
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 8, AUGUST 2024 9869

Device-Free Indoor WLAN Localization With
Distributed Antenna Placement Optimization and

Spatially Localized Regression
Osamu Muta , Member, IEEE, Kazuki Noguchi, Student Member, IEEE, Junsuke Izumi,

Shunsuke Shimizu, Graduate Student Member, IEEE, Tomoki Murakami , Member, IEEE,
and Shinya Otsuki, Member, IEEE

Abstract— Wireless sensing is a promising technology for
future wireless communication networks to realize various appli-
cation services. Wireless local area network (WLAN)-based
localization approaches using channel state information (CSI)
have been investigated intensively. Further improvements of
detection performance will depend on selecting appropriate fea-
ture information and determining the placements of distributed
antenna elements. This paper presents a proposal of an enhanced
device-free WLAN-based localization scheme with beam-tracing-
based antenna placement optimization and spatially localized
regression, where beam-forming weights (BFWs) are used as
feature information for training machine-learning (ML)-based
models localized to partitioned areas. By this scheme, the antenna
placement at the access point (AP) is determined by solving a
combinational optimization problem with beam-tracing between
AP and station (STA) without knowledge of the CSI. Additionally,
we propose the use of localized regression to improve local-
ization accuracy with low complexity, where classification and
regression-based ML models are used for coarse and precise
estimations of the target position. We evaluate the proposed
scheme effects on localization performance in an indoor envi-
ronment. Experiment results demonstrate that the proposed
antenna placement and localized regression scheme improve the
localization accuracy while reducing the necessary complexity for
both off-line training and on-line localization relative to other
reference schemes.

Index Terms— Channel state information, device-free localiza-
tion, distributed antenna, wireless local area network.

I. INTRODUCTION

WIRELESS sensing technology using radio signals has
attracted attention as a key technology that can accom-

modate the needs for various use cases anticipated to arise
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during the beyond-5G and 6G era [1], [2], [3]. Such technolo-
gies are particularly expected to create new value for wireless
communications by enabling wireless sensing using radio
signals over wireless networks [4], [5], [6]. Wireless sensing
technology characterizes the state and behavior of a target
object as fluctuations in the radio propagation environment.
Particularly, many techniques have been reported using chan-
nel state information (CSI), representing the radio propagation
characteristics between transmitters and receivers [7]. In addi-
tion, when combined with multi-input multi-output orthogonal
frequency division multiplexing (MIMO-OFDM) transmission
as multi-carrier modulation and spatial multiplexing, a large
amount of CSI is expected to be acquired from wireless
environments, thereby further improving wireless sensing per-
formance such as object detection and localization accuracy.

Investigations of various wireless sensing approaches using
existing wireless interfaces have been described in the litera-
ture, including radio-frequency identification (RFID) sensors
[8], ZigBee [9], Bluetooth [10], [11], and wireless local
area networks (WLANs) and related studies [12], [13], [14],
[15], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34]. To be
more specific, the WLAN-based approach is a promising
technique that allows existing access points (APs) to be
used for sensing purposes. Broadly speaking, WLAN-based
sensing techniques can be categorized into device-based and
device-free approaches, depending on whether the target has
a wireless device. Especially, CSI-based device-free sensing
approaches (i.e., cases in which the target has no wireless
device) have been studied recently, where measured CSI
samples in WLANs such as IEEE802.11ac are used for wire-
less sensing. One difficulty associated with these device-free
approaches is the collection of large amounts of CSI from
an environment. To this end, a WLAN-based device-free CSI
acquisition scheme was proposed in an earlier work [30],
[31], [32]. For CSI monitoring, these studies used a CSI
feedback mechanism for closed-loop multi-user (MU) MIMO
beamforming. More specifically, in WLAN systems such as
IEEE802.11ac, beamforming weights (BFWs) are fed back
from the STA to the AP. This scheme uses a commodity
WLAN interface to capture the feedback frames carrying
BFWs and to extract them to train a machine learning
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(ML) model for wireless sensing applications such as object
detection and localization [30], [31]. Although this method
collects a large amount of CSI effectively without explicit
measurements, further investigation of the system design must
be conducted to extract the potential sensing performance
of WLAN systems with multiple antennas. More concretely,
the achievable detection accuracy is affected strongly by
the antenna placements and their nearby radio propagation
circumstances [33]. However, effective antenna placement
methods for device-free approaches are not well established.
In addition, to realize WLAN-based localization with limited
hardware and power resources, such as a mobile WLAN
device, further investigation and analysis are necessary to
develop an energy-efficient lightweight sensing solution using
a small dataset.

This paper presents an effective design for device-free
WLAN-based localization using beam-tracing-based antenna
placement optimization and spatially localized regression. The
original contributions of this paper are three-fold.

• We propose a deterministic antenna placement optimiza-
tion method without CSI. In this scheme, the appropriate
antenna element placement at the access point (AP) is
found by solving a combinational optimization problem
using approximated beam-tracing information between
AP and station (STA) without knowledge of the actual
CSI,1 where the best candidate antenna placement is
determined to maximize the optimization metric repre-
senting how much of a multipath-rich channel condition
is present in the observation area. Therefore, unlike the
conventional scheme [30], more accurate localization
performance can be achieved by ascertaining the proper
AP and STA antenna positions.

• Second, we propose the use of localized regression to
improve localization performance with low complexity,
where a trained classification model detects the area in
which a target exists and the target position is estimated
more precisely using a localized regression ML model
that is trained locally by CSI detected in the target
area. Based on the property by which a simple (i.e.,
less complex) regression model is applicable when the
localization area is small, the proposed scheme using a
localized regression model is expected to improve the
localization performance while reducing the necessary
complexity.

• To demonstrate the effectiveness of the proposed
approaches, we conducted evaluations by experimenta-
tion using an IEEE802.11ac-based WLAN system with
multiple distributed antennas in an indoor scenario, where
our designed algorithms are implemented on an off-
the-shelf wireless device. Based on the experimentally
obtained results, the proposed scheme has the potential
to improve localization accuracy considerably in terms
of detection probability and error distance.

1In other words, to determine the optimal antenna placement using CSI,
it is necessary to measure CSI and train the ML models individually for all
possible combinations of antenna positions, which is not a realistic approach.

TABLE I
LIST OF NOTATION

Notation: Notation such as vectors, matrices, and variables
is presented in Table I.

II. RELATED WORK

Various WLAN and related approaches for wireless sensing
have been presented in the literature [14], [15], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34]. Radio signal strength (RSS) based
sensing techniques have been investigated widely because RSS
data acquisition is more accessible than other approaches.
For one earlier study [14], a clustering algorithm was pro-
posed to remove noise samples for RSS fingerprint-based
WLAN indoor positioning, where a DBSCAN-based clus-
tering scheme was introduced. Another earlier study [15]
examined a proposed alternative fingerprint-based localization
method, the data-rate-based fingerprint framework, in which
the transmission power and the achieved data rate are used
as fingerprint information. This method achieves localization
accuracy which is comparable to that obtained using RSS-
based methods. The authors in [17] propose a distributed
massive MIMO-based localization scheme using RSS data
clustering to reduce the necessary complexity, where large
RSS measurements are used to estimate a user’s location.
As discussed in the existing studies described above, RSS
and other related information are easily exploited for sensing
purposes in most off-the-shelf WLAN devices. However, RSS
is the average power measurement over the signal bandwidth.
It is inadequate for obtaining more accurate sensing results.
For improving measurement accuracy, CSI is more effec-
tive because it shows the channel characteristics’ impulse
response or frequency response. Various studies have used
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methods based on a device-free concept, where a target
object has no wireless device. One report presents [18] a
device-free WLAN-based location-based activity identifica-
tion scheme. This scheme exploits CSI in OFDM systems
to identify various activities such as in-place activities and
walking movements in a house. Another report [19] presents
a through-the-wall human detection system using off-the-shelf
WLAN devices, where principal component analysis-based
filtering is applied to extract meaningful features from the
CSI. More specifically, the correlated subcarriers are selected
to extract features for robust human detection, whereas a
convolutional neural network-based approach has been applied
for CSI-based positioning in another study [20]. Device-
free regression-based localization schemes are presented in
some reports [21], [22], where support vector regression is
used to localize the target. One report [22] describes that
solving a device-free localization problem with regression
models is more effective than when solving a classification
problem. However, the required complexity for constructing
an accurate regression model might be much higher than the
case using the classification model. The approaches described
in those reports rely on the available CSI as feature information
for wireless sensing purposes. Consequently, the achievable
sensing accuracy depends on the antenna placements and
their surrounding radio propagation environments. Although
antenna placement problems have been considered for cover-
age prediction and optimization [23], an appropriate method
for determining antenna placements that improve sensing
accuracy in device-free WLAN-based systems has not been
investigated sufficiently. For some studies [24], [25], a high-
frequency antenna array has been used to locate partial
discharge sources. As reported [25] for one other method,
the antenna array placement is optimized heuristically to
locate the signal source. Nevertheless, these techniques are not
directly applicable to device-free scenarios because no signal
source or wireless device is present at the target. In addition,
AP selection algorithms have been investigated for WLAN-
based localization [26], [27], [28], [29]. Offline and online
AP selection strategies are presented in an earlier report [26],
where the best AP combination among all possible AP sets
is selected. The authors [27], [28] proposed a mixed offline
and online AP selection for improving the noise tolerance
of an ML model. Also, the authors [29] proposed an access
point optimization approach to deploy the given number of
WLAN APs in an indoor environment, where simulation-based
analysis is given for performance evaluation. However, the
schemes described above rely on RSS measurement at the
target. Therefore, the feature information must be measured
in advance. Moreover, AP selection for device-free-based
localization is not discussed. Unlike the schemes above, this
paper is intended to develop an effective antenna placement
scheme without knowing feature information, i.e., without
measuring CSI.

Another difficulty is to the method for acquiring a large
amount of CSI from the environment. As realistic solutions,
earlier reports [30], [31], [32], [33], [34] have proposed
effective CSI acquisition schemes by which a CSI feedback
mechanism for IEEE802.11ac-based WLANs is used to collect

Fig. 1. Block diagram of a WLAN-based localization system in which AP
with M antennas serves STA with N antennas. The CSI-acquisition terminal
extracts BFWs from captured feedback frames and applies them to an ML
model consisting of classification and regression models, respectively, for area
detection and area-wise localization.

CSI from all nearby devices as feature information for sensing
purposes. As a result, the sensing area can be expanded
easily without installing additional sensing stations (STAs).
As described in one earlier report [31], the collected CSI
samples are used for WLAN-based human detection with
a deep neural network and numerous CSI samples. Unlike
deep learning-based methods trained on large datasets, the
method described herein is a lightweight approach using a
small dataset.

Unlike those earlier studies, we aim for this study at
designing an effective distributed antenna placement method
that determines antenna placements deterministically without
knowledge of the CSI dataset. To achieve further performance
improvement, we propose a localized regression-based method
that works with a small dataset. After coarsely detecting the
local area where the target is located, a target position is
estimated using a locally optimized regression model to the
detected target area. Based on experimentally obtained results
from an indoor distributed MIMO scenario, we clarify the
localization performance of the scheme proposed above.

III. SYSTEM DESCRIPTIONS

A comprehensive block diagram of the device-free WLAN-
based localization system using the proposed scheme is
portrayed in Fig. 1, where an IEEE802.11ac-based AP with M
antenna serves a user device (STA) with N antennas. Here,
the number of streams is St = min(M,N). In device-free
localization systems, the target has no wireless device. Here,
a CSI acquisition terminal captures feedback frames from STA
to AP and then extracts the BFWs, which are used to train the
regression and classification ML models for coarse and fine
target location estimation. Details of the ML models used for
this study are explained hereinafter.

Assuming that positions of M AP antennas and the STA
are determined properly in advance, the channel matrix of
the path between the AP and the STA at the k-th subcarrier
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is represented by Hk = [hk,1, · · · ,hk,N ] ∈ CN×M , k =
1, · · · , K, where K denotes the number of subcarriers per
OFDM symbol. Here, hk,n = [hk,n,1, · · · , hk,n,M ]T ∈ CM×1,
where hk,n,m is the channel coefficient between the m-th
transmit antenna and the n-th receive antenna at the k-th
subcarrier. Consequently, the concatenated channel matrix over
subcarriers in the frequency domain can be expressed as
H = [H1, · · · ,Hk, · · · ,HK ].

The CSI per subcarrier is estimated at the receiver side
(STA). After OFDM demodulation with FFT processing, the
channel matrix at the k-th subcarrier is estimated as Ĥk ∈
CN×M . The right singular matrices, Vk ∈ CM×M , are
obtained by singular value decomposition (SVD) of Ĥk, i.e.,
the channel matrix is decomposed into Ĥk = UkΣkVH

k ,
where Σk ∈ CN×M denotes a diagonal matrix in which
the diagonal element is a singular value of the channel.
If M > N , then the right singular matrix is reduced to
Vk =

[
vk,1, · · · ,vk,N ,0T

M , · · · ,0T
M

]
∈ CM×M . The first

N column vectors vk,n are used as downlink BWFs for N
user devices. Here, vk,n = [vk,n,1, · · · , vk,n,M ]T ∈ CM×1

and 0T
M = [0, · · · , 0]T ∈ CM×1 denotes the zero vector of

length M . Based on the IEEE802.11ac standardized schemes,
the right-singular matrix Vk is compressed by application of
Givens rotation as a linear transform and quantized [35].2 The
generated CSI, i.e., the quantized and compressed version of
the right-singular matrix, is fed back from the STA to the AP.

Fig. 1(b) depicts a block diagram of the CSI acquisition
terminal to capture the feedback frames and then to reconstruct
the right-singular matrix (i.e., BFW) Ṽk as feature informa-
tion. At the preprocessing block, consecutively received BFWs
are concatenated as more effective single-feature information.
To be more specific, let V̂(p)

k denote the BFW matrix at the
p-th time instance on the k-th subcarrier. The BFW matrix
over subcarriers is represented as V̂(p) = [V̂(p)

1 , · · · , V̂(p)
K ].

The concatenated BFW matrix is given as

V̂ (p) =
[
V̂(p−(U−1)), · · · , V̂(p)

]
, p > U, (1)

where U is defined as the concatenated CSI length (i.e., the
number of concatenated BFWs), which is used as effective
feature information for ML-based localization [34].

IV. PROPOSED LOCALIZATION SCHEME

This section presents an explanation of the concepts of
the proposed localization scheme based on beam-tracing-
based antenna placement optimization and spatially localized
regression.

Fig. 2 portrays two examples of antenna placements in
an indoor environment, where four AP antennas are placed
on the different sides of STA. The measurement region is
divided into R = 32 areas. Figs. 2(i) and 2(ii) show the
target moving in measurement areas with different antenna
placements. In Fig. 2(i), when the target moves across the
direct paths, i.e., from area 16 to 17, it tends to fluctuate

2The right singular matrix Vk is converted into a quantized version of
an angle information sequence. The received angle information sequence is
converted to the right-singular matrix at the CSI acquisition terminal. Details
are presented in Appendix A of [34].

Fig. 2. Examples of measured CSI when the target is located at different
positions in two antenna placement cases (i) and (ii).

the channel characteristics between AP and STA. By contrast,
when the target moves from area 2 to 3, i.e., approximately
along with the direct beam between AP and STA, the channel
fluctuation weakens even when the target moves. By contrast,
in Fig. 2(ii), similarly to the situation described above, the CSI
fluctuates when the target moves from area 16 to 17, although
it is less affected when the target is in area 2 to 3. The upper
right panel of this figure shows that CSI varies even when
the target is located in an area with no direct path between
AP and STA, such as area 9 or 10. This finding indicates
that multiple paths from the walls characterize the target’s
behavior and consequently facilitate target detection. This fact
implies that higher localization accuracy can be expected when
antenna elements are placed to reduce the coverage areas of
direct beams and when they make the environment become
multipath-rich. The proposed scheme uses this concept to elu-
cidate the appropriate antenna placement without knowledge
of the actual CSI.3

This paper presents consideration of two evaluation metrics,
S1 and S2, for antenna placement design. Instead of knowing
the actual CSI, the proposed scheme uses two metrics to
evaluate the antenna placement patterns. Metrics S1 and S2 are
used, respectively, to evaluate coverage areas by direct beams
and the number of beams in the observation field. In that

3The proposed scheme determines the AP antenna position without knowl-
edge of the actual CSI between AP and STA. In other words, the proposed
scheme determines the AP antenna positions implicitly based on the assump-
tion that transmit beamforming is used at the AP, i.e., the transmit signal beam
at the AP is directed to the STA side.
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sense, metric S1 is defined as the number of areas through
which direct beams pass, whereas the second metric S2 is
defined as the total number of direct beams through which
direct beams pass. Concrete examples to explain differences
between the two metrics are shown in Figs. 3(a) and 3(b). Four
blue antennas show selected antenna positions among possible
candidates in these figures. Red lines show direct beams
between AP antennas and STA, where the areas at which the
beams pass are colored red. As portrayed in Fig. 3(a), the
first metric S1 is the number of red areas, i.e., the number
of areas through which the beam passes. The second metric
S2 in Fig. 3(b) is the total number of beams passing over red
areas. Metric S2 can be extended to cases with waves reflected
from walls and obstacles. Figs. 3(c) and 3(d) show the actual
room layout and its extended layout with mirror images of the
actual one, where the green line shows beam-tracing between
AP antennas and STA. Here, R = 4 is assumed with labels of
a, b, c, and d. An example of a reflected wave trajectory in a
room is presented in Fig. 3(c). The metric S2 is the difference
between the number of direct beams and that of reflected
beams passing through red areas. This metric is calculable
using mirror images of the actual room, as shown in Figs. 3(d).
The red and blue boxed areas of this figure respectively present
mirror images of ξ = 1 and 2. Here, ξ denotes the ξ-th
reflected wave, i.e., ξ = 1 and 2 respectively represent the
trajectories of the first and second reflected waves. This figure
clarifies that S2 is calculable in the same way as the direct
waves, i.e., by adding up the number of beams passing through
the colored areas with the same label (a, b, c, and d). For
example, in Fig. 3(d), the first and second reflected waves
respectively pass over areas d, b, and a in the mirrored rooms
of ξ = 1 and area a in that of ξ = 2. As the direct wave
path through area “d”, S2 = 5 is obtained by adding them up.
The scheme above can be extended to a case with an arbitrary
number of areas, e.g., R = 32.4

Let ξ = 0, 1, · · · , Ξ denote the mirror image index corre-
sponding to the ξ-th reflected wave, where ξ = 0 stands for
the direct beam, and where Ξ denotes the maximum number
of reflections per path between AP antenna and STA. Two
metrics S

[b]
1 and S

[b]
2 are defined as

S
[b]
1 =

R∑
r=1

g(c0,b
r ) (2)

S
[b]
2 =

R∑
r=1

c0,b
r −

Ξ∑
ξ=1

rξ

R∑
r=1

cξ,b
r , (3)

where b stands for the index of the selected antenna placement
pattern, and where rξ is an attenuation factor of reflected
waves, i.e., r0 = 1 and rξ ≤ 1,∀ξ. In those equations,
cξ,b
r denotes the number of times that the ξ-th beam passes

through area r when antenna placement pattern b is used,
where ξ = 0 and ξ ≥ 1 respectively correspond to direct
and ξ-th reflected beams. In addition, g(·) is a binary decision

4The number of area divisions in antenna placement determination is not
necessarily the same as R in the classification. To simplify the discussion, for
these analyses we assume the same R for calculating S1 and S2.

Fig. 3. Illustrations of antenna position optimization based on the beam
trajectory tracing between AP (M = 4) and STA: (a) and (b) respectively
portray calculations of the two metrics S1 and S2. In addition, ξ = 0 and
ξ ≥ 1 respectively denote the actual room and its mirror image rooms.

function defined as

g(x) =

{
1 x > 0
0 x = 0

x ≥ 0. (4)

The first and second terms on the right-hand side of the
equation (3) respectively correspond to direct beams and
reflected beams. The second term on the right-hand side is
the impact of reflected beams. The sign of the second term is
opposite to that of the first term. Consequently, minimizing
S

[b]
2 engenders reduction of the number of direct signals,

but it also increases the number of reflected signals. We
consider both S

([b])
1 and S

([b])
2 simultaneously by considering

multiplication of both metrics in the formulated problem.
We formulate the antenna position determination problem

as a combinational optimization problem that minimizes the
percentage geometric mean product of S1 and S2. The formu-
lated problem is given as

arg min
b

S[b] = S
[b]
1 S

[b]
2 , b ∈ B (5)

s.t. S
[b]
1 > 0, (6)

M ≤ M , (7)
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Fig. 4. Illustration of target position localization in which the multi-class
classification model and regression models are used respectively for area (label
number) detection and area-wise localization.

Therein, B represents the set of antenna placement patterns.
The cardinality of B is |B| =M CM , where M and M
respectively denote the number of selected AP antennas and
the number of the candidate positions. Here, the objective
function is the geometric mean of two metrics: S

[b]
1 and S

[b]
2 ,

i.e., minimizing S
[b]
1 maximizes the areas through which the

main beams never pass, whereas minimizing S
[b]
2 minimizes

the total number of the direct beams passing through the obser-
vation areas while maximizing the number of reflected beams.
The geometric mean is used to incorporate both viewpoints
simultaneously. (6) represents constraints by which metric S

[b]
1

is a positive value. (7) signifies that selected antennas M never
exceed the maximum value M . The best antenna position
to minimize (5) is selected among all possible ones B, e.g.,
when M = 12 and M = 4, the number of antenna position
combinations is |B| =12 C4 = 495.5

To improve the localization accuracy further with low
complexity after the appropriate antenna position is given,
we propose the use of a spatially localized regression model
for more effective localization, where trained classification and
regression ML models are used, respectively, for coarse and
precise detection of the target position. To be more specific,
after the area in which the target is located is detected using
a trained classification model, a spatially localized area-wise
regression model is used to estimate the target position in
the detected area. Fig. 4 presents the concepts of a spa-
tially localized area-wise regression localization: a target’s
two-dimensional coordinates (x0, y0) are estimated using a
localized regression model, whereas the target area (#1 in
Fig. 4(a)) is detected using a classification model, where
the regression model is trained individually, area-by-area. Let
V(i,r)

k ∈ CM×M denote the i-th feature information at area
r for training both localized regression and classification
models, where k denotes the subcarrier index. The training

5Based on the assumption that the appropriate antenna pattern is determined
without knowledge of the actual CSI in advance, it is not necessary to
solve the problem in real time. Although this paper uses an exhaustive
search to solve (5), if a more efficient solution approach is needed, then
existing relaxation algorithms, e.g., for channel assignment algorithms in
wireless communications [37], [38], might be applied. Further investigation
with relaxation algorithms is one of our future studies.

data samples for the regression and classification models are
represented, respectively, as

{(V(i,r)
k , (x(r)

i , y
(r)
i ))}, i = 1 . . . , N (8)

where (x(r)
i , y

(r)
i ) are the correct data of the i-th two-

dimensional coordinate of the target’s position at area r. In that
expression, N denotes the number of training data samples
per area. In the regression model, the r-th localized model
is trained to map the feature information (i.e., V(i,r)

k ) to
the correct two-dimensional coordinate (x(r)

i , y
(r)
i ) when the

target is in area r. To be more specific, in random forest for
regression, the mean square error between prediction function
f(V(i,r)

k ) for the training dataset V(i,r)
k and the correct data

Y, is formed as mean square error of distance error [39], i.e.,

E[((x(r)
i , y

(r)
i )− f(V(i,r)

k ))2],

where E[] denotes expectation operator.6 More details are
provided elsewhere [39]. When the localization region is
divided into R multiple sub-regions (called “areas”), the R
individual localized regression models are constructed using
the feature information labeled to r = 1, · · · , R. Then, the
target localization is performed with the trained regression
model for the corresponding area. A multi-class classification
model is used to determine which localized regression model
is used (e.g., in Fig. 4, the trained model for area 1 is used).7

V. PERFORMANCE EVALUATION

A. Experiment Scenarios and Setup

To clarify the effectiveness of the proposed approach,
experiment-based evaluations are conducted in an indoor
environment. The block diagram of an IEEE802.11ac-based
WLAN system is the same as that portrayed in Fig. 1, where an
IEEE802.11ac-based AP and STA (WLAN devices) are used.8

The experiment scenario and setup are portrayed respectively
in Figs. 5(a) and 5(b). The AP has an antenna array. Each
antenna is connected to the AP using coaxial extension cables.
The AP antennas and the STA (iPhone XR) are placed on
top of the tripods, as shown in Fig. 5. Feedback frames con-
taining the CSI (i.e., BRWs) are sent regularly from the STA.
Wireless sensing functions, including our designed algorithms,
are implemented on a stick-type computer (Compute Stick
STK2M364CC; Intel Corp.) with an IEEE802.11ac wireless
interface used as a CSI acquisition terminal as depicted in
Fig. 1. To build the overall CSI database of M = 12 antennas
for evaluating the achieved performance of all antenna place-
ment patterns, CSI measurements are taken separately for three

6In Sect. V, we used the scikit-learn library in Python to build the trained
random forest model.

7CSI (right-singular matrix of channel matrix H) is generated at the
STA for beamforming purposes at the AP side. The proposed scheme uses
beam-forming weights as feature information for the target localization. The
difference between the behavior of the channel matrix H and that of the
beamforming matrix V was explained in a report of our earlier study [34].

8The proposed method works well even in the presence of other
IEEE802.11bgn APs because the CSI measuring terminal can capture
IEEE802.11ac-based packets correctly. In this experiment, the CSI packets
were captured successfully, although various APs were detected in the room
used for experimentation.
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TABLE II
EXPERIMENT SETUP

Fig. 5. Experiment scenario and setup, where Ma AP antenna positions are
selected among N = 12 candidate positions.

antenna subarrays, i.e., (#1, #2, #3, #4), (#5, #6, #7, #8),
and (#9, #10, #11, #12) in Fig. 5(a).9 The overall CSI
database for M = 12 antennas is constructed by merging
them. Ξ = 0 is used unless stated otherwise. To build the
trained random forest model, we used the scikit-learn library
in Python. For our evaluations, default parameter settings in
random forest library are used as typical parameters. The main
parameter settings are as follows: the number of trees in the
forest is 100, the number of features to consider when splitting
is 1, the minimum number of samples in an internal node is 2,
and the minimum number of samples in an external node is
1.

To evaluate the relation between antenna positions and
the achieved localization accuracy, four antenna elements
are selected among 12 antennas. Then training and object
detection are done using the corresponding CSI extracted
from the database. Possible combinations of selected antenna
patterns are 12C4 = 495. Consideration of all possible patterns
is not necessary in an actual situation because the proposed
algorithm can determine the appropriate antenna pattern in
advance without CSI. Random forest is used as a supervised
machine learning (ML) algorithm. The extracted CSI is used
for training the ML model and for conducting object detection
for selected antenna patterns. In training processing, the CSI
acquisition terminal collects feedback frames that include CSI
samples while the target moves within area-r. The acquired
CSI samples, which are labeled as “r”, are used to train
the corresponding ML models. The constructed dataset then
trains the ML models for regression and classification, i.e.,
one classification model and R area-wise regression models
are constructed individually. The training and localization pro-

9In Fig. 5(b), antenna subset (#5, #6, #7, #8) is used.

Fig. 6. Area partition patterns, where R denotes the number of partitioned
areas. (a)–(k) correspond to different area partition patterns.

cesses described above are done for all antenna combinations
(495 patterns).

This experiment employs a pre-processing scheme that was
described for an earlier study [34]. Concretely, sequentially
obtained U CSI samples are concatenated as single feature
information and are used for training the classification model
and detecting the target, where U stands for the number of
CSIs to be concatenated, i.e., the length of the concatenated
CSI. Using the concatenated CSIs, the object state can be
characterized in frequency and spatial domains, which is
expected to improve the detection accuracy [34]. We designate
this scheme as CSI concatenation, and U = 4 is used.

Figs. 6(a)–(k) portray area partition patterns considered in
this section, which correspond to the different numbers of
partitioned areas: R = 1, 2, 4, 8, 16, 24, and 32. After
the classification model detects the area number at which the
target person is located, the area-wise regression model corre-
sponding to the detected area estimates the target’s position.
Actually, R = 1 corresponds to the conventional regression
localization scheme without classification [22].

As a measure to evaluate the area detection accuracy where
the target exists, the average detection probability Pe is defined
as the following conditional probability:

Pe =
1
R

R∑
r=1

Pr = Prob(sout = r|sans = r), (9)

where Pr denotes the detection probability at area r. Also,
Sout and Sans = r respectively represent the ML decision
result and the correct one.10

In addition, the average error distance between the estimated
target position and the correct one is

ϵ̄ = E
[√

(x− x0)2 + (y − y0)2
]
, (10)

10This paper presents consideration of a multi-area classification and
regression problem and for single target detection. From the principle, the
problem can be extended to multiple target detection at the cost of required
complexity if the corresponding CSI dataset for multiple targets is available.
Regarding this difficulty, a theoretical framework for multiple target detection
has been presented recently in the literature [36]. Extension to multiple target
detection is an objective that is left for future study .
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Fig. 7. Cumulative distribution of error distance in cases with spatial
partition-wise regression: R = 1, 2, 4, 8, 16, 24, and 32.

where (x, y) and (x0, y0) respectively represent the
two-dimensional coordinates of the estimated target position
and the correct one.11

B. Experimentally Obtained Results for Localized Regression

To clarify the effect of the number of partitions R on
the achieved localization performance, the error distance per-
formance is evaluated for a fixed antenna position using an
antenna array pattern (#5, #6, #7, and #8). Fig. 7 shows
the cumulative distribution of error distance for the proposed
scheme in cases U = 1 and 4 in terms of R in the observation
area, where R = 1, 2, 4, 8, 16, 24, and 32 are used.
Here, (a)–(k) in the legend correspond to those in Fig. 6.
ϵ̄ stands for the average error distance. In the smaller error
distance region of Fig. 7(a), higher localization accuracy is
obtained as R increases. In contrast, in the higher error
distance region, the localization accuracy is degraded with
the increase of R. This is true because, as R increases, the
probability of area detection errors increases. Consequently,
it affects the localization accuracy by the regression model

11This paper has evaluated the localization performance in terms of error
distance. Results obtained in terms of error distance can be converted to those
in terms of root mean square error (RMSE). We have confirmed that the
similar CDFs are obtainable as a function of RMSE.

Fig. 8. Cumulative distribution comparison of error distance of the proposed
scheme using other ML models in cases without (U = 1) and without CSI
concatenation (U = 4), where the number of areas (labels) is R = 32.

significantly. However, in Fig. 7(b), the overall localization
accuracy is improved even in the higher error distance region,
in contrast to the case of U = 1 because using the CSI
concatenation (U = 4) improves the area detection probability
significantly. This finding implies that the proposed approach
improves localization accuracy more effectively when using
concatenated CSI as feature information.

Figs. 8(a) and 8(b) respectively show the cumulative dis-
tributions of error distance for various ML models in the
case of the proposed scheme with U = 1 and 4. Here,
R = 32 is used. For comparison, we consider four typical
ML models: Random Forest (RF), decision tree (DT) [40],
support vector machine (SVM), and linear SVM (LSVM).
These figures show that the ML models, except for DT, achieve
similar localization performance, i.e., approximately 0.5 m,
with cumulative probability of 0.7 in case with U = 4.

To demonstrate the effectiveness of the proposed scheme
with other machine learning models, we evaluate the aver-
age detection probability and average error distance of the
proposed scheme when an SVM model is applied as another
machine learning model that is applicable to both classification
and regression problems. Fig. 9 shows the average detection
probability and average error distance of the proposed scheme
with SVM as a function of antenna placement patterns sorted
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Fig. 9. Average detection probability and average error distance of the
proposed scheme with SVM as a function of antenna placement patterns sorted
in descending order with respect to metric S.

Fig. 10. Execution times for the regression model and classification model.

in descending order with metric S. The result clarifies that
the proposed scheme is able to select better antenna positions
successively, even when SVM is used as a classification and
regression model. Furthermore, to examine the complexity
of the proposed scheme, we evaluate the execution times
necessary for training and localization processing. The exe-
cution time is the elapsed time measured for training and
localization processing using the same workstation (Core i7-
10750H CPU, Intel Corp. and 64 GB memory). Fig. 10(a)
shows the execution time for training regression and clas-

Fig. 11. Area-wise average detection probability for R = 32 and 24, where
Random forest classification with U = 4 is used to detect the area number
r. Here, r = 1, · · · , R, where R denotes the number of areas.

sification models with various values of R in the case of
U = 4, where RF, SVM, and DT are used. Here, the dataset
sizes are equal for all cases. It can be confirmed from this
figure that the execution time is shortened as R increases
because the required complexity for training the regression
models is reduced with the increase of R, whereas that for
the classification model is almost identical, irrespective of R.
Therefore, partitioning the observation area can reduce the
complexity necessary for building a regression model, unlike
a classification model. In other words, the observed channel
characteristics in each area vary widely depending on the
target’s position when R is set as a small value. Consequently,
a more complex regression model must be built to represent
it. Increasing R tends to decrease the complexity of building
the regression model. Fig. 10(b) presents the relation between
the achieved error distance and the total execution time for
the object localization, where U = 4 and R = 32 are used.
The result demonstrates that the RF model achieves a good
tradeoff between the short error distance and the required time
complexity.12

C. Experimentally Obtained Results for the Antenna
Placement Algorithm

Figs. 11(a) and 11(b) respectively show the area-wise detec-
tion probability obtained when the AP antenna placement is
determined with the proposed scheme in cases with R =
32 and R = 24. For comparison, the cases with the highest
and lowest average detection probabilities are also shown
respectively as results for the best and worst antenna patterns.
The result indicates that the achieved detection probability is

12Comparison of various typical ML models (RF, DT, LR, SVM, Linear
SVM (LSVM), KN, and GNB) in terms of their average detection probability
has been given in [34]. This paper employs the RF model trained with a small
dataset as a reasonable model that achieves higher localization accuracy and
lower complexity for training and localization.
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Fig. 12. Average detection probability for sorted antenna placement patterns
(sorted in descending order with respect to the evaluation metric S) in cases
with U = 1 and 4, where R = 32.

antenna-placement dependent. The proposed scheme achieves
much better detection performance than the worst case.

Figs. 12(a) and 12(b) respectively present the average detec-
tion probability in terms of AP antenna placement patterns
(sorted in descending order for the evaluation metric S[b]) in
cases with U = 1 (without CSI concatenation) and 4 (with
CSI concatenation). Here, R = 32 and Ξ = 0 are used. It is
apparent from this figure that the proposed scheme achieves
a higher detection probability using the antenna placement
which achieves the best score.

Fig. 13 shows the cumulative distributions of area-wise
detection probabilities for the proposed scheme in cases with
U = 1 and 4, where R = 32 is used. The label “Proposed
(Top 3)” denotes the results of antenna placement patterns
with the top three evaluation scores (first-ranked to third-
ranked results). The blue line shows the best result obtained
using the proposed scheme corresponding to the label “1st
rank” in the legend. The cumulative probabilities for the best
and worst cases are also shown for comparison. These results
confirm that the proposed scheme achieves a higher detection
probability when adequately determined antenna placement is
used.

Fig. 14 shows the average error distance for antenna place-
ment patterns sorted in descending order for evaluation metric
S. Average error distances for the top 10 and for all antenna
patterns are shown respectively in Fig. 14(a) and 14(b). The
antenna position is determined beforehand without measuring
CSI. We can confirm that better localization accuracy is
achieved when using the antenna position with the best metric
value.

Figs. 15 and 16 respectively present the cumulative distri-
butions of error distance for the proposed scheme in the cases
of R = 32 and 24. For comparison, the results obtained for

Fig. 13. Cumulative probability of area-wise detection probability for the
proposed scheme in cases with U = 1 and 4, where R = 32.

Fig. 14. Average error distance for sorted antenna placement patterns (sorted
in descending order related to the evaluation metric S). The top 10 and all
antenna patterns w.r.t. S are presented in panels (a) and (b).

the best and worst cases are also shown. The label “Proposed
(Top 3)” denotes the results of antenna placement patterns
with the top three evaluation scores, similarly to the previous
figure. The cumulative distribution of the case with R =
1 corresponds to the conventional regression-based method
without classification in [22]. Here, panels (a) and (b) in the
figures respectively show the results obtained using U = 1 and
4. The results verify that the proposed scheme achieves better
error distance using the antenna placement pattern which
minimizes the metric.

To evaluate the effects of reflected waves on the perfor-
mance of the proposed scheme, Fig. 17 depicts plots of the
mixed cumulative distribution of the error distance in the
case of the proposed scheme with Ξ = 0 and 1 in cases
using U = 4 and R = 32, for which results of the top five
antenna placement patterns are mixed. The attenuation factor
is r1 = 1.0. This figure clarifies that consideration of the
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Fig. 15. Cumulative probability of error distance for the proposed scheme
in cases with U = 1 and 4, where R = 32.

influence of reflected waves (i.e., using Ξ = 1) tends to achieve
better localization accuracy than the case with Ξ = 0 (i.e.,
considering only direct waves). To confirm the effectiveness
of the proposed scheme, we conducted experiments (CSI
measurements) twice on different days. These evaluated results
respectively correspond to the solid lines (Experiment 1) and
the dotted line (Experiment 2).13 This result implies that
the proposed scheme can determine antenna positions more
effectively by tracing direct and reflected paths. Additionally,
these findings confirm that similar trends are shown by the
results obtained from Experiment 1 and Experiment 2.

To clarify the effects of the number of CSI on localization
performance, the relation between the number of training sam-
ples and the achieved localization performance is evaluated.
Fig. 18 presents the average detection performance and the
average error distance as a function of the number of training
CSI samples per area in cases of U = 4. These figures

13Experiment 1 uses the same CSI as results in the other figures, whereas
Experiment 2 uses new CSI measurements.

Fig. 16. Cumulative probability of error distance for the proposed scheme
in cases with U = 1 and 4, where R = 24.

portray that the proposed scheme achieves similar performance
even when the number of CSI samples per label is reduced
considerably. The results reveal that the proposed method
works well with a small data set.

The method presented in this paper aims at a lightweight
approach with a small dataset and employs the RF model for
this purpose. To compare the RF model with other models
under the assumption that a small CSI dataset is used, we eval-
uate the average detection probability of a deep neural network
(DNN) model trained on the same dataset and compare it with
the RF model. Fig. 19 shows the cumulative probability of the
area-wise detection probability for cases with the RF model
and the DNN model, where the concatenation size is U = 4.
The labels “1st rank” and “2nd rank” respectively denote the
first and second rank antenna patterns used for this study.
To solve the same multi-class classification problem, a DNN
architecture consisting of two fully connected hidden layers
and input and output layers is implemented as a supervised
machine learning model (multi-class classifier) [31]. In this
model, the number of components in the input layer, two
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Fig. 17. Cumulative probability of error distance for the proposed scheme
with ξ = 0 and 1, where U = 4 and R = 32.

Fig. 18. Average detection probability and average error distance as a
function of the number of CSI samplers per label, where U = 4 is used.

Fig. 19. Cumulative probability of area-wise detection probability for cases
with the RF model and DNN model, where the concatenation size is U = 4.

hidden layers, and output layers are set as 3328, 128, 64, and
32, respectively. ReLU activation function is used. The RF
model and the DNN model are trained on the same dataset. It is
apparent from this figure that both models achieve comparable
localization performance when a small dataset is used.

D. Experimentally obtained results for different scenarios

To discuss the necessary condition for the antenna posi-
tions for the proposed scheme, we present experiment results

Fig. 20. Experiment scenario and setup where AP antennas are placed in
the middle of the room.

obtained when AP antennas are located in the middle area of
the room. The experiment scenario is depicted in Fig. 20(a).
The average detection probability is calculated with the mea-
sured CSI dataset and is shown as a function of the antenna
placement pattern number sorted in descending order with
respect to S. Fig. 20(b) shows the average detection probability
results obtained using the proposed scheme for inside area
(green areas: 11–14, 19–22) and outside area (yellow areas:
1–10, 15–18, 23–32). The results presented in this figure
indicate that the average detection probability for inside areas
is improved using the proposed antenna positions. However,
no significant improvement was found in the average detec-
tion probability for outdoor areas by the proposed scheme.
Additionally, it is clear that the average detection performance
of inside areas is higher than that of outside areas for most
antenna positions. Therefore, we conclude that the proposed
approach works well when the observation areas are inside the
AP antenna topology. In other words, the proposed scheme
uses the assumption that the AP antennas are located outside
the observation area.

For further discussion of the effectiveness of the proposed
approach, we show an experimentally obtained result in a
room containing tables. The experiment scenario and setup are
shown in Fig. 21(a). The experiment setup is the same as that
used for other experiment scenarios in the paper, except that
there are tables in the room. Fig. 21(b) shows the cumulative
probability of error distance for the proposed scheme in this
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Fig. 21. Experiment setup and results in the scenario where there are tables
in the room.

Fig. 22. Normalized histogram of Val(Θ) and fitted normal distribution.

scenario. The findings confirmed that the proposed scheme
works well even when there are tables in the observation area
of the room. These results imply that the proposed scheme can
be expected to work well in other indoor environments such
as office rooms.

E. Statistical distribution of localization error in the
proposed scheme

Let the i-th estimated two-dimensional coordinate and the
correct one be denoted respectively as (x̂i, ŷi) and (xi, yi).
Here, the localization errors in x-axis and y-axis are defined

respectively as ϵx,i = xi − x̂i and ϵy,i = yi − ŷi. Here-
inafter, subscripts x and y are omitted for simplicity of
notation, presuming that localization error ϵi is a normally
distributed random variable with mean µ and variance σ2.
Based on this result, we approximate ϵi as a normal dis-
tribution; then we define the following statistical parameter
Θ =

∑Nsample

i=1
(ϵi−µ)2

Nsample
. Here, we assume that the ensemble

average of Θ approaches to σ2. Let Val(Θ) denote the variance
of Θ. To analyze the statistical distribution of Val(Θ), the
normalized histogram (empirical distribution) of Val(Θ) and
fitted normal distribution are shown in Fig. 22, where Val(Θ)
is calculated with area-by-area experimentally obtained results.
Based on the statistical results in this figure, we can confirm
that Val(Θ) behaves similarly to a random variable. This fact
suggests that the statistic of Val(Θ) can be discussed by
empirically approximating it to a random variable following
a normal distribution, e.g., Cramér–Rao lower bound for a
normally distributed random variable [42].

VI. CONCLUSION

As described herein, we have proposed an effective
device-free WLAN-based localization scheme with a beam-
tracing-based antenna placement optimization and localized
regression, where concatenated BFWs are used as feature
information for the training of ML-based models. In this
scheme, the AP antenna element placement is found without
knowledge of CSI by consideration of the relation between
beam tracing and expected localization. Additionally, we have
proposed the use of localized regression ML models to achieve
more accurate localization with low complexity. We evaluated
the effects of the proposed approaches by experimentation in
terms of the object detection probability and error distance.
The experimentally obtained results indicate that the proposed
scheme is effective for appropriately selecting the antenna
placement and consequently for detecting the target more
accurately while reducing the required complexity compared
to other reference schemes. Extensions of the proposed designs
to various scenarios, such as wireless networks with joint com-
munication and sensing with more powerful ML frameworks,
are left as subjects for our future work.
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