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Abstract— In this paper, we present an iterative algorithm
that detects and estimates the specular components (SCs) and
estimates the dense component (DC) of single-input—multiple-
output (SIMO) ultra-wide-band (UWB) multipath channels.
Specifically, the algorithm super-resolves the SCs in the delay–
angle-of-arrival domain and estimates the parameters of a
parametric model of the delay-angle power spectrum charac-
terizing the DC. Channel noise is also estimated. In essence,
the algorithm solves the problem of estimating spectral lines
(the SCs) in colored noise (generated by the DC and channel
noise). Its design is inspired by the sparse Bayesian learning
(SBL) framework. As a result the iteration process contains a
threshold condition that determines whether a candidate SC shall
be retained or pruned. By relying on results from extreme-value
analysis the threshold of this condition is suitably adapted to
ensure a prescribed probability of detecting spurious SCs. Studies
using synthetic and real channel measurement data demonstrate
the virtues of the algorithm: it is able to still detect and accurately
estimate SCs, even when their separation in delay and angle
is down to half the Rayleigh resolution limit (RRL) of the
equipment; it is robust in the sense that it tends to return
no more SCs than the actual ones. Finally, the algorithm is
demonstrated to outperform a state-of-the-art super-resolution
channel estimator in terms of robustness in the estimation of
the amplitudes of specular components closely spaced in the
dispersion domain.

Index Terms— Parametric channel estimation, multipath prop-
agation, super-resolution line spectral estimation, sparse Bayesian
learning (SBL), single-input—multiple-output (SIMO) radio
channels, ultra-wide-band (UWB).

I. INTRODUCTION

FUTURE wireless communication technologies will sup-
port a variety of services with high quality requirements,
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addressing performance metrics such as reliability, ultra-
low latency, high data rates, and resource-efficient use of
the infrastructure [1], [2]. Holistic approaches that combine
different functionalities have proven to offer promising solu-
tions to meet these requirements. Illustrative examples are
integrated sensing and communications (ISAC) and radio-
based simultaneous localization and mapping (SLAM) [2], [3],
[4]. These examples emphasize the reliance of these technolo-
gies on comprehensive, accurate channel state information.
High-performance feasible parametric multi-antenna channel
estimators can provide this information.

A. State of the Art

Parametric channel models typically represent multipath
propagation as a linear superposition of weighted Dirac delta
distributions - or spectral lines - with distinct supports in the
underlying dispersion domain (delay, angle of arrival, angle
of departure, Doppler frequency, and combinations thereof).
Each component in the superposition is meant to represent a
specular component (SC). Note that in this paper we shall
use the terms SC and spectral line indiscriminately. The
finite aperture of the measurement equipment imposes some
limitation on the ability to resolve SCs closely spaced in the
dispersion domain.

If the number of spectral lines is known, (constrained
and unconstrained) maximum-likelihood (ML) methods, see
e.g. [5] or subspace-based methods [6], [7] are stan-
dard super-resolution1 tools to estimate their parameters.
Expectation-maximization and related algorithms [8], [9] have
proven viable approximations of the computationally pro-
hibitive direct implementation of the constrained ML method.
These estimators have in common that they do not incorpo-
rate the estimation of the number of spectral lines into the
estimation problem. Schemes that perform jointly detection
of the spectral lines and estimation of their parameters have
been designed within a Bayesian framework [10], [11]. Tra-
ditional methods combining detection and estimation select
among multiple candidate models, each corresponding to a
specific hypothesis on the number of spectral lines, the one
that optimizes a so-called information criterion, such as the
Akaike or Bayesian information criterion, and the minimum
description length, see [12] and references therein. Yet, the

1Super-resolution is the ability of an algorithm to resolve spectral lines
even if the separation of their support in the dispersion domain is below the
intrinsic resolution of the measurement equipment.
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information-based approach suffers from two shortcomings:
(a) it is computationally intensive as the adopted information
criterion needs to be computed first for each model can-
didate before a decision can be made; (b) the number of
spectral lines of the selected model tends to be positively
biased in non-asymptotic regimes of the signal-to-noise-ratio
(SNR) and the number of observed samples [13]. Hence,
inference schemes designed with this approach are prone to
return spurious spectral lines that have no real counterpart.
Alternative penalty terms have been proposed that prevent [14]
or control [15] this bias.

Model-order selection is inherently realized in sparse signal
reconstruction (SSR), see [16] and references therein. SSR
aims at recovering a sparse weight vector in an underde-
termined linear model with a known and fixed dictionary
matrix. To that end it computes an estimate of the weights
as the solution to a regularized optimization problem in
which the regularization term is selected to promote sparse
solutions. A popular instance of SSR is basis pursuit denois-
ing [17], also called LASSO (least absolute shrinkage and
selection operator) [18], that uses an ℓ1-norm regularization.
SSR can be formulated within the Bayesian framework as
maximum-a-posteriori (MAP) estimation while imposing a
sparsity promoting prior on the weight vector. Typically this
prior is endowed with a hierarchical structure involving a
hyperparameter for each weight. Several hierarchical models
have been considered so far: gamma-Gaussian2 [20], [21],
Bernoulli-Gaussian [22], [23], and generalized-gamma–power-
exponential [24]. This Bayesian formulation has proven to be
a particularly flexible and effective tool for SSR. Since direct
implementation of the estimators is typically computationally
prohibitive, one has to resort to iterative schemes, often
designed using variational inference methods [25], [26].

SSR can be straightforwardly applied in the context of line
spectral estimation by discretizing (gridding) the dispersion
domain, see e.g. [27], [28], and [29]. The benefit of doing so
is that the complex optimization problem needed to estimate
the supports of the spectral lines is replaced by a linear
programming procedure that returns a sparse estimate of
the weight vector. The shortcoming is that gridding of the
dispersion domain induces spectral leakage due to the resulting
model mismatch. This effect can be mitigated by selecting a
denser grid, yet at the cost of increasing the coherence of
the dictionary matrix, which impairs the sparse reconstruc-
tion capability and increases the computational complexity.
Variants of gridding methods that employ some interpolation
method [30], [31], [32], [33], [34] or apply a grid refinement
technique [29], [35] have been proposed to circumvent the
leakage effect.

Atomic noise minimization (ATM) provides an elegant natu-
ral means to operate with a continuous, i.e. infinite, dictionary
in SSR and thereby to relax the need for discretizing the
dispersion domain [36], [37], [38]. However, some specificities
of our underlying model — namely a two-dimensional (dim.)

2The Bayesian formulation with this choice of hierarchical model is also
referred to as sparse Bayesian learning or relevance vector machine to stress
its link with automatic relevance determination [19] that uses a similar
hierarchical model.

dispersion domain and unknown colored noise — prevent a
direct application of the method, see Subsection IV-A and
a related discussion in [38]. Moreover, numerical evidence
shows that ATM requires the supports of spectral lines to be
sufficiently separated in the dispersion domain in order to be
able to recover them [37]. In [39] an alternative is proposed
that circumvents this shortcoming.

In theory, gridding-based line spectral estimation methods
can be straightforwardly extended to account for continuous
dispersion parameters by relaxing the discretization constraint
and instead including the estimation of the support of the
spectral lines in the inference process. Clearly, this approach
is an instance of SSR with learning the continuous (vector-
valued) parameter of a parameterized dictionary matrix. It has
been extensively pursued in connection with the Bayesian
formulation of SSR [40], [41], [42], [43], [44], [45], [46].
These algorithms differ in their specific design criteria, such
as (i) the chosen sparsity-inducing hierarchical prior model,
e.g. gamma-Gaussian [40], [41], [42], [43], [44], Bernoulli-
Gaussian [45], [46], (ii) the assumed absence [40], [46] or
presence [41], [44] of correlation among the weights of the
spectral lines, and (iii) whether point estimates [40], [42], [43],
[44], [45] or posterior probability density functions (PDFs)
of the dispersion parameters of the SCs are inferred [46].
Experimental evidence shows that the algorithms computing
point estimates of the supports of spectral lines show a positive
bias in the number of detected spectral lines, i.e. are prone
to detect spurious spectral lines. Including inference of the
posterior PDF of the supports allows for mitigating this bias,
yet at the cost of an increased computational complexity [46].
We remark that (iterative) SSR methods that apply grid refine-
ment techniques such as [29], [35] can be viewed as particular
instances of SSR methods with continuous-parameter learning,
which adapt their inherent restricted range of the dictionary
parameter during the iterations.3

The above SSR methods with continuous-parameter dic-
tionary learning include an inherent pruning procedure that
determines which ones among the columns of the dictionary
matrix are inferred as relevant and switch the others off, see
e.g. [47] and [48]. It is shown in [44] that the number of
detected spurious spectral lines can be significantly reduced
by suitably adapting the threshold of the pruning stage. The
analysis provided there relies on some heuristic, yet realistic,
assumptions that allow for approximating the probability of
detecting a spurious line with the probability that the max-
imum of a continuous χ2 random field exceeds the selected
threshold [49], [50]. The analysis shows that a prescribed prob-
ability of detecting spurious lines can be guaranteed, provided
the threshold increases as C + log n + 1

2 log logn where n
is the number of observation samples and C is a constant
that depends on that probability [14], [44]. Numerical analyses
have shown that using this adapted threshold leads to almost
vanishing bias in the number of detected SCs in medium
and high SNR regimes with a tendency to underestimate said
number in the low SNR regime, see also Section VII.

3For instance, the “gridless” SBL-based method presented in [29, Sec. IV]
is similar to the methods proposed in [42] and [43].



GREBIEN et al.: SUPER-RESOLUTION ESTIMATION OF UWB CHANNELS INCLUDING THE DC 10303

In recent years, an extension of the channel model has been
considered, that includes a DC [9], [51], [52]. The DC incorpo-
rates diffuse scattering as well as SCs that cannot be resolved
with the finite aperture of the measurement equipment. Includ-
ing the estimation of the DC can improve the accuracy of the
estimation of the parameters of resolved SCs [9].

B. Contributions of the Paper

We propose an iterative algorithm that performs combined
detection and estimation of SCs and estimation of the DC
plus additive white Gaussian noise (WGN) (AWGN) in single-
input—multiple-output (SIMO) ultra-wide-band (UWB) mul-
tipath channels.4 The algorithm resolves the SCs in the
delay–angle-of-arrival (angle) domain. The contributions of
this paper are as follows:
• We model the impact of the DC and AWGN as colored

noise, so that the problem becomes that of line spectral
estimation [54] in such noise when the relative delays
that the (UWB) complex envelope of the sounding wave
exhibits when it is sensed by the elements of the antenna
array cannot be neglected.

• The design of the algorithm is inspired by the SBL
approach [20]. The probabilistic model is extended by
assuming that the weights of the spectral lines are inde-
pendent circularly-symmetric complex Gaussian random
variables with unknown variances. In a first stage ML
estimation of the variances and all other parameters
but the weights is performed after integrating out said
weights. These estimates are then used to compute a
tractable (Gaussian) approximation of the weights’ pos-
terior PDF. The algorithm computes these two stage, the
former one in an iterative fashion.

• We suitably modify the threshold inherent to the above
ML estimation stage to meet a prescribed probability
of detecting spurious spectral lines. To do so we apply
results from extreme value analysis [49], [50].

• Using synthetically generated observation data we study
in-depth the behavior of the proposed algorithm and espe-
cially how the adapted threshold affects its performance.

• We compare the performance of the proposed algorithm
with a maximum-likelihood estimation (MLE) algorithm
inspired by [9] but with different scheduling and adapted
threshold according to [14].

• We apply the algorithm to UWB measurement data
collected in an indoor environment. A simple ray-tracing
tool is used to identify plausible propagation paths that
can be associated to the SCs detected by the algorithm.

The remainder of the paper is organized as follows: In
Section II we present the generative signal model for the
considered SIMO measurement set-up. Section III describes
the probabilistic signal model for inference. We derive the
proposed algorithm in Section IV. Section V addresses the
analytical correspondence between the probability of detecting
spurious spectral lines and the threshold of the ML estima-
tion stage. Section VII reports results from numerical and

4The extension of the algorithm to a multiple-input—multiple-output
(MIMO) system is straightforward [53].

experimental studies. Concluding remarks are provided in
Section VIII.

II. SIGNAL MODEL

A. Continous-Time Signal Model

The experimental measurement setup consists of an
UWB transceiver operating in an indoor environment. The
transmitter (Tx) is equipped with a single antenna, while
an antenna array with colocated elements is emulated at the
receiver (Rx) using a single antenna mounted on a positioning
table.

Signals are represented by means of their complex envelope
with respect to a center frequency fc. For the sake of simplicity
we assume horizontal-only propagation.5 Under the plane-
wave assumption, provided that the location p of the Rx
antenna is restricted to a region R sufficiently confined around
a reference point p̄ ∈ R, the antenna output signal can be
expressed as

r(t;p) =
∫ ∫

z
(
t; τ, φ,p

)
h(τ, φ)dτdφ+ w(t;p) . (1)

In this expression t is the time variable, while

z
(
t; τ, φ,p

)
= ej2πfcg(φ,p)s(t− (τ − g(φ,p))) (2)

where s(t) is the transmitted signal with bandwidth B and
g
(
φ,p

)
= [cos(φ) sin(φ)](p − p̄)/c with c denoting the

speed of light, expresses for a plane wave incident with angle
φ ∈ [−π,+π) the wave’s excess (propagation) delay at p
relative to its delay at the reference point p̄. The function
h(τ, φ) ∈ C defined on R× [−π,+π) characterizes the spread
in (relative) delay τ and angle φ of the signal sensed at p̄.
Finally, w(t;p) is a spatially and temporally white Gaussian
noise field with double-sided power spectral density N0/2.
Clearly, both h(τ, φ) and z

(
t; τ, φ,p

)
and thereby r(t;p)

given by (1) also depend on the reference point p̄. Since this
point is kept fixed, the used notation discards this dependency
for the sake of shortness.

Sufficient conditions for the right-hand expression in (1) to
accurately represent r(t;p) are that (a) the region R is far
away enough from the Tx and the objects in the environment
with which the dominant multipath components interact along
their path, such as walls, boards, etc., and (b) that the spread
function h(τ, φ) stays constant over the bandwidth (frequency
aperture) of the sounding signal. The latter assumption implies
that the electromagnetic properties of said objects, like reflec-
tion and transmission coefficients, are nearly constant over
the sounding bandwidth. Note that the directivity of the Rx
antenna is absorbed in h(τ, φ).

In this study we assume that the delay-angle spread function
h(τ, φ) is the sum of the superposition of a finite number, say
K, of spectral lines representing SCs and a (spread) function
ν(τ, φ) describing the DC, i.e.

h(τ, φ) =
∑
k∈K

α̃kδ(τ − τ̃k)δ(φ− φ̃k) + ν(τ, φ) (3)

5An extension to three dim. propagation scenarios including polarization is
straightforward, but more involved.
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Fig. 1. Layout of the array with its center of gravity p̄, the mth antenna
element position pm and reference orientation o. The first SC originates from
propagation along the direct path from the Tx to the Rx with angle φ̃1 and
path distance cτ̃1. The kth SC is incident with angle φ̃k and path distance
cτ̃k .

where δ(·) denotes the Dirac delta distribution. The kth
SC, k ∈ K ≜ {1, . . . ,K} is characterized by its complex
amplitude α̃k ∈ C, its (relative) delay τ̃k ∈ R and angle
(of arrival) φ̃k ∈ [−π,+π). We model ν(τ, φ) as a complex
circular symmetric (i.e. zero-mean) Gaussian random pro-
cess [9], [55]. Furthermore, we assume uncorrelated scattering,
i.e., E[ν(τ ′, φ′)ν∗(τ, φ)] = P (τ, φ)δ(τ ′ − τ)δ(φ′ − φ) [56],
where E[·] denotes expectation and P (τ, φ) is the delay-
angle power spectrum (DAPS) of the DC [56]. We make
the following additional hypotheses: (a) The spread function
h(τ, φ) has bounded support, i.e., without loss of generality,
h(τ, φ) = 0 whenever [τ φ] /∈ [0, T ) × [−π, π) = Ψ with
T > 0; (b) the equipment is designed in such a way to ensure
an aliasing-free estimation of h(τ, φ) over Ψ. Condition (a)
implies that P (τ, φ) = 0 whenever [τ φ] /∈ Ψ. It also imposes
that the dispersion vector [τ̃k φ̃k] of any kth SC, k ∈ K,
belongs to Ψ.

The rationale behind the selection of model (3) is as
follows. The SCs originate from electromagnetic interactions
with objects in the environment that are essentially non-
dispersive, such as line-of-sight (LOS) propagation, specular
reflection and transmission, and can be resolved with the
used aperture. The DC incorporates the contributions from all
other interactions, e.g. diffuse scattering and diffraction. It also
includes components from specular interactions that cannot be
resolved with the used aperture.

The antenna array is emulated by measuring r(t;p) in (1)
at M positions pm ∈ R, m ∈ {1, . . . ,M} ≜ M, see
Fig. 1. These positions specify the array layout. Without loss of
generality the center of gravity of the layout is set to coincide
with the reference location, i.e. p̄ = M−1

∑M
m=1 pm. The

angle o depicted in the figure determines its orientation.
Inserting the decomposition (3) in (1) yields for the antenna

output signal at the mth location

rm(t) =
∑
k∈K

α̃kz
(
t; τ̃k, φ̃k,pm

)
+
∫ ∫

z
(
t; τ, φ,pm

)
ν(τ, φ)dτdφ+ wm(t) . (4)

We have defined rm(t) = r(t;pm) and wm(t) = w(t;pm) for
short.

B. Discrete-Frequency Signal Model

The signals rm(t), m ∈ M are Nyquist filtered, Fourier
transformed, and then synchronously and uniformly sampled
with frequency spacing ∆ over the bandwidth B to collect
for each branch m N = B/∆ samples that are arranged in a
N -dim. vector ym. These M vectors are then stacked to form
the NM -vector y= [yT

1 · · · yT
M ]T, which is expressed as

y = Z(ψ̃)α̃+ n ∈ CNM×1 (5)

with α̃ = [α̃1 · · · α̃K ]T ∈ CK×1, ψ̃ = [ψ̃1 · · · ψ̃K ] ∈ ΨK ,
and Z(ψ̃) = [z(ψ̃1) · · · z(ψ̃K)] ∈ CNM×K with columns
given by

z(ψ̃k) = [z1(ψ̃k)
T · · · zM (ψ̃k)

T]T ∈ CNM×1 , k ∈ K . (6)

With Z(f ; τ, φ,pm) denoting the Fourier transform of
z(t; τ, φ,pm), i.e.,

Z
(
f ; τ, φ,pm

)
= ej2πfcg(φ,pm)S(f)e−j2πf(τ−g(φ,pm)) (7)

where S(f) is the Fourier spectrum of s(t), the mth entry in
the vector in (6) reads

zm(ψ̃k) ≜
[
Z
(
i∆; τ̃k, φ̃k,pm

)
: i

= −(N − 1)/2, . . . , (N − 1)/2
]T ∈ CN×1 , (8)

i.e., it contains the Fourier-transformed samples collected at
the mth antenna element. The NM -vector n = v + w
in (5) aggregates the vectors v and w that collect the samples
(arranged in the right order) corresponding to, respectively,
the integral term and the noise term in (4) when m ranges in
M. From the assumptions on the DC, v is a complex circular
symmetric MN -dim. Gaussian random vector with zero mean
and MN ×MN covariance matrix Q = [[Q]m,m′ , m,m′ ∈
M] with submatrices

[Q]m,m′ =
∫ ∫

P (τ, φ)zm(τ, φ)zm′(τ, φ)Hdτdφ (9)

with (m,m′) ∈ M2. From the assumptions on the noise
measurement process w is a complex circular symmetric
Gaussian random vector with covariance matrix σ2INM where
σ2 = N0/Ts and I(·) is the identity matrix of dimensions
specified by the number given in the subscript. We assume
that v and w are uncorrelated. As a result n is a circularly
symmetric Gaussian random vector with covariance matrix

R = Q+ σ2INM . (10)

C. Selected Model for the DC

We impose some structure on the covariance matrix Q
in (10) via some assumptions on the behaviour of the DC
and simplifying approximations in the derivations of the
submatrices in (9). This structure will ensure the feasibility
of the estimation algorithm.

a) The DAPS factorizes as P (τ, φ) = P p(τ)p(φ). Here,
P =

∫∫
P (τ, φ)dτdφ is the power of the DC, and p(τ) and

p(φ) are, respectively, the normalized delay power spectrum
(DPS) and the normalized angle power spectrum (APS) [57].

b) In the computation of (9) we discard the second occur-
rence of the term g

(
φ,pm

)
in (7), i.e., Z(f ; τ, φ,pm) =
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ej2πfcg(φ,pm)S(f)e−j2πfτ . This step amounts to adopting a
narrowband representation that neglects the relative delays
across array elements of the modulating signals of incident
waves [9], [58]. It follows from Assumptions a) and b) that
the covariance matrix of v factorizes as

Q = P Qs ⊗Qf (11)

with ⊗ denoting the Kronecker product [9], [58].6 The first
factor is the spatial correlation matrix

Qs =
∫
p(φ)as(φ)as(φ)Hdφ (12)

with as(φ) = [e−j2πfcg(φ,p1) · · · e−j2πfcg(φ,pm)]T ∈ CM×1

being the steering vector of the array, and more generally the
spatial steering vector of the sounding equipment. The second
factor is the delay correlation matrix

Qf =
∫
p(τ)af(τ)af(τ)Hdτ (13)

with af(τ) =
[
S
(
i∆
)
ej2πi∆τ : i = −(N − 1)/2, . . . , (N −

1)/2
]T ∈ CN×1 denoting the frequency steering vector of the

sounding equipment.
c) Experimental evidence shows that the DPS typically

exhibits an exponentially decaying tail [9], [55], [59] and a
smooth onset [55], [60]. This behavior is well represented by
a truncated and normalized gamma PDF given by

p(τ)=p(τ ;ϑ)

=


a

θξΓ(ξ)
(
τ−β

)ξ−1e−
τ−β

θ u(τ−β), τ ∈ [0, T )

0, elsewhere

(14)

where u(τ) is the unit step function, Γ(·) is the gamma
function, and ϑ = [β θ ξ] collects the onset (β > 0), scale
(θ > 0), and shape (ξ > 0) parameters. The normalization
constant a> 0 guarantees that

∫
p(τ ;ϑ)dτ =1. The range of

the parameter β is restricted in such a way to ensure that the
integral of the truncated tail of the gamma PDF is negligibly
small, i.e., a(β) ≈ 1 for any such values of β.

d) We neglect the spatial correlation across antenna ele-
ments, i.e., we set Qs =IM [9], [61]. This choice provides a
good approximation of Qs under the assumption of uniform
APS for the antenna-element spacings used in practice.7

By combining Assumptions a)–d), the covariance matrix R
takes the following form:

R ≜ R(η) = IM ⊗ PQf + σ2IMN (15)

where η = [σ2 P ϑ] with ϑ defined above and Qf given
in (13) with p(τ) = p(τ ;ϑ) according to (14). Hence, because

6In (11) and in the following, the subscripts “s” and “f” of as(φ) ∈ CM×1

and af(τ) ∈ CN×1 refer to the domain, namely space and frequency,
respectively, of these apertures.

7This assumption is exact for a uniform linear array with half-a-wavelengh
element-spacing in the case of 3-dim. propagation with uniform direction
dispersion. For horizontal-only propagation with uniform APS, an antenna
spacing equal to approximately 40% of the wavelength leads to practically
uncorrelated entries in v.

of Assumption c), R(η) is block-diagonal with M identical
N ×N diagonal submatrices equal to

R̃ ≜ R̃(η) = PQf + σ2IN . (16)

III. SPARSE BAYESIAN FORMULATION

If the number of components K of the model (5) were
known, the vectors of dispersion parameters ψ̃ and complex
amplitudes α̃ of the SCs and the parameter vector η of
colored noise could be inferred using a standard MAP or
ML estimation technique. Since we can view the family
{Z(ψ̃)}ψ̃∈Ψ as a continuous dictionary, atomic-norm methods
seem at first glance to be an inference method particularly
tailored to our model. However, as detailed in the discussion
of Section IV, some specificities of the model prevent a direct
application of these methods.

We propose an approach inspired from SBL [20] for SSR
to include the estimation of the unknown K. This approach
requires a two-fold modification of the generative signal model
that we address below.

A. Discrete-Frequency Signal Model for Inference

In a first step the initial generative signal model (5) is
modified as follows. The number of hypothetical SCs is set
to a fixed number, say L. Parameter L is a design parameter
that is selected large enough so that K ≤ L. In addition,
L ≪ NM . Actually we only need that L ≤ MN . The
further restriction ≪ is for feasibility issues. Similarly as in
Subsection II-B, we define the vector ψ = [ψ1 · · · ψL] with
entries ψl = [τl φl] ∈ Ψ, l ∈ {1, . . . , L} ≜ L. With these
modifications, we arrive at the discrete-frequency signal model
given by

y = Z(ψ)α+ n ∈ CNM×1 (17)

where α = [α1 · · · αL]T ∈ CL×1 and Z(ψ) =
[z(ψ1) · · · z(ψL)] ∈ CNM×L with z(ψl) defined similarly
to (6). Under the assumptions made in Subsection II, the
likelihood function of this model reads

f(y|ψ,η,α) = [πNM det(R(η))]−1

× e−(y−Z(ψ)α)HR(η)−1(y−Z(ψ)α) (18)

with det(·) denoting the determinant of a matrix. The second
step consists in specifying a hierarchical prior for each entry
αl in form of a Gaussian scale mixture. Specifically, we define

f(α,γ) = f(α|γ)f(γ) = Πl∈Lf(αl|γl)f(γl) (19)

where f(αl|γl) =
√
γl/2π exp{−γl|αl|2/2}, l ∈ L and γ =

[γ1 · · · γL]T ∈ RL×1
+ with R+ = {r ∈ R; r ≥ 0}. Note that

all entries in γ have the same prior with PDF f(γ). These
entries and their prior are referred to as hyperparameters and
hyperprior, respectively. We postulate priors for the parameter
vectors ψ and η with respective PDFs f(ψ) and f(η). With
these specifications, the probabilistic model for inference reads

f(ψ,η,α,y) = f(y|ψ,η,α)f(α|γ)f(γ)f(ψ)f(η) . (20)
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B. Inference Method

The proposed method is inspired by SBL [20]. First it
computes a MAP estimate of ψ, η, and γ from the joint
posterior of these random vectors; then it uses these estimates
to infer an approximation of the posterior distribution of α.

The posterior PDF f(ψ, η, γ|y) is obtained from (20) by
marginalizing out the complex amplitude vector α, i.e.,

f(ψ,η,γ|y) ∝
∫
f(y,ψ,η,α)dα

= f(y|ψ,η,γ)f(γ)f(ψ)f(η) (21)

where

f(y|ψ,η,γ) ∝ det(C(ψ,η,γ))−1e−y
HC(ψ,η,γ)−1y (22)

with

C(ψ,η,γ) = R(η) +Z(ψ)Γ−1Z(ψ)H (23)

and Γ = diag([γ1 · · · γL]). The MAP estimates of ψ, η and
γ are then computed using (21). From (20) we get

f(α|y,ψ,η,γ) ∝ f(y|ψ,η,α)f(α|γ), (24)

which is readily shown to be Gaussian with mean

µ = ΣZ(ψ)HR(η)−1y (25)

and covariance matrix

Σ =
(
Z(ψ)HR(η)−1Z(ψ) + Γ

)−1
. (26)

The approximate posterior PDF of α results by plugging the
MAP estimates of ψ, η and γ in (24), and thus in (25)
and (26).

In our design, we select non-informative improper priors
for ψ, γ and η: f(ψ) ∝ 1, f(γ) ∝ 1, f(η) ∝ 1. With
this selection, the above MAP estimates coincide with the ML
estimates

(ψ̂ML, η̂ML, γ̂ML) = arg max
ψ,η,γ

f(y|ψ,η,γ)

= arg min
ψ,η,γ

{log(det(C(ψ,η,γ)))

+ yHC(ψ,η,γ)−1y} (27)

and the posterior PDF of α is inferred using the approximation
f(α|y, ψ̂ML, η̂ML, γ̂ML).

IV. ITERATIVE DESIGN OF THE ESTIMATOR

Since the ML estimator in (27) cannot be calculated ana-
lytically, even though the likelihood function is given in an
analytical form, and a direct numerical solution is computa-
tionally prohibitive, we resort to a sequential update of the
parameter vectors ψ, η, and γ resulting in the estimates ψ̂,
η̂, and γ̂.

1) Estimation of the Supports of the Spectral Lines: Inserting
the current estimates η̂, and γ̂ in (27) the new estimate of ψ
is computed to be

ψ̂=arg min
ψ

{log(det(C(ψ, η̂, γ̂)))+yHC(ψ, η̂, γ̂)−1y}.

(28)

2) Estimation of the Parameters of Colored Noise: Similarly,
the new estimate of η is computed based on the current
estimates ψ̂, and γ̂ to be

η̂=arg min
η

{log(det(C(ψ̂,η, γ̂)))+yHC(ψ̂,η, γ̂)−1y}.

(29)

3) Estimation of the Hyperparameters: Finally, given the
current estimates ψ̂ and η̂, the new estimate of γ is updated
according to

γ̂=arg min
γ

{log(det(C(ψ̂, η̂,γ)))+yHC(ψ̂, η̂,γ)−1y}.

(30)

In the sequel we consider instead of (30) a sequential method
in which the estimate of each entry in γ is updated while the
estimate of the other entries are kept fixed [47]:

γ̂l =


(|ρl|2 − ζl)−1,

|ρl|2

ζl
> κ

∞,
|ρl|2

ζl
≤ κ

l ∈ L (31)

with κ = 1. In this expression

ζl =
(
z(ψ̂l)

HR(η̂)−1z(ψ̂l)− z(ψ̂l)HR(η̂)−1

×Z(ψ̂l̄)Σ̂l̄Z(ψ̂l̄)
HR(η̂)−1z(ψ̂l)

)−1

(32)

ρl = ζlz(ψ̂l)
HR(η̂)−1y

− ζlz(ψ̂l)
HR(η̂)−1Z(ψ̂l̄)Σ̂l̄Z(ψ̂l̄)

HR(η̂)−1y

= ζlz(ψ̂l)
HR(η̂)−1ȳl (33)

with

ȳl = y −Z(ψ̂l̄)µ̂l̄ (34)

µ̂l̄ = Σ̂l̄Z(ψ̂l̄)
HR(η̂)−1y (35)

Σ̂l̄ = (Z(ψ̂l̄)
HR(η̂)−1Z(ψ̂l̄) + Γ̂l̄))

−1 (36)

Γ̂l̄ = diag([γ̂1 · · · γ̂l−1 γ̂l+1 · · · γ̂L]) (37)

where diag(·) describes a square diagonal matrix with the
elements of the vector given as an argument on the main
diagonal and ψ̂l̄ = [ψ̂1 · · · ψ̂l−1 ψ̂l+1 · · · ψ̂L].

Note that the computation step of γ̂l (31) contains a
condition that determines when the lth spectral line shall be
discarded (γ̂l = ∞).

4) Estimation of the Weights: Inserting the estimates ψ̂, η̂,
and γ̂ in (24) yields the Gaussian PDF with mean (see (25))

µ̂ = Σ̂Z(ψ̂)HR(η̂)−1y (38)

and covariance matrix (see (26))

Σ̂ =
(
Z(ψ̂)HR(η̂)−1Z(ψ̂) + Γ̂

)−1
(39)

that is used as an approximation of the posterior PDF of α.
In (39), Γ̂ = diag([γ̂1 · · · γ̂L]).

5) Fitting of the Pruning Threshold κ: Numerical exper-
iments have shown that the iterative algorithm obtained in
the above subsections overestimates the number of spectral
lines and thereby returns estimates of spurious components.
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This bias in the number of detected components increases
when either the SNR or the number of samples increases [40,
Subsec. V.A], [44]. Following the approach adopted in [14]
and [62], we increase the initial threshold κ = 1 in the pruning
condition (31) to κ = κ∗ > 1. The value κ∗ is set in such a
way to reduce the bias. The next section describes in detail
this procedure, which yields κ∗ given in (48).

A. Discussion

The updating step (28) in its form looks very similar
to the classical unconstrained (also called stochastic) ML
estimator in sensor array signal processing [5] with the addi-
tional assumption that the precision matrix of the weights be
diagonal, i.e. equal to Γ as a result of the gamma-Gaussian
hierarchical model.8 Despite the resemblance (28) is not
an instance of unconstrained ML estimation. Unconstrained
ML estimation requires a scenario where at least as many
observations (snapshots, assumed uncorrelated) as the number
of sensors are collected,9 while in our scenario only one
observation, i.e. y in (17), is available. Our estimator also
deviates from being an instance of SBL [20] in three respects:
(a) the underlying model of SBL is undetermined, which is
not the case for our model (17) with L ≪ NM ; (b) the
“dictionary matrix”, namely S(ψ) in (17), is not fixed but
is parameterized by the continuous parameter vector ψ that is
estimated; and (c) the inherent threshold of SBL is adapted
to control the probability of detecting spurious SCs.10 Our
method belongs to the class of parametric estimators in the
nomenclature introduced in [27].

Atomic noise minimization (ATM) provides an elegant, nat-
ural means to operate with a continuous, i.e. infinite, dictionary
in SSR [36], [37]. At first glance this method looks promising
for dealing with the continuous dictionary {S(ψ)}ψ∈Ψ in
our problem at hand. However, some specificities of the
generic model (5) prevent its straightforward application to
our scenario. Note that ATM primarily “denoises” the observed
signal with the estimation of the spectral lines being subse-
quently performed based on this denoised signal. While the
estimation problem can be solved with an exact semi-definite
program when the dispersion domain is one-dim. [36], only
an approximate such program could be formulated to date
for higher dim. dispersion domains [38].11 In addition, ATM
operates on Nyquist-sampled signals and requires knowledge
of the noise characteristics, e.g. its spectral height when noise

8Sensor array signal processing considers a signal model similar to (17)
where the entries of y are the outputs of an array of sensors, Z(ψ) is the
array response matrix, ψ and α contain respectively the dispersion parameters
and the amplitudes of the sources, and n is the measurement noise vector [5].
The number of sources is assumed to be known and smaller than the number
of sensors in order for the model parameters to be identifiable. In practice
the number of sources is estimated using an additional model-order selection
procedure based on an information theoretic criterion, see Section I.

9This condition ensures that the sample array covariance matrix has full
rank, which is a mandatory condition in the derivation of the unconstrained
ML estimator.

10Strictly speaking, SBL is derived under the assumption of AWGN. It can
be straightforwardly applied when noise is non-white, by merely applying a
whitening filter first.

11In [38] the matrix-enhancement-matrix-pencil method [63] is used to
compute estimates of the support of spectral lines from the denoised signal.

is white. These conditions do not hold in our application
scenario.

V. COMPUTATION OF THE PRUNING THRESHOLD

To compute the threshold value κ∗ we adapt the approach
described in [44] to our application scenario; see also [14]
for a similar approach applied to constrained ML estimation.
To make it tractable the analysis is carried out under the
following assumptions.

Assumption 1: The spatial and frequency apertures [64] of
the sounding equipment are centro-symmetric12 [65]. Further-
more, af = af(0), see text below (13), fulfils Jaf = a∗f ,
where J is the exchange or reversal matrix [54, Sec. 4.8].
The covariance matrix R in (15) is known.

It is shown in [53] that as a result of the first part in the
assumption the matrix Q in (11) is centro-hermitian13 [65]
and therefore R in (15) too. The next assumption reflects
an empirical evidence based on extensive simulations of the
proposed algorithm.

Assumption 2: Asymptotically as the dimension MN grows
large the estimator in Section IV with κ = 1 exhibits the
following behaviour: (a) it resolves all K active SCs and accu-
rately estimates their parameters, i.e. without loss of generality
ψ̂l ≈ ψ̃l for l = 1, . . . ,K; (b) it computes estimates ψ̂l,
l = K+1, . . . , L of L−K (spurious) SC components in such
a way that with high probability z(ψ̂l) is nearly orthogonal
to any columns of Z(ψ̂l̄) for each l = K + 1, . . . , L.

As a result of Assumption 2, as MN grows large, with
high probability (32) and (33) can be approximated for l =
K + 1, . . . , L as ζl ≈ ζ̄(ψ̂l) and ρl ≈ ρ̄(ψ̂l), respectively,
where we have defined ζ̄(ψ·) = (z(ψ·)HR−1z(ψ·))−1 and
ρ̄(ψ·) = ζ̄(ψ·)z(ψ·)HR−1n, respectively, with ψ· = [τ φ] ∈
Ψ. Therefore, the probability that the algorithm decides that
the lth component (l = K + 1, . . . , L) is active, i.e. γ̂l < ∞
in (31), with threshold set to κ is close to

Psp(κ) = P
[

sup
ψ·∈Ψ

|ρ̄(ψ·)|2/ζ̄(ψ·) ≥ κ
]

(40)

when MN is sufficiently large. Let us consider the
circularly-symmetric complex Gaussian random field on Ψ
defined as

x(ψ·) =
ρ̄(ψ·)
ζ̄(ψ·)1/2

=
z(ψ·)HR−1n

[z(ψ·)HR−1z(ψ·)]1/2
. (41)

with ψ· ∈ Ψ. Then, (40) can be recast as

Psp(κ) = P
[

sup
ψ·∈Ψ

|x(ψ·)|2 ≥ κ
]
. (42)

Theorem 1: Under Assumption 1 we have the asymptotic
equivalence

Psp(κ) ∼
[

1
π

∫
Ψ

√
det(Λ(ψ·)) dψ·

]
κe−κ , κ→∞ . (43)

12Specifically, referring to Subsec. II-A for any m ∈ M, there exists an
index m′ ∈ M such that pm′ − p = −(pm − p). The statement for the
vector defining the frequency aperture is similar.

13Since these matrices are hermitian, their centro-hermitian property implies
per-symmetry.



10308 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 8, AUGUST 2024

Furthermore,

1
π

∫
Ψ

√
det(Λ(ψ·))dψ·

=4π
∫ ∆−1

0

∫ 2π

0

[( 1
M

∑
m∈M

d2
m(φ)

)
b1(τ)b2(τ)

]1/2
fc dτdφ.

(44)

Here, Λ(ψ·) is the non-negative definite matrix given in (56)
and

dm(φ) = ∂g(φ,pm))/∂φ, m ∈M (45)

b1(τ) =

(
ȧf(τ)HR̃

−1
ȧf(τ)

)(
4π2af(τ)HR̃

−1
af(τ)

) (46)

b2(τ) = 1−
ℜ
{
ȧf(τ)HR̃

−1
af(τ)

}2(
af(τ)HR̃

−1
af(τ)

)(
ȧf(τ)HR̃

−1
ȧf(τ)

) (47)

with R̃ given in (16) and ȧf(τ) = ∂af(τ)/∂τ . The term
[ 1
M

∑
m d

2
m(φ)]1/2 incorporates the impact of the array aper-

ture, while b1(τ) and b2(τ) account for the impact of the
frequency aperture (the spectrum S(f)) and colored noise.

Proof: See Appendix A.
The function of κ in the asymptotic equivalence (43)

provides a tight approximation of Psp(κ) versus κ for κ
sufficiently large. Thus, by taking the inverse of that function
and evaluating it at a target probability value, say ϵ, we obtain
a threshold, say κ⋆ = κ⋆(ϵ), that yields Psp(κ⋆) close to ϵ.
The next lemma essentially gives this inverse function.

Lemma 1: Given ϵ ∈ (0, q/e] with e denoting Euler’s
number and q =

∫
Ψ

1
π

√
det(Λ(ψ·)) dψ· the asymptotic

expression in (55), and thereby in (43), is upper-bounded by
ϵ provided κ satisfies

κ ≥ κ⋆(ϵ) = −W−1(−ϵ/q) ≥ 1 (48)

where W−1 : [−e−1, 0) 7→ R is the second real branch of the
Lambert-W function [66].

Proof: See Appendix B.
We conclude from (42), (43) and (48) that Psp(κ⋆(ϵ)) ≈ ϵ

for ϵ sufficiently small and MN sufficiently large. Thus, the
function κ⋆(ϵ) provides a means to control the probability
of detecting spurious SCs provided MN is sufficiently large.
We can use the following asymptotic behavior of the function
W−1(u) as u → 0 to obtain a tight approximation of κ⋆(ϵ)
for ϵ small:

W−1(u) = log(−u)− log(− log(−u)) + o(1) , u→ 0 (49)

where o(·) denotes the little-o notation [66]. Making use of
this identity, the equality in (48) can be recast as

κ⋆(ϵ) = − log(ϵ/q) + log(− log(ϵ/q)) + o(ϵ) , ϵ→ 0 . (50)

The right-hand expression with the term o(ϵ) dropped gives a
tight approximation of κ⋆(ϵ) provided ϵ is sufficiently small,
and MN is sufficiently large.

A. Examples

We illustrate the right-hand expression in (44) with two
examples. We consider a scenario with a sounding sig-
nal exhibiting a constant spectrum over its bandwidth, i.e.,
Assumption 1 is fulfilled, and AWGN only. In this case (44)
becomes

1
π

∫
Ψ

√
det(Λ(ψ·))dψ·

= 4π

√
N2 − 1

12

∫ 2π

0

fc

√
1
M

∑
m∈M d2

m(φ) dφ. (51)

Proof: In this case, b1(τ) = 1 and b(τ) = ∆2(N2 −
1)/12 = (B/N)2(N2 − 1)/12. □

If furthermore the array is uniform, square, of dimensions
M ′×M ′, and with equal inter-element spacing w > 0, the
above expression further simplifies to

1
π

∫
Ψ

√
det(Λ(ψ·))dψ·

= 8π2

√
N2 − 1

12

√
f2
c

w2

c2
M − 1

12
with M = M ′2 . (52)

Proof: The square aperture function of a rectangular
uniform array is given as

1
M

∑
m∈M

d2
m(φ) = M ′w

2

c2
sin2(φ−ψ)

M ′(M ′2−1)
12

+M ′w
2

c2
cos2(φ−ψ)

M ′(M ′2−1)
12

=
w2

c2
M−1

12
. (53)

□
In [67] classical detection theory for detecting a single

spectral line with unknown frequency embedded in AWGN
is applied to obtain a threshold that is derived by analyzing
the maximum of the samples of a periodogram taken on
the Fourier lattice [68]. In [53] it was shown that such a
classical threshold results in a positive bias in the number
of detected spurious components that is avoided when the
threshold given in (48) is employed. In [69], an improved
threshold is proposed that reduces the positive bias in the
number of spurious components too.

VI. IMPLEMENTATION

A. Algorithmic Routine

The pseudocode of the proposed algorithm is given in
Algorithm 1. It has two main stages: a search and a refine pro-
cedure, described in Procedure 1 and Procedure 2, respectively.
After initialization the two procedures are executed sequen-
tially in a do-while loop until a stopping criterion is met.
Specifically, Algorithm 1 implements a bottom-up strategy:
starting with an empty model, i.e. L̂ = 0, at each iteration of
the do-while-loop Procedure 1 searches and adds a candidate
SC in the current pool of so far buffered candidate SCs.
Procedure 2 estimates and/or re-estimates the parameters of
all candidate SCs in the pool, and possibly removes candidate
SCs to finally yield an updated pool of L̂ candidate SCs. The
algorithm terminates once the number L̂ of SCs in the pool and
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Fig. 2. Comparison of the probalilities Psp(κ) and Pmi(κ) with their respective relative frequencies computed from 1000 trials with SNR as a parameter.
The three scenarios corresponding each to specific assumptions on Q are described in the text.

Algorithm 1 Main
Input : Measurement vector y
Output: L̂, ψ̂, η̂, µ̂, and Σ̂

1 ψ̂, γ̂, µ̂, Σ̂← [ ], [ ], [ ], [ ]

2 L̂← 0

3 η̂ ← [σ̂2 P̂ ϑ̂]

with σ̂2 ← ∥y∥2
NM

, P̂ ← 0, ϑ̂← 0 (AWGN only), and
initFlag← true

4 do
5 search()
6 refine()
7 µ̂, Σ̂← (38) and (39), respectively
8 while L̂ changes or the maximum number of cycles is

reached

Procedure 1 Search
1 Procedure search()
2 if L̂ < L then
3 L̂← L̂ + 1

4 l← L̂

5 ψ̂l ← arg max
ψ

|ρl|2
ζl

using (32) and (33)

6 γ̂l ← (|ρl|2−ζl)
−1

7 append ψ̂l to ψ̂ and γ̂l to γ̂
8 end

their parameter estimates as well as the estimated parameters
of the DC have converged. It then returns these converged
values as the model estimates.

The initial iterations in the do-while-loop of Algorithm 1
are executed while considering measurement noise only, i.e.
by using R in (15) with P set to zero whenever R occurs in
the update equations of Procedures 1 and 2. This is carried out
until a first candidate SC in the pool is pruned in Procedure 2
or L̂ reaches a predefined maximum number L, in which case
Procedure 3 is executed to initialize the parameters of the
DC. Once the initialization is completed, the noise variance
estimate σ̂2 aggregates a contribution from the DC. The total
estimated power over the bandwidth computed from this value
is distributed evenly between noise and the DC in Procedure 3.
This explains the factor 1/2 in Lines 3 and 5. From then on

Procedure 2 Refine
1 Procedure refine()
2 do
3 η̂ ← update according to (29)
4 ψ̂ ← update according to (28)
5 κ̂⋆(ϵ)← (48)
6 γ̂ ← update according to (31), κ = κ̂⋆(ϵ)
7 initializeDC()
8 for l← 1, . . . , L̂ do
9 if γ̂l =∞ then

10 remove lth component from ψ̂ and γ̂
11 L̂← L̂− 1
12 end
13 end
14 while not converged

Procedure 3 Initialize DC parameters
1 Procedure initializeDC()
2 if (any entry of γ̂ is ∞ or L reached) and initFlag is true

then
3 P̂ ← σ̂2/(2∆)

4 ϑ̂← [1/c 1m/c T/2 2]

5 η̂ ← [σ̂2/2 P̂ ϑ̂]
6 initFlag← false
7 refine()
8 end

the estimates of the parameters of the DC DPS are updated,
i.e. the full covariance matrix R in (15) is accounted for in
the update equations of Procedures 1 and 2.

B. Complexity Analysis

The operations that mainly affect the computational com-
plexity of Algorithm 1 are, respectively, the updating step for
the dispersion parameter vector (28) and the updating step for
the noise parameter vector (29) in Procedure 2. By making use
of the matrix inversion and matrix determinant lemmas and
exploiting the Kronecker structure of the covariance matrix
in (15), the computational complexity of the former updating
step is O((NM)2L̂), while that of the latter is O((NM)2L̂+
N3) (whether the first or the second term is dominating the
other depends on the number of frequency samples N versus
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TABLE I
COMMON SYSTEM PARAMETERS FOR ALL

EXPERIMENTS (IF APPLICABLE)

the number of antennas M times the number of estimated
components L̂). Note that the bottom-up approach steadily
increases L̂, starting from an empty model. Thus, the approach
avoids unnecessary computation. The computational complex-
ity of the modified MLE algorithm used as a benchmark in
Section VII-A4 is O((N)2ML̂) for updating the dispersion
parameter vector and O(N3) for updating the noise parameter
vector. Note that the RiMAX algorithm in [9] shares the same
complexity.

VII. NUMERICAL AND EXPERIMENTAL RESULTS

To validate the proposed algorithm, we first test it in
Subsection VII-A with synthetically generated measurements
according to the model in (5) with a covariance matrix R
given in (9) and (15). Then, in Subsection VII-B we apply
the algorithm to measurements collected in an indoor envi-
ronment.

A. Synthetic Radio Channels

In this study, the signal spectrum S(f) has a root-raised
cosine shape with roll-off factor 0.6 and bandwidth B =
1.6 GHz centered at fc = 6 GHz. The 3-dB bandwidth B̃
is 1 GHz and yields the RRL 1/B̃ = 1 ns. Each numerical
investigation involves 1000 simulation trials. In each trial
the Gaussian DC vector v (see text below (8)) is gener-
ated using (14) with β = 1m/c, θ = 5 ns and ξ =
1.8. The power P is specified through the SC-to-DC-ratio
SDR = 10 log10

(
1
M ∥

∑
k∈K α̃kz(ψ̃k)∥2/(PB)

)
. In addition,

the Gaussian noise vector w is generated with component
variance σ2 specified through the signal-to-noise ratio SNR =
10 log10

(
( 1
M ∥

∑
k∈K α̃kz(ψ̃k)∥2 +PB)/σ2

)
. Parameter set-

tings common to all experiments considered in the paper are
reported in Table I.

1) Empirical Substantiation of the “Near-orthogonality”
Assumption: This study presents empirical evidence support-
ing Assumption 2. We consider a synthetic channel with a
single SC, i.e., (5) with K = 1. The settings specific to
the experiment are summarized in Table II. The dispersion
parameters of the SC are selected as follows: its delay is fixed
to τ̃1 = τ̃ = 10 ns and its angle φ̃1 = φ̃ is drawn uniformly
over [0, 2π) for each trial and independently across trials. The
respective powers of noise, the DC and the SC are set such
that SDR = −5 dB and SNR = 20 dB and R is computed
using (15).

To substantiate the “near-orthogonality” property claimed
in Assumption 2 in each trial the cross-correlation coefficient

z(ψ̂j)HR−1z(ψ̂i)/
(
z(ψ̂i)HR−1z(ψ̂i)z(ψ̂j)HR−1z(ψ̂j)

) 1
2

is calculated for any pair (i, j) of indices of SCs detected

by the algorithm and the mean and variance of these figures
are obtained. The latter quantities are averaged over the
1000 trials to yield 0.0123 and 0.0401, respectively. As a note
the average number of detected SCs is 9.52. We also plotted
(not reported here due to space constraints) the estimated
dispersion vectors of the detected SCs in their domain Ψ.
By visual inspection we could qualitatively observe that
vectors located outside an elliptically shaped region centered
at the dispersion vector [τ̃ φ̃] of the active SC look uniformly
distributed. The main axes of the boundary ellipse are set
equal to 5 times the root-Cramér-Rao lower bounds (CRLBs)
for the estimation of the delay and angle. This choice ensures
that estimated dispersion vectors located outside the elliptical
region are very unlikely (specifically with probability equal
to 0.0001) to be a noisy estimate of [τ̃ φ̃].

2) Detection and Estimation of a Single SC: In this study,
we first validate empirically the expression in (43) as an
approximation of the probability of detecting spurious SCs
as well as an expression approximating the probability of
not detecting an active SC that we introduce now. In a
single-SC scenario, the probability of missed detection can
be approximated in the asymptotic regime NM → ∞ by
P[|x(ψ̂)|2 < κ], where ψ̂ is the estimated dispersion vector
of the detected SC. In this regime the distribution of 2|x(ψ̂)|2
can be approximated by a non-central χ2 distribution with
2 degrees of freedom and non-centrality parameter 2η =
2 |α̃|

2

σ2

∑
m∈M zm(ψ̃)R(η)zm(ψ̃) [44]. Making use of this

result, the probability of missed detection in a single-SC
scenario is approximated by [44]

Pmi(κ) =
∫ κ

0

e−(x+η)I0(2
√
ηx)dx. (54)

To numerically assess the accuracy of using (42) and (54) as
approximations of the probabilities of detecting spurious SCs
and missing an active SC, respectively, we modify the settings
as summarized in Table II. The threshold κ∗ of our algorithm
is a varying parameter. Other not explicitly mentioned settings
stay as described in Subsection VII-A1. Note that by keeping
the delay of the SC fixed the non-centrality parameter stays
constant and equal to η = {8.2, 12.2, 16.7} dB corresponding
to the three SNR values.

Fig. 2 shows a comparison of Psp(κ) in (42) (dashed
lines) and Pmi(κ) in (54) (dash dotted lines) with the relative
frequencies of, respectively, detecting a spurious SC (solid
lines) and missing the active SC (dotted lines) computed from
1000 trials. To compute the latter quantities we count the
occurrence of two events that we now define. First we specify
a rectangular region in Ψ centered at the dispersion vector of
the active SC and with sides equal to 5 times the square root of
the respective CRLBs [70]. The event “false detection” occurs
if the estimated dispersion vector of at least one detected SC
lies outside the region. The event “missed detection” occurs
if no SC is detected or the estimated dispersion parameters
of all detected SCs lie outside the region. The study is
conducted under two assumptions on the covariance matrix R
in (10) used in the generative model: R has the simplified
form (15) (Fig. 2a and Fig. 2b) and R has the general
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TABLE II
EXPERIMENT SPECIFIC SYSTEM PARAMETERS

Fig. 3. Wideband versus narrowband detection and estimation of SCs in the AWGN channel: (a) mean number of detected SCs, (b) root mean-square error
(RMSE) of the distance estimates of detected SCs, and (c) RMSE of their angle estimates obtained with the proposed algorithm (in blue with crosses) and
its narrowband version (in red with pluses) as a function of the array size M .

form (10) (Fig. 2c).14 Furthermore, under the first assumption
we distinguish between the two cases where the matrix R is
known (Fig. 2a) and unknown (Fig. 2b) to the algorithm, and
thus is estimated in the latter case.

We see in Fig. 2a and Fig. 2b that when the matrix R
selected in the generative model matches that used in the
design of the algorithm, whether the algorithm knows or does
not know said matrix has little impact on its performance.
Fig. 2c shows that when there is a mismatch, it only marginally
affects the performance of the algorithm. Specifically, a com-
parison with Fig. 2b shows that at large SNR values the
number of spurious SCs is slightly increased due to the
mismatch.

3) Wideband Versus Narrowband Detection and Estimation
of SCs in the AWGN Channel: State-of-the-art detection and
estimation schemes are traditionally designed based on the
narrow-band assumption, which neglects the second occur-
rence of g(φ,pm) in (7) [8], [9]. In this study we show
that neglecting this term in the proposed algorithm leads to
an increase of the number of detected spurious SCs as the
size of the array increases. To quantitatively assess this effect,
we modify the simulation scenario as summarized in Table II;
σ2 is assumed known.

In this study and the subsequent ones we adopt the widely
used convention in the radar community to convert (propa-
gation) delays in their corresponding equivalent (propagation)
distances. Fig. 3 depicts results obtained from 1000 simulation

14We remind the reader that the algorithm is designed based on the
simplified form (15).

trials that illustrate the behavior of the proposed algorithm (in
blue with crosses) and of a simplified (narrowband) version
of it that neglects the second occurrence of g(φ,pm) in (7)
(in red with pluses) as a function of the array size M .
Fig. 3a, Fig. 3b and 3c report respectively the mean number
of detected SCs, the RMSE of the distance estimates, and the
RMSE of the angle estimates. When M is increased beyond
5, the narrowband assumption is violated and the narrowband
version of the algorithm detects additional spurious SCs with
dispersion vectors located in the vicinity of that of the active
SC. By contrast, the RMSEs achieved with the proposed
algorithm decrease slightly as M is increased.15

4) High-Resolution Capability of the Proposed Algorithm:
To study the super-resolution capability of the proposed
algorithm, we consider a scenario with K = 2 SCs with
a controlled separation of their respective dispersion vectors.
The parameter vector ψ̃1 of the first SC is drawn uniformly
over Ψ. The parameter vector of the second SC is then set
to either ψ̃2 = ψ̃1 + [∆d/c 0] or ψ̃2 = ψ̃1 + [0 ∆φ].
The spacings ∆d and ∆φ are fractions of the RRL in,
respectively, distance (c/B̃ ≈ 0.3 m) and angle (56◦) [71].
The complex amplitudes of both SCs have unit magnitude and
their respective phases are drawn uniformly and independently.
Other system parameters are summarized in Tables I and II.

In Fig. 4, we compare the performance of the proposed
algorithm (circles) with that of a MLE algorithm (trian-

15To mitigate the impact of spurious SCs caused by large noise deviations,
only detected SCs with distance and angle less than respectively 20 cm and
20 ◦ apart of those of the active SC are considered in the computation of the
RMSE values.
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Fig. 4. Detection and estimation of two closely spaced SCs in the scenario depicted in Subsubsec. VII-A4. Blue solid and red dashed lines refer to the
bottom and top horizontal-axis, respectively. The panels in each row depict results obtained for the same SNR value, namely SNR = 10, 30, 50 dB, from the
upper to the lower row. Panels in the columns depict from left to right the mean number of detected SCs, the relative frequency that exactly two SCs are
detected, the RMSE of the estimated delays, the RMSE of the estimated angles, and the mean (unfilled) and RMSE (filled) of the moduli of the estimated
amplitudes.

Fig. 5. (a) Picture of the investigated room with the Rx, the Tx and some large-scale items labeled and (b) UWB antenna used at the Rx and the Tx.
A floorplan of the room is given in Fig. 7 in Appendix D.

gles) inspired by [9]. The MLE algorithm that we use as
a benchmark differs from that in [9] in two respects: the
scheduling and the thresholding that both coincide with those
implemented in the proposed algorithm. As mentioned in the
manuscript, the method used to obtain the threshold is inspired
from that in [14].16 Performance versus spacings ∆d and
∆φ are depicted as, respectively, blue solid and red dashed
curves.

16Note that our modifications of the RiMAX algorithm proposed in [9] lead
to improved performance. With the threshold suggested in [9], the number
of spurious components would be significantly increased. Additionally, with
the scheduling and thresholding suggested in [9], close-by components that
violate the detection criterion would both be discarded, which would lead to
a significant model-mismatch (see [9, Section 5.2.7]).

The first two columns of Fig. 4 present the mean number of
detected SCs ⟨L̂⟩ and the relative frequency that exactly two
SCs are detected ⟨1(L̂ = 2)⟩ versus spacing in distance and
angle, respectively. Both algorithms are able to reliably find
the correct number of SCs provided the respective dispersion
vectors of the two SCs are sufficiently apart. At high SNR (see
Figs. 4(k)–(o)) the spacing values beyond which this occurs
is as low as 0.15 m or 20 ◦ for the system setting used in
the study. Given that for this setting the RRL in distance is
0.3 m and that in angle is 56◦, this result demonstrates the
superresolution capability of the proposed algorithm. At lower
SNR (see Figs. 4(a)–(e)) these values rise towards the RRLs.
Note that these values are not only influenced by AWGN but
also by the DC, meaning that at high SNR the resolution
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Fig. 6. Selected application of the proposed algorithm to assess the dispersion characteristics (in delay and angle of arrival) of the channel from UWB
SIMO measurement data: (a) estimated DAPS and dispersion vectors of detected SCs, (b) various estimated DPS, (c) residual DAPS and dispersion vectors
of un-associated SCs, (d) various estimated APS. Detailed descriptions of the measurement setting and the depicted results are given in Subsec. VII-B.

capability of the algorithms is restricted by the SDR. Further
worth mentioning is that both algorithms tend to underestimate
the number (K = 2) of active SCs when the spacing is
reduced.

Columns three and four of Fig. 4 depict the RMSE of,
respectively, the distance and angle estimates, provided exactly
two SCs are detected. We associate the two detected SCs with
the true SCs by means of the optimal subpattern assignment
(OSPA) metric [72]. To be able to use the metric we normalize
the estimated distances and angles with the RRL in distance
and in angle, respectively. The root of the sum of the CRLBs
(delay and angle) of the two SCs are also depicted (lines with
stars). The estimates returned by both algorithms approach
their respective root CRLB, provided the spacing of the two
SCs in Ψ is large enough.

The last column in Fig. 4 presents the mean of the absolute
value of the complex amplitudes ⟨

∑
l |α̂l|⟩ (empty markers)

and the RMSE of the absolute value of the complex amplitudes
(filled markers) again provided exactly two SCs are detected.
The two algorithms perform similarly in estimating the dis-
persion parameters; however our algorithm outperforms the
modified MLE algorithm in estimating the complex amplitudes
when the two SCs are closely spaced. This distinct behavior
results from the specific structures of the algorithms: the
modified MLE algorithm computes a least-squares estimate
of the amplitudes, while the proposed algorithm computes a
linear minimum mean-square error (MMSE) estimate based
on the hyperparameter estimates, see (38) and (39). When
the estimated dispersion vectors of the two detected SCs
are closely spaced, the least-squares estimator computes the
inverse of an ill-conditioned matrix, while the linear MMSE
estimator regularizes this matrix.

B. Measured Radio Channels

For the experimental study we used a channel sounding
equipment that transmits an m-sequence of 7 GHz bandwidth
at 6.95 GHz carrier frequency. Details about the equipment can
be found in [73]. After applying standard pre-processing steps
(subtracting the cross-talk and equalizing the system response),
the resulting signal is input to a filter with a root-raised-

cosine transfer function with roll-off factor 0.6 and bandwidth
B = 1.6 GHz centered at fc = 6 GHz. The output signal with
reduced bandwidth B is then Fourier transformed and sampled
over [−B/2,+B/2] with frequency spacing ∆ = 6.8085 MHz
to produce a length N = 235 vector collecting these samples.
A virtual 3× 3 antenna array with 2 cm inter-element spacing
is emulated by means of a single antenna mounted on a
positioning table. Since the received signals are essentially
noise-free, WGN was artificially added with power set such
that SNR = 40 dB to emulate the model in (4), see Table II
for the parameter settings.

The room where the measurements were performed is
depicted in Fig. 5. Based on a layout of it, see Fig. 7 in
Appenix D, a classical mirror source method [74] computes
the positions of predicted virtual sources associated with rays
from the Tx antenna to the center of gravity of the Rx array
positions that undergo up to 5 reflections on walls or large
objects (windows, boards). To each such predicted source
corresponds a predicted SC with dispersion vector computed
from the position of the source, see Appendix D.

The following analysis concerns measurements obtained
with Rx position p1 depicted in Fig. 7 in Appendix D. Fig. 6(a)
depicts the estimated DAPS computed from the received
signal [74]. Note that this power spectrum incorporates the
smoothing function of the aperture of the measurement equip-
ment [64]. This will be the case for all power spectra
considered in this study. The red crosses and blue diamonds
mark the estimated dispersion vectors of the SCs detected by
the algorithm and the predicted SCs, respectively. To each
detected SC we associate (possibly no, one, or more than
one) predicted SC as follows. A predicted SC is associated
to a detected SC if their respective distances and angles are
no more apart than, respectively, 10 cm (1/3 of the RRL)
and 5 ◦ (1/10 of the RRL), see Appendix D for the rationale
behind this choice. To most of the detected SCs, a unique
predicted SC is associated in this way. The two detected SCs
with dispersion parameters 35 m and 80◦ are associated with
the same predicted SC. An association could not be made
for four detected SCs. Fig. 6(c) shows the estimated DAPS
computed from the residual signal y−Z(Ψ̂)µ̂. It also includes
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the dispersion vectors of detected SCs (blue diamonds) that
could not be associated with any detected SC. Clearly, the
strong peaks in the estimated DAPS depicted in Fig. 6(a)
have vanished. Fig. 6(b) shows the estimated DPS computed
from the original signal (solid blue with crosses) and from the
residual signal (solid red with pluses), as well as the theoretical
DPS of the DC given in (14) with η = η̂ plus the estimated
noise variance σ̂ (solid black with stars). The first two DPS
result from averaging the respective DAPS over the angle
domain. The DPS obtained from the residual and reconstructed
signals match well. This empirically justifies our choice of
model (14). Finally, Fig. 6(d) depicts the estimated APS
computed in a similar way as the DPS depicted in Fig. 6(b).
The first two estimated APS are obtained by averaging the
respective DAPS over the delay domain. It can be seen that
the estimated APS of the residual signal is nearly constant
over the angle domain.

VIII. CONCLUSION

In this paper, we derive and analyze a super-resolution
algorithm for detecting and estimating specular components as
well as estimating the power spectrum of the dense component
plus noise in an ultra-wide band single-input—multiple-output
(SIMO) multipath channel. Estimated parameters are among
others the delay, angle-of-arrival, and complex amplitude of
the detected specular components as well as the parameters of
a parametric model of the delay power spectrum characterizing
the dense component. The design of the algorithm is inspired
by sparse Bayesian learning. As a result it embodies a pruning
condition that determines whether a candidate specular compo-
nent is considered active or not. The threshold of the pruning
condition is adapted to control the probability of detecting
spurious specular components.

Numerical studies in a synthetic environment show that
the simplifying assumptions underlying the derivation of the
algorithm are realistic and that the relative frequencies of
detecting spurious specular components and missing active
specular components are close to the respective probabilities
derived theoretically. These studies also demonstrate several
virtues of the algorithm: (a) its ability to still detect and
accurately estimate specular components, even when their
separation in delay and azimuth is down to half the Rayleigh
resolution limit of the equipment; (b) it is robust in the sense
that it tends to detect no more specular components than
the actual ones. An experimental study illustrates the ability
of the proposed algorithm to accurately infer the dispersive
characteristics (in delay and angle of arrival) of the UWB
SIMO channel. Owing to this high efficiency the proposed
algorithm has promising potential applications in all areas of
wireless communications that exploit extended channel state
information, such as integrated sensing and communications
(ISAC) and radio-based localization.

APPENDIX A
PROOF OF THEOREM 1

Proof: As shown in [53] it follows from Assumption 1
that the real and imaginary parts of the Gaussian field x(ψ·)
in (41) exhibits the following properties:

1) They have equal constant variance: E
[∣∣ℜ{x(ψ·)∣∣2] =

E
[∣∣ℑ{x(ψ·)∣∣2] = 1/2, ψ· ∈ Ψ.

2) They are independent: E[ℜ{x(ψ·)}ℑ{x(ψ·
′)}] = 0,

ψ·,ψ
′
· ∈ Ψ.

Since ℜ{x(ψ·)} and ℑ{x(ψ·)} are independent 2|x(ψ·)|2
is a random χ2 field on Ψ with two degrees of freedom
[49], [50].17 Note that unless the DC vanishes, i.e. P = 0,
see (15), the Gaussian field x(ψ·) is non-stationary and so
is 2|x(ψ·)|2. The probability that the χ2 field exceeds a
threshold is asymptotically equivalent to the probability of
the field’s excursion above the threshold when said threshold
grows large [49], [50]. Specifically, by applying Weyl’s tube
formula [50, Theorem 3.3.1] to 2|x(ψ·)|2 and making use of
[50, Theorem 4.4.1] combined with [50, Section 4.5.2] we
obtain

P
[
sup
ψ·

2|x(ψ·)|2 ≥ 2κ
]

∼
[∫

Ψ

1
π

√
det(Λ(ψ·)) dψ·

]
κe−κ, κ→∞ .

(55)

In this expression Λ(ψ·) ∈ R2×2 is the covariance matrix

Λ(ψ·) = E

[
∂x(ψ·)
∂ψ·

[
∂x(ψ·)
∂ψ·

]H
]

=

E
[∂x(ψ·)∂x(ψ·)∗

∂τ2

]
E
[∂x(ψ·)∂x(ψ·)∗

∂τ∂φ

]
E
[∂x(ψ·)∂x(ψ·)∗

∂φ∂τ

]
E
[∂x(ψ·)∂x(ψ·)∗

∂φ2

]
 .
(56)

As shown in Appendix C, the entries in (56) read

E
[
∂x(ψ·)∂x(ψ·)∗

∂τ2

]
= 4π2b1(τ)b2(τ) (57)

E
[
∂x(ψ·)∂x(ψ·)∗

∂φ2

]
=

4π2

M

∑
m∈M

d2
m(φ)f2

c (58)

E
[
∂x(ψ·)∂x(ψ·)∗

∂τ∂φ

]
= E

[
∂x(ψ·)∂x(ψ·)∗

∂φ∂τ

]
= 0 . (59)

The right-hand side in (44) follows then from (57)-(59). □

APPENDIX B
PROOF OF LEMMA 2

Proof: With the definition of q the right-hand expression
in (55) reads qκe−κ. Clearly, this expression determines a
non-increasing function of κ defined on [1,∞) with range
(0, q/e]. Given ϵ ∈ (0, q/e] we seek the minimum value of
κ ∈ [1,∞) such that qκe−κ ≤ ϵ holds. Obviously the sought
value solves qκe−κ = ϵ, i.e. equals κ⋆(ϵ) in (48). □

APPENDIX C
COVARIANCE MATRIX OF THE χ2 RANDOM FIELD

2|x(ψ·)|2

The (i, j)-entry of (56) is given in (60), shown
at the bottom of the next page, with R̃ given

17The real and imaginary parts of
√

2x(ψ·) have unit variance, in accor-
dance with the definition of a χ2 field.
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according to (16). The partial derivatives of the signal
Z(f ; τ, φ,p(m)) = ej2πfcg(φ,pm)S(f)e−j2πfτ w.r.t. τ and φ
are, respectively, ∂zm(ψ)/∂τ = −ej2πfcg(φ,pm)ȧf(τ) and
∂zm(ψ)/∂φ = dm(φ) exp(j2πfcg(φ,pm))j2πfcaf(τ) with
dm(φ) = ∂g(φ,pm))/∂φ and ȧf(τ) = ∂af(τ)/∂τ . Due to
the centro-symmetry of the spatial aperture, see Assumption 1,
for any m ∈ M, there exists an index m′ ∈ M such that
pm′ − p = −(pm − p). As a result∑

m∈M
dm(φ) = 0 . (61)

We now proceed with the computation of the specific entries
of (56).

1) Second-Order Partial Derivatives of x(ψ) w.r.t. τ : One
can easily check that because of (61) the second and third
terms of (60) vanish in this case. As a result, we can write

E
[∂x(ψ)∂x(ψ)∗

∂τ2

]

=2

( ∑
m∈M

ȧf(τ)HR̃
−1
ȧf(τ)∑

m∈M
af(τ)HR̃

−1
af(τ)

−
ℜ
{ ∑
m∈M

ȧf(τ)HR̃
−1
af(τ)

}2

∣∣∣ ∑
m∈M

af(τ)HR̃
−1
af(τ)

∣∣∣2
)

= 2

(
ȧf(τ)HR̃

−1
ȧf(τ)

)(
af(τ)HR̃

−1
af(τ)

)
×

(
1−

ℜ
{
ȧf(τ)HR̃

−1
af(τ)

}2(
af(τ)HR̃

−1
af(τ)

)(
ȧf(τ)HR̃

−1
ȧf(τ)

)
)

= 8π2b1(τ)b2(τ) (62)

where

b1(τ) =
[(
ȧf(τ)HR̃

−1
ȧf(τ)

)
/
(
4π2af(τ)HR̃

−1
af(τ)

)]
(63)

and

b2(τ) = 1−
ℜ
{
ȧf(τ)HR̃

−1
af(τ)

}2(
af(τ)HR̃

−1
af(τ)

)(
ȧf(τ)HR̃

−1
ȧf(τ)

) . (64)

The above expression is a delay-dependent loss factor that
depends of the structure of the noise vector n. Note that if n
is white, b2(τ) = 1, otherwise b2(τ) < 1, typically.

2) Second-Order Partial Derivatives of x(ψ) w.r.t. φ: In
this case, the last three terms in (60) vanish, again because of
(61). We readily obtain,

E
[∂x(ψ)∂x(ψ)∗

∂φ2

]
=

8π2f2
c

M

∑
m∈M

d2
m(φ) . (65)

3) Second-Order Partial Derivatives of x(ψ) w.r.t. τ and φ:
In this case (61) make all terms in (60) vanish. Thus,

E
[∂x(ψ)∂x(ψ)∗

∂τ∂φ

]
= 0 . (66)

APPENDIX D
VALIDATION OF THE SCS DETECTED BY THE ALGORITHM

In this appendix, we provide a qualitative study that attempts
to relate the SCs detected by the proposed algorithm to
likely propagation mechanisms in the environment where the
experimental data were collected. The results of this study
supplement those presented in Subsec. VII-B.

A 2-D coordinate system including the layout of the room
where the measurements were taken is shown in Fig. 7. Also
reported are the two selected positions p1 and p2 of (the center
of gravity of) the Rx (virtual) array and the fixed position
pTx of the (single) Tx antenna. We recall that the mirror
source method [74] computes the positions of predicted virtual
sources associated with rays from the Tx antenna to the Rx
array positions that undergo up to 5 reflections on walls or
large objects (windows, boards). For the sake of conciseness
we refer to virtual sources in the sequel as sources. The
position, denoted by p̂l, of the predicted source corresponding
to the lth SC, l = 1, . . . L̂ detected by the algorithm is
computed based on the estimated dispersion vector ψ̂l using
the relation p̂l = p + cτ̂l[cos(φ̂l) sin(φ̂l)]T, where p either
equals p1 or p2. These positions are depicted in Fig. 7 as red
crosses and blue pluses for the Rx array positions p1 and p2,
respectively.

The procedure described next attempts to associates detected
sources and predicted sources. Possibly no, one, or more than
one predicted SCs are associated to each detected SC as
follows. A predicted SC is associated to a detected SC if their
respective distances and angles are no more than, respectively,
10 cm (1/3 of the RRL in distance) and 5 ◦ (1/10 of the RRL

E
[∂x(ψ)∂x(ψ)∗

∂ψi∂ψj

]
= 2

( ∑
m∈M

(
∂zm(ψ)
∂ψj

)H
R̃
−1 ∂zm(ψ)

∂ψi∑
m∈M

zm(ψ)HR̃
−1
zm(ψ)

−

∑
m∈M

(
∂zm(ψ)
∂ψi

)H
R̃
−1
zm(ψ)ℜ

{ ∑
m′∈M

(
∂zm′ (ψ)
∂ψj

)H
R̃
−1
zm′(ψ)

}
∣∣∣ ∑
m∈M

zm(ψ)HR̃
−1
zm(ψ)

∣∣∣2

−

∑
m∈M

zm(ψ)HR̃
−1 ∂zm(ψ)

∂ψj
ℜ
{ ∑
m′∈M

(
∂zm′ (ψ)
∂ψi

)H
R̃
−1
zm′(ψ)

}
∣∣∣ ∑
m∈M

zm(ψ)HR̃
−1
zm(ψ)

∣∣∣2

+
ℜ
{ ∑
m∈M

(
∂zm(ψ)
∂ψi

)H
R̃
−1
zm(ψ)

}
ℜ
{ ∑
m′∈M

(
∂zm′ (ψ)
∂ψi

)H
R̃
−1
zm′(ψ)

}
∣∣∣ ∑
m∈M

zm(ψ)HR̃
−1
zm(ψ)

∣∣∣2
)

(60)
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Fig. 7. Floorplan of the investigated environment including the (fixed) Tx
position pTx, the two selected positions p1 (red filled circle) and p2 (blue
filled triangle) of (the center of gravity of) the Rx array, the locations of
estimated (virtual) sources for Rx array position p1 (red crosses) and Rx array
position p2 (blue pluses) and the positions of associated predicted sources
(black circles and triangles, respectively) computed with the mirror source
model.

in angle) apart. These selected values are within the same order
of magnitude as, respectively, the 5 cm approximate accuracy
of the floorplan (measured with a tape measure) and the
CRLBs of the estimated distances and angles. The positions
of successfully associated predicted sources are depicted in
Fig. 7 as black circles and triangles for Rx positions p1 and
p2, respectively.

The algorithm is able to identify the LOS, most of the pre-
dicted first-order reflections and some predicted higher-order
reflections for both Rx positions. Worth noting are the rays
with reflections up to order five via the white board and the
window highlighted in Fig. 7 and Fig. 5 and the second-order
rays with reflections via the west plaster board and the
east plaster board. The two former items are made of more
reflective materials than the two latter. Furthermore, scattering
from a metallic frame (see Fig. 5) that was not considered in
the mirror source method could explain the detected source
located at approximately [−8 6] m close to the west plaster
board. For Rx position p2 many detected sources are found in
a region around [−15 8] m. They are likely to originate from
scattering from this metallic frame.
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