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Analysis of IRS-Assisted Downlink Wireless
Networks Over Generalized Fading

Yunli Li and Young Jin Chun , Member, IEEE

Abstract— Intelligent Reflecting Surface (IRS) is a communica-
tion technology that can control the phase shift and reflection of
the incoming signal towards the destination, achieving high spec-
tral efficiency at a low hardware cost. However, the IRS-assisted
wireless networks pose fundamental challenges on statistical
channel modeling. Communication assisted by the IRS takes
the form of a mixture channel, composed of a direct link and
cascaded link aided by the IRS, which is often intractable to
analyze, requires advanced functions, such as Meijer’s G or
Fox’s H functions, to describe, and only applies to a certain
operating frequency or network environment. These limitations
motivate the development of a tractable and highly accurate
channel model for IRS-assisted wireless networks, but versatile
enough to be applied to any frequency band and communication
scenario given proper parameterization. To this end, we utilize
the mixture Gamma distributions to model IRS-assisted commu-
nication and derive distributions of the mixture channel for both
multiplicability and quadratic form. The system performance of
the IRS-assisted wireless network is analyzed using stochastic
geometry, and the approximation accuracy of the proposed chan-
nel model is validated through extensive numerical simulation.
These results indicate that the mixture Gamma distribution-based
approximation can greatly facilitate the modeling and analysis
in IRS-assisted networks with high accuracy.

Index Terms— Intelligent reflecting surface, mixture Gamma
distribution, cascaded channel, mixture channel, generalized
fading, stochastic geometry.

I. INTRODUCTION

S IXTH-GENERATION (6G) wireless communication sys-
tems, such as Terahertz (THz) systems, are expected to

provide transformative solutions for a fully connected world
by offering high capacity, massive connectivity, high reliability
and low latency. However, as 6G systems move to higher
frequencies, such requirements present significant challenges
due to rapid attenuation and weak penetration [1]. One
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promising approach that has recently emerged is the concept
of an intelligent communication environment (ICE), which
introduces controllability to the wireless propagation medium
through controlled reflection, absorption, and tuning [2].

One popular and practical technology to achieve ICE is
the intelligent reflecting surface (IRS), also known as recon-
figurable intelligent surface (RIS) or large-scale intelligent
surface (LIS) [3], [4], [5]. IRS is composed of numerous
passive reflecting elements on a planar surface and a control
module that regulates the phase shift and radiation direction
of each reflecting element. In contrast to conventional RF
chains, the passive reflecting elements merely reflect signals
without additional active processing, facilitating easy and cost-
efficient deployment. Furthermore, the IRS often operates in
noise-free mode without requiring additional self-interference
cancellation compared to full-duplex relays. Therefore, IRS is
a revolutionary technology that can achieve high spectral- and
energy-efficient communications at a low cost.

A. Motivation

IRS-assisted transmission constructs a mixed channel com-
posed of a direct link between the Base Station (BS) and User
Equipment (UE), as well as a cascaded link across the BS,
IRS, and UE. However, existing research faces challenges in
statistically characterizing cascaded and mixed channels in
IRS-assisted networks due to the involvement of advanced
functions like Fox’s H or Meijer’s G functions, even for the
simplest double-Rayleigh fading.

Furthermore, future wireless systems will operate in diverse
environments, which often result in propagation characteristics
that differ significantly from conventional Rayleigh fading [6].
These characteristics include the clustering of scattered mul-
tipath contributions, shadowing caused by obstacles or human
movement, and random fluctuations of received signals. These
phenomena can significantly degrade the end-to-end network
performance as described in [7]. As such, it is essential to
extend the analysis of IRS-assisted wireless communication
systems to generalized fading.

Therefore, analyzing the performance of IRS-assisted wire-
less networks becomes challenging. Nevertheless, some stud-
ies have opted for moment matching methods to trade accuracy
for tractability in channel modeling. Consequently, for evalu-
ating the performance metrics of IRS-assisted systems, it is
critical to propose a tractable approximation model for cas-
caded link and mixture channel with high accuracy, especially
when each link follows a generalized fading distribution.
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B. Related Work

Due to the growing interest in IRS technology, a consider-
able amount of research has been conducted in recent decades
to explore design issues of IRS-aided systems. As pointed
out in [8], most of them focused on link-level design. For
instance, [9] considered a quasi-static phase shift design on
IRS, where the mixture channel was composed of a Rayleigh
faded direct link from the BS to UE and a double Rician faded
IRS-assisted link. In [10], the joint design of beamformers
and artificial noise at BS and phase shift matrix at the IRS
was investigated for physical security. On the other hand, for
IRS-aided cell-free networks, a fully decentralized cooperative
beamforming design framework was proposed to increase the
system sum-rate with low cost in [11].

Despite a good guidance for beamforming design of
transmitter and IRS, the design work fails to perform the
system-level analysis of a large-scale network. Existing studies
on IRS-aided network performance have been conducted with
moment matching approximated channel models, where each
link followed simple fading [12], [13], [14]. For example,
in [12], the first term of a Laguerre series expansion was
utilized to approximate the double Rayleigh fading, and the
end-to-end performance of IRS-assisted communication was
compared with amplify-and-forward relay. Later, [13] consid-
ered double Nakagami-m with phase shift distribution, and
derived the signal-to-noise ratio (SNR)-based performance of
IRS-assisted communication in closed form by using Central
Limit Theorem (CLT), while the co-channel interference was
ignored. Furthermore, the system performance of IRS-assisted
multi-cell networks was analyzed in [14], by approximating
the double Rayleigh fading as a Complex Normal (CN)
distribution through the CLT. Specifically, the interference
was considered, but it was approximated by an exponential
distribution and the underlying fading model was the Rayleigh
distribution.

Moreover, to conduct performance analysis, extensive
research has been conducted on the statistical characteristics
of cascaded and mixture channels regarding relay communi-
cations, which can be categorized into two distinct groups.
First, relay-assisted network has been analyzed on asymmet-
ric cascaded channels, including mixed Rayleigh and Rician
fading [15], mixed Nakagami-m and Rician fading [16], mixed
η− µ and κ− µ fading channels [17]. Second, for symmetric
channels, various approximation schemes have been proposed,
including distribution of N generalized-K faded random vari-
ables [18], N*Nakagami distribution [19], sum distribution of
non-identically squared Nakagami-m random variables [20],
sum distribution of generalized Gamma random variables [21],
the product of Fisher-Snedecor F-distributed channels [22],
and product distribution of κ-µ random variables [23]. In
[24], the authors analyzed the dual-hop relay link with gen-
eralized fading channels by leveraging properties of advanced
functions.

C. Contributions

In this paper, we address these challenges by utilizing
the mixture Gamma distribution-based approximation. We
introduce an accurate approximation of the fading distribution

across mixed and cascaded channels of IRS-assisted wireless
networks. The proposed approximation method is highly accu-
rate, achieves tractable analysis, and is extremely versatile,
which can be applied to various scenarios with majority of
the known fading, such as Rayleigh, Rician, Nakagami-m,
κ - µ, and κ - µ shadowed fading. We further evaluate the
end-to-end performance metrics using a stochastic geometry-
based framework. The main contributions of this work are
summarized below.

1) We introduce a general channel modeling method for
multiple types of channels in IRS-assisted networks by
proving the multiplicability and quadratic form of the
mixture Gamma distribution. We approximate the direct
channel, cascaded channel, and mixed channel using
mixture Gamma distributions with an approximation
error of less than 10−5. This mixture Gamma channel
modeling method offers high flexibility, and works for
arbitrary number of links.

2) We derive the distribution of the conditional received
signal power, and the Laplace transform of the aggre-
gated interference using stochastic geometry under two
operation modes. In addition, we employ a unified
analytical framework for the IRS-assisted network per-
formance evaluation based on the proposed mixture
Gamma distribution-based channel modeling method,
where interested performance metrics can be expressed
as functions of signal-to-interference-plus-noise ratio
(SINR).

3) We present numerical simulation, which provides
strong supports for the proposed channel approximation
method. It is worth noting that the heavy-tailed probabil-
ity density functions (PDFs) and the coherence among
neighboring elements of the IRS make the moment
matching-based methods inadequate for approximating
the channel gain, especially for cascaded channels, even
when a large-sized IRS is considered. In contrast, our
proposed method of mixture Gamma approximation
exhibits stable accuracy across various wireless systems,
irrespective of the sample size or PDF.

D. Organizations

The remaining paper is organized as below. In Section II,
we introduce the system model, association policy, and chan-
nel models. Section III introduces the necessity and sufficiency
of mixture Gamma approximation for the channel modeling of
individual links, and proves the multiplicability and quadratic
form of mixture Gamma distributions for the channel modeling
of the cascaded and mixture channels. In Section IV, we derive
the channel power statistics and Laplace transform of the
aggregated interference power under two operation modes
and introduce a unified stochastic geometry-based system
performance analysis framework for the IRS-assisted network.
Simulations are provided in Section V to verify our theoretical
analysis. The conclusion remarks are given in Section VI.

II. SYSTEM MODEL

We consider an IRS-assisted multi-cell wireless net-
work, where the IRSs are deployed to assist the downlink
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Fig. 1. Downlink of an IRS-assisted multi-cell wireless network.

transmission as shown in Fig. 1. The locations of BSs, IRSs,
and UEs are modeled by independent two-dimensional (2D)
homogeneous Poisson Point Processes (HPPPs), denoted as
ΛB with density λB, ΛI with density λI, and ΛU with density
λU, respectively. Without loss of generality, we assume that
a typical UE, denoted as UE0, is located at the origin, and
each BS has an infinitely backlogged queue. The channel is
assumed to be frequency-flat and constant while the channel
may vary over different frequency bands or time slots [14].
To facilitate the analysis, we employ orthogonal multiple
access within each cell, implying no intra-cell interference.
The common notations used in this paper are summarized in
Table I.

A. BS and IRS Association Policy

We adopt a general association model for BS where each UE
connects to the BS that provides strongest long-term received
signal power without considering small-scale fading, denoted
as BS0, which is equivalent to connecting with the nearest BS
[7]. As such, the PDF of the distance between BS0 and UE0,
denoted as dBU, could be derived from the void probability of
a 2D HPPP. The PDF of dBU is given by [25].

fdBU(d) = 2πλBde−λBπd2
. (1)

For the IRS association policy, we assume that UE0 asso-
ciates with BS0 through at most one IRS. Additionally, when
the link distances between nodes are too large, the communica-
tions suffer severe productive propagation path loss. Therefore,
we define a service area for each IRS as a circle with radius
D1.1 An interference area for each IRS is further defined,
within which the IRS randomly scatters received signals to the
located UEs. The radius of this interference area is denoted as
D2 [14]. Different from [14], there are no restrictions on the
relationship between D1 and D2.

Furthermore, it has been indicated in [26], the optimal
deployment location for a single associated IRS is in the vicin-
ity of either UE0 or BS0. Nevertheless, as the deployment of a

1In light of the extended transmission distance, the channel enhancement
over phase alignment is considered insignificant and cannot offset the consid-
erable productive path loss when the link distance of IRS→UE exceeds D1.
Moreover, the value of D1 can be pragmatically determined to ensure that
each IRS caters to a finite number of UEs within its immediate vicinity [14].

TABLE I
COMMON NOTATIONS

centralized large-scale IRS around BS0 is usually challenging,
we consider distributed deployment for IRSs and adopt the
nearest association policy based on the link distance between
the IRS and UE0: If UE0 is located within the service area
of any IRS, then UE0 associates with its nearest IRS, and
the connected IRS is denoted as IRS0.2 Based on the distance
between IRSs and UE0, ΛI is thinned into three daughter point
processes:

1) The serving IRS, defined as ΛI,S ≜ {IRS0|dIU,0 ≤ D1},
where dIU,0 represents the distance between UE0 and its
nearest IRS.

2) The interfering IRSs, defined as ΛI,F ≜ {IRSj |dIU,j ≤
D2} \ {ΛI,S}, where dIU,j represents the link distance
of IRSj → UE0, j ∈ ΛI.

3) The noising IRSs, defined as ΛI,N ≜ ΛI \{ΛI,S∪ΛI,F}.
As such, this IRS association policy contains two operation

modes:

2The centralized large-scale IRS should be deployed in close proximity
to the BS to serve more UEs, yet how to find a suitable location for such
an IRS is usually challenging. In contrast, distributed IRSs feature smaller
surface areas and offer higher flexibility in terms of positioning near either
BS or UE [8]. Additionally, the performance exhibits symmetry whether the
IRS is deployed in the vicinity of the BS or UE.
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• Mode 1. If ΛI,S is not empty, i.e., dIU,0 ≤ D1, UE0

associates to its nearest IRS.
• Mode 2. If ΛI,S is empty, i.e., dIU,0 > D1, UE0 does

not establish a connection with any IRS.
In both Mode 1 and Mode 2, if UE0 is located within the
interference areas of any IRS, it receives randomly scattered
signals from the interfering IRSs, thus contributing to the
interference. Otherwise, if dIU,0 > D2, the effects of scattering
from all IRSs can be ignored or approximated as Additive
White Gaussian Noise (AWGN).

As illustrated in Fig. 1, for Mode 1, if there is one IRS
associated with UE0, there are two types of links between
UE0 and BS0, including the direct link, i.e., BS0 → UE0, and
the cascaded link, i.e., BS0 → IRS0 → UE0. According to the
void probability of the 2D HPPP, the PDF of the inter-node
distance across IRS0 and UE0, denoted as dIU, is given by [25]

fdIU(d) = 2πλIde−λIπd2
. (2)

To ensure tractability of the analysis, similar to [14],
we assume that the distance from BS0 to IRSj is identical
with that from BS0 to UE0, i.e., dBI,j ≈ dBU, where dBI,j

denotes the distance between BS0 and IRSj , j ∈ ΛI.

B. Channel Model

Assume that all BSs and UEs are equipped with a single
antenna, and each IRS consists of N reflecting elements. Let
hBU =

√
ζBUgBU represent the channel from BS to UE,

where ζBU ≜ ϵd−αBU
BU indicates the BS→UE link path loss

with ϵ representing the reference channel power gain at a
distance of 1 m, dBU denoting the BS→UE link distance, and
αBU being the corresponding path loss exponent. Moreover,
gBU represents the small-scale fading channel. Similarly, the
BS→IRS and IRS→UE channels, denoted as hBI ∈ CN×1

and hH
IU ∈ C1×N , respectively, can be modeled as

hBI =
√

ζBIgBI, hH
IU =

√
ζIUgH

IU, (3)

where ζBI ≜ ϵd−αBI
BI and ζIU ≜ ϵd−αIU

IU represent the BS→IRS
and IRS→UE link path loss, respectively, with dBI (dIU) being
the link distance and αBI(αIU) being the path loss exponent.3

Moreover, gBI (gH
IU) indicates the corresponding small-scale

fading channel, respectively.
For the passive IRS, let Φ ≜ diag(ejϕ1 , · · · , ejϕN ) ∈

CN×N denote the reflection matrix, where ϕn is the phase shift
at each element n ∈ N ≜ {1, · · · , N}. Then, the cascaded
BS→IRS→UE channel is given by4

hBIU = hH
IUΦhBI. (4)

For the connected IRS0, its phase shift is adjusted to align
with the direct link based on the full CSI obtained, which is

3For ease of notation, we simply use α to represent the path loss exponent
in the sequel for each individual link without causing confusion.

4Unlike conventional wireless networks, where the transmission system
design can only adapt to the dynamic propagation environment without
controllability, IRS offers a novel and efficient approach to combat the channel
impairments between different transmission paths [27]. Note that the channel
for IRS-aided communication is a mixture of the direct link (without IRS)
and the cascaded link aided by IRS [28], [29].

given by [8]

ϕ∗n = mod[∠hBU − (∠[hH
IU]n + ∠[hBI]n), 2π], ∀n. (5)

However, for the interfering IRSs, phase shift is not specifi-
cally designed.

The received SINR is defined as

SINR =
S

IF + δ2
, (6)

where S, IF, δ2 represent the received signal power, aggregated
interference power, and noise power, respectively. For the
given network model, the received signal at UE0, denoted as y,
can be generated in four different forms. First, when ΛI,S and
ΛI,F are empty, the received signal and interference only come
from the direct links, and we denote this case as y(1). Second,
when ΛI,S is empty and ΛI,F is not empty, the received signal
comes from the direct link with interference from both direct
links and ΛI,F, and we denote this case as y(2). Third, when
both ΛI,S and ΛI,F are not empty, the received signal comes
from both the direct link and IRS0-aided link with interference
from both direct links and ΛI,F, and we denote this case as
y(3). Fourth, when all the direct links are blocked, the signal
can only be transmitted to UE0 through IRS0 with interference
from ΛI,F, and we denote this case as y(4).

For the above four cases, we summarize the received signal
envelope for each case together with the corresponding signal
power S and interference power IF as follows:

y(1) = h
(0)
BUx +

∑
m∈ΛB\{0}

h
(m)
BU x

′
+ n0,

⇒ S =
∣∣∣h(0)

BU

∣∣∣2 , IF =
∑

m∈ΛB\{0}

∣∣∣h(m)
BU

∣∣∣2 , (7a)

y(2) = h
(0)
BUx +

∑
m∈ΛB\{0}

h
(m)
BU x

′
+
∑

j∈ΛI,F

h(m)
BIU,jx

′

+ n0,

⇒ S =
∣∣∣h(0)

BU

∣∣∣2 ,

IF =
∑

m∈ΛB\{0}

∣∣∣h(m)
BU

∣∣∣2 +
∑

j∈ΛI,F

∣∣∣h(m)
BIU,j

∣∣∣2
 ,

(7b)

y(3) = (h(0)
BU + h(0)

BIU,0)x

+
∑

m∈ΛB\{0}

h
(m)
BU x

′
+
∑

j∈ΛI,F

h(m)
BIU,jx

′

+ n0,

⇒ S =
∣∣∣h(0)

BU + h(0)
BIU,0

∣∣∣2 ,

IF =
∑

m∈ΛB\{0}

∣∣∣h(m)
BU

∣∣∣2 +
∑

j∈ΛI,F

∣∣∣h(m)
BIU,j

∣∣∣2
 ,

(7c)

y(4) = h(0)
BIU,0x +

∑
m∈ΛB\{0}

∑
j∈ΛI,F

h(m)
BIU,jx

′
+ n0,

⇒ S =
∣∣∣h(0)

BIU,0

∣∣∣2 , IF =
∑

m∈ΛB\{0}

∑
j∈ΛI,F

∣∣∣h(m)
BIU,j

∣∣∣2 ,

(7d)
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where x is the transmitted signal with unit transmit power
PT, x′ is the interference signal, n0 is the received noise with
power δ2, h

(m)
BU is the channel of BSm → UE0, h(m)

BIU,j is the
channel of BSm → IRSj → UE0, and its amplitude is given
by
∣∣∣h(m)

BIU,j

∣∣∣ =∑N
n=1 |h

(m)
IU,j,n||h

(m)
BI,j,n|.

III. MIXTURE GAMMA APPROXIMATION
OF FADING CHANNELS

As we have mentioned in Section I-B, the current studies
on modeling cascaded and mixture channels primarily rely
on advanced functions or moment matching methods, which
involve a tradeoff between accuracy and tractability. Therefore,
to model the cascaded channel BS0 → IRS0 → UE0 and
combined channel of the direct link BS0 → UE0 and cascaded
link, in this section, we derive two important properties of
mixture Gamma distribution. Before that, let us first give a
review of existing results on mixture Gamma distribution-
based approximation.

A. Summary of Mixture Gamma Approximation

1) Necessity: In [30], it was proved that an arbitrary
function f(x) with a positive domain x ∈ (0,∞) and
limx→+∞ f(x) → 0, can be accurately approximated as a
weighted sum of Gamma distributions as written in (8). Given
that f(x) is a valid PDF, we refer to (8) as the mixture
Gamma distribution with parameter tuple (εi, βi, ξi), denoted
as f(x) ∼MG (εi, βi, ξi), and

f(x) =
∞∑

i=1

ωifi(x) =
∞∑

i=1

εix
βi−1e−ξix

≃
I∑

i=1

εix
βi−1e−ξix, (8)

where fi(x) = ξ
βi
i xβi−1e−ξix

Γ(βi)
is the PDF of a Gamma distribu-

tion with parameter tuple (βi, ξi), Γ(·) is the Gamma function,
ωi = εiΓ(βi)ξ

−βi

i is the weight of the i-th term, I is the
truncation limit that determines the approximation accuracy,
and

∫∞
0

f(x)dx = 1 with f(x) ≥ 0 and
∑∞

i=1 ωi = 1.
2) Sufficiency: In [30], the existence of a mixture Gamma

function Su (x) that uniformly converges to an arbitrary func-
tion f(x) was proved as written below

lim
u→+∞

Su(x) = f(x) uniformly for 0 < x < ∞,

where Su(x) =
∞∑

k=0

1
u

f

(
k

u

)
Gamma (k + 1, u)

=
∞∑

k=0

1
u

f

(
k

u

)
· uk+1xk

k!
e−ux, (9)

and u is an arbitrarily large number that determines the
approximation accuracy. The equality in (9) indicates that an
arbitrary function f(x) can be accurately approximated by
a mixture of Gamma distributions Gamma (k + 1, u) with
parameters u, k + 1 and weight 1

uf
(

k
u

)
.

Note that (8) represents the necessity condition to construct
an arbitrary function from a mixture of Gamma distributions,

whereas (9) corresponds to the sufficiency condition that maps
the weight ωi and fi(x). We can find a direct relation between
the arbitrary distribution f(x) and tuple (εi, βi, ξi) by using (8)
and (9) as described below

(εi, βi, ξi) =
(

ui−1

Γ(i)
· f
(

i− 1
u

)
, i, u

)
. (10)

As displayed in [31], the channel gain of a single link with
majority of the known fading models can be approximated
by the mixture Gamma distribution. Particularly, Rayleigh
and Nakagami-m fading can be represented by a mixture
Gamma distribution with a single term. For an arbitrary
fading model, whose PDF can be approximated by a mixture
Gamma distribution, I is no need to be larger than 20 with
approximation error less than 10−5 [31].

Moreover, the statistics of mixture Gamma distribution,
including the CDF, moments, and Laplace transform of a
mixture Gamma distributed random variable, are derived as
follows:

F (x) =
I∑

i=1

εiξ
−βiγ(βi, ξix),

E
[
xl
]

=
I∑

i=1

εi
Γ(βi + l)

ξβi+l
i

,

L(s) =
I∑

i=1

εi
Γ(βi)

(ξi + s)βi
, (11)

where γ (·, ·) is the lower incomplete Gamma function.

B. Properties of Mixture Gamma Distribution

The following two theorems present the distribution of
multiplicability and quadratic form for the mixture Gamma
distributed channels. These theorems can be applied to derive
the distribution of channel gain for cascaded and mixture
channels in IRS-assisted communication.

Theorem 1 (Multiplicability): The distribution of the prod-
uct of two independent, mixture Gamma distributed random
variables X1 and X2, Y = X1X2, can be represented by a
mixture Gamma distribution with parameters

(
εm, βm, ξm

)
as

described below

Given fX1(x1) =
M1∑

m1=1

ωm1 ·Gamma (βm1 , ξm1)

and fX2(x2) =
M2∑

m2=1

ωm2 ·Gamma (βm2 , ξm2) ,

Y has fY(y) =
∑
Cm

εm · yβm−1 · e−y·ξm ,

(12)

where the summation range Cm and parameters are defined
as

Cm = {1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2, 1 ≤ i ≤ I},

βm = βm1 , ξm =
ξm1ξm2

ti
,
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εm =

 2∏
j=1

ωmj
ξ

βm1
mj

Γ
(
βmj

)
 ·ϖit

−βm1+βm2−1
i , (13)

ti is the i-th root of the Laguerre polynomial Lp(t), and
ϖi is the i-th weight of the Gaussian-Laguerre quadra-
ture

∫∞
0

e−tf(t)dt ≈
∑I

i=1 ϖif (ti) defined as ϖi =
ti

(p+1)2Lp+1(ti)
2 [32].

Proof: See Appendix A. □
Specifically, given two independent Gamma distributed ran-

dom variables X1 and X2, the product distribution of Y =
X1X2 can be further simplified by substituting M1 = M2 = 1,
ωm1 = ωm2 = 1 in (12), as described in the following lemma.

Lemma 1: The distribution of the product of two indepen-
dent Gamma distributed random variables X1 and X2 is given
by

fY(y) =
I∑

i=1

εm · yβm−1 · e−y·ξm , (14)

where X1 ∼ Gamma (βm1 , ξm1), X2 ∼ Gamma (βm2 , ξm2),
and the parameter tuple

(
εm, βm, ξm

)
is defined as follows:

βm = βm1 , ξm =
ξm1ξm2

ti
,

εm =

 2∏
j=1

ξ
βm1
mj

Γ
(
βmj

)
 ·ϖit

−βm1+βm2−1
i . (15)

Theorem 2 (Quadratic form): Given two independent, mix-
ture Gamma distributed random variables X2 and Y 2, the
quadratic form S = (X + Y )2 follows a mixture Gamma
distribution with parameter tuple

(
εq, βq, ξq

)
fS(s) =

∑
Cq

(
εq1

e−s·ξq1 − εq2
e−s·ξq2

)
· sβq−1,

where X2 ∼MG (εi, βi, ξi) , and Y 2 ∼MG (εj , βj , ξj) ,

(16)

the summation range Cq and parameters are given by

Cq = {1 ≤ i ≤ I, 1 ≤ j ≤ J, 0 ≤ k1 ≤ 2βj − 1,

0 ≤ k2 ≤ 2βi − 1 + k1, 0 ≤ k3 ≤ ∞}, (17)
βq = βi + βj + k3, ξq1

= ξj , ξq2
= ξi,

εq1
= (−1)k2χ · ξk2+2k3+1

j , εq2
= χ · ξk2+2k3+1

i , (18)

and χ =
εiεj

(
2βj−1

k1

)(
2βi−1+k1

k2

)
(−1)k1ξ

2βi+k1−k2−1
j Γ(

k2+1
2 )

Γ(
k2+1

2 +k3+1)(ξi+ξj)2βi+k1+k3
.

Proof: See Appendix B. □
Although the mixture Gamma distributions in (12) and (16)

involve multiple summations, it is worth noting that these
functions exhibit rapid convergence, primarily due to the swift
convergence of the weight terms [31]. As depicted in Fig. 2(b),
we validate that the mixture Gamma distributions achieve an
approximation error of less than 10−5 with only 17 terms.5

Remark 1: As the product of two independent mixture
Gamma random variables follows a mixture Gamma distri-
bution, Theorem 1 can be easily extended to the product of K

5The benchmark of the Gamma distribution in MATLAB has an error of
approximately 10−6.

independent mixture Gamma distributed random variables. We
introduce a heuristic algorithm in Appendix E to evaluate the
distribution of the product of K independent mixture Gamma
random variables. Similarly, the distribution of the quadratic
form can also be extended to K independent mixture Gamma
random variables. Hence, the analytical framework derived in
this work is applicable to network environments where multiple
IRSs are involved in association.

Some mixture Gamma approximations of single links and
cascaded links are provided in Table II for easy reference,
where the notations align with [23] and [31].

C. Effect of Phase Regulation

In this work, we consider the perfect continuous phase reg-
ulation of the associated IRS to achieve a concise expression.
Subsequently, we delve into the discussion about the impact of
phase regulation on the proposed channel modeling method.

For the cascaded channel, the modeling of channel gain
remains unaffected by imperfect phase estimation or phase
shift quantization. This is because the distribution of the
received signal power in the cascaded channel depends solely
on the product of the amplitudes of individual links.

However, the situation is different for the mixture channel,
where the imperfect alignment of phases from different trans-
mission paths indeed affects the received signal distribution.
Nevertheless, if we can model the scaling of the received signal
power caused by the phase difference between the direct link
and IRS-aided cascaded link as a mixture Gamma distribution,
it becomes feasible to similarly model the channel gain of
the mixture channel by utilizing the proved multiplicability
and quadratic form for mixture Gamma distribution, which
is beyond the scope of this work. Moreover, the influence of
phase shift quantization can be represented as an asymptotic

scaling factor, denoted as η(b) =
[

2b

π sin
(

π
2b

)]2
, where b

represents the number of bits used for quantizing the phase
shift. As a result, the influence of phase shift quantization can
be incorporated into the mixture Gamma distribution of the
received signal power by scaling the distribution in Theorem 2,
as shown in [33].

IV. PERFORMANCE ANALYSIS

With Theorem 1 and Theorem 2 provided in the previous
section, in this section, we further illustrate the channel power
statistics of the channels in IRS-assisted network. Moreover,
the Laplace transform of the aggregated interference is derived,
and a stochastic geometry-based analysis framework is intro-
duced to evaluate various performance metrics.

A. Channel Power Statistics

For performance analysis, we assume that the transmit
power is unit, and the reflecting elements on the same IRS
experience identical small-scale fading due to high coher-
ence. Besides, the amplitude gBU, |gBI,n| and |gIU,n| follow
Nakagami-m distributions with parameters mBU, mBI and
mIU, respectively. Let us denote the power terms as follows:

HBU ≜ |hBU|2 = ϵd−α
BU|gBU|2, (19)
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TABLE II
MIXTURE GAMMA APPROXIMATION OF CHANNEL GAIN FOR VARIOUS FADING DISTRIBUTIONS

HBIU = |hBIU|2 = ϵ2d−α
BI d−α

IU

∣∣∣∣∣
N∑

n=1

|gIU,n||gBI,n|

∣∣∣∣∣
2

, (20)

HS ≜ ||hBU|+ |hBIU||2 . (21)

1) Single Path: As gBU, |gBI,n| and |gIU,n| follow
Nakagami-m distributions, the power term HBU follows a
Gamma distribution, whereas the statistics of HBIU is charac-
terized by the mixture Gamma distribution and the parameter
tuples are described in the following lemmas.

Lemma 2: HBU follows the Gamma distribution, which can
be modeled as a mixture Gamma distribution with I = 1 and

(εBU, βBU, ξBU) =
(

(dα
BUmBU)mBU

ϵmBUΓ(mBU)
, mBU,

mBUdα
BU

ϵ

)
.

(22)
Lemma 3: By Theorem 1, HBIU follows the mixture Gamma

distribution as (12) with parameters given by

εBIU,i =
(mBImIU)mBIϖit

mIU−mBI−1
i

Γ(mBI)Γ(mIU)

( ν

N2

)mBI

,

βBIU,i = mBI, ξBIU,i =
mBImIUν

tiN2
, (23)

where ν = dα
BId

α
IU

ϵ2 , and I = 17 achieves sufficient approxima-
tion error of less than 10−5.

2) Mixture Path: In the following Lemma, we use Theo-
rem 2 to characterize the distribution of the combined channel,
given that the channel gain of the individual paths follows a
mixture Gamma distribution.

Lemma 4: Given that the channel gain of the direct link
and cascaded link follows mixture Gamma distributions, the
channel gain of the combined channel, HS, follows a mixture
Gamma distribution as (16) with parameters given by

Cq = {1 ≤ i ≤ I, j = 1, 0 ≤ k1 ≤ 2mBU − 1,

0 ≤ k2 ≤ 2mBI − 1 + k1, 0 ≤ k3 ≤ ∞},
βq = βBIU,i + βBU + k3, ξq1

= ξBU, ξq2
= ξBIU,i,

εq1
= (−1)k2χ · ξk2+2k3+1

BU , εq2
= χ · ξk2+2k3+1

BIU,i ,

χ = ρ
εBIU,iεBUξ

2βBIU,i+k1−k2−1
BU

(ξBIU,i + ξBU)2βBIU,i+k1+k3
,

where ρ =

(
2βBU−1

k1

)(
2βBIU,i−1+k1

k2

)
(−1)k1Γ(

k2+1
2 )

Γ(
k2+1

2 +k3+1)
.

B. Laplace Transform of the Aggregated Interference Power

It is a well-known fact that a tractable closed-form expres-
sion of the aggregated interference only exists for deterministic
channel or Rayleigh fading with PPP adopted. If the consid-
ered fading is beyond Rayleigh, the aggregated interference
follows a stable distribution with four parameters, namely, sta-
bility, skew, drift, and dispersion [34]. Despite the availability
of closed-form distribution expressed by Fox’s H functions,
the analysis of system performance becomes intractable. Thus,
we use the Laplace transform of the aggregated interference
to characterize the distribution, which is widely adopted in
stochastic geometry [7].

The interference power received at UE0 from direct
links and cascaded links can be given by IF,1 and IF,2,
respectively

IF,1 =
∑

m∈ΛB\{0}

H
(m)
BU ,

IF,2 =
∑

m∈ΛB\{0}

∑
j∈ΛI,F

H
(m)
BIU,j , (24)

where H
(m)
BU is the channel gain of BSm → UE0 link, and

H
(m)
BIU,j is the channel gain of BSm → IRSj → UE0 link.
Laplace transform of the aggregated interference power can

be expressed as

LIF,1 |d(0)
BU

= E[e−sIF,1 ]|
d
(0)
BU

= EΛB\{0}
{
e−sHBU

} ∣∣∣
d
(0)
BU

,

LIF,2 |d(0)
BU,dIU,0

= EΛB\{0},ΛI,F

{
e−sHBIU

} ∣∣∣
d
(0)
BU,dIU,0

, (25)

where d
(m)
BU is the distance from BSm to UE0, and dIU,j is

the distance from IRSj to UE0. The full expressions of (25)
are given in (46), (49), shown at the bottom of page 14, and
derived in Appendix C.

If ΛI,F is empty, the aggregated interference and its corre-
sponding Laplace transform are given by

IF = IF,1, LIF |d(0)
BU

= E[e−sIF,1 ]|
d
(0)
BU

= LIF,1 |d(0)
BU

. (26)
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If ΛI,F is not empty, the aggregated interference and its
corresponding Laplace transform are given by

IF = IF,1 + IF,2, LIF |d(0)
BU,dIU,0

= LIF,1 |d(0)
BU
· LIF,2 |d(0)

BU,dIU,0
.

(27)

The CDF of the aggregated interference power can be
numerically obtained by taking the inverse Laplace transform
of LI|

d(0)
BU,dIU,0

(s) as

FIF|
d
(0)
BU,dIU,0

(x) = L−1

[
1
s
LIF|

d
(0)
BU,dIU,0

(s)
]

(x), (28)

and MATLAB offers software library to evaluate the
operation [14].

C. Analytical Framework

We adopt an analytical framework to assess the system
performance metrics by using stochastic geometry. The orig-
inal idea was proposed by Hamdi in [35] for Nakagami-m
fading, later in [6] for κ - µ and η - µ fading, and then
in [7] for κ - µ shadowed fading. We further extend this
framework to IRS-assisted networks with mixture Gamma
distributed channels, where the performance metrics of interest
are evaluated and represented as functions of SINR, g(SINR),
including the spectral efficiency, moments of SINR, and outage
probability.

Theorem 3: For an IRS-assisted network over general-
ized fading, whose received signal can be modeled as a
mixture Gamma distribution with parameter tuple (εi, βi, ξi),
E[g(SINR)] is given by

E[g(SINR)] =
∫ ∞

0

g(SINR)fS(s)ds

=
I∑

i=1

εiΓ(βi)ξi
−βi

∫ ∞

0

gβi
(z)
LIF(ξiz)
eδ2ξiz

dz,

(29)

where gβi
(z) is defined as

gβi
(z) =

1
Γ(βi)

dβi

dzβi
zβi−1g(z). (30)

Proof: See Appendix D. □
In the following, we apply Theorem 3 to evaluate several

system performance metrics of interest by invoking their SINR
functions.

1) Spectral Efficiency: Spectral efficiency is given by [36]

R = E[ln(1 + SINR)]. (31)

By substituting g(z) = ln(1 + z) and gβi(z) to (29) [35]

gβi(z) =
1

Γ(βi)
dβi

dzβi
zβi−1g(z) =

1
z

(
1− 1

(1 + z)βi

)
,

(32)

the spectral efficiency of an IRS-assisted wireless network is
evaluated as follows:

R =
I∑

i=1

εiΓ(βi)ξi
−βi

∫ ∞

0

1
z

(
1− 1

(1 + z)βi

)
LIF(ξiz)
eδ2ξiz

dz.

(33)

2) Moments of SINR: The moments of the SINR E[SINRl]
can be derived by substituting g(z) = zl and gβi(z)
to (29) [7]

gβi(z) =
1

Γ(βi)
dβi

dzβi
zβi−1g(z) =

Γ(βi + l)
Γ(l)Γ(βi)

zl−1. (34)

Then, the moments of the SINR are evaluated as follows:

E[SINRl] =
I∑

i=1

εiξi
−βi

∫ ∞

0

Γ(βi + l)
Γ(l)eδ2ξiz

zl−1LIF(ξiz)dz.

3) Outage Probability: The outage probability is defined as
written below, which is averaged over the link distance

Poutage =1− P{SINR > τ} = 1− P
(

IF <
S
τ
− δ2

)
,

(35)

for a given SINR threshold τ . By substituting (28) into (35),
the outage probability can be further simplified to

Poutage = 1− L−1

[
1
s
LIF|

d
(0)
BU,dIU,0

(s)
](

S
τ
− δ2

)
. (36)

V. NUMERICAL RESULTS

In this section, we present numerical evaluations of the
theoretical results and compare them with Monte-Carlo sim-
ulations. First, we present the approximation results of both
cascaded channel gain and mixture channel gain, alongside
corresponding simulation results. This comparison allows us
to assess the accuracy of our proposed channel approximation
method. Next, by analyzing the CDF of received signal power,
we gain insights into the impact of varying link distances
on the received signal power. Furthermore, we investigate the
influence of key parameters such as the density ratio of IRS to
BS, as well as the number of reflecting elements on each IRS.
Through careful analysis, we explore how these parameters
affect the overall system performance. Finally, we present the
system performance under different parameter setups, offering
a comprehensive understanding of the system’s behavior.

To better understand the mixture propagation environments
and system-level performance, the numerical analysis is car-
ried out with Nakagami-m fading. All of the simulations are
conducted using MATLAB with the following parameters:
the radius of the whole area is R = 1000 m, BS density is
λB = 1 × 10−5/m2, IRS density is λI = 1 × 10−4/m2, the
radius of service area for IRS is D1 = 25 m, the radius of
interference area for IRS is D2 = 50m, the transmit power of
BS is PT = 1 Watt, the noise power is δ2 = −90 dBm, the
number of elements on each IRS is N = 500, the small-scale
fading parameters are mBU = 2, mBI = 5, mIU = 6, the path
loss exponents are given by αBU = 4, αBI = 3, αIU = 3, and
the sample size used for the simulations is 106, if not specified
otherwise [7], [14].

A. Channel Modeling of the Small-Scale Channel Gain

Figs. 2(a)-2(b) compare the approximated PDFs using mix-
ture Gamma approximation, and moment matching, i.e., CLT
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Fig. 2. Channel modeling of the small-scale channel gain.

and Gamma approximation, with the simulated PDFs of
the cascaded channel and mixture channel, respectively. The
sample size for moment matching methods is 1000. It is
observed that the mixture Gamma approximation provides a

better fit to the PDFs of both channels compared to the moment
matching-based approximation. This observation validates the
correctness and necessity of Theorem 1 and Theorem 2. These
results are expected since the accuracy of CLT approximation
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Fig. 3. System performance analysis.

relies on the tails of the PDF due to the perfect symmetry
assumption of the Gaussian distribution. In the presence of
a symmetric PDF, increasing the sample size can enhance

the accuracy of the CLT approximation. However, for an
asymmetric PDF, such an increase in sample size does not
necessarily lead to improved accuracy. On the other hand,
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although the Gamma distribution’s PDF is asymmetric, the
characteristics of the tails and peaks of the PDF for the channel
gain cannot be fully captured with only the first two moments.

As presented in [37], a multiplicative process necessar-
ily results in heavy-tailed distributions, regardless of input.
Therefore, the channel coherence among neighboring ele-
ments of IRS, leading to heavy-tailed PDF for the channel
gain of cascaded channel, render the light-tailed distribu-
tions, i.e., Gaussian or Exponential distributions, unsuitable
to achieve accurate approximations, even in the presence of a
large-sized IRS.

Then, in Fig. 2(c), the PDF of channel gain for various types
of channels is displayed, i.e., single channel gain, cascaded
channel gain and mixture channel gain. We can observe that
the cascaded channel gain has a heavier tail compared to
the single link, while the PDF of mixture channel gain has
a lighter tail. These results imply that the cascaded channel
can exhibit extreme outcomes more frequently, whereas the
mixture channel averages over both paths.

Next, Fig. 2(d) showcases the mean square error (MSE)
of the mixture Gamma approximation between two PDFs
applied to various types of channels. The first PDF is obtained
experimentally from 107 samples, while the second PDF is
derived from the mixture Gamma distribution. These results
corroborate that for multiple channel types with Nakagami-m
fading, the approximation error remains below 10−5 when
the number of Gamma components in the mixture Gamma
distribution exceeds 17. Notably, the simulation error of 10−6

observed in the single channel is attributed to the MATLAB
program. This is because the PDF of the channel gain for the
channel experiencing Nakagami-m fading precisely follows a
mixture Gamma distribution with I = 1, without requiring any
approximation.

Furthermore, Figs. 2(e)-2(f) depict the PDFs of the
K-cascaded channel and K-mixture channel, respectively.
Two noteworthy observations arise from these figures: First,
as the value of K increases, the PDF of the cascaded channel
exhibits a heavier tail. Second, as the value of K increases, the
tail of the PDF for the mixture channel becomes lighter. These
findings align with the theoretical analysis on multiplicative
and additive processes presented in [37].

B. System Performance Analysis

In Fig. 3(a), we display the CDF of the received signal
power based on varying link distance between the typical
UE and its serving IRS, dIU. These results show that the
benefit of decreasing dIU is more pronounced when dIU is
smaller. This phenomenon can be attributed to the presence
of product-distance path loss of the cascaded link assisted by
IRS, which becomes more significant at larger distances. These
observations align with results reported in [14].

Fig. 3(b) presents the spectral efficiency versus the density
ratio of IRS to BS, λI/λB, considering different numbers of
reflecting elements on each IRS, N , and different path loss
exponents, where D1 = 25 m, D2 = 50 m, and αBI = αIU. It
is observed that the performance enhancement facilitated by

IRS is affected by the disparity in channel conditions between
the direct link and the cascaded channel. When the path loss
exponent of the cascaded link is larger than that of the direct
link, i.e., αBI > αBU, the performance improvement provided
by IRS is limited. In contrast, when path loss exponent of the
cascaded link is smaller than the direct link, i.e., αBI < αBU,
the system can achieve equivalent spectral efficiency with
only a fraction (approximately one-tenth) of the required IRSs
compared to the scenario where αBU = αBI. Additionally, the
curves exhibit identical shapes when employing the same D1

and D2 settings as in [14]. The selection of appropriate D1 and
D2 values can be determined according to practical scenarios
that involve different blockage models.

Subsequently, we study the impact of different D1 and
D2 settings in Figs. 3(c)-3(d). D1 represents the maximum
distance between the typical UE and its associated IRS and
it is set as D1 = R, which means the link distance between
the typical UE and its serving IRS is not restricted in the
simulation. In contrast, we set smaller maximum connection
distance for the interfering IRSs compared to the serving
IRS, considering that the received signal power through IRS-
assisted channel benefits from the power gain with an order
of O(N2), while that of the interfering IRSs is O(N). Due
to the larger power gain offered by the associated IRS, the
transmitted signal may persist more chance to propagate
farther than interference signals.

As shown in Fig. 3(c), the spectral efficiency under different
path loss exponents behaves differently with D2 = 50 m,
where the direct link suffers severe path loss, i.e., αBU = 5. It
is observed that when αBI = 3, the spectral efficiency initially
increases and then decreases with the increasing density ratio.
On the other hand, the spectral efficiency keeps increasing
with the density ratio when αBI = 4. Intuitively, in a scenario
where the interference area is small, i.e., D2 = 50 m, there
is an optimal IRS density due to the tradeoff between signal
power and interference power, when the channel conditions
differ significantly between the direct link and the cascaded
link, i.e., αBI = 3, αBU = 5. However, when the difference
of the channel condition between the direct link and cascaded
link is small, i.e., αBI = 4 while αBU = 5, the advantage of
the performance gain provided by IRS at the low IRS density
disappears.

In Fig. 3(d), the spectral efficiency is plotted against the
density ratio of IRS to BS with different D2, where αBI =
3 and αBU = 5. As D2 increases, indicating an increase in the
number of interfering IRSs, the spectral efficiency decreases.
Moreover, for large values of D2, such as D2 = 100 m or
D2 = 200 m, the spectral efficiency reaches a saturation point,
as the density ratio of IRS to BS increases within the given
setup, where the channel condition of the cascaded link is
much better than that of the direct link. This phenomenon is
reasonable as the received signal power is dominated by the
IRS-assisted cascaded link, which is enhanced due to a shorter
connection distance between the typical UE and its serving
IRS. Meanwhile, the interference power is also strengthened
due to the shorter link distances and the presence of more
interfering IRSs. As a consequence, in scenarios characterized
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by a weak direct link, the performance becomes limited by
interference when there is a high density ratio of IRS to BS.

In order to gain deeper insights into the saturation phe-
nomenon arising from a high IRS density, we illustrate the
interference power and spectral efficiency versus the SNR with
D1 = D2 = R in Figs. 3(e)-3(f), where the transmission of
both signal and interference is not limited by link distance. It
is observed that as the density ratio of IRS to BS increases
and the direct link suffers severe path loss, i.e., αBU = 5, the
interference power exhibits a linear growth pattern alongside
the signal power. Consequently, despite having a higher SNR,
the spectral efficiency reaches a saturation point at high density
ratios of IRS to BS. On the other hand, when the channel
condition of the direct link is acceptable, i.e., αBU = 4,
the saturation of spectral efficiency diminishes due to the
contribution of the direct link to both signal power and
interference power.

VI. CONCLUSION

We have developed a comprehensive analytical framework
for system performance in IRS-assisted multi-cell wireless
networks, which has been achieved through the introduction
of a novel statistical channel modeling method based on the
mixture Gamma distribution. We first modeled the channel
gain of cascaded and mixed channels as mixture Gamma
distributions by proving its multiplicability and quadratic
form. These two properties allow us to model a wide range
of channel types, regardless of the fading characteristics
of individual links or the number of links involved. Then,
we evaluated the distribution of the received signal power
and the Laplace transform of the aggregated interference for
two operation modes. Furthermore, the analytical framework,
based on the proposed mixture Gamma channel modeling
method, enables the derivation of key performance metrics
such as spectral efficiency, SINR moments, and outage prob-
ability using their corresponding SINR functions. To verify
the theoretical analysis, we provided numerical and simulation
results. It is noteworthy that our proposed mixture Gamma
distribution-based channel approximation method offers high
tractability and accuracy for various types of channels, thus
facilitating system analysis. We also observed that as the
value of K increases, the tail of the PDF for K-cascaded
channels becomes heavier, indicating a higher likelihood
of extreme outcomes. Conversely, for K-mixture channels,
the tail of the PDF becomes lighter with an increasing
value of K.

APPENDIX A

In this appendix, we provide a proof for Theorem 1.
It is known that the PDF of the product of two random
variables whose PDFs are linear combinations of Gamma
distributions could be expressed by the Meijer’s G func-
tion [21], [23], [38]. Thus, we express the PDF of Y as
shown in the step (a) in (37), shown at the bottom of
the next page. However, such expressions with Meijer’s
G function will lead to mathematically intractable for the

system performance analysis. To this end, by employing
G2,0

0,2 (y|b, c) = 2y
1
2 (b+c)Kb−c(2

√
y) in step (b), the PDF

of Y is simplified to an expression with the modi-
fied Bessel function. Then, the modified Bessel func-
tion Kv(y) can be further derived in (38), shown
at the bottom of the next page, where I(t) can be
derived as

I(t) =
∫ ∞

0

e−tg(t)dt, (39)

and g(t) is given by:

g(t) = exp
(
−yξm1ξm2

t

)
t−βm1+βm2−1. (40)

Next, the modified Bessel function is approximated
by Gaussian-Hermite functions with

∫∞
0

e−tg(t)
dt ≈

∑I
i=0 ϖig(ti), which solves this integration tractably

[39]. As such, the PDF of Y is achieved in (41), shown
at the bottom of the next page, with the restriction that
absolute phase value of y is no large than 1

4π. Finally, with
some mathematical simplifications, the PDF of the product
of two mixture Gamma distributed random variables can be
simplified as a mixture Gamma distribution as shown in (12).
This completes the proof.

APPENDIX B

In this appendix, we provide a proof for Theorem 2. If X2

follows mixture Gamma distribution, the PDF of X is given
by

fX(x) = 2
I∑

i=1

εix
2βi−1e−ξix

2
. (42)

Then, the PDF of Z = X + Y can be derived through
convolution, as shown in (43), shown at the bottom of the
next page. With some simple mathematical simplifications,
the step (a) in (43), is achieved by invoking (a + x)n =∑n

k=0

(
n
k

)
xkan−k, where g′(x) can be further derived with

a substitution of t =
(
x− ξj

ξi+ξj
z
)2

and [40, eq.(3.381.2)],
in (44), shown at the bottom of the next page. Next, by sub-
stituting (44) into (43), the PDF of Z is derived (45), shown at
the bottom of the next page, where the power series expansion
of incomplete Gamma function is applied in step (a). Last, the
scaling properties of PDF, fS(s) = 1

2s−
1
2 fZ(

√
s) is utilized to

derive the PDF of S. This completes the proof.

APPENDIX C

This appendix provides derivation of LIF,1|
d
(0)
BU

and

LIF,2|
d
(0)
BU,dIU,0

. The Laplace transform of the first compo-

nent of the interference, IF,1, is derived in (46) [7], where
GBU = g2

BU, and we apply a change of variable, i.e., t =
sϵGBUdBU

−α in step (a), then use integration by parts in
step (b), and the last step is obtained with some mathematical
simplifications (α ≥ 2). The first part of the expectation

term in (46), EH

[
(sϵGBU)

2
α γ

(
1− 2

α , sϵGBU

[
d
(0)
BU

]−α
)]

,
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is evaluated by in (47), shown at the bottom of the next page,
with the assistance of the power series expansion of lower

incomplete Gamma function and the definition of Gamma
function, where d0 = d

(0)
BU. The second part of the expectation

fY(y)
(a)
=

M1∑
m1=1

M2∑
m2=1

ωm1ωm2

ξm1ξm2

Γ(βm1)Γ(βm2)
G2,0

0,2 (yξm1ξm2 |βm1 − 1, βm2 − 1)

(b)
=

M1∑
m1=1

M2∑
m2=1

ωm1ωm2

ξm1ξm2

Γ(βm1)Γ(βm2)
× 2(yξm1ξm2)

1
2 (βm1+βm2 )−1 ×Kβm1−βm2

(2
√

yξm1ξm2), (37)

Kβm1−βm2
(2
√

yξm1ξm2) =
1
2

(yξm1ξm2)
βm1−βm2

2 ·

∫ ∞

0

exp
(
−t− yξm1ξm2

t

)
t−βm1+βm2−1dt︸ ︷︷ ︸

I(t)

, (38)

fY(y) =
M1∑

m1=0

M2∑
m2=0

ωm1ωm2ξm1ξm2

Γ(βm1)Γ(βm2)
(yξm1ξm2)

βm1−1

∫ ∞

0

exp
(
−t− yξm1ξm2

t

)
1

tβm1−βm2+1
dt

=
I∑

i=1

M1∑
m1=1

M2∑
m2=1

ωm1ωm2

(ξm1ξm2)
βm1

Γ(βm1)Γ(βm2)
t
−βm1+βm2−1
i ϖiy

βm1−1e
− ξm1 ξm2

ti
y
, (41)

fZ(z) =
∫ z

0

fX(x)fY(z − x)dx =
∫ z

0

(
2

I∑
i=1

εix
2βi−1e−ξix

2

)2
J∑

j=1

εj(z − x)2βj−1e−ξj(z−x)2

dx

(a)
=

I∑
i=1

J∑
j=1

4εiεj

2βj−1∑
k1=0

(
2βj−1

k1

)
(−1)k1z2βj−k1−1e

z2
(

ξ2
j

ξi+ξj
−ξj

)∫ z

0

xk1+2βi−1e
−(ξi+ξj)

(
x−

ξj
ξi+ξj

z
)2

dx,︸ ︷︷ ︸
g′(x)

(43)

g′(x) =
∫ (

ξj
ξi+ξj

z
)2

0

(
ξj

ξi + ξj
z −

√
t

)k1+2βi−1
e−(ξi+ξj)t

2
√

t
+
(

ξj

ξi + ξj
z +

√
t

)k1+2βi−1
e−(ξi+ξj)t

2
√

t
dt

=
1
2

2βi−1+k1∑
k2=0

(
2βi−1+k1

k2

) (ξjz)2βi−1+k1−k2

(ξi + ξj)2βi+k1− k2+1
2

[
γ

(
k2 + 1

2
,

ξ2
j z2

ξi + ξj

)
+ γ

(
k2 + 1

2
,

ξ2
i z2

ξi + ξj

)]
. (44)

fZ(z) =
I∑

i=1

J∑
j=1

2εiεje
−

ξiξj
ξi+ξj

z2
2βj−1∑
k1=0

(
2βj−1

k1

)
(−1)k1

2βi+k1−1∑
k2=0

(
2βi+k1−1

k2

)
z2βi+2βj−2−k2

·
ξ2βi−1+k1−k2
j

(ξi + ξj)2βi+k1− k2+1
2

[
(−1)k2γ

(
k2 + 1

2
,

ξ2
j z2

ξi + ξj

)
+ γ

(
k2 + 1

2
,

ξ2
i z2

ξi + ξj

)]

(a)
=

I∑
i=1

J∑
j=1

2εiεj

2βj−1∑
k1=0

(
2βj−1

k1

)
(−1)k1

2βi+k1−1∑
k2=0

(
2βi+k1−1

k2

)Γ(k2+1
2 )ξ2βi−1+k1−k2

j z2βi+2βj+2k3−2

Γ(k2+1
2 + k3 + 1)(ξi + ξj)2βi+k1+k3

·
[
(−1)k2ξk2+1+2k3

j e−ξjz2
+ ξk2+1+2k3

i e−ξiz
2
]
, (45)
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term is derived by directly utilizing the Laplace transform of
the Gamma distribution, as shown in (48),

E2 = −
[
d
(0)
BU

]2 [
1−

(
mBU

s′ + mBU

)mBU
]

, (48)

where s′ = sϵd
(0)
BU

−α
. Following a similar procedure,

LIF,2|
d
(0)
BIU

can be derived as shown in (49), where GBIU =∣∣∣∑N
n=1 |gIU,n||gBI,n|

∣∣∣2, and η = ϵ2d−α
IU GBIU.

APPENDIX D

In this appendix, we provide a proof for Theorem 3. The
average of an arbitrary function of the SINR, E[g(SINR)],
is illustrated in (50), shown at the bottom of the page. First,
the PDF of the mixture Gamma distribution is used in the
second equality, then a change of variable, i.e., z = HS

IF+δ2 ,
is applied in step (a), and a substitution of b = ξi(IF + δ2) is

utilized in step (b). Next, Q is evaluated in (51) by utilizing
the partial integral as follows

Q = −
βi−1∑
k=0

gk(z)bβi−k−1e−bz|∞0 +
∫ ∞

0

gβi(z)e−bzdz,

(51)

and the last equality in (50) is achieved. This completes the
proof.

APPENDIX E

In this appendix, we present an iteration algorithm that
enables us to obtain the PDF of mixture Gamma distribution
for K-cascaded channels, as shown in Algorithm 1. Further-
more, we can use a similar iterative procedure as Algorithm 1
to straightforwardly achieve the mixture Gamma distribution
PDF for the K-mixture channels.

LIF,1|
d
(0)
BU

= exp

(
−2πλB

∫ ∞

d
(0)
BU

(
1− EH

[
e−sϵGBUd−α

BU

])
dBUddBU

)
(a)
= exp

−2πλBEH

 (sϵGBU)
2
α

α

∫ sϵGBU

[
d
(0)
BU

]−α

0

(
1− e−t

)
t−1− 2

α dt


(b)
= exp

−2πλBEH

 (sϵGBU)
2
α

2

−t−
2
α

(
1− e−t

) ∣∣∣sϵGBU

[
d
(0)
BU

]−α

0
+
∫ sϵGBU

[
d
(0)
BU

]−α

0

t−
2
α e−tdt


= exp

(
−πλBEH

[
(sϵGBU)

2
α γ

(
1− 2

α
, sϵGBU

[
d
(0)
BU

]−α
)
−
[
d
(0)
BU

]2(
1− e

−sϵGBU

[
d
(0)
BU

]−α
)])

. (46)

E1 =
∞∑

k=0

Γ(k + mBU + 1)Γ(1− 2
α )

Γ(2− 2
α + k)Γ(mBU)

(sϵ)k+1d−α+2−αk
0

(
mBU + sϵd−α

0

)−k−mBU−1
mmBU

BU , (47)

LIF,2|
d
(0)
BU,dIU,0

= EΛB\{0}
{
e−sHBIU

} ∣∣∣
d
(0)
BU

= EΛB\{0}

{
e−sϵ2d−α

BI d−α
IU GBIU

} ∣∣∣
d
(0)
BU

≈ exp

(
−2πλB

∫ D2

dIU,0

∫ ∞

d
(0)
BU

(
1− EH

[
e−sϵ2d−α

BI d−α
IU GBIU

])
dBU ddBU dIUfdIU(dIU) ddIU

)

= exp

(
− πλB

∫ D2

dIU,0

EH

[
(sη)

2
α γ

(
1− 2

α
, sη

)
−
(
d
(0)
BUdIU

)2 (
1− e−sη

) ]
fdIU(dIU) ddIU

)
, (49)

E[g(SINR)] =
∫ ∞

0

g(SINR)fHS(x)dx =
∫ ∞

0

g

(
HS

IF + δ2

) I∑
i=1

εiH
βi−1
S e−ξiHSdHS

(a)
=

I∑
i=1

εi(IF + δ2)
βi

∫ ∞

0

g(z)zβi−1e−ξiz(IF+δ2)dz
(b)
=

I∑
i=1

εiΓ(βi)ξi
−βi

∫ ∞

0

g(z)
zβi−1

Γ(βi)
bβie−bzdz︸ ︷︷ ︸

Q

=
I∑

i=1

εiΓ(βi)ξi
−βi

∫ ∞

0

gβi
(z)e−δ2ξizLIF(ξiz)dz. (50)
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Algorithm 1 The PDF of K-Cascaded Channel Gain
Require: The mixture Gamma distribution parameters of each

link: Θk : = {ωmk
, βmk

, ξmk
, Mk}, where ωmk

is the
weight of the mk-th Gamma term, (βmk

, ξmk
) is the

parameter tuple for the mk-th Gamma term, and Mk is the
number of Gamma terms of the k-th link, k = 1, 2, . . . ,K,
K ≥ 2 , mk = 1, 2, . . . ,Mk

1: function CASCADE( Θk )
2: C(2)

m = {1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2, 1 ≤ i ≤ I}
3: for m1 = 1 → M1 do
4: for m2 = 1 → M2 do
5: for i = 1 → I do
6: ε

(2)
m =

(∏2
j=1

ωmj
ξ

βm1
mj

Γ(βmj )

)
ϖit

−βm1+βm2−1
i

7: β
(2)
m = βm1

8: ξ
(2)
m = ξm1ξm2

ti

9: end for
10: end for
11: end for
12: for k = 3 → K do

13: ω
(k−1)
m = ε

(k−1)
m Γ

(
β

(k−1)
m

)(
ξ
(k−1)
m

)−β
(k−1)
m

14: C(k)
m = {C(k−1)

m , 1 ≤ mk ≤ Mk, 1 ≤ i(k) ≤ I}
15: for mk−1 = 1 → C(k−1)

m do
16: for mk = 1 → Mk do
17: for i(k) = 1 → I do
18: ε

(k)
m =(∏k

j=k−1

ωmj
ξ

βmk−1
mj

Γ(βmj )

)
ϖi(k)t

−βmk−1+βmk
−1

i(k)

19: β
(k)
m = βmk−1

20: ξ
(k)
m =

ξmk−1ξmk

t
i(k)

21: end for
22: end for
23: end for
24: end for
25: return Θ(k) : = {ε(k)

m , β
(k)
m , ξ

(k)
m , C(k)

m }
26: end function
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