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Abstract— We propose fully distributed multi-group mul-
ticast precoding designs for cell-free massive multiple-input
multiple-output (MIMO) systems with modest training overhead.
We target the minimization of the sum of the maximum mean
squared errors (MSEs) over the multicast groups, which is
then approximated with a weighted sum MSE minimization
to simplify the computation and signaling. To design the joint
network-wide multi-group multicast precoders at the base sta-
tions (BSs) and the combiners at the user equipments (UEs) in
a fully distributed fashion, we adopt an iterative bi-directional
training scheme with UE- and/or group-specific precoded uplink
pilots and group-specific precoded downlink pilots. To this end,
we introduce a new group-specific over-the-air uplink training
resource that entirely eliminates the need for backhaul signaling
for the channel state information (CSI) exchange. The precoders
are optimized locally at each BS by means of either best-response
or gradient-based updates, and the convergence of the two
approaches is analyzed with respect to the centralized implemen-
tation with perfect CSI. Finally, numerical results show that the
proposed distributed methods greatly outperform conventional
cell-free massive MIMO precoding designs that rely solely on
local CSI.

Index Terms— Bi-directional training, cell-free massive MIMO,
distributed precoding design, multi-group multicasting, over-the-
air signaling.

I. INTRODUCTION

EMERGING shared wireless applications, such as video
streaming, vehicular communications, augmented/mixed

reality, and wireless coded caching, considerably increase the
demand for multicasting services [2]. The multicast precod-
ing framework was initially developed to transmit a single
data stream to a group of user equipments (UEs) [3]. This
was subsequently extended in [4] to serve several multicast
groups with parallel data streams, each transmitted using a
group-specific precoder under a rate constraint imposed by the
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worst UE in the multicast group. The conventional objective
considered for the multi-group multicast precoding design is
the max-min fairness, according to which the minimum signal-
to-interference-plus-noise ratio (SINR) in each multicast group
is maximized under a transmit power constraint [3], [4].
For this objective, [5], [6] proposed low-complexity methods
to design the optimal multi-group multicast precoders. Such
precoders have a similar structure to the weighted minimum
mean squared error (MMSE) precoder, where the matched
filtering (MF) front-end is given by a weighted sum of the
effective channels in the multicast group [5].

The aforementioned works assume perfect channel state
information (CSI) at the transmitter. However, in practice, the
UE-specific channels need to be estimated. In time division
duplexing (TDD) systems with channel reciprocity, this can
be done via reverse link measurements, which usually require
as many orthogonal pilots as the number of UEs to avoid
pilot contamination. The number of orthogonal pilots can be
substantially reduced by assigning a common pilot to all the
UEs in a multicast group [7]. Hence, considering the resulting
training overhead, using group-specific rather than UE-specific
pilots for the multi-group multicast precoding design has
the potential to increase the effective rate. The effective
performance of multi-group multicasting in massive multiple-
input multiple-output (MIMO) systems was analyzed in [8]
under different precoding and pilot assignment strategies. This
study was extended in [9] to include coexisting unicast and
multi-group multicast transmissions. The multi-group multi-
cast precoding design in a coordinated multi-cell scenario was
considered in [10], [11], and [12], where the CSI is assumed
to be exchanged among the BSs via backhaul signaling.

Cell-free massive MIMO is an extension of joint transmis-
sion coordinated multi-point to a UE-centric approach, where
all the BSs jointly serve all the UEs to eliminate the inter-cell
interference [2], [13], [14]. To facilitate the UE-centric joint
processing, the BSs are connected to a central processing unit
(CPU) via backhaul links to exchange the UE-specific data and
CSI. Most works on cell-free massive MIMO consider simple
local precoding strategies, such as MF, local (regularized)
zero forcing, and local MMSE precoding [14], [15], [16],
to circumvent the prohibitive complexity and backhaul sig-
naling of large-scale centralized precoding designs. However,
allowing (limited) coordination among the BSs to enable
more advanced precoding strategies can provide significant
performance gains [16], [17], [18], [19]. In our previous

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5952-689X
https://orcid.org/0000-0003-4363-396X
https://orcid.org/0000-0001-6219-9770


GOUDA et al.: PILOT-AIDED DISTRIBUTED MULTI-GROUP MULTICAST PRECODING DESIGN 9283

work [20], [21], [22], we considered a cell-free massive MIMO
unicasting scenario and proposed a fully distributed method
based on iterative bi-directional training [23] to design the
joint network-wide MMSE precoders locally at each BS. This
scheme eliminates the need for backhaul signaling for the CSI
exchange altogether and yields a performance close to that of
the centralized implementation with perfect CSI.

Cell-free massive MIMO is especially suited for multicast-
ing applications as it improves the rate of the cell-edge UEs
and thus reduces the impact of the worst UE in each multicast
group. Multi-group multicasting in cell-free massive MIMO
systems has been considered, for example, in [24], [25], and
[26], where MF precoding is used for the data transmission.
Equal power allocation among the multicast precoders at each
BS was assumed in [24] to eliminate the need for backhaul
signaling for the CSI exchange, whereas the optimal power
allocation among the multicast groups was carried out in [25]
and [26] while assuming limited backhaul signaling.

A. Contribution

Most works on cell-free massive MIMO multi-group mul-
ticasting assume MF precoding to avoid the complexity and
backhaul signaling issues associated with the centralized pre-
coding design [24], [25], [26]. In this paper, we propose
a distributed framework to design the multi-group multicast
precoders with low complexity and without any backhaul
signaling for the CSI exchange.

We begin by targeting the minimization of the sum of the
maximum mean squared errors (MSEs) over the multicast
groups, which is referred to in the following as the sum-
group MSE. This approach achieves absolute MSE fairness
within each multicast group, which is dictated by slowly
varying dual variables that would need to be exchanged among
the BSs via backhaul signaling in the distributed precoding
designs. To avoid the resulting backhaul signaling overhead,
we approximate the sum-group MSE minimization with a
weighted sum MSE minimization, which greatly simplifies the
distributed precoding design while only slightly relaxing the
MSE fairness requirement. In this regard, we show that the
in-built MSE fairness of the weighted sum MSE metric pro-
vides a good approximation for the original sum-group MSE
metric, especially at high signal-to-noise ratio (SNR). Based
on the reformulated problem, we propose a novel framework to
design the joint network-wide multi-group multicast precoders
at the BSs and the combiners at the UEs in a fully distributed
fashion. To this end, we adopt an iterative bi-directional train-
ing mechanism [23] with UE- and/or group-specific precoded
uplink pilots and group-specific precoded downlink pilots.
The iterative optimization of the precoders is carried out
via either best-response or gradient-based updates, and the
convergence of the two approaches is analyzed with respect
to the centralized implementation with perfect CSI. In our
previous work on distributed precoding design for cell-free
massive MIMO unicasting [20], we introduced a UE-specific
over-the-air (OTA) uplink training resource to facilitate the
distributed precoding design. In this paper, we propose a new
group-specific OTA uplink training resource tailored for the

multi-group multicasting scenario, which entirely eliminates
the need for backhaul signaling for the CSI exchange and
enables the proposed distributed precoding designs with mod-
est training overhead. Moreover, the proposed framework can
straightforwardly handle the coexistence of multicasting and
unicasting by simply considering individual UEs as separate
multicast groups. Numerical results show that the proposed
distributed methods bring substantial gains over conventional
cell-free massive MIMO precoding designs that rely solely on
local CSI. Among the proposed distributed methods, the ones
based on group-specific pilots always yield the best effective
performance.

The contributions of this paper are summarized as follows.
• We formulate the multi-group multicast precoding design

problem as a sum-group MSE minimization, which is
approximated with a weighted sum MSE minimization
to avoid the resulting backhaul signaling overhead.

• We show that the UE-specific rates obtained with the
weighted sum MSE minimization asymptotically approx-
imate the ones resulting from the sum-group MSE
minimization.

• We introduce a new group-specific OTA uplink training
resource that enables distributed precoding designs.

• We propose two distributed methods based on iterative
bi-directional training with best-response and gradient-
based updates, leveraging UE- and/or group-specific
pilots, which greatly outperform the reference precoding
schemes.

• We establish that, with perfect CSI, the distributed pre-
coding design with gradient-based updates converges to
the same solution as its centralized implementation.

Part of this work is included in our conference paper [1],
which presents the distributed multi-group multicast precoding
design with best-response updates.

B. Outline

The rest of the paper is structured as follows. Section II
introduces the system model for cell-free massive MIMO
multi-group multicasting along with the iterative bi-directional
training and channel estimation. Section III describes the
sum-group MSE minimization and the approximation with
a weighted sum MSE minimization with reference to the
centralized implementation with perfect CSI. The proposed
distributed multi-group multicast precoding designs with
best-response and gradient-based updates are presented in
Sections IV and V for perfect and imperfect CSI, respectively.
Finally, Sections VI and VII provide the numerical results and
the concluding remarks, respectively

C. Notation

Lowercase and uppercase boldface letters denote vectors
and matrices, respectively. (·)T and (·)H are the transpose and
Hermitian transpose operators, respectively. ∥ · ∥ and ∥ · ∥F
represent the Euclidean norm for vectors and the Frobenius
norm for matrices, respectively. Re[·] and E[·] are the real
part and expectation operators, respectively. IL denotes the L-
dimensional identity matrix and 0 represents a zero vector with
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proper dimension. Diag(·) and blkdiag(·) represent diagonal
and block-diagonal matrices, respectively. [a1, . . . , aL] denotes
horizontal concatenation, whereas {a1, . . . , aL} and {aℓ}ℓ∈L
represent sets; the latter notation is occasionally relaxed as
{aℓ} for brevity. CN (0, σ2) is the complex normal distribution
with zero mean and variance σ2. Lastly, ∇x(·) denotes the
gradient with respect to x, whereas L(P)(·) represents the
Lagrangian of optimization problem (P).

II. SYSTEM MODEL

Consider a cell-free massive MIMO system where a set of
BSs B ≜ {1, . . . , B} serves a set of UEs K ≜ {1, . . . ,K}
in the downlink. Each BS and UE are equipped with M and
N antennas, respectively. The UEs are divided into a set of
non-overlapping multicast groups G ≜ {1, . . . , G}, with Kg

denoting the set of UEs in group g ∈ G.1 In the following,
we use gk as the index of the multicast group that contains
UE k. The BSs transmit a single data stream to each multicast
group, i.e., all the UEs k ∈ Kg are intended to receive the
same data symbol dg . Let Hb,k ∈ CM×N be the uplink
channel matrix between UE k ∈ K and BS b ∈ B, and let
wb,g ∈ CM×1 be the BS-specific precoder used by BS b
for group g. We use Hk ≜ [HT

1,k, . . . ,HT
B,k]T ∈ CBM×N

and wg ≜ [wT
1,g, . . . ,w

T
B,g]

T ∈ CBM×1 to denote the
aggregated uplink channel matrix of UE k and the aggre-
gated precoder used for group g, respectively, which imply
HH

k wg =
∑

b∈BHH
b,kwb,g . We assume the per-BS transmit

power constraints
∑

g∈G ∥wb,g∥2 ≤ ρBS, ∀b ∈ B, where ρBS

denotes the maximum transmit power at each BS. Hence, the
signal received at UE k is given by

yk ≜
∑
b∈B

HH
b,kwb,gk

dgk
+

∑
b∈B

∑
ḡ ̸=gk

HH
b,kwb,ḡdḡ+zk ∈ CN×1,

(1)

where dgk
represents the data symbol intended for the group

that contains UE k and zk ∈ CN×1 is the additive white
Gaussian noise (AWGN) with i.i.d. CN (0, σ2

UE) elements.
Upon receiving yk, UE k obtains a soft estimate of dg by
applying the combiner vk ∈ CN×1 and the resulting SINR
can be expressed as

γk ≜
|
∑

b∈B vH
k HH

b,kwb,gk
|2∑

ḡ ̸=gk
|
∑

b∈B vH
k HH

b,kwb,ḡ|2 + σ2
UE∥vk∥2

. (2)

Finally, the sum of the rates over the multicast groups, which
is referred to in the following as the sum-group rate, is given
by R ≜

∑
g∈G Rg , where Rg is the rate of group g defined as

Rg ≜ min
k∈Kg

log2(1 + γk) [bps/Hz]. (3)

Note that (3), which is based on the SINR expression in (2),
represents an upper bound on the system performance that
assumes perfectly estimated SINRs for given precoders and

1The proposed framework and precoding designs are independent of the
UE grouping strategies. We assume that the multicast groups are defined by
the application layer based on the service requests by the UEs.

combiners.2 In Section VI, we use this metric to evaluate the
proposed distributed multi-group multicast precoding designs.

In this paper, we aim to design the joint network-wide
multi-group multicast precoders at the BSs and the combiners
at the UEs in a fully distributed fashion assuming an ideal
TDD setting with channel reciprocity between uplink and
downlink. To this end, we adopt an iterative bi-directional
training scheme that relies on estimating the effective uplink
and downlink channels via precoded pilots, as discussed in
detail in the following section.

A. Pilot-Aided Channel Estimation and Iterative
Bi-Directional Training

The centralized precoding design (considered as reference
scheme and described in Section III-C) involves the trans-
mission of antenna-specific uplink pilots, by which each BS
estimates the antenna-specific uplink channels.

1) Antenna-Specific Uplink Channel Estimation (UL): The
estimation of the uplink channel Hb,k involves N antenna-
specific uplink pilots for UE k. In this context, let PUL

k ∈
CτUL×N be the uplink pilot matrix of UE k, with ∥PUL

k ∥2F =
τ ULN, ∀k ∈ K. Moreover, let ρUE denote the maximum trans-
mit power at each UE. Each UE k synchronously transmits its
pilot matrix PUL

k , i.e.,

XUL
k ≜

√
βUL(PUL

k )H ∈ CN×τUL
, (4)

where the power scaling factor βUL ≜ ρUE
N (equal for all the

UEs) ensures that XUL
k complies with the per-UE transmit

power constraint. Then, the signal received at BS b is given
by

YUL
b ≜

∑
k∈K

Hb,kXUL
k + ZUL

b (5)

=
√

βUL
∑
k∈K

Hb,k(PUL
k )H + ZUL

b ∈ CM×τUL
, (6)

where ZUL
b is the AWGN with i.i.d. CN (0, σ2

BS) elements.
Finally, the least-squares (LS) estimate of Hb,k is

Ĥb,k ≜
1

τ UL
√

βUL
YUL

b PUL
k (7)

= Hb,k +
1

τ UL

∑
k̄ ̸=k

Hb,k̄(PUL
k̄ )HPUL

k +
1

τ UL
√

βUL
ZUL

b PUL
k ,

(8)

where the last equality holds if (PUL
k )HPUL

k = τ ULIN , i.e.,
if there is no pilot contamination among the antennas of UE k.

On the other hand, the proposed distributed precoding
designs and the local precoding designs (also considered as
reference schemes and described in Appendix C) are based
on iterative bi-directional training, whereby the precoders at
the BSs and the combiners at the UEs are updated iteratively
by means of uplink and downlink pilot-aided channel estima-
tion [19], [23], [28]. Specifically, each bi-directional training
iteration involves:

2This can be computed at the BSs directly if perfect global CSI is
available [27] (at least the effective uplink channels {Hb,kvk}b∈B,k∈K) or
iteratively by allowing the UEs to send channel quality indicator feedback of
their estimated SINRs.
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Fig. 1. Schematic representation of iterative bi-directional training in a
single-UE, single-BS setting. To transmit the precoded uplink pilots, UE k
uses vk as precoder.

i) The transmission of UE- and/or group-specific precoded
uplink pilots from all the UEs, by which each BS
estimates the UE- and/or group-specific effective uplink
channels and updates its precoders;

ii) The transmission of precoded downlink pilots from all the
BSs, by which each UE estimates its effective downlink
channel and updates its combiner.

Iterative bi-directional training can reduce the training over-
head compared with antenna-specific uplink channel estima-
tion for multi-antenna UEs. More importantly, it eliminates
the need for centralized precoding design since each BS
(resp. UE) can update its precoder (resp. combiner) based
on the effective uplink (resp. downlink) channel estimation.
A schematic representation of iterative bi-directional training
in a single-UE, single-BS setting is provided in Figure 1.
In the following, we describe the different existing types of
pilot-aided channel estimation that are adopted within the
iterative bi-directional training, which will be heavily utilized
in Sections III-C and V as well as in Appendix C. In Section V,
we further introduce a new group-specific OTA uplink training
resource tailored for the multi-group multicasting scenario,
which entirely eliminates the need for backhaul signaling
for the CSI exchange and enables the proposed distributed
precoding designs with modest training overhead.

2) UE-Specific Effective Uplink Channel Estimation (UL-1):
Let hb,k ≜ Hb,kvk ∈ CM×1 be the effective uplink channel
between UE k and BS b, and let pUL-1

k ∈ CτUL-1×1 denote the
uplink pilot of UE k, with ∥pUL-1

k ∥2 = τ UL-1, ∀k ∈ K. Each
UE k synchronously transmits its pilot pUL-1

k using its scaled
combiner vk as precoder, i.e.,

XUL-1
k ≜

√
βUL-1vk(pUL-1

k )H ∈ CN×τUL-1
, (9)

where the power scaling factor βUL-1 (equal for all the UEs)
ensures that XUL-1

k complies with the per-UE transmit power
constraint. Then, the signal received at BS b is given by

YUL-1
b ≜

∑
k∈K

Hb,kXUL-1
k + ZUL-1

b (10)

=
√

βUL-1
∑
k∈K

hb,k(pUL-1
k )H + ZUL-1

b ∈ CM×τUL-1
, (11)

where ZUL-1
b is the AWGN with i.i.d. CN (0, σ2

BS) elements.
Finally, the LS estimate of hb,k is

ĥb,k ≜
1

τ UL-1
√

βUL-1
YUL-1

b pUL-1
k (12)

= hb,k+
1

τ UL-1

∑
k̄ ̸=k

hb,k̄(pUL-1
k̄ )HpUL-1

k +
1

τ UL-1
√

βUL-1
ZUL-1

b pUL-1
k .

(13)

3) Group-Specific Effective Uplink Channel Estimation
(UL-2): In the antenna-specific and UE-specific channel esti-
mations described above, the BSs may apply UE-specific
weights to the channel estimates to promote fairness among the
UEs in a multicast group. On the contrary, in the group-specific
channel estimation, any UE-specific weights must be already
incorporated during the pilot transmission. Accordingly, let
ωk be the weight of UE k and let fb,g ≜

∑
k∈Kg

ωkHb,kvk ∈
CM×1 denote the effective uplink channel between Kg and
BS b. Furthermore, let pUL-2

g ∈ CτUL-2×1 be the uplink pilot
of group g, with ∥pUL-2

g ∥2 = τ UL-2, ∀g ∈ G. Each UE k syn-
chronously transmits its pilot pUL-2

gk
using its scaled combiner

vk as precoder, i.e.,

XUL-2
k ≜

√
βUL-2ωkvk(pUL-2

gk
)H ∈ CN×τUL-2

, (14)

where the power scaling factor βUL-2 (equal for all the UEs)
ensures that XUL-2

k complies with the per-UE transmit power
constraint. Then, the signal received at BS b is given by

YUL-2
b ≜

∑
k∈K

Hb,kXUL-2
k + ZUL-2

b (15)

=
√

βUL-2
∑
g∈G

fb,g(pUL-2
g )H + ZUL-2

b ∈ CM×τUL-2
, (16)

where ZUL-2
b is the AWGN with i.i.d. CN (0, σ2

BS) elements.
Finally, the LS estimate of fb,g is

f̂b,g ≜
1

τ UL-2
√

βUL-2
YUL-2

b pUL-2
g (17)

= fb,g +
1

τ UL-2

∑
ḡ ̸=g

fb,ḡ(pUL-2
ḡ )Hpg +

1
τ UL-2

√
βUL-2

ZUL-2
b pUL-2

g .

(18)

4) Effective Downlink Channel Estimation (DL): Let gk ≜∑
b∈BHH

b,kwb,g ∈ CN×1 be the effective downlink channel
between all the BSs and UE k. Moreover, let pDL

g ∈ CτDL×1

denote the downlink pilot of group g, with ∥pDL
g ∥2 = τ DL, ∀g ∈

G. Each BS b synchronously transmits a superposition of the
pilots {pDL

g }g∈G after precoding them with the corresponding
precoders {wb,g}g∈G , i.e.,

XDL
b ≜

∑
g∈G

wb,g(pDL
g )H ∈ CM×τDL

. (19)

Then, the signal received at UE k is given by

YDL
k ≜

∑
b∈B

HH
b,kX

DL
b + ZDL

k (20)

=
∑
b∈B

∑
g∈G

HH
b,kwb,g(pDL

g )H + ZDL
k ∈ CN×τDL

, (21)
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where ZDL
k is the AWGN with i.i.d. CN (0, σ2

UE) elements.
Finally, the LS estimate of gk is

ĝk ≜
1

τ DL
YDL

k pDL
gk

(22)

= gk +
1

τ DL

∑
b∈B

∑
ḡ ̸=gk

HH
b,kwb,ḡ(pDL

ḡ )HpDL
gk

+
1

τ DL
ZDL

k pDL
gk

.

(23)

Note that all the above pilot-aided channel estimation
schemes can be implemented with arbitrary pilots and, hence,
any possible pilot contamination is implicitly accounted for.

III. PROBLEM FORMULATION

The goal of this paper is to propose fully distributed
multi-group multicast precoding designs for cell-free massive
MIMO systems based on the MMSE criterion. In this section,
we establish the basis for the distributed precoding design
by considering the centralized implementation with perfect
CSI. First, in Section III-A, we focus on the sum-group MSE
minimization and identify several practical challenges with its
distributed implementation. Then, in Section III-B, we approx-
imate the sum-group MSE minimization with a weighted sum
MSE minimization, based on which we develop the proposed
distributed precoding designs presented in Sections IV and V
with perfect and imperfect CSI, respectively.

A. Sum-Group MSE Minimization

The sum-group MSE minimization achieves absolute MSE
fairness within each multicast group through the min-max
MSE criterion subject to the per-BS transmit power con-
straints. Accordingly, the precoders and combiners are
optimized by solving

minimize
{wg,vk}

∑
g∈G

max
k∈Kg

MSEk

s.t.
∑
g∈G

∥Ebwg∥2 ≤ ρBS, ∀b ∈ B, (24)

where MSEk is the MSE of UE k defined as

MSEk ≜ E
[
|vH

k yk − dgk
|2

]
(25)

=
∑
g∈G

|vH
k HH

k wg|2−2Re[vH
k HH

k wgk
] + σ2

UE∥vk∥2+1

(26)

and Eb ∈ RM×BM is a selection matrix such that Ebwg =
wb,g . The problem in (24) is convex with respect to either the
precoders or the combiners but not jointly convex with respect
to both. Hence, we use alternating optimization, whereby
the precoders are optimized for fixed combiners and vice
versa in an iterative best-response fashion. Before describing
each step of the alternating optimization, let us define tg ≜
maxk∈Kg

MSEk and rewrite (24) in epigraph form as

minimize
{wg,vk,tg}

∑
g∈G

tg

s.t. µk : MSEk ≤ tg, ∀k ∈ Kg, ∀g ∈ G

λb :
∑
g∈G

∥Ebwg∥2 ≤ ρBS, ∀b ∈ B. (27)

1) Optimization of The Combiners: For a fixed set of
precoders {wg}g∈G , the combiners {vk}k∈K are optimized
by solving the following convex problem:

minimize
{vk,tg}

∑
g∈G

tg

s.t. MSEk ≤ tg, ∀k ∈ Kg, ∀g ∈ G. (28)

The Lagrangian of (28) can be written as

L(28)

(
{vk, tg, µk}

)
≜

∑
g∈G

tg +
∑
k∈K

µk

(
MSEk − tgk

)
, (29)

where µk is the dual variable corresponding to each per-UE
MSE constraint in (27). Note that the optimal {µk}k∈K are
such that the MSE objectives of the UEs in a multicast group
are equal. For example, if UE k is subject to poor channel
conditions, the optimal µk will be large to force the reduction
of its MSE objective. Then, the optimal vk is obtained by
setting ∇vk

L(28)

(
{vk, tg, µk}

)
= 0, which yields

vk =
( ∑

g∈G
HH

k wgwH
g Hk + σ2

UEIN

)−1

HH
k wgk

. (30)

2) Optimization of The Precoders: For a fixed set of com-
biners {vk}k∈K, the precoders {wg}g∈G are optimized by
solving the following convex problem:

minimize
{wg,tg}

∑
g∈G

tg

s.t. MSEk ≤ tg, ∀k ∈ Kg, ∀g ∈ G∑
g∈G

∥Ebwg∥2 ≤ ρBS, ∀b ∈ B, (31)

which can be solved, e.g., via CVX [29]. Alternatively, one can
resort to the Karush-Kuhn-Tucker (KKT) conditions, which
also conveniently reveal the optimal multi-group multicast
precoding structure. In this regard, the Lagrangian of (31) can
be written as

L(31)

(
{wg, tg, µk, λb}

)
≜

∑
g∈G

tg +
∑
k∈K

µk

(
MSEk − tgk

)
+

∑
b∈B

λb

( ∑
g∈G

∥Ebwg∥2 − ρBS

)
,

(32)

where λb is the dual variable corresponding to each per-BS
transmit power constraint in (27). Then, the optimal wg is
obtained by setting ∇wg

L(31)

(
{wg, tg, µk, λb}

)
= 0, which

yields

wg =
(∑

k∈K

µkHkvkvH
k HH

k +
∑
b∈B

λbEH
b Eb

)−1 ∑
k∈Kg

µkHkvk.

(33)

The above expression of wg depends on the dual vari-
ables {µk}k∈K and {λb}b∈B. Such dual variables can be
updated iteratively using the sub-gradient method as detailed
in Appendix A [6], [30], and their values after convergence
are finally used in (33).
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From the expression of the aggregated precoder wg in (33),
it is evident that the BS-specific precoders {wb,g}b∈B also rely
on the dual variables {µk}k∈K. To compute each wb,g locally
at BS b, extensive backhaul signaling is required to iteratively
update the dual variables {µk}k∈K either at the CPU or at each
BS in parallel. To simplify the distributed precoding design,
we propose to relax the absolute MSE fairness requirement
within each multicast group, which leads to a weighted sum
MSE minimization. In the following section, we describe
the reformulated problem and the corresponding centralized
precoding design with perfect CSI.

B. Weighted Sum MSE Minimization

To circumvent the shortcomings of the original problem
formulation described in Section III-A, we approximate the
sum-group MSE objective in (24) with a weighted sum MSE
objective. Accordingly, the precoders and combiners are opti-
mized by solving

minimize
{wg,vk}

∑
k∈K

ωkMSEk

s.t. λb :
∑
g∈G

∥Ebwg∥2 ≤ ρBS, ∀b ∈ B, (34)

where we recall that ωk is the weight of UE k. This choice
stems from the fact that the weighted sum MSE metric
provides some in-built MSE fairness among all the UEs.
Since the problem in (34) is convex with respect to either the
precoders or the combiners but not jointly convex with respect
to both, we use alternating optimization as in the previous
section. For a fixed set of combiners {vk}k∈K, the precoders
{wg}g∈G can be optimized, e.g., via CVX [29] or by resorting
to the KKT conditions. In this regard, the Lagrangian of (34)
can be written as

L(34)

(
{wg, λb}

)
≜

∑
k∈K

ωkMSEk

+
∑
b∈B

λb

( ∑
g∈G

∥Ebwg∥2 − ρBS

)
. (35)

Then, the optimal wg is obtained by setting
∇wg

L(34)

(
{wg, λb}

)
= 0, which yields

wg =
(∑

k∈K

ωkHkvkvH
k HH

k +
∑
b∈B

λbEH
b Eb

)−1 ∑
k∈Kg

ωkHkvk.

(36)

It is straightforward to notice the resemblance between (36)
and (33). If the optimal dual variables {µk}k∈K of the
sum-group MSE minimization were known in advance, one
could replace the weights {ωk}k∈K in (36) with the optimal
{µk}k∈K at each alternating optimization iteration, which
would lead to the same solution of (33). However, the optimal
{µk}k∈K cannot be known in advance. Moreover, tuning
the weights to match the dual variables at each alternating
optimization iteration would generate the same complexity and

backhaul signaling overhead of the original sum-group MSE
minimization.3

To simplify the distributed precoding design, we consider
the sum MSE minimization with fixed UE-specific weights,
which can be assigned to promote fairness or priority within
each multicast group based on prior information, e.g., about
their channel conditions. Without loss of generality, we fix
equal weights for all the UEs, i.e., ωk = ω, ∀k ∈ K, a choice
justified by the uniform service provisioning of cell-free
massive MIMO systems. Hence, in the following, we refer
to (34) simply as sum MSE minimization. Though slightly
suboptimal, as demonstrated later, this approach leads to much
simpler computation and signaling, and is characterized by
faster convergence. Note that, especially at high SNR, the
UE-specific rates derived from the sum MSE minimization
are close to those obtained with the sum-group MSE mini-
mization. This is formalized in Proposition 1. Furthermore,
for a fixed set of precoders {wg}g∈G , the optimal combiners
{vk}k∈K for (34) are again obtained as in (30) based on the
effective downlink channel estimation described in Section II-
A.

Proposition 1: As ρBS → ∞, i.e., at high SNR, the
UE-specific rates obtained with the sum MSE minimization
in (34) asymptotically approximate the ones resulting from
the sum-group MSE minimization in (24).

Proof: Without loss of generality, let us consider a single

BS and let us define ckk̄ ≜
vk

HHk
Hwgk̄

∥vk∥∥wg
k̄
∥ . Assuming that UE k

adopts the MMSE combiner in (30), its MSE can be expressed
as MSEk = 1

1+γk
(cf. (25)). As ρBS →∞, the precoder in (36)

approaches a solution similar to zero forcing, i.e., wg lies
in the nullspace of the effective uplink channels of the UEs
k /∈ Kg and matched towards the superposition of the effective
uplink channels of the UEs k ∈ Kg . Thus, considering UE k̄ /∈
Kgk

, the inner product between wgk̄
and the effective uplink

channel of UE k tends to zero, which leads to ckk̄ → 0, ∀k̄ /∈
Kgk

. In this context, all the UEs experience high SINR, and
the SINR of UE k can be approximated as (cf. (2))

γk ≈
pgk

c2
kk

σ2
UE

, (37)

where pg is the transmit power allocated to group g. Finally,
when ωk = ω, ∀k ∈ K, the sum MSE minimization in (34)
reduces to the following power allocation problem:

minimize
{pg}

∑
k∈K

σ2
UE

pgk
c2
kk

s.t.
∑
g∈G

pg ≤ ρBS. (38)

From the KKT conditions detailed in Appendix B, we obtain
the optimal pg as

pg = ρBS

ug∑
ḡ∈G uḡ

, (39)

3To promote fairness within each multicast group with reduced complexity
and backhaul signaling overhead, the values of {ωk}k∈K may be updated
less frequently, e.g., based on SINR reporting from the UEs.



9288 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 8, AUGUST 2024

with ug ≜

√∑
k∈Kg

σ2
UE

c2
kk

. Consequently, the rate difference

between UE k and UE k̄ at high SNR can be written as∣∣ log2(γk)− log2(γk̄)
∣∣ =

∣∣∣∣ log2

(
ugk

c2
kk

ugk̄
c2
k̄k̄

)∣∣∣∣, (40)

which is independent of ρBS. This suggests that all the
UE-specific rates increase uniformly with the transmit power.
Considering the MSE fairness requirement of (27), it follows
that the rate of UE k ∈ Kg obtained with the sum-group
MSE minimization lies within the minimum and the maximum
rates among all the UEs k̄ ∈ Kg obtained with the sum MSE
minimization, i.e.,

min
k̄∈Kg

RS-MSE
k̄ ≤ RSG-MSE

k ≤ max
k̄∈Kg

RS-MSE
k̄ , ∀k ∈ Kg, (41)

where RS-MSE
k and RSG-MSE

k indicate the rates of UE k obtained
with the sum MSE minimization and with the sum-group MSE
minimization, respectively. The asymptotic approximation of
the normalized difference between RS-MSE

k and RSG-MSE
k is given

by

lim
ρBS→∞

∣∣RS-MSE
k −RSG-MSE

k

∣∣
RS-MSE

k

≤ lim
ρBS→∞

∣∣ mink̄∈Kg
RS-MSE

k̄
−maxk̄∈Kg

RS-MSE
k̄

∣∣
RS-MSE

k

(42)

≃ lim
ρBS→∞

∣∣ log2(mink̄∈Kg
ugk̄

c2
k̄k̄

)− log2(maxk̄∈Kg
ugk̄

c2
k̄k̄

)
∣∣

log2(ρBSugk
ckk

2)− log2(σ2
UE

∑
ḡ∈G uḡ)

(43)
→ 0, ∀k ∈ Kg. (44)

Hence, at high SNR, the UE-specific rates obtained with the
sum MSE minimization asymptotically approximate the ones
resulting from the sum-group MSE minimization.

In the rest of the paper, we focus on the sum MSE mini-
mization in (34) to design the multi-group multicast precoders.
The proposed distributed precoding designs presented in Sec-
tions IV and V with perfect and imperfect CSI, respectively,
are compared with different reference schemes, namely: i) the
centralized precoding design presented in Section III-C, which
is referred to in the following as the Centralized; and ii) the
local precoding designs based on MMSE and MF described
in Appendix C, which are referred to in the following as the
Local MMSE and the Local MF, respectively [31]. While the
primary focus of this paper is to design the joint network-
wide multi-group multicast precoders at the BSs in a fully
distributed fashion, we point out that the Centralized, the
Local MMSE, and the Local MF are also part of our con-
tribution as they are tailored for the sum MSE minimization
in the multi-group multicasting scenario.

C. Centralized Precoding Design With Pilot-Aided Channel
Estimation

The practical implementation of the Centralized requires the
antenna-specific uplink channel estimation (see Section II-A)
to enable the computation of the precoders in (36) and the

Algorithm 1 (Centralized)
Data: Pilots {PUL

k }k∈K and {pDL
g }g∈G .

1) UL: Each UE k transmits XUL
k in (4); each BS b receives

YUL
b in (5).

2) Each BS b obtains {Ĥb,k}k∈K in (7) and forwards them
to the CPU via backhaul signaling.

Initialization: Combiners {vk}k∈K.
Until a predefined termination criterion is satisfied, do:

3) The CPU computes the precoders {wg}g as in (33) and
the combiners {vk}k∈K as in (30) by replacing {Hk}k∈K
with {Ĥk}k∈K.

End
4) The CPU forwards the resulting BS-specific precoders to

the corresponding BSs via backhaul signaling.
5) DL: Each BS b transmits XDL

b in (19); each UE k receives
YDL

k in (20).
6) Each UE k computes its combiner vk as in (45).

combiners in (30) at the CPU. First, each BS b obtains
{Ĥb,k}k∈K and forwards them to the CPU via backhaul
signaling. Then, the CPU computes the aggregated precoders
{wg}g∈G and the combiners {vk}k∈K via alternating opti-
mization by replacing Hk with Ĥk ≜ [ĤT

1,k, . . . , ĤT
B,k]T ∈

CBM×N in (36) and (30), respectively. After convergence, the
resulting BS-specific precoders are fed back to the correspond-
ing BSs via backhaul signaling. Finally, the effective downlink
channel estimation (see Section II-A) is carried out to allow
each UE k to compute its (final) combiner as

vk =
(
YDL

k (YDL
k )H

)−1
YDL

k pDL
gk

. (45)

Note that (45) coincides with (30) for perfect CSI, i.e.,
when τ DL → ∞. The implementation of the Centralized is
summarized in Algorithm 1.

IV. DISTRIBUTED PRECODING DESIGN WITH PERFECT
CSI

In this section, we describe the proposed distributed
multi-group multicast precoding designs with perfect CSI
and backhaul signaling for the CSI exchange. Their practical
implementation with imperfect CSI and without any backhaul
signaling for the CSI exchange is presented in Section V.
The precoders are optimized locally at each BS by means of
either best-response or gradient-based updates, as discussed in
the following sections. Regardless of the computation of the
precoders, each UE k computes its combiner as in (30) with
perfect CSI.

A. Best-Response Distributed Precoding Design

In the best-response distributed precoding design, which is
referred to in the following as the Distributed BR, the optimal
wb,g is obtained by setting ∇wb,g

L(34)

(
{wg, λb}

)
= 0,
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∆w⋆
b,g = −

( ∑
k∈K

ωkHb,kvkvH
k HH

b,k + λbIM

)−1( ∑
k∈Kg

ωkHb,kvk −
∑
b̄∈B

∑
k∈K

ωkHb,kvkvH
k HH

b̄,kw
(i−1)

b̄,g
− λbw

(i−1)
b,g

)
(49)

which yields

wb,g =
(∑

k∈K

ωkHb,kvkvH
k HH

b,k+λbIM

)−1( ∑
k∈Kg

ωkHb,kvk

−
∑
b̸̄=b

∑
k∈K

ωkHb,kvkvH
k HH

b̄,kwb̄,g︸ ︷︷ ︸
≜ ξb,g (cross terms)

)
. (46)

The above precoder can be computed locally at BS b provided
that ξb,g , which comprises group-specific cross terms from
the other BSs, is known. To reconstruct ξb,g , BS b needs to
obtain {vH

k HH
b̄,k

wb̄,g}k∈K from each BS b̄ ̸= b via backhaul
signaling as in [19]. In practice, each BS is required to
share GK complex scalars with the other BSs. In addition,
the backhaul signaling introduces a delay that causes each
BS to reconstruct the cross terms based on outdated CSI
from the other BSs. As done in [20], we assume that such
a delay consists of a single bi-directional training iteration.
Hence, the cross terms ξb,g at iteration i are given by ξ

(i)
b,g ≜∑

b̸̄=b

∑
k∈K ωkHb,kvkvH

k HH
b̄,k

w(i−1)

b̄,g
. With this information,

all the BSs can compute their precoders simultaneously build-
ing on the parallel optimization framework [32], which uses
best-response updates to ensure the convergence to a solution
of the sum MSE minimization in (34). Finally, the BS-specific
precoder at iteration i is computed as

w(i)
b,g = (1− αBR)w

(i−1)
b,g + αBRwb,g (47)

= w(i−1)
b,g − αBR (w(i−1)

b,g −wb,g)︸ ︷︷ ︸
≜∆w⋆

b,g

, (48)

where the step size αBR ∈ (0, 1] strikes a balance between
convergence speed and accuracy of the solution [32], and
∆w⋆

b,g is obtained by replacing ξb,g with ξ
(i)
b,g in (46) as shown

in (49) at the top of the page.
Theorem 1: ∆w⋆

b,g in (49) is a steepest descent direction
for the sum MSE minimization in (34).

Proof: Let us write the gradient of (35) with respect to
wb,g as

∇wb,g
L(34)

(
{wg, λb}

)
= −2

( ∑
k∈Kg

ωkHb,kvk −
∑
b̄∈B

∑
k∈K

ωkHb,kvkvH
k HH

b̄,kwb̄,g

− λbwb,g

)
. (50)

Furthermore, let us define Cb ≜
2
( ∑

k∈K ωkHb,kvkvH
k HH

b,k + λbIM

)
∈ CM×M and

C ≜ blkdiag(C1, . . . ,CB) ∈ CBM×BM . Then,
we simplify (49) as

∆w⋆
b,g = C−1

b ∇wb,g
L(34)

(
{wg, λb}

)
(51)

and, exploiting the fact that C−1 = blkdiag(C−1
1 , . . . ,C−1

B ),
we have

∆w⋆
g ≜

[
(∆w⋆

1,g)
T, . . . , (∆w⋆

B,g)
T
]T

(52)

= C−1∇wgL(34)

(
{wg, λb}

)
. (53)

Finally, we observe that ∆w⋆
g in (52) is a steepest descent

direction for the quadratic norm ∥x∥C ≜ (xHCx)
1
2 [33].

Remark 1: Theorem 1 states that, for a fixed set of com-
biners {vk}k∈K, the Distributed BR solves the sum MSE
minimization in (34) via a steepest descent method character-
ized by the quadratic norm ∥x∥C. Since C is a block-diagonal
matrix with blocks {Cb}b∈B, each BS b greedily aims
to reduce its individual MSE by following the steepest
descent direction for the quadratic norm ∥x∥Cb

, whereas
the convergence to a solution of the sum MSE minimiza-
tion is guaranteed by a proper choice of αBR. On the other
hand, the centralized precoding design with best-response
updates is obtained by replacing C with the Hessian of (35)
in (52), where the latter is a full matrix. Therefore, the
Distributed BR is not equivalent to its centralized imple-
mentation and, as a consequence, may be characterized by
slow convergence. This motivates the development of the
gradient-based distributed precoding design in Section IV-B.
Lastly, we point out that the outdated CSI used to recon-
struct the cross terms at each BS further slows down the
convergence.

Remark 2: To speed up the convergence of the Dis-
tributed BR, we impose that, for a fixed set of combiners
{vk}k∈K, the BS-specific precoders {wb,g}g∈G are updated
only once at each BS b. In this respect, a sufficiently small
αBR would ensure the monotonic (yet slow) convergence to
a solution of the sum MSE minimization in (34) even with
a single update of the precoders for a fixed set of com-
biners [32]. However, considering a practical scenario where
only a limited number of bi-directional training iterations is
admissible, we disregard the strictly monotonic convergence
and choose αBR to promote an aggressive reduction of the sum
MSE objective during the first few iterations.

B. Gradient-Based Distributed Precoding Design

The Distributed BR presented in Section IV-A is not
equivalent to its centralized implementation and may be thus
characterized by slow convergence (see Remark 1). Hence,
in this section, we propose a gradient-based distributed pre-
coding design, which is referred to in the following as the
Distributed GB and follows directly from its centralized imple-
mentation. In this method, the BS-specific precoders are first
updated using the gradient of the sum MSE objective and
then projected to meet the per-BS transmit power constraints.
To this end, we write the gradient of the sum MSE objective
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(cf. (25)) with respect to wb,g as

∇wb,g

(∑
k∈K

ωkMSEk

)
= −2

( ∑
k∈Kg

ωkHb,kvk

−
∑
b̄∈B

∑
k∈K

ωkHb,kvkvH
k HH

b̄,kwb̄,g

)
.

(54)

Then, the corresponding gradient-based update can be
expressed as

w̃(i)
b,g ≜ w(i−1)

b,g − αGB∇wb,g

( ∑
k∈K

ωkMSEk

)
(55)

= w(i−1)
b,g + 2αGB

( ∑
k∈Kg

ωkHb,kvk − ξ
(i)
b,g

−
∑
k∈K

ωkHb,kvkvH
k HH

b,kw
(i−1)
b,g

)
, (56)

where αGB is the step size. The above gradient-based update
can be computed locally at BS b upon receiving the CSI
from the other BSs (necessary to reconstruct the cross terms)
via backhaul signaling. Finally, the BS-specific precoders at
iteration i are obtained by projecting {w̃(i)

b,g}g∈G to meet the
per-BS transmit power constraint, i.e.,

[w(i)
b,1, . . . ,w

(i)
b,G]

= argmin
{wb,ḡ}ḡ∈G :

∑
ḡ∈G ∥wb,ḡ∥2≤ρBS

∑
ḡ∈G

∥wb,ḡ − w̃(i)
b,ḡ∥

2 (57)

= ab[w̃
(i)
b,1, . . . , w̃

(i)
b,G], (58)

with ab =
√

ρBS∑
ḡ∈G ∥w̃

(i)
b,ḡ∥2

if
∑

ḡ∈G ∥ŵ
(i)
b,ḡ∥2 ≥ ρBS and ab =

1 otherwise. Note that this approach can be easily extended to
a unicasting scenario considering a single UE in each multicast
group.

Theorem 2: The Distributed GB is equivalent to its central-
ized implementation.

Proof: Considering the centralized implementation, the
gradient of the sum MSE objective (cf. (25)) with respect to
wg is given by

∇wg

( ∑
k∈K

ωkMSEk

)
= −2

( ∑
k∈Kg

ωkHkvk −
∑
k∈K

ωkHkvkvH
k HH

k wg

)
(59)

=

∇w1,g

( ∑
k∈K ωkMSEk

)
...

∇wB,g

( ∑
k∈K ωkMSEk

)
 , (60)

which corresponds to the concatenation of the gradients with
respect to the BS-specific precoders (see (54)). As a conse-
quence, the gradient-based update of wg can be expressed
as the concatenation of the gradient-based updates of the
BS-specific precoders (see (56)) at iteration i. Then, the
aggregated precoders at iteration i are obtained by projecting

the aforementioned gradient-based updates to meet the per-BS
transmit power constraints, i.e.,

[w(i)
1 , . . . ,w(i)

G ]

= argmin
{{wb,ḡ}ḡ∈G :

∑
ḡ∈G ∥wb,ḡ∥2≤ρBS}b∈B

∑
b∈B

∑
ḡ∈G

∥wb,ḡ − w̃(i)
b,ḡ∥

2

(61)

=


a1[w̃

(i)
1,1, . . . , w̃

(i)
1,G]

...
aB [w̃(i)

B,1, . . . , w̃
(i)
B,G]

 . (62)

Finally, we observe that the aggregated precoders in (61)
correspond to the concatenation of the BS-specific precoders
in (57).

Remark 3: Theorem 2 states that, for a fixed set of com-
biners {vk}k∈K, the Distributed GB (where the BS-specific
precoders {wb,g}g∈G are optimized locally at each BS b)
solves the sum MSE minimization in (34) in the same
way as its centralized implementation (where the aggregated
precoders {wg}g∈G are optimized at the CPU). Therefore,
each BS directly targets to reduce the sum MSE rather than
its individual MSE as in the Distributed BR. Moreover, the
convergence to a solution of the sum MSE minimization is
guaranteed by a proper choice of αGB. Lastly, the comments
in Remark 2 on how to speed up the convergence of the
Distributed BR also apply here.

V. DISTRIBUTED PRECODING DESIGN WITH PILOT-AIDED
CHANNEL ESTIMATION

In this section, we describe the practical implementation
of the proposed distributed multi-group multicast precoding
designs with imperfect CSI and without any backhaul signal-
ing for CSI exchange. We recall that the local computation of
the precoders at each BS in (46) relies on group-specific cross
terms from the other BSs. To avoid the resulting CSI exchange
via backhaul signaling, we adopt an OTA signaling scheme
similar to that proposed in our previous work on distributed
precoding design for cell-free massive MIMO unicasting [20].
Therein, we introduced a UE-specific OTA uplink training
resource to eliminate the need for backhaul signaling to
exchange the UE-specific CSI. In this paper, we propose a
new group-specific OTA uplink training resource tailored for
the multi-group multicasting scenario, which eliminates the
need for backhaul signaling to exchange the group-specific
CSI.

1) New Group-Specific Ota Uplink Training Resource (UL-
3): To reconstruct the cross terms ξb,g locally at BS b, each
UE k transmits YDL

k in (20) after precoding it with ωkvkvH
k ,

i.e.,

XUL-3
k ≜

√
βUL-3ωkvkvH

k YDL
k ∈ CN×τDL

, (63)

where the power scaling factor
√

βUL-3 (equal for all the UEs)
ensures that XUL-3

k complies with the per-UE transmit power
constraint. We observe that (63) contains the group-specific
effective downlink channels between all the BSs and UE k,
and we recall that YDL

k is obtained by means of group-specific
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∆w⋆
b,g ≃ −

(
YUL-1

b Ω(YUL-1
b )H+τ UL-1(βUL-1λb−σ2

BS)IM

)−1
(√

βUL-1
∑

k∈Kg

ωkYUL-1
b pUL-1

k − τ UL-1βUL-1

τ DL
√

βUL-3
YUL-3

b (pDL
g )H−βUL-1τ UL-1λbw

(i−1)
b,g

)
(68)

∆w⋆
b,g ≃ −

(
YUL-2

b (YUL-2
b )H + τ UL-2(βUL-2λb − σ2

BS)IM

)−1
(√

βUL-2YUL-2
b pUL-2

g − βUL-2τ UL-2

√
βUL-3τ DL

YUL-3
b (pDL

g )H − βUL-2τ UL-2λbw
(i−1)
b,g

)
(69)

pilots (see Section II-A). Therefore, this new group-specific
OTA uplink training resource generates the same training
overhead as the effective downlink channel estimation, which
depends on G rather than K as in the unicasting scenario.
Then, the signal received at BS b is given by

YUL-3
b ≜

∑
k∈K

ωkHb,kvkvH
k YDL

k + ZUL-3
k (64)

=
√

βUL-3
∑
k∈K

ωkHb,kvkvH
k

( ∑
g∈G

HH
k wg(pDL

g )H

+ ZDL
k

)
+ ZUL-3

k ∈ CM×τDL
, (65)

where ZUL-3
b ∈ CM×τDL

is the AWGN with i.i.d. CN (0, σ2
BS)

elements. Finally, the LS estimate of ξb,g is

ξ̂b,g ≜
1

τ DL
√

βUL-3
YUL-3

b pDL
g (66)

= ξb,g +
1

τ DL

( ∑
ḡ ̸=g

ξb,ḡ(p
DL
ḡ )H +

∑
k∈K

ωkHb,kvkvH
k ZDL

k

+
1√
βUL-3

ZUL-3
k

)
pDL

g . (67)

Building on the new group-specific OTA uplink training
resource, the precoders are optimized locally at each BS
by means of either best-response updates (based on both
UE- and group-specific pilots or group-specific pilots only)
or gradient-based updates (based on group-specific pilots),
as discussed in the following sections. Regardless of the com-
putation of the precoders, each UE k computes its combiner
as in (45) with imperfect CSI.

A. Best-Response Distributed Precoding Design With UE-
and Group-Specific Pilots

The practical implementation of the Distributed BR requires,
at each bi-directional training iteration, the UE-specific effec-
tive uplink channel estimation and the effective downlink
channel estimation (see Section II-A) together with the new
group-specific OTA uplink training resource (see Section V).
In this setting, YUL-1

b in (10) and YUL-3
b in (65) are suitably

combined to reconstruct ∆w⋆
b,g in (49) as shown in (68) at

the top of the page, which is used to compute the BS-specific
precoder in (47). Note that (68) becomes equal to (49) with
perfect CSI, i.e., when τ UL-1 → ∞ and τ DL → ∞. If pilot
contamination is to be avoided entirely, the Distributed BR
requires a minimum of K + G orthogonal pilots, i.e., K
orthogonal pilots to obtain YUL-1

b in (10) and G orthogonal

Algorithm 2 (Distributed BR)
Data: Pilots {pUL-1

k }k∈K and {pDL
g }g∈G .

Initialization: Combiners {vk}k∈K.
Until a predefined termination criterion is satisfied, do:

1) UL-1: Each UE k transmits XUL-1
k in (9); each BS b

receives YUL-1
b in (10).

2) UL-3: Each UE k transmits XUL-3
k in (63); each BS b

receives YUL-3
b in (65).

3) Each BS b reconstructs {∆w⋆
b,g}g∈G as in (68) and

computes the precoders {wb,g}g∈G as in (47).
4) DL: Each BS b transmits XDL

b in (19); each UE k receives
YDL

k in (20).
5) Each UE k computes its combiner vk as in (45).

End

pilots to obtain YUL-3
b in (65), in each uplink training instance.

The implementation of the Distributed BR is summarized in
Algorithm 2.

B. Best-Response Distributed Precoding Design With
Group-Specific Pilots

The practical implementation of the Distributed BR
described in Section V-A relies on the UE-specific effective
uplink channel estimation, which requires a minimum of K
orthogonal pilots in each uplink training instance to avoid
pilot contamination. Hence, to reduce the training overhead,
we propose a best-response distributed precoding design based
solely on group-specific pilots, which is referred to in the
following as the Distributed BR-GS. This method is obtained
by replacing the UE-specific effective uplink channel esti-
mation with its group-specific counterpart (see Section II-A).
Consequently, if pilot contamination is to be avoided entirely,
the Distributed BR-GS requires a minimum of 2G < K + G
orthogonal pilots, i.e., G orthogonal pilots to obtain YUL-2

b

in (15) and G orthogonal pilots to obtain YUL-3
b in (65),

in each uplink training instance. In this setting, assuming
ωk = ω, ∀k ∈ K, YUL-2

b in (15) and YUL-3
b in (65) are suitably

combined to reconstruct ∆w⋆
b,g in (49) as shown in (69) at

the top of the page, which is used to compute the BS-specific
precoder in (47). To understand the convergence behavior of
the Distributed BR-GS, let us assume for a moment that perfect
CSI is available at BS b, i.e., τ UL-2 →∞ and τ DL →∞. In this
case, we have

∆w⋆
b,g ≃ D−1

b ∇wb,g
L(34)

(
{wg, λb}

)
(70)
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Algorithm 3 (Distributed BR-GS)
Data: Pilots {pUL-2

g }g∈G and {pDL
g }g∈G .

Initialization: Combiners {vk}k∈K.
Until a predefined termination criterion is satisfied, do:

1) UL-2: Each UE k transmits XUL-2
k in (14); each BS b

receives YUL-2
b as in (15).

2) UL-3: Each UE k transmits XUL-3
k in (63); each BS b

receives YUL-3
b as in (65).

3) Each BS b reconstructs {∆w⋆
b,g}g∈G as in (69) and

computes the precoders {wb,g}g∈G as in (47).
4) DL: Each BS b transmits XDL

b in (19); each UE k receives
YDL

k in (20).
5) Each UE k computes its combiner vk as in (45).

End

with ∇wb,g
L(34)

(
{wg, λb}

)
given in (50) and

Db ≜ 2
( ∑

k∈K

Hb,kvkvH
k HH

b,k

+
∑
ḡ∈G

( ∑
k∈Kḡ

Hb,kvk

)( ∑
k̄∈Kḡ\{k}

vH
k̄ HH

b,k̄

)
︸ ︷︷ ︸

extra interference

+λbIM

)
.

(71)

We observe that (70) includes an extra interference term with
respect to (49), which arises from reconstructing the local
interference covariance matrix based solely on group-specific
CSI (i.e., YUL-2

b in (15)) rather than UE-specific CSI (i.e., YUL-1
b

in (10)) as in (68) for the Distributed BR. The implementation
of the Distributed BR-GS is summarized in Algorithm 3.

Theorem 3: ∆w⋆
b,g in (70) is a steepest descent direction

for the sum MSE minimization in (34).
Proof: The proof follows similar steps to the proof of

Theorem 1 and is thus omitted.
Remark 4: Following similar arguments to Remark 1, The-

orem 3 states that, for a fixed set of combiners {vk}k∈K, the
Distributed BR-GS solves the sum MSE minimization in (34)
via a steepest descent method characterized by the quadratic
norm ∥x∥D, with D ≜ blkdiag(D1, . . . ,DB) ∈ CBM×BM .
Due to the extra interference term in (70), the Distributed BR-
GS may be characterized by slower convergence than the
Distributed BR. Nonetheless, as shown in Section VI, this
drawback may be well compensated by the reduced training
overhead, especially for small resource blocks. Hence, the Dis-
tributed BR-GS may outperform the Distributed BR in terms
of effective sum-group rate. Lastly, the comments in Remark 2
on how to speed up the convergence of the Distributed BR also
apply here.

C. Gradient-Based Distributed Precoding Design With
Group-Specific Pilots

The practical implementation of the Distributed GB
requires, at each bi-directional training iteration, the
group-specific effective uplink channel estimation and the
effective downlink channel estimation (see Section II-A)
together with the new group-specific OTA uplink training
resource (see Section V). In this setting, YUL-2

b in (15)

Algorithm 4 (Distributed GB)
Data: Pilots {pUL-2

g }g∈G and {pDL
g }g∈G .

Initialization: Combiners {vk}k∈K.
Until a predefined termination criterion is satisfied, do:

1) UL-2: Each UE k transmits XUL-2
k in (14); each BS b

receives YUL-2
b as in (15).

2) UL-3: Each UE k transmits XUL-3
k in (63); each BS b

receives YUL-3
b as in (65).

3) Each BS b reconstructs the gradient of the sum MSE
objective with respect to {wb,g}g∈G as in (72), computes
the corresponding gradient-based updates in (56), and
projects them as in (57).

4) DL: Each BS b transmits XDL
b in (19); each UE k receives

YDL
k in (20).

5) Each UE k computes its combiner vk as in (45).
End

and YUL-3
b in (65) are suitably combined to reconstruct

∇wb,g

( ∑
k∈K ωkMSEk

)
in (54) as

∇wb,g

( ∑
k∈K

ωkMSEk

)
≃ 2

τ DL
√

βUL-3
YUL-3

b pDL
g

− 2
τ UL-2

√
βUL-2

YUL-2
b pUL-2

g , (72)

which is used to compute the corresponding gradient-based
update in (56). Note that (72) becomes equal to (54) with
perfect CSI, i.e., when τ UL-2 → ∞ and τ DL → ∞. Finally,
the BS-specific precoders are obtained by projecting the
gradient-based updates to meet the per-BS transmit power
constraint as in (57). Remarkably, the Distributed GB can
be implemented based solely on group-specific pilots. Con-
sequently, if pilot contamination is to be avoided entirely, the
Distributed GB requires a minimum of 2G orthogonal pilots
in each uplink training instance (as the Distributed BR-GS).
Another significant advantage of the Distributed GB is that
the computation of the precoders does not involve any matrix
inversion, which yields a reduced computational complexity
with respect to the Distributed BR and the Distributed BR-
GS. The implementation of the Distributed GB is summarized
in Algorithm 4.

D. Training Overhead

The practical implementation of the proposed distributed
precoding designs requires, at each bi-directional training
iteration, the UE- or group-specific effective uplink channel
estimation and the effective downlink channel estimation
(see Section II-A). In addition, it also relies on the new
group-specific OTA uplink training resource (see Section V),
which eliminates the need for backhaul signaling to exchange
the group-specific CSI. Consequently, in each uplink training
instance, each UE k transmits XUL-1

k in (9) or XUL-2
k in (14)

together with XUL-3
k in (63). Similarly, in each downlink

training instance, each BS b transmits XDL
b in (19). In princi-

ple, the iterative bi-directional training comprising the above
signaling can be integrated into the flexible 3GPP 5G NR
frame/slot structure, as discussed in [23] and [20]. Table I
shows the minimum number of orthogonal pilots (and thus
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TABLE I
MINIMUM NUMBER OF PILOT SYMBOLS NECESSARY FOR THE ITERATIVE BI-DIRECTIONAL TRAINING WITHOUT PILOT CONTAMINATION IN THE

PROPOSED AND REFERENCE PRECODING SCHEMES, WHERE I DENOTES THE TOTAL NUMBER OF BI-DIRECTIONAL TRAINING ITERATIONS
(RECALL THAT THE Centralized REQUIRES A SINGLE UPLINK-DOWNLINK TRAINING ITERATION)

TABLE II
COMPUTATIONAL COMPLEXITY FOR EACH BI-DIRECTIONAL TRAINING ITERATION OF THE PROPOSED AND REFERENCE PRECODING SCHEMES, WHERE

δ DENOTES THE NUMBER OF BI-SECTION STEPS AT EACH ITERATION (RECALL THAT THE Centralized REQUIRES A SINGLE UPLINK-DOWNLINK
TRAINING ITERATION)

the minimum number of pilot symbols) necessary for the
iterative bi-directional training without pilot contamination in
the proposed and reference precoding schemes.

Remark 5: The Distributed GB, if implemented via back-
haul signaling for the CSI exchange similarly to [19], would
still require the UE-specific effective uplink channel esti-
mation (see Section II-A) and would generate the same
backhaul signaling overhead as the Distributed BR described
in Section IV-A. In fact, reconstructing the cross terms ξb,g

in (46) at BS b is not possible with group-specific CSI
exchange. On the other hand, adopting iterative bi-directional
training with the new group-specific OTA uplink training
resource allows to implement the Distributed GB (and the Dis-
tributed BR-GS) with reduced training overhead with respect
to the Distributed BR.

E. Computational Complexity

Based on the minimum number of pilot symbols specified
in Table I, Table II presents the computational complexity
for each bi-directional training iteration of the proposed and
reference precoding schemes. The computational complexity
mainly arises from matrix multiplications and inversions in
the computation of the precoders. Notably, the Local MF
and the Distributed GB exhibit remarkably low computational
complexity compared with the other methods. Additionally, the
Distributed BR-GS is less complex than the Distributed BR as
the former relies solely on group-specific pilots. Among all
the considered methods, the Centralized entails the highest
computational complexity.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the performance of the proposed
distributed multi-group multicast precoding designs presented
in Section V, i.e., the Distributed BR (Algorithm 2), the
Distributed BR-GS (Algorithm 3), and the Distributed GB
(Algorithm 4), with that of the reference precoding schemes
described in Section III-C and Appendix C, i.e., the Cen-
tralized (Algorithm 1), the Local MMSE, and the Local MF.
Unless otherwise stated, the simulation setup comprises the
following parameters. B = 25 BSs, each equipped with

Fig. 2. Average sum-group rate resulting from the sum-group MSE
minimization and the sum MSE minimization versus number of alternating
optimization iterations for different values of ρBS.

M = 8 antennas, are placed on a square grid with a distance
of 100 m between neighboring BSs. K = 32 UEs, each
equipped with N = 2 antennas, are uniformly distributed
across the square grid. The UEs are divided into G = 8 mul-
ticast groups, each consisting of 4 randomly selected UEs.4

Assuming uncorrelated Rayleigh fading, the entries of Hb,k

are i.i.d. CN (0, δb,k) random variables, where δb,k ≜ −48 −
30 log10(db,k) [dB] is the large-scale fading coefficient and
db,k is the distance between BS b and UE k.5 The maximum
transmit power for both data and the pilot transmission is
ρBS = 30 dBm at the BSs and ρUE = 20 dBm at the UEs.
The AWGN power at the BSs and at the UEs is fixed to
σ2

BS = σ2
UE = −95 dBm. As a performance metric, we evaluate

the sum-group rate in (3) averaged over 103 independent
channel realizations and UE drops. In all the algorithms, the
combiners at the UEs are initialized with random vectors
and the step sizes are appropriately chosen to promote an

4If the multicasting services demand the UEs to be grouped based on similar
geographical locations, the interference among the multicast groups could be
mitigated more effectively, thus yielding better performance with respect to
the considered random UE grouping.

5The simulation results would be very similar with correlated channel
models such as the one-ring model [34].
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Fig. 3. Average sum-group rate versus number of bi-directional training
iterations.

aggressive reduction of the sum MSE objective during the first
few iterations.

We begin by validating Proposition 1 considering a cen-
tralized implementation. Figure 2 compares the average
sum-group rate resulting from the sum-group MSE minimiza-
tion (see Section III-A) and the sum MSE minimization (see
Section III-B) for different values of ρBS. We observe that,
as the SNR increases, the gap between the two curves does not
increase. Therefore, at high SNR, the sum-group rate obtained
with the sum MSE minimization closely approximates the one
resulting from the sum-group MSE minimization.

Figure 3 illustrates the average sum-group rate as a function
of the number of bi-directional training iterations, where the
Centralized with perfect CSI is also included as an upper
bound. The proposed distributed precoding designs greatly
outperform the local precoding designs. During the first few
iterations, the Distributed BR and the Distributed BR-GS are
superior to the Distributed GB. Indeed, in the distributed pre-
coding designs with best-response updates, each BS greedily
aims to reduce its individual MSE by exploiting its local
interference covariance matrix, yielding a slower convergence
to a solution of the sum MSE minimization. On the other hand,
the Distributed GB directly targets to reduce the sum MSE and
thus outperforms all the other distributed algorithms after few
iterations. The proposed distributed precoding designs even-
tually provide a higher sum-group rate than the Centralized.
In fact, the iterative bi-directional training involves multiple
uplink-downlink training instances with independent AWGN
realizations, whereas only one (antenna-specific) noisy channel
estimate is used in the Centralized (see [20]). Therefore, the
impact of AWGN on the distributed precoding designs is aver-
aged out over the iterations and, eventually, the Distributed BR
and Distributed GB outperform the Centralized. As expected,
the Local MMSE is the best among the local precoding designs
as it exploits the local interference covariance matrix that is
not considered in the Local MF.

In the following, we compare the effective performance of
the distributed precoding designs in terms of effective sum-
group rate, defined as

R
(i)
eff ≜

(
1−i

rce

rt

)
R(i), (73)

Fig. 4. Average effective sum-group rate versus number of bi-directional
training iterations, with rt = 1000.

where rce is the number of pilot symbols used in each
bi-directional training iteration and rt is the resource block
size including the transmission of both pilot symbols and data
symbols. The switching time between uplink and downlink
training instances is neglected. Figure 4 plots the average
effective sum-group rate as a function of the number of
bi-directional training iterations with resource block size rt =
1000. All the algorithms achieve the maximum effective
sum-group rate (indicated by the larger dots) within few itera-
tions. After the peak, the performance starts to decrease as the
number of data symbols transmitted within the resource block
reduces at each bi-directional training iteration. As shown in
Table I, the Distributed BR-GS uses fewer pilot symbols than
the Distributed BR. As a result, the effective sum-group rate
of the Distributed BR-GS is slightly higher than that of the
Distributed BR. Note that the sum-group rate (which does not
consider the training overhead) of the Distributed BR-GS is
inferior to that of the Distributed BR (as shown in Figure 3).
Similarly, the performance of the Local MF is close to that
of the Local MMSE because fewer pilot symbols are required
per bi-directional training iteration. The effective sum-group
rate of the Distributed GB is superior to those of all the other
methods. Furthermore, its training overhead is smaller than
in the Distributed BR due to the use of group-specific pilots.
In this example, the maximum effective sum-group rates of the
Distributed BR, the Distributed BR-GS, and the Distributed GB
are 1.6, 1.65, and 2.1 times higher, respectively, than that of
the local precoding designs.

Figure 5 depicts the average effective sum-group rate as a
function of the resource block size rt. For rt = 1000, the
effective sum-group rates correspond to the maximum values
in Figure 4. Note that the optimal number of bi-directional
training iterations to obtain the maximum effective sum-group
rate increases with rt as a higher training overhead can be
tolerated for larger resource blocks. In general, the distributed
precoding designs perform well for rt ≥ 500. For example,
with rt = 500, the Distributed GB greatly outperforms all the
other methods. Furthermore, the Distributed BR-GS performs
better than the Distributed BR due to the use of fewer pilot
symbols in each bi-directional training iteration and despite
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Fig. 5. Average effective sum-group rate versus resource block size.

Fig. 6. Average effective sum-group rate versus number of UEs in each
multicast group, with rt = 1000.

the extra interference term in (70). With large resource blocks,
the training overhead becomes insignificant and the effective
sum-group rate approaches the sum-group rate in Figure 3,
which does not account for the training overhead.

Figure 6 plots the average effective sum-group rate as a
function of the number of UEs in each multicast group |Kg|
with resource block size rt = 1000. In general, the sum-group
rate decreases when |Kg| grows as more spatial degrees of
freedom are used to suppress the interference among the
multicast groups. However, at the same time, the sum rate
across all the UEs

∑
g∈G |Kg|Rg is increased. The training

overhead associated with XUL-1
k in the Distributed BR and

the Local MMSE depends on K =
∑

g∈G |Kg|, while the
training overhead associated with XUL-2

k in the Distributed BR-
GS, the Distributed GB, and the Local MF is dictated by G.
Consequently, the Distributed BR and the Local MMSE are
more severely penalized by an increase in K. For example,
considering the case of |Kg| = 16, the performance of the
Distributed BR and the Local MMSE is inferior even to that
of the Local MF.

Figure 7 depicts the average effective sum-group as a
function of the number of antennas at each BS with resource
block size rt = 1000. Increasing M obviously improves the
performance of all the considered methods. What is more, the

Fig. 7. Average effective sum-group rate versus number of antennas at each
BS, with rt = 1000.

Fig. 8. Average effective sum-group rate versus resource block size at low
SNR (σ2

BS = σ2
UE = −75 dBm).

proposed distributed methods provide significant gains over
the local precoding designs even with a relatively high number
of antennas at each BS, e.g., M = 32, which motivates the use
of the distributed precoding designs even in such scenarios.

Figure 8 illustrates the average effective sum-group as a
function of the resource block size at low SNR, where the
joint interference suppression across the BSs becomes less
important. Nonetheless, the Distributed GB is superior to all
the other methods, whereas the Distributed BR-GS, which
depends now on the noisy feedback with the extra interference
term in (70), suffers from inaccuracies in the local interference
covariance matrix, making it inferior to the local precoding
designs.

Lastly, Figure 9 compares the proposed distributed
multi-group multicast precoding designs with the distributed
unicast precoding design developed in [20] in the multi-group
multicasting scenario considered so far (i.e., with K = 32 UEs
divided into G = 8 multicast groups of 4 randomly selected
UEs). The unicast precoding design is intended to suppress
the interference among all the UEs and does not consider
that the latter are divided into groups. For this method, the
same data symbols (distinctly modulated for each UE) are
transmitted to all the UEs in a multicast group by means of
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Fig. 9. Average effective sum-group rate versus resource block size in
comparison with the unicast precoding design [20] with the same CSI
accuracy.

UE-specific precoders. In this setting, the rate is still limited
by the worst UE in the multicast group and, therefore, we use
the sum-group rate in (3) as a metric to evaluate the perfor-
mance of the unicast precoding design. Moreover, the unicast
precoding design requires UE-specific pilots, which are longer
than the group-specific pilots used for the multicast precoding
designs and thus result in higher CSI accuracy. Hence, to com-
pare the impact of the training overhead between the multicast
and unicast precoding designs, we scale the transmit power of
the group-specific pilots to achieve the same CSI accuracy as
the UE-specific pilots. Figure 9 plots the average effective
sum-group rate as a function of the resource block size.
Here, the Distributed BR (unicasting) indicates the distributed
precoding design proposed in [20] while Distributed GB
(unicasting) corresponds to Algorithm 4 adapted to consider
each UE as a multicast group. We observe that all the proposed
distributed methods tailored for the multi-group multicasting
scenario outperform the unicast precoding designs. In addition,
with small resource blocks, the performance of the unicast
precoding designs is further penalized due to the higher impact
of the training overhead. For instance, with rt = 1000,
the Distributed GB (unicasting) delivers around 4.5 bps/Hz
per UE, while the Distributed GB provides approximately
8.5 bps/Hz per UE. We point out that even the performance
of the multicast precoding designs with non-scaled transmit
power of the group-specific pilots in Figure 5 is significantly
better than that of the unicast precoding designs in Figure 9.

VII. CONCLUSION

We proposed fully distributed multi-group multicast precod-
ing designs for cell-free massive MIMO systems with modest
training overhead. The sum-group MSE minimization is ini-
tially considered to guarantee absolute MSE fairness within
each multicast group. Subsequently, to simplify the computa-
tion and signaling, the sum-group MSE is approximated with
the sum MSE objective. Considering the UE-specific rates
as the performance metric, the aforementioned approximation
holds well, especially at high SNR. An iterative bi-directional
training is adopted to design the precoders and the combiners
locally at each BS and at each UE, respectively. To this

end, a new group-specific OTA uplink training resource is
introduced to obtain the required group-specific cross terms
from other BSs in the distributed precoding design, which
eliminates the need for backhaul signaling to exchange the
CSI. Furthermore, the distributed precoding designs are imple-
mented by means of either best-response or gradient-based
updates exploiting UE- and/or group-specific pilots. Conse-
quently, the distributed precoding design with best-response
updates results in a steepest descent direction for the sum
MSE minimization, which makes it inferior to its centralized
implementation. However, the gradient-based update solves the
sum MSE minimization as it would be in a centralized design.
Numerical results show that the distributed gradient-based
precoding design with group-specific pilots always yields
the best effective performance. Moreover, all the proposed
distributed methods greatly outperform conventional cell-free
massive MIMO precoding designs that rely solely on local
CSI.

APPENDIX A
SUB-GRADIENT UPDATE OF {µk}k∈K AND {λb}b∈B

1) Sub-gradient update of {µk}k∈K. The optimality condi-
tion for tg is given by

∂

∂tg
L(31)

(
{wg, tg, µk, λb}

)
= 0 =⇒

∑
k∈Kg

µk = 1. (74)

Moreover, the complementary slackness conditions corre-
sponding to the per-UE MSE constraint in (27) are given by

µk(MSEk − tg) = 0, ∀k ∈ Kg

=⇒
∑

k∈Kg

µktg =
∑

k∈Kg

µkMSEk. (75)

Therefore, from (74) and (75), we have tg =∑
k∈Kg

µkMSEk. To achieve absolute MSE fairness within
each multicast group, each µk is updated as [6]

µ
(i)
k = max

(
0, µ

(i−1)
k + ζ

∂

∂µk
L(31)

(
{wg, tg, µk, λb}

))
(76)

= max
(

0, µ
(i−1)
k + ζ(MSEk − tg)

)
, (77)

where i is the iteration index and ζ is the step size. Finally,
(76) is normalized to meet the constraint in (74).

2) Sub-gradient update of {λb}b∈B. To meet the per-BS
transmit power constraint, λb is updated as [30]

λ
(i)
b = max

(
0, λ

(i−1)
b + η

∂

∂λb
L(31)

(
{wg, tg, µk, λb}

))
(78)

= max
(

0, λ
(i−1)
b + η

( ∑
g∈G

∥wb,g∥2 − ρBS

))
, (79)

where η is the step size.
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APPENDIX B
KKT CONDITIONS OF (38)

The Lagrangian of (38) can be written as

L(38)

(
{pg, κ}

)
≜

∑
k∈K

σ2
UE

pgk
c2
kk

+ κ

( ∑
ḡ∈G

pḡ − ρBS

)
, (80)

where κ is the dual variable corresponding to the constraint
in (38). Then, the optimal pg is obtained as

∂

∂pg
L(38)

(
{pg, κ}

)
= 0 =⇒ pg =

√√√√ ∑
k∈Kg

σ2
UE

κc2
kk

. (81)

Finally, κ is computed to satisfy
∑

g∈G pg = ρBS, which yields

κ =
1

ρ2
BS

( ∑
g∈G

√√√√ ∑
k∈Kg

σ2
UE

c2
kk

)2

. (82)

APPENDIX C
LOCAL PRECODING DESIGNS

To avoid the prohibitive complexity and backhaul signaling
of large-scale centralized precoding designs, most works on
cell-free massive MIMO assume simple local precoding strate-
gies exploiting the large-antenna regime across the BSs [31].
In this setting, the BS-specific precoders are designed based
solely on local CSI, ignoring the contribution from the other
BSs. Nevertheless, iterative bi-directional training is required
to update the precoders at the BSs based on the combiners at
the UEs and vice versa. With perfect CSI, at each bi-directional
training iteration, the Local MMSE precoder at each BS b is
computed as

wb,g =
( ∑

k∈K

ωkHb,kvkvH
k HH

b,k+λbIM

)−1 ∑
k∈Kg

ωkHb,kvk,

(83)

whereas the corresponding Local MF precoder is computed as

wb,g =
1
λb

∑
k∈Kg

ωkHb,kvk. (84)

Note that the dual variable λb in (83) and (84) can be easily
obtained via bisection. In both cases, each UE k computes
its combiner as in (30). The local precoding designs may
not convergence to a solution of the sum MSE minimization
in (34). However, the resulting UE-specific rates improve
over the iterations since the combiners are better focused
towards the intended signals and increase the accuracy of
the effective channel estimation. The practical implementation
of the Local MMSE and the Local MF requires, at each
bi-directional training iteration, the UE- and group-specific
effective uplink channel estimations, respectively, as well as
the effective downlink channel estimation (see Section II-
A). Accordingly, the Local MMSE precoder at each BS b is
computed as

wb,g =
√

βUL-1
(
YUL-1

b Ω(YUL-1
b )H + τ UL-1(βUL-1λb − σ2

BS)IM

)−1

×
∑

k∈Kg

ωkYUL-1
b pUL-1

k , (85)

with Ω ≜ Diag(ω1, . . . , ωK) ∈ RK×K , whereas the corre-
sponding Local MF precoder is computed as

wb,g =
1

λbτ UL-2
√

βUL-2
YUL-2

b pUL-2
g . (86)

In both cases, each UE k computes its combiner as
in (45). If pilot contamination is to be avoided entirely, the
Local MMSE requires a minimum of K ≥ G orthogonal pilots
to obtain YUL-1

b in (10) in each uplink training instance, whereas
the Local MF requires a minimum of G orthogonal pilots
to obtain YUL-2

b in (15) in each uplink training instance. For
a fixed number of bi-directional iterations, the Local MMSE
outperforms the Local MF by exploiting the local interference
covariance matrix, although it has a higher training overhead.
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