician (Kf = 4) 0.90 0.10 - -
Rayleigh 0.865 0.117 0.016 0.002

Notation: ns is the abbreviation of nanosecond.

of correct classification (F,.) and the mean average accuracy
(MAA) are employed as the performance metrics in this paper.

A. Dataset Description

In this subsection, we use the OFDM signal for dataset
generation, where the length of subcarriers and CP are 256 and
64. The carrier frequency and the transmission bandwidth are
set to 2.4GHz and 20MHz, respectively. The oversampling
factor p is 4. We consider two sets of modulation types:

e Simple set: contains four simple modulation types
including BPSK, QPSK, 16QAM, and 4ASK.

e Complex set: contains both the modulation types in
simple set and additional six commonly used modula-
tion types including 8PSK, 16PSK, 8QAM, 32QAM,
64QAM, and 8ASK.

For simulating the synthetic channel effects, the CFO
value follows the uniform random distribution within
[—24kHz, 24kHz] and the PO value follows the same distribu-
tion within [—7, r]. Meanwhile, both the Rician and Rayleigh
multipath fading channels are considered, where the Rician-
K-factor of the first tap is set to 4 and the power delay profiles
(PDP) are given in Table 1. Notably, the channel coefficients
are randomly and periodically regenerated during each OFDM
symbol period.

A total of six datasets are generated via the combination
of the modulation candidate sets (simple and complex sets)
and channel conditions (AWGN, Rician, and Rayleigh) for
performance evaluation. For ease of representation, we can
write the generated datasets as D5 (nq € [1,2,3]) for the
simple set and D,C;d for the complex set, where the number
of 1, 2 and 3 stands for the channel types of AWGN, Rician
and Rayleigh, respectively. For each dataset, we generate 500
OFDM samples for each modulation type per SNR, with the
SNR range of —10 dB to 20 dB (step is 2 dB). In other words,
there are 32000 samples in D;; and 80000 samples in DS .

B. Baseline AMC Methods

For the purpose of performance comparison, we employ
three baselines from the existing FB  AMC methods, namely
SalF (statistical and instantaneous features) [18], HOC2 (two
HOC features) [24], and SQ-HOC (spectral quotient-based
HOC features) [36]. As demonstrated in [36], the SQ-HOC
performs better when filtering out the outliers, thus we also
employ a threshold-based outlier filter* in our following
experiments. Besides, it should be noted that the HOC fea-
tures employed in SalF and HOC are extracted from the

4According to the reference [36], the threshold value employed at the signal
preprocessing stage is set to 3.3 for outlier removal.
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frequency-domain received signal after CFO compensation
in this paper. Since the most complex operations in these
baselines are the FFT calculations, their MCCC can be roughly
deemed as O(N log N) without considering the classification
process, which is slightly lower than the proposed EVM-AMC
method (the MCCC is O(N (log N + Y7 M;,))).

In general, the classification performance can be affected by
the adopted classifier. For fair comparisons, all these baselines
employ the multi-class SVM classifier to distinguish the mod-
ulation types. LIBSVM [48] is a widely used open-source soft-
ware library that provides implementations of SVM algorithms
and is well-known for its efficiency and versatility in solving
various machine learning problems. Therefore, we implement
it to train the multi-class SVMs in this paper and the training
settings are listed below: 1) the SVM type is C-SVC, 2) the
kernel function is a polynomial base function, where the
gamma is 15 and the degree is 2, 3) other hyperparameters
are defaults.

C. Evaluation Metrics

To evaluate the classification performance, we employ the
probability of correct classification with a specific SNR as a
performance metric, which is calculated as

I
Pee(z) =) P(©:,2)P(6 = 6,16, 2),

i=1

19)

where P(0©;,z) denotes the prior probability of modulation
type ©; at the 2" SNR, 6 represents the predicted modulation
format and P(©® = ©,|0;,2) stands for the conditional
probability in the case that the modulation format is correctly
predicted as ©;. Moreover, the MAA of all SNR variants is

also employed as an evaluation metric, which is computed as

Z
1
MAA = — ; P..(2), (20)

where Z is the total number of the SNR variants.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we investigate the classification performance
of the proposed AMC method, where three parts are discussed.
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Firstly, we study the influence of the percentile-based out-
lier filter on the classification performance of our method.
Secondly, we compare the performance of the EVM-AMC
methods with baselines using the datasets modulated with
the simple set. Finally, we further compare the classification
performance when the datasets modulated with the complex
set are considered.

To study the channel effects on the AMC problem, we fur-
ther divide the AMC tasks into two categories, i.e., homoge-
neous and heterogeneous tasks, which is explained as follows:

e Homogeneous AMC task: the channel conditions are
constant during the training and testing stage.

e Heterogeneous AMC task: the channel conditions are
changing during the training and testing stage.

When the homogeneous AMC task is considered, we divide
the adopted dataset into the training set, validation set, and
testing set in the ratio of 3:1:1. As for the heterogeneous AMC
task, we divide the dataset employed in the training stage into
training and validation sets in the ratio of 3:1, and the whole
samples of the other two datasets with the same modulation
candidate pool are used as testing sets. Besides, the maximum
self-circulant shift step S and the percentile ) employed for
the outlier filter are set to 4 and 2.5 in the signal preprocessing
and feature extraction stages. Finally, Monte Carlo trials are
carried out for the following experiments.

A. Effectiveness of the Percentile-Based Outlier Filter

To verify the effectiveness of the POF on the improvement
of classification performance, we provide the accuracy results
of the EVM-AMC method with and without the POF in
both the homogeneous and heterogeneous AMC cases. For
simplicity, we employ the symbol of {D,,D,} to denote the
AMC experiment that is trained on D, and tested on D, in
the following.

As shown in Fig. 4, we use the box plot to express the
simulation results of total 30 times. Obviously, two phenomena
can be observed from this figure. One is that the worst
performance with POF outperforms the best performance
without POF for each case. Another is that the distribution
of the average accuracy with POF (the gaps between the
best and worst performance vary within 1%) is more steady
than that without POF (the gaps between the best and worst
performance vary from 5% to 8%). Moreover, to take a close
look at the experiments, the MAA of these results is listed in
Table II. As expected, the MAA results can be enhanced with
the aid of the POF for each case. Specifically, the improvement
of MAA is about 4.52% for {D7, Dy}, 5.11% for {D{, D5},
5.25% for {D7, DS}, 6.4% for {Df, D5 + DS}, 5.15% for
{D3,Df + D5}, 4.99% for {D5,D{ + D5'}. Hence, we can
conclude that, for both the homogeneous and heterogeneous
AMC tasks, the POF strategy is effective in improving the
classification performance of the EVM-AMC method.

B. Performance Evaluation for the Homogeneous AMC Task

In this subsection, we first provide the P.. curves when
the homogeneous AMC task is considered. Fig. 5 provides
the classification performance of the proposed method and all
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baselines on the simple modulation type set. As illustrated
in these figures, the proposed EVM-AMC achieves the best
performance under each channel condition when compared
to the other three baselines, which can reach at least 95%
accuracy at SNR = —2 dB. Moreover, the MAA results of both
the EVM-AMC and SQ-HOC methods are almost unchanged
(fluctuate within 0.5%) under different channel conditions,
while the MAA results of the HOC2 and SalF methods are
highly related to the channel conditions. For example, when
the modulated signals experience multipath fading effects, the
MAA results of the HOC2 and SalF methods significantly drop
about 18.81% to 42.6% in comparison to the MAA results
under AWGN channel. Meanwhile, the EVM-AMC method
outperforms the SQ-HOC method by nearly 7% in MAA for
each case.

Considering current wireless communication systems utilize
a variety of modulation types, we further conduct the homoge-
neous experiments on the complex modulation type set, whose
results are provided in Fig. 6. Again, the EVM-AMC achieves
excellent MAA performance, which can identify the complex
modulation types with an accuracy of more than 95% at SNR
= 10 dB for each case. The accuracy of the SQ-HOC method
is robust to the channel conditions, but it has a significant
gap compared to the EVM-AMC method. The peak accuracy
(at SNR = 20 dB) of the HOC2 is slightly less than 80%
under AWGN channel, which means some modulation types
cannot be classified well by this method. Besides, the HOC2
method performs poorly in the presence of channel effects,
with a peak accuracy drop of 43% or so when compared to
the result under AWGN channel. As for the SalF method,
it works effectively under AWGN channel, reaching the best
MAA result (73.34%). However, this method performs less
well under Rician and Rayleigh channels, which only achieves
a peak accuracy of 50% to 56% in these cases. Thus, for
the homogeneous AMC task, we can draw the following
conclusions: 1) both the EVM-AMC and SQ-HOC methods
are robust to different channel conditions, 2) the EVM-AMC
method achieves excellent classification performance in both
simple and complex modulation type sets, 3) the classification
performance of the SQ-HOC and HOC2 methods is dependent
on the channel conditions.

C. Performance Evaluation for the Heterogeneous AMC Task

In real-world wireless communication scenarios, the channel
effects are constantly changing. It is very likely to encounter
an unseen channel condition during the runtime. For evaluating
the classification performance in such cases, we conduct the
heterogeneous AMC experiments in this part. As revealed in
Fig. 7, the proposed method yields the optimal classification
performance, leading to at least 7.01%, 53%, and 42.15%
MAA improvement with respect to the SQ-HOC, HOC2,
and SalF methods. Meanwhile, the SQ-HOC still performs
effectively in these cases, but it performs less well than
the EVM-AMC method in the low SNR region. As for the
HOC2 and SalF methods, they are ineffective when trained
under AWGN channel but tested under Rician and Rayleigh
channels. Even though their classification performance can be
improved when trained on the samples impaired with channel
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TABLE II
THE MAA RESULTS WITH AND WITHOUT THE PERCENTILE-BASED OUTLIER FILTER
MAA™ Cases
(D5, D§) (D5.D§) (05,05} | (D5, D5 +D5} | (D5, D5 + D5} | {DF,D5 + D5}
Strategy
Without POF 85.97% 85.57% 85.58% 83.91% 85.44% 85.55%
With POF 90.49% (4.52% 1) | 90.68% (5.11% 1) | 90.83% (5.25% 1) | 90.31% (6.40% 1) | 90.59% (5.15% 1) | 90.54% (4.99% T)

Notation: The red number denotes the MAA gap between two strategies.
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Complex modulation type set: the performance comparison under different channel conditions when the homogeneous AMC task is considered.

effects, the overall accuracies of these methods fluctuate
heavily and are still far away from a credible level. This can
be attributed to the violation of the basic independent and
identically distributed (i.i.d) assumption of machine learning,
thus making the unclear predictions by the SVM classifiers in
the heterogeneous cases.

Moreover, we also compare the classification performance
of the proposed method with other baselines on the com-
plex modulation type set. It can be appreciated from Fig. 8
that the EVM-AMC method consistently outperforms these
baselines in each case. The SQ-HOC method only achieves

a peak accuracy of about 85% at SNR = 20 dB, while our
method can reach the same accuracy level at SNR = 6 dB.
As expected, the HOC2 and SalF methods perform poorly
in these cases, reaching the MAA results of less than 25%.
Hence, for the heterogeneous AMC task, we can conclude
that 1) both the EVM-AMC and SQ-HOC methods exhibit
extremely robustness and generalization, 2) the EVM-AMC
method consistently outperforms these baselines in both sim-
ple and complex modulation type sets, 3) the HOC2 and SalF
methods can not accurately classify the modulation types when
encountered the unseen channel conditions.
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Simple modulation type set: the performance comparison under different channel conditions when the heterogeneous AMC task is considered.

(a) Trained on D§ (AWGN) and tested on D5 + D5 (Rician + Rayleigh). (b) Trained on D5 (Rician) and tested on Df + D5 (AWGN + Rayleigh).

(c) Trained on D5 (Rayleigh) and tested on Dy + D7 (AWGN + Rician).
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(a) Trained on D (AWGN) and tested on DQC + ’D30 (Rician + Rayleigh). (b) Trained on DQC (Rician) and tested on ch + Dg (AWGN + Rayleigh).

(c) Trained on D3 (Rayleigh) and tested on D? + Df (AWGN + Rician).

VI. CONCLUSION

In this paper, we presented an effective FB method, referred
to as EVM-AMC, to identify the modulation types for OFDM
systems in the presence of synthetic channel effects, i.e.,
multipath fading interferences, PO, CFO, and additive noise.
To keep resistant to the synthetic channel effects, our method
first performed the CFO compensation and then constructed
the NNSQ sequence via the proposed AM-SCDD algorithm,
where the PO and multipath fading effects can be jointly
suppressed by this algorithm. Moreover, an EVM-based fea-
ture extractor was used to extract the modulation-specific
features from the preprocessed signals. Finally, the collected
features were sent to the multi-class SVM classifier module
for training and testing. Experiments were conducted with two
candidate modulation type pools for both the homogeneous
and heterogeneous AMC tasks. Numerical results validated
the superiority and robustness of the proposed EVM-AMC
method when compared to other existing feature-based AMC
methods under unknown synthetic channels.

The proposed method has the advantage of low compu-
tational complexity in comparision to the DL-based AMC
method, which is suitable for practical deployment and appli-
cation. When the computational resources are sufficient, the
deep learning-based classifier can be used to pursue a high-
accuracy performance. In the future, we will attempt to
improve the classification performance at the low SNR regions
for OFDM systems with more modulation types.

REFERENCES

[1] S. Peng, S. Sun, and Y.-D. Yao, “A survey of modulation classification
using deep learning: Signal representation and data preprocessing,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7020-7038,
Dec. 2022.

S. Hanna, C. Dick, and D. Cabric, “Signal processing-based deep
learning for blind symbol decoding and modulation classification,” IEEE
J. Sel. Areas Commun., vol. 40, no. 1, pp. 82-96, Jan. 2022.

R. Gupta, S. Majhi, and O. A. Dobre, “Design and implementation of a
tree-based blind modulation classification algorithm for multiple-antenna
systems,” IEEE Trans. Instrum. Meas., vol. 68, no. 8, pp. 3020-3031,
Aug. 2019.

[2]

[3]



11940

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

W. Chen, Z. Xie, L. Ma, J. Liu, and X. Liang, “A faster maximum-
likelihood modulation classification in flat fading non-Gaussian chan-
nels,” IEEE Commun. Lett., vol. 23, no. 3, pp. 454-457, Mar. 2019.
A. P. Hermawan, R. R. Ginanjar, D. Kim, and J. Lee, “CNN-based
automatic modulation classification for beyond 5G communications,”
IEEE Commun. Lett., vol. 24, no. 5, pp. 1038-1041, May 2020.

F. Hameed, O. A. Dobre, and D. C. Popescu, “On the likelihood-based
approach to modulation classification,” IEEE Trans. Wireless Commun.,
vol. 8, no. 12, pp. 5884-5892, Dec. 2009.

J. Zhang, D. Cabric, F. Wang, and Z. Zhong, “Cooperative mod-
ulation classification for multipath fading channels via expectation-
maximization,” IEEE Trans. Wireless Commun., vol. 16, no. 10,
pp. 6698-6711, Oct. 2017.

N. Jafar, A. Paeiz, and A. Farzaneh, “Automatic modulation classifi-
cation using modulation fingerprint extraction,” J. Syst. Eng. Electron.,
vol. 32, no. 4, pp. 799-810, Aug. 2021.

D. Grimaldi, S. Rapuano, and L. D. Vito, “An automatic digital modula-
tion classifier for measurement on telecommunication networks,” IEEE
Trans. Instrum. Meas., vol. 56, no. 5, pp. 1711-1720, Oct. 2007.

A. Ramezani-Kebrya, I. Kim, D. I. Kim, F. Chan, and R. Inkol,
“Likelihood-based modulation classification for multiple-antenna
receiver,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3816-3829,
Sep. 2013.

K. Qiu, S. Zheng, L. Zhang, C. Lou, and X. Yang, “DeepSIG: A hybrid
heterogeneous deep learning framework for radio signal classification,”
IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 775-788, Jan. 2024.
S. Chang, S. Huang, R. Zhang, Z. Feng, and L. Liu, “Multitask-
Learning-based deep neural network for automatic modulation classifica-
tion,” IEEE Internet Things J., vol. 9, no. 3, pp. 2192-2206, Feb. 2022.
R. Zhang, Y. Zhao, Z. Yin, D. Li, and Z. Wu, “A reference signal-aided
deep learning approach for overlapped signals automatic modulation
classification,” IEEE Commun. Lett., vol. 27, no. 4, pp. 1135-1139,
Apr. 2023.

S. Chang, Z. Yang, J. He, R. Li, S. Huang, and Z. Feng, “A fast multi-loss
learning deep neural network for automatic modulation classification,”
IEEE Trans. Cognit. Commun. Netw., vol. 9, no. 6, pp. 1503-1518,
Dec. 2023.

S. Majhi, R. Gupta, W. Xiang, and S. Glisic, “Hierarchical hypothesis
and feature-based blind modulation classification for linearly modulated
signals,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 11057-11069,
Dec. 2017.

A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation
recognition of communication signals,” IEEE Trans. Commun., vol. 46,
no. 4, pp. 431-436, Apr. 1998.

S. Huang, Y. Yao, Z. Wei, Z. Feng, and P. Zhang, “Automatic modulation
classification of overlapped sources using multiple cumulants,” IEEE
Trans. Veh. Technol., vol. 66, no. 7, pp. 6089-6101, Jul. 2017.

B. Luo, Q. Peng, P. C. Cosman, and L. B. Milstein, “Robustness of
deep modulation recognition under AWGN and Rician fading,” in Proc.
52nd Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA,
Oct. 2018, pp. 447-450.

S. Chang, R. Zhang, K. Ji, S. Huang, and Z. Feng, “A hierarchical
classification head based convolutional gated deep neural network for
automatic modulation classification,” IEEE Trans. Wireless Commun.,
vol. 21, no. 10, pp. 8713-8728, Oct. 2022.

W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed
channel sensing: A new approach to estimating sparse multipath chan-
nels,” Proc. IEEE, vol. 98, no. 6, pp. 1058-1076, Jun. 2010.

Y. Liu, Z. Tan, H. Hu, L. J. Cimini, and G. Y. Li, “Channel estimation for
OFDM,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1891-1908,
4th Quart., 2014.

P. Zhang, L. Li, K. Niu, Y. Li, G. Lu, and Z. Wang, “An intelligent
wireless transmission toward 6G,” Intell. Converged Netw., vol. 2, no. 3,
pp. 244-257, Sep. 2021.

S. Chang, S. Huang, R. Zhang, Z. Feng, and L. Liu, “Multitask-learning-
based deep neural network for automatic modulation classification,”
IEEE Internet Things J., vol. 9, no. 3, pp. 2192-2206, Feb. 2022.

A. Swami and B. M. Sadler, “Hierarchical digital modulation clas-
sification using cumulants,” IEEE Trans. Commun., vol. 48, no. 3,
pp. 416429, Mar. 2000.

X. Zhang et al., “NAS-AMR: Neural architecture search-based automatic
modulation recognition for integrated sensing and communication sys-
tems,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 3, pp. 1374-1386,
Sep. 2022.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. R. Yakkati, R. R. Yakkati, R. K. Tripathy, and L. R. Cenkeramaddi,
“Radio frequency spectrum sensing by automatic modulation classifi-
cation in cognitive radio system using multiscale deep CNN,” [EEE
Sensors J., vol. 22, no. 1, pp. 926-938, Jan. 2022.

F. Wang and X. Wang, “Fast and robust modulation classification
via Kolmogorov-Smirnov test,” IEEE Trans. Commun., vol. 58, no. 8,
pp. 2324-2332, Aug. 2010.

Y. Du, G. Zhu, J. Zhang, and K. Huang, “Automatic recognition of
space-time constellations by learning on the Grassmann manifold,” /[EEE
Trans. Signal Process., vol. 66, no. 22, pp. 6031-6046, Nov. 2018.

S. Hong, Y. Zhang, Y. Wang, H. Gu, G. Gui, and H. Sari, “Deep learning-
based signal modulation identification in OFDM systems,” IEEE Access,
vol. 7, pp. 114631-114638, 2019.

T. Huynh-The, Q.-V. Pham, T.-V. Nguyen, X.-Q. Pham, and D.-S. Kim,
“Deep learning-based automatic modulation classification for wireless
OFDM communications,” in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Oct. 2021, pp. 47-49.

P. Shih and D. Chang, “An automatic modulation classification technique
using high-order statistics for multipath fading channels,” in Proc. 11th
Int. Conf. ITS Telecommun., Aug. 2011, pp. 691-695.

Y. Wang et al., “Automatic modulation classification for MIMO systems
via deep learning and zero-forcing equalization,” IEEE Trans. Veh.
Technol., vol. 69, no. 5, pp. 5688-5692, May 2020.

R. Gupta, S. Kumar, and S. Majhi, “Blind modulation classification
for asynchronous OFDM systems over unknown signal parameters
and channel statistics,” IEEE Trans. Veh. Technol., vol. 69, no. 5,
pp- 5281-5292, May 2020.

T. Huynh-The, T. Nguyen, Q. Pham, D. B. Da Costa, G. Kwon,
and D. Kim, “Efficient convolutional networks for robust automatic
modulation classification in OFDM-based wireless systems,” IEEE Syst.
J., vol. 17, no. 1, pp. 964-975, Mar. 2023.

E. Perenda, S. Rajendran, G. Bovet, S. Pollin, and M. Zheleva, “Learn-
ing the unknown: Improving modulation classification performance in
unseen scenarios,” in Proc. INFOCOM IEEE Conf. Comput. Commun.,
Vancouver, BC, Canada, May 2021, pp. 1-10.

S. Huang, Y. Chen, J. He, S. Chang, and Z. Feng, “Channel-robust
automatic modulation classification using spectral quotient cumulants,”
2023, arXiv:2310.08021.

J. He, S. Huang, S. Chang, F. Wang, B.-Z. Shen, and Z. Feng, “Radio
frequency fingerprint identification with hybrid time-varying distor-
tions,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6724-6736,
Feb. 2023.

L. Li, Y. Wang, and L. Ding, “On the bit error probability of OFDM
and FBMC-OQAM systems in Rayleigh and Rician multipath fading
channels,” IEICE Trans. Commun., vol. 102, no. 12, pp. 2276-2285,
Dec. 2019.

T. Yucek and H. Arslan, “OFDM signal identification and transmis-
sion parameter estimation for cognitive radio applications,” in Proc.
IEEE GLOBECOM Global Telecommun. Conf., Washington, DC, USA,
Nov. 2007, pp. 4056—4060.

P. K. Nishad and P. Singh, “Carrier frequency offset estimation in OFDM
systems,” in Proc. IEEE Conf. Inf. Commun. Technol., Thuckalay, India,
Apr. 2013, pp. 885-889.

J. He, S. Huang, Z. Yang, K. Yu, H. Huan, and Z. Feng, “Channel-
agnostic radio frequency fingerprint identification using spectral quotient
constellation errors,” IEEE Trans. Wireless Commun., vol. 23, no. 1,
pp. 158-170, Jan. 2024.

C. Zhao and R. J. Baxley, “Error vector magnitude analysis for OFDM
systems,” in Proc. 14th Asilomar Conf. Signals Syst. Comput., Pacific
Grove, CA, USA, 2006, pp. 1830-1834.

J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua, and A. Lopez,
“A comprehensive survey on support vector machine classifica-
tion: Applications, challenges and trends,” Neurocomputing, vol. 408,
pp. 189-215, Sep. 2020.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proc. 5th Annu. Workshop Comput.
Learn. Theory, Pittsburgh, PA, USA, 1992, pp. 144-152.

C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2,
pp. 415425, Mar. 2002.

Y. Tian, Z. Qi, X. Ju, Y. Shi, and X. Liu, “Nonparallel support vector
machines for pattern classification,” IEEE Trans. Cybern., vol. 44, no. 7,
pp. 1067-1079, Jul. 2014.



HUANG et al.: GENERALIZED AMC FOR OFDM SYSTEMS UNDER UNSEEN SYNTHETIC CHANNELS

[47] A. Abdiansah and R. Wardoyo, “Time complexity analysis of support
vector machines (SVM) in LibSVM,” Int. J. Comput. Appl., vol. 128,
no. 3, pp. 28-34, 2015.

[48] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27,
Apr. 2011.

Sai Huang (Senior Member, IEEE) is currently
with the Department of Information and Commu-
nication Engineering, Beijing University of Posts
and Telecommunications, as an Associate Professor,
and serves as the Academic Secretary of the Key
Laboratory of Universal Wireless Communications,
Ministry of Education, China. He is a reviewer
of international journals, such as IEEE TRANS-
ACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE WIRELESS COMMUNICATIONS LETTERS,
and IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NET-
WORKING, and international conferences, such as IEEE ICC and IEEE
GLOBECOM. His research interests include machine learning-assisted intelli-
gent signal processing, statistical spectrum sensing and analysis, fast detection
and depth recognition of universal wireless signals, millimeter wave signal
processing, and cognitive radio networks.

ik

Jiashuo He (Graduate Student Member, IEEE)
received the M.S. degree in communication engi-
neering from Xidian University, Xi’an, China,
in 2021. He is currently pursuing the Ph.D. degree
with Beijing University of Posts and Telecommu-
nications, Beijing, China. His current research inter-
ests include signal processing, automatic modulation
classification, and radio frequency fingerprint iden-
tification.

Zheng Yang received the B.S. degree from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2020, where he is currently
pursuing the Ph.D. degree. His current research
interests include automatic modulation classification
and security in 5G/B5G.

11941

Yuting Chen received the B.S. degree from North
China University of Technology, Beijing, China,
in 2022. She is currently pursuing the M.S. degree
with Beijing University of Posts and Telecom-
munications, Beijing. Her current research inter-
ests include signal processing, automatic modulation
classification, deep learning, and radio frequency
fingerprint identification.

Shuo Chang (Member, IEEE) received the
B.S. degree in communication engineering from
Shenyang Jianzhu University, Shenyang, China,
in 2015, and the Ph.D. degree from Beijing Uni-
versity of Posts and Telecommunications (BUPT),
Beijing, China, in 2020. He is currently a
Post-Doctoral Researcher with BUPT. He is also a
member of the Key Laboratory of Universal Wireless
Communications, Ministry of Education, China. His
research interests include signal processing, visual
object tracking, visual detection, and sensor fusion.

Yifan Zhang received the B.S., M.S., and Ph.D.
degrees from Beijing University of Posts and
Telecommunications (BUPT). He is currently a
Researcher with the School of Information and Com-
munication Engineering, BUPT. His current research
interests include signal modulation classification,
signal processing, cognitive radio network imple-
mentation, and optimization algorithms in wireless
networks.

Zhiyong Feng (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in information and
communication engineering from Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China. She is currently a Full Professor. She is
also the Director of the Key Laboratory of Univer-
sal Wireless Communications, Ministry of Educa-
tion. Her research interests include wireless network
architecture design and radio resource management
in Sth-generation mobile networks (5G), spectrum
sensing and dynamic spectrum management in cog-
nitive wireless networks, universal signal detection and identification, and
network information theory. She is a Technical Advisor of NGMN; an editor
of IET Communications and KSII Transactions on Internet and Information
Systems; and a reviewer of IEEE TRANSACTIONS ON WIRELESS COMMUNI-
CATIONS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. She is active in
ITU-R, IEEE, ETSI, and CCSA standards.



