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Abstract— We consider an uplink integrated sensing and com-
munications (ISAC) scenario where the detection of data symbols
from multiple user equipment (UEs) occurs simultaneously with a
three-dimensional (3D) estimation of the environment, extracted
from the scattering features present in the channel state informa-
tion (CSI) and utilizing the same physical layer communications
air interface, as opposed to radar technologies. By exploiting
a discrete (voxelated) representation of the environment, two
novel ISAC schemes are derived with purpose-built message
passing (MP) rules for the joint estimation of data symbols
and status (filled/empty) of the discretized environment. The
first relies on a modular feedback structure in which the data
symbols and the environment are estimated alternately, whereas
the second leverages a bilinear inference framework to estimate
both variables concurrently. Both contributed methods are shown
via simulations to outperform the state-of-the-art (SotA) in accu-
rately recovering the transmitted data as well as the 3D image of
the environment. An analysis of the computational complexities of
the proposed methods reveals distinct advantages of each scheme,
namely, that the bilinear solution exhibits a superior robustness to
short pilots and channel blockages, while the alternating solution
offers lower complexity with large number of UEs and superior
performance in ideal conditions.

Index Terms— ISAC, JCAS, B5G, 6G, voxelated grid map, 3D
object imaging, MP, bilinear inference.

I. INTRODUCTION

BEYOND fifth-generation (B5G) and sixth-generation
(6G) wireless communication systems are expected to

raise the performance standards in terms of data throughput,
reliability, latency, spectral efficiency, energy efficiency, and
user capacity [2], [3], [4], which can be achieved by novel
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enabling technologies such as high-frequency communications
in the millimeter-wave (mmWave) [5], [6], [7] and Terahertz
(THz) [8], [9], [10] bands, massive multiple-input multiple-
output (mMIMO) techniques [11], [12], [13], reconfigurable
intelligent surfaces (RISs) [14], [15], [16].

Within that context, a new research field called ISAC
[17], [18], [19], also known as joint communication and
sensing (JCAS) [20], [21], [22], [23], [24], has recently
gained significant attention as a promising technology to
fulfill such requirements and enable new applications for
beyond fifth-generation (B5G) and 6G systems. In particular,
ISAC technology seeks to enhance B5G and 6G systems
by enabling both communication and environment sensing
functionalities under the same wireless interface, thus real-
izing the concepts of ambient-sensing and environment-aware
radio [25], which are crucial to emerging applications such as
autonomous driving (AD) [26] and drone networking (DN)
[27], besides offering new means to optimize system per-
formance. For instance, in B5G and 6G systems operating
at high-frequency channels, which are sensitive to path-
dependent scattering [28], [29], environment parameters of
interest include not only the “usual” CSI, but also the positions
of users and obstacles that may lead to path blockages. In such
systems, ISAC is an alternative to image-based path-blockage
prediction approaches, crucial to mitigate the deleterious
effects of blockages [30], [31], [32].

The prominent challenge of ISAC arises from the fact that
two independently-developed wireless technologies, namely,
wireless communications and radar systems [33], [34], are
both fundamentally based on distinct air-interfaces, such that
a concurrent deployment of existing waveforms is bound to
suffer from performance degradation of both functions due to
interference. Aiming to address this issue, the earliest family
of ISAC approaches known as the radar and communication
coexistence (RCC) [35], [36], consequently focused on
minimizing the interference and maximizing the cooperation
between the independently-operated communications and
radar subsystems sharing the same frequency spectrum.
While the RCC strategy succeeds in managing interference
and harmoniously allocating radio resources to operate
both subsystems, the approach achieves relatively low
spectral efficiencies and does not alleviate hardware costs,
whose components remain separate for both subsystems
[23], [35], [36].
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In light of the fundamental drawbacks of RCC, tech-
niques integrating the communication and radar functions
into a single wireless interface have been recently pro-
posed to truly realize the ISAC goal of jointly offering
communication and sensing capabilities in a single system.
Literature [22], [23], [24] classifies such techniques into
three types: a) Radar-centric ISAC (RC-ISAC) schemes,
which realizes an additional communication functionality over
typical radar waveforms, for example by utilizing index
modulation (IM) to encode information into multiple-input
multiple-output (MIMO) radar signals employing, e.g., the
carrier agile phased array radar (CAESAR) waveform [37],
or the frequency modulated continuous waveforms (FMCW)
[38]; b) Communication-centric ISAC (CC-ISAC) schemes,
which realizes an additional environment sensing function-
ality over standard communication waveforms, typically by
extracting the radar parameters such as Doppler-shift and
delay from waveforms designed fundamentally for communi-
cations functions, such as the IEEE 802.11ad waveform [39],
the orthogonal frequency-division multiplex (OFDM) wave-
form [40], or the orthogonal time frequency space (OTFS)
waveform [41]; and c) Dual-function radar communica-
tions (DFRC) schemes, which while not having exclusive
boundaries with aforementioned RC-ISAC and CC-ISAC cat-
egories, are based on waveforms that can be adaptively or
jointly optimized between the two functionalities [42], e.g., via
waveforms designed based on mutual information [43] or the
multi-beam approach in the mmWave bands [44]. But still, all
these approaches are related by the fact that the target sensing
is enabled by the fundamental radar relationship between
measurable physical quantities and target information [33],
[34], that is, range can be extracted from the signal delay,
velocity from the Doppler frequency, and bearing from the
angle-of-arrival (AoA).

Concomitant with the aforementioned methods, contribu-
tions have also been recently made to realize environment
sensing capabilities not via target detection with radar, but
rather by new standards of environment sensing information
such as ambient human activity [45], [46], and 3D environment
image [47], [48], [49]. In particular, the latter family of works
exploit the voxelated occupancy grid [50], [51], [52], [53]
to discretize the environment into 3D cubic units of space
representing its state (solid or void). Such methods exhibit a
unique advantage in that the extracted information not only
describes the location of objects, but also their 3D image,
in any desired resolution according to the voxelated model,
enabling useful applications such as 3D environment mapping
and ray-tracing propagation modeling [54], [55].

However, wireless voxelated imaging technology is still a
very new notion in context of ISAC, due to the inherently
convoluted channel paths arising from the discretization of
the environment scatterers, and the fundamental challenge that
the unknown information symbols must be simultaneously
recovered on top of the large number of environment voxels.

In light of the above challenges, we offer in this article the
following contributions:
• An extension of the discrete voxelated environment model

utilized in [47], [48], and [49] is introduced, in which an

empirical stochastic-geometric approach is incorporated
to capture the viability of non-line-of-sight (NLOS) paths,
in addition to an extension where the occupancy coeffi-
cients are not limited to 0 or 1, but instead can take on
non-binary complex values, enabling reflection losses and
phase shifts of reflected waves to be modeled.1

• A novel, scalable CC-ISAC scheme is proposed, in which
the 3D voxelated environment image and the transmit
symbols are estimated alternately via two distinct linear
modules;

• A novel, high-performance CC-ISAC scheme is pro-
posed, in which the the 3D voxelated image of the
environment and the transmit data symbols are concur-
rently estimated via a single MP module which leverages
a bilinear inference framework;

• Insights on the advantages of the two proposed CC-ISAC
algorithms are provided via performance assessment and
comparison against the state-of-the-art (SotA), which
highlights the robustness of the bilinear method against
short pilot lengths and path blockages, and the accuracy
of the alternating solution in systems with many UEs.

Notation: Scalar values are denoted by slanted lowercase
letters, as in x, while complex vectors and matrices are
denoted by boldface lowercase and uppercase letters, as in x
and X, respectively. The transposition, complex conjugation,
diagonalization, absolute value, and ℓ-th norm operators are
denoted by (·)T, (·)∗, diag(·), | · |, and || · ||ℓ respectively,
while Ex(x) and Varx(x) respectively denote the expectation
and variance of x with respect to its distribution Px(x). The
sets of real and complex numbers are denoted by R and C,
respectively, and N (µ, ν) and CN (µ, ν) denote the real and
complex Normal distributions with mean µ and variance ν.

II. SYSTEM MODEL

The system model considered throughout the article, con-
sists of three parts: a) the environment model, where a
voxelated occupancy grid is used to discretely approximate the
true environment and its scattering properties, b) the channel
model, which defines the unique channel paths arising from the
voxelated environment model, and c) the signal model, where
the uplink communication scheme between the UEs and the
access points (APs) is described.

A. Environment Voxelation Model
The 3D image of an environment can be represented via

a number of techniques, including the well-known point-
cloud and the ray-tracing methods, which are often utilized
in robotics, machine vision and computer graphics [54], [56].
Another well-known method, however, is the voxelated occu-
pancy grid [50], [51], [52], [53], where the ROI is represented
as a cuboidal space of dimensions Lx × Ly × Lz, each
denoting the lengths of the x, y, z-axes in meters, respectively,
as depicted in Fig. 1. In this model, the ROI is subdivided into

1We clarify that although the message-passing rules derived in this article
are for this extended paradigm, such that the proposed algorithms are fully
generalized, binary-valued occupancy coefficients are considered in Section IV
for the purpose of evaluation performance, in order to enable direct compar-
ison with SotA methods.
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Fig. 1. Illustration of a voxelated grid map-based model of the environment of a given region of interest (ROI).

a regular grid consisting of NV ≜ Nx ·Ny ·Nz voxels, where
Nx ≜ Lx

LV
, Ny ≜ Ly

LV
, and Nz ≜ Lz

LV
denote the number of

partitions along the x, y and z-axes, respectively, and LV is the
edge length of a voxel in meters, which therefore corresponds
to the image resolution.

The environment is then represented by a 3D tensor of
dimensions (Nx × Ny × Nz), whose elements indicate the
occupancy of the voxels, and thus whether that portion of
the space is empty or filled with a given material. One
may therefore consider, in general, each k-th voxel to be
represented by an occupancy (a.k.a. scattering) coefficient vk,
with k ∈ {1, · · · , NV }, where vk = 0 indicates that the
k-th voxel is empty, while an occupied voxel is indicated
by a complex number i.e., vk ≜ βk · e−jωk ∈ C. In such
a model, the constants βk and ωk, which dependent not only
on the material itself, but also on the frequency and the angle
of incidence of propagating signals [29], capture the effect of
the material occupying a given voxel onto the electromagnetic
wave reflected or refracted by it. For the sake of reducing
the complexity of the ISAC algorithm to be later introduced,
however, we will in this article consider a simplified model
whereby the occupancy coefficients vk take on discrete real
values in the interval ∈ [0, 1].

Since phase rotations due to reflections are captured by
channel estimation, this simplification is equivalent to the
assumptions that the ISAC waveform is narrowband, so that
frequency-dependence can be ignored [29]. The incorporation
of the geometry of the interaction between propagating waves
and occupied voxels will be described in Subsection II-C.

B. Channel Model

Consider a scenario in which the ROI containsNU single-
antenna UEs, and NA multi-antenna APs equipped with NR

receive antennas each. As illustrated in Fig. 2, the effective
channels between the UEs and APs contain two distinct types
of components, namely, LOS components which are direct
paths between the UEs and APs, and NLOS components which
encompass paths reflected at occupied voxels corresponding
to parts of the environment, as described in Subsection II-A.
Assuming that the operating frequency band is sufficiently

Fig. 2. Illustration of the line-of-sight (LOS) and NLOS channel components
and their subpaths.

high that the power of paths reflected more than once is negli-
gible [28], [57], NLOS components may be decomposed into
two subpaths, the UE-to-voxel subpath and the voxel-to-AP
subpath, which together with the voxel scattering coefficient
comprises the aggregate NLOS channel.

In light of the above, the effective channel between the
NU single-antenna UEs and the ensemble of NANR receive
antennas of all APs can be compactly described by

G =

UE-to-AP︷︸︸︷
H +

voxel-to-AP︷︸︸︷
A · diag(v) ·

UE-to-voxel︷︸︸︷
B ∈ CNANR×NU , (1)

where G ∈ CNANR×NU is the effective channel matrix,
H ∈ CNANR×NU , A ∈ CNANR×NV , and B ∈ CNV ×NU are
the channel matrices of the UE-to-AP LOS path, voxel-to-AP
NLOS subpath, and UE-to-voxel NLOS subpath, respectively,
whose elements are assumed to follow zero-mean complex
Normal distributions with variances σ2

H , σ
2
A, and σ2

B , respec-
tively; while v ∈ CNV ×1 is the vector containing all scattering
coefficients of the voxelated grid.

Although not further exploited in this article, we emphasize
that the channel model in equation (1) can be straightforwardly
extended to a multi-carrier scenario by simply introducing
frequency-selectivity such that the environment variables are
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functions of the carrier frequency, i.e.,

G(f) = H(f) + A(f) · diag(v(f)) ·B(f) ∀f ∈ F , (2)

with f denoting a specific frequency in the set F of all
subcarrier frequencies.

We leave details for follow-up work, but it shall become
evident that under such an extended model, the sensing
component of the ISAC algorithm to be introduced in
Section III can also be extended for even better perfor-
mance, for instance by exploiting knowledge of channel
correlation across carriers [58], and to incorporate additional
features, such as the estimation of material types based on
the frequency-dependence observed on estimated scattering
coefficients [29]. Since the above also requires incorporating
message-passing rules that exploit cross-carrier correlation to
the algorithms, such extension will be pursued in a future
work, and only the frequency-independent (i.e., single-carrier)
model of equation (1) will be assumed in this article.

C. Stochastic Geometric Environment Model
Notice that the channel model summarized by equation (1)

implies that all paths between UEs, APs, and voxels are
available. Although such an assumption is common in related
literature (see e.g. [47], [48], [49], [50], [51], [52], [53]),
in practice, many subpaths may not be available due to
either physical phenomena (e.g. blockage by air-borne par-
ticles, absorption, or path loss) or the finite resolution of
the voxelated model itself. In order to capture such realistic
behavior, the work in [49] considers the occlusion effect of
waves reaching the voxels, where the UE-to-voxel subpaths are
assumed to be unavailable if a voxel is present nearby the path.
This perturbation effect was approximated by applying a 3D
Gaussian kernel convolution to the channel matrix, but it was
acknowledged [49] that this approach is a highly simplified
model of the true physical phenomena. Building on the latter,
we therefore seek to contribute to improving the voxelated grid
model by considering the statistical feasibility of paths.

To this end, we refer to the physical phenomena occurring
at the reflection of propagating waves, in particular, the fact
that for any given frequency: a) a critical angle θ∗ exists
such that, as illustrated in Fig. 3a, if the incidence angle
θ > θ∗, the wave is absorbed rather than reflected, and
consequently the corresponding voxel-to-AP NLOS subpath
is not available [29]; and b) the curvature of the surface
exposed to the impinging wave may be such that no signal
is reflected towards an AP2 [50], as illustrated in Fig. 3b.
But since the complexity of modeling such phenomena at
each voxel is far too complex to carry out, especially if the
resolution of the voxelated ROI is large, we instead employ a
statistical approach whereby the angle between the impinging
and reflected waves at each voxel, hereafter referred to as the
scattering angle, and consequently, the availability of each
voxel-to-AP NLOS subpath, are considered.

2Although the phenomenon in Fig. 3b would reduce to the phenomenon in
Fig. 3a for infinitely small voxels, such extreme resolution leads to prohibitive
complexity of the algorithms, so that modeling both phenomena distinctly is
preferred in practice.

Fig. 3. Illustration of physical phenomena leading to the unavailability of
propagation paths.

Note that in order for the scattering phenomenon illustrated
in Fig. 3 to be relevant, the voxel size LV must be sufficiently
large with respect to the wavelength of the wireless signal,
which is not to be confused with the size of the voxels
(resolution) in comparison to the dimensions of the ROI.

In light of the above, the following stochastic-geometric
model is proposed to integrate the aforementioned phenomena
into the channel matrices of the voxelated environment model.
First, the positions of the UEs and the APs are discretized into
the 3D grid of the voxelated ROI, such that their positions may
be described by voxel coordinates3 Denoting the 3D coordi-
nates of an UE, an AP, and an environment voxel, respectively
by cU = [xU , yU , zU ]T ∈ R3, cA = [xA, yA, zA]T ∈ R3, and
cV = [xV , yV , zV ]T ∈ R3, the scattering angle θ of the NLOS
path reflected at the voxel is given by

θ = arccos
(

(cU − cV )T(cA − cV )
||cU − cV ||·||cA − cV ||

)
∈ [0, π], (3)

where arccos(·) denotes the inverse cosine function.

3It is also assumed that the multiple antennas of the APs are placed within
a single voxel, such that their AoA are assumed to be identical, albeit each
with a different channel path coefficient.
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Fig. 4. Empirical beta mixture modeling of scattering angle distributions.

The empirical4 probability distribution functions (PDFs)
of the scattering angles θ can be obtained by evaluating
equation (3) for all possible combinations of admissible loca-
tions of UE, AP and voxel within the ROI, respectively
given by cU , cA and cV , and examples of the latter for an
environment voxelated at various resolutions are shown in
Fig. 4.

It is visible in Fig. 4 that for a sufficiently large NV , the
distribution of scattering angles θ can be well modeled by a
mixture of two scaled beta distributions, namely, fx(x) = γ ·
β(a1, b1)+(1−γ)·β(a2, b2), with support x ∈ [0, π] and where
γ is a weighing factor and the quantities a1, a2, b1, b2 are shape
parameters optimised to match the empirical data obtained by
evaluating equation (3), with cU , cA and cV taken randomly
within the voxelated grid.

Utilizing this empirical stochastic-geometric approach, the
increasingly popular voxelated model utilized in various
related works [47], [48], [49], [51], [52], [53] can be improved
by the incorporation of random blockages of NLOS subpaths,
in proportion to the complement cumulative distribution of
the approximated beta mixture PDF, and in accordance to the
scattering angles at each voxel, as a function of a selected
critical angle.

D. Signal Model

Consider an uplink communication scenario between the
group of NU UEs and a total of NA APs, under the models
described above in Subsections II-A through II-C, with the
NA APs connected to a central processing unit (CPU) via

4In principle, the analytical distribution of scattering angles in eq. (3) can
be derived, either by studying the

(NV
3

)
constituent angles within the highly

subdivided geometry of the grid, or via a stochastic geometry-based grid
analysis [59]. To the best of the authors’ knowledge, however, solutions to
this problem exist only for vertex-to-vertex distance distributions [60], with
the case of vertex angles never addressed before. Since the focus of this article
is to develop ISAC estimators, we leave this matter for a future contribution
and meanwhile consider the proposed highly-accurate approximate model,
as illustrated in Fig. 4.

error-free fronthaul links of unlimited throughput, such that the
received signals at all NANR receive antennas are aggregated
without loss of information or delay.

Then, the aggregated received signal matrix Y, over NT

discrete transmission instances (symbol slots) is given by

Y = GX + W ∈ CNANR×NT , (4)

where G ∈ CNANR×NU is the effective channel matrix as
described in Subsection II-B; X ∈ CNU×NT is the transmit
signal matrix collecting the symbols from all NU UEs, each
drawn from the constellation X of cardinality NX ; and W ∈
CNANR×NT is the receive additive white Gaussian noise
(AWGN) matrix with independent and identically distributed
(i.i.d.) elements drawn from CN (0, N0), where N0 is the noise
variance.

The transmit signal X comprises of a pilot block XP ∈
CNU×NP and a data block XD ∈ CNU×ND , such that

X =
[
XP XD

]
∈ CNU×NT , (5)

where NP and ND denote the number of symbol slots
allocated to the pilot and data sequences, respectively, with
NT = NP + ND; and where the pilot symbol matrix XP is
assumed to be perfectly known at the CPU.

In view of equations (1), (4) and (5), the goal of the ISAC
schemes to be hereafter presented can be concisely stated.
The communication objective of the CPU is to estimate the
unknown data symbol matrix XD, under the knowledge of
only the pilot symbols in XP , after the estimation of the
channel matrix G. In turn, the sensing objective is to extract
the voxelated model of the environment as the vector of
occupancy coefficients v, from the said channel matrix G.

III. PROPOSED ISAC SOLUTION

By combining the channel decomposition model of
equation (1), the received signal model of equation (4), and
the transmit signal in model of equation (5), the overall system
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model becomes

Y =

≜G︷ ︸︸ ︷(
H + Adiag(v)B

) ≜X︷ ︸︸ ︷[
XP XD

]
+W ∈ CNANR×NT ,

(6)

where the unknown variables of interest are the environment
(voxel coefficients) vector v and the data symbol matrix XD.

Similar to related literature [47], [48], [49], [51], [52], [53],
it is assumed hereafter that the LOS channel H, and the
UE-to-voxel and voxel-to-AP subpath of components A and
B in equation (6) are known, which still leaves an atyp-
ical relationship between the two variables diag(v) and
XD. In particular, the latter unknowns are related, under
equation (6), by an asymmetric bilinear system, requiring
sophisticated algorithms to be either decoupled or jointly
estimated [61], [62], [63], [64], [65], [66].

In light of the above, we propose in the sequel two novel
ISAC solutions for the joint estimation problem of the asym-
metric bilinear system expressed by (6), by leveraging the
Gaussian belief propagation (GaBP) MP framework. The first
proposed method incorporates two separate linear estimation
modules for each of the unknown variables v and XD, esti-
mating them in an alternate fashion via feedback between the
two modules. In turn, the second method utilizes only a single
bilinear estimation module which enables the simultaneous
extraction of both unknown variables.

A. Proposed Alternating Linear ISAC Algorithm (AL-ISAC)

The first proposed method, dubbed the “Alternating Linear
ISAC (AL-ISAC)” algorithm, leverages two separate linear
GaBP MP modules based on equation (6), which are respec-
tively described as: 1) a linear GaBP module to estimate
the environment vector v, given the transmit signal X, and
conversely; and 2) a linear GaBP module to estimate the
transmit signal matrix X, given the environment vector v.
The two linear GaBP modules and the constituting MP rules
are derived, followed by the construction of the full ISAC
algorithm encompassing the two derived modules.

1) Linear GaBP for Environment Vector v: The linear
GaBP algorithm operates on only one unknown variable,
so that in order to estimate v, the entire transmit signal matrix
X must be assumed known, in addition to the known channel
matrices H,A, and B. Assuming knowledge of X, the system
in (6) may be reformulated as

Y = HX + Adiag(v)BX + W ∈ CNANR×NT , (7)

where, since the channel matrix A ∈ CNANR×NV and the
matrix products HX ∈ CNANR×NT and BX ∈ CNV ×NT and
are known, the described system in (7) is linear on v, to which
a corresponding factor graph may be obtained as in Fig. 5.

Each element ym,t of the receive signal of Y, with m ∈
{1, · · · , NANR} and t ∈ {1, · · · , NT }, corresponds to the
factor nodes (square nodes) and each element vk of the
unknown environment variable v, with k ∈ {1, · · · , NV },
correspond to the variable nodes (circular nodes). In turn, each
(m, t)-th factor node on the factor graph has a corresponding
soft-replica of each variable node element vk denoted by

Fig. 5. Factor graph of the linear system formulated for the estimation of v.

v̂k:m,t, with the corresponding mean-squared-error (MSE)
given by

ψv
k:m,t = Evk

[
|vk − v̂k:m,t|2

]
. (8)

Utilizing the soft-replicas and their MSEs, the factor nodes
perform soft-interference cancellation (IC) on the received
signal ym,t for each variable vk, yielding the IC symbol as

ȳv
k:m,t = ym,t−

NU∑
u=1

hm,uxu,t−
NV∑
i̸=k

(
am,iv̂i:m,t

NU∑
u=1

bi,uxu,t

)
= vk

(
am,kck,t

)
+

NV∑
i̸=k

am,i(vi − v̂i:m,t)ci,t + wm,t,

(9)

where xn,t and wm,t are the (n, t)-th and (m, t)-th elements of
X and W, with n ∈ {1, · · · , NU}; and ck,t ≜

∑NU

u=1 bk,uxu,t

represents the aggregated signal at the k-th voxel from all UEs.
Next, by leveraging the central limit theorem (CLT),

the sum of difference and noise terms are approximated
as a complex Gaussian scalar, such that the PDF of the
interference-cancelled symbols ȳv

k:m,t can be modeled as

Pȳv
k:m,t

(ȳv
k:m,t|vk) ∝ exp

[
−
|ȳv

k:m,t − vk

(
am,kck,t

)
|2

νv
k:m,t

]
,

(10)

with the corresponding conditional variance νv
k:m,t given by

νv
k:m,t = Evk

[
|ȳv

k:m,t − (am,kck,t)vk|2
]

=
∑NV

i̸=k |am,i|2|ci,t|2ψv
i:m,t +N0, (11)

where N0 ≜ Ewm,t
[|wm,t|2] is the noise variance.

The conditional variances for all vk are computed by all
factor nodes, and the message is sent to the corresponding
variable nodes. Consequently, the k-th variable node obtains
the NANRNT conditional variances from all factor nodes,
from which the extrinsic belief ℓvk is computed. In GaBP, self-
interference is suppressed by excluding the conditional PDF
of ȳk:m,t at the k-th variable node to yield the PDF of ℓvk:m,t

Plvk:m,t
(ℓvk:m,t|vk) =

NANR∏
p ̸=m

NT∏
q ̸=t

Pȳv
k:m,t

(ȳv
k:p,q|vk)

∝ exp

[
−
|vk − µv

k:m,t|2

Ψv
k:m,t

]
, (12)
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where the extrinsic mean µv
k:m,t and variance Ψv

k:m,t is respec-
tively given by

µv
k:m,t = Ψv

k:m,t ·

(
NANR∑
p ̸=m

NT∑
q ̸=t

(
ap,kck,t

)∗ · ȳv
k:p,q

νv
k:p,q

)
, (13)

Ψv
k:m,t =

(
NANR∑
p ̸=m

NT∑
q ̸=t

|ap,k|2|ck,t|2

νv
k:p,q

)−1

. (14)

Finally, by following the Bayes rule, the updated posterior
may be obtained by combining the PDF of the extrinsic belief
and the prior distribution of vk, from which the updated
soft-replica is obtained as

v̂k:m,t =
Evk

[
Plvk:m,t

(ℓvk:m,t|vk) · Pvk
(vk)

]∫
vk
Plvk:m,t

(ℓvk:m,t|vk) · Pvk
(vk)

, (15)

where the normalizing factor in the denominator is the inte-
grated updated posterior over C.

Similarly, the updated error variance of the soft-replica is
obtained by evaluating

ψv
k:m,t =

Varvk

[
Plvk:m,t

(ℓvk:m,t|vk) · Pvk
(vk)

]∫
vk
Plvk:m,t

(ℓvk:m,t|vk) · Pvk
(vk)

. (16)

Given the information of the voxel coefficient distribu-
tions, i.e., binary coefficients with a discrete prior given by
a Bernoulli distribution with occupancy probability Ev ≜
Pvk

(vk = 1), the soft-replica and its MSE can be efficiently
obtained in closed-form, respectively given by

v̂k:m,t =

(
1+

1− Ev

Ev
exp
(
−
|µv

k:m,t|2 − |1− µv
k:m,t|2

Ψv
k:m,t

))−1

,

(17)

ψv
k:m,t = (v̂k:m,t)2 + Ev − 2Ev v̂k:m,t.

(18)

The updated soft-replica and the MSE of each variable node
are then transmitted back to all factor nodes for the next
iteration of the GaBP MP algorithm. After a given number of
GaBP iterations to refine the soft-estimates, a belief consensus
is taken at each variable node across the soft-replicas to obtain
a single estimate ṽ by

P̃lvk
(ℓ̃vk|vk)

=
NANR∏

p=1

NT∏
q=1

Pȳv
k:m,t

(ȳv
k:p,q|vk) ∝ exp

[
−|vk − µ̃v

k|2

Ψ̃v
k

]
, (19)

with consensus mean µ̃v
k and variance Ψ̃v

k expressed as

µ̃v
k = Ψ̃v

k ·

(
NANR∑

p=1

NT∑
q=1

(
ap,kck,t

)∗ · ȳv
k:p,q

νv
k:p,q

)
(20)

Ψ̃v
k =

(
NANR∑

p=1

NT∑
q=1

|ap,k|2|ck,t|2

νv
k:p,q

)−1

, (21)

which is consequently used to yield the final estimate by

ṽk =
Evk

[
P̃lvk

(ℓ̃vk|vk) · Pvk
(vk)

]
∫

vk
P̃lvk

(ℓ̃vk|vk) · Pvk
(vk)

. (22)

Algorithm 1 : Linear GaBP Estimator for Environment (Voxel
Coefficients) Vector v

Inputs: Received signal matrix Y, channel matrices H, A,
and B, transmit signal matrix X, noise variance N0, prior
distribution of voxels Pvk

(vk), and C = BX.
Outputs: Estimated voxel environment vector ṽ.

1: Initialize soft-replicas at all variable nodes as v̂k:m,t =
Evk

[vk];
2: Initialize the MSEs at all variable nodes ψv

k:m,t via (8);
Until termination criteria is satisfied∗, ∀k,m, t, do

3: Compute the soft-IC performed received signal ȳv
k:m,t

via (9);
4: Compute the conditional variance νv

k:m,t via (11);
5: Compute the extrinsic mean µv

k:m,t via (13);
6: Compute the extrinsic variance Ψv

k:m,t via (14);
7: Compute the new soft-replica v̂k:m,t via (15);
8: Compute the MSE ψv

k:m,t of the soft-replicas via (16);
9: Update the soft-replica and MSE via damping [67];

end
10: Compute the consensus mean µ̃v

k and variance Ψ̃v
k

via (20)-(21);
11: Compute the final soft-estimate ṽk via (22);
∗The termination criteria can be set as the maximum number of MP iterations
or the convergence threshold of the soft-replicas, depending on the desired
accuracy or complexity. A discussion of appropriate values are provided in
Section IV-C.

The above MP equations (8) to (22) fully describe the linear
GaBP module to estimate the voxel environment v, which is
summarized as a pseudocode in Algorithm 1 below.

It is important to note that the signal matrix X is assumed
given – i.e., X is not estimated by Algorithm 1 – and therefore
is kept constant throughout the iterations, as seen by the
pre-computation of the effective signals ck,t. The complemen-
tary block dedicated to the estimation of X given v will be
described subsequently, leading to an alternate approach as
previously mentioned. The algorithm also contains a damping
update mechanism [67] using a damping factor η ∈ [0, 1] to
prevent early convergence to a local optimum.

2) Linear GaBP for Signal Matrix X: In order to derive
the linear GaBP module to estimate the signal matrix X
given v, the system model in (6) is first reduced to the one
in (4), with the effective channel G ≜

(
H + Adiag(v)B

)
,

with the corresponding factor graph as illustrated in Fig. 6,
where each element xn,t of the unknown signal matrix X
with n ∈ {1, · · · , NU}, is the variable node (circular nodes).

Notice that in this case, since the variable X is two-
dimensional, the linear system results in a factor graph that
is separated into “pages”, such that the variable nodes and
factor nodes corresponding to different t ∈ {1, ·, NT } are
independent and that the messages are only exchanged by
nodes with the same time index t. Other than this separation
of factor graphs, the derivation of the MP rules is similar to
that of Algorithm 1.

The soft-replica of the transmit signal matrix element xn,t

to the (m, t)-th factor node is denoted by x̂m,t:n,t, with the
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Fig. 6. The separated factor graphs of the linear system for X..

corresponding MSE given by

ψx
m,t:n,t = Exn,t

[|xn,t − x̂m,t:n,t|2]. (23)

The soft-replica and the MSE are used in the soft-IC of the
received signals for xn,t, following

ȳx
n,t:m,t = ym,t −

NU∑
u̸=n

gm,ux̂u,t:m,t

= gm,nxn,t +
NU∑
u ̸=n

gm,u(xu,t − x̂u,t:m,t) + wm,t.

(24)

The conditional PDF of ȳx
n,t:m,t is described as

Pȳx
n,t:m,t

(ȳx
n,t:m,t|xn,t)∝exp

[
−
|ȳx

n,t:m,t−gm,nxn,t|2

νx
n,t:m,t

]
,

(25)

whose conditional variance νx
n,t:m,t is given by

νx
n,t:m,t = Exn,t [|ȳx

n,t:m,t − gm,nxn,t|2]

=
NU∑
u ̸=n

|gm,u|2ψx
u,t:m,t +N0. (26)

The conditional PDFs are combined with self-interference
cancellation at the variable nodes to yield the extrinsic beliefs
ℓxn,t:m,t following

Plxn,t:m,t
(ℓxn,t:m,t|xn,t) =

NANR∏
p ̸=m

Pȳx
n,t:p,t

(ȳx
n,t:p,t|xn,t)

∝ exp
[
−
|xn,t − µx

n,t:m,t|2

Ψx
n,t:m,t

]
, (27)

with the extrinsic mean µx
n,t:m,t and variance Ψx

n,t:m,t respec-
tively given by

µx
n,t:m,t = Ψx

n,t:m,t ·

(
NANR∑
p ̸=m

(gp,n)∗ · ȳx
n,t:p,t

νx
n,t:p,t

)
, (28)

Ψx
n,t:m,t =

(
NANR∑
p ̸=m

|gp,n|2

νx
n,t:p,t

)−1

. (29)

In turn, since the symbols have a uniformly discrete prior
from the symbol constellation X , with the symbol probability
Px(x) = 1/|X |, their soft-replicas and MSEs are obtained by

x̂n,t:m,t =

∑
x∈X x · Plxn,t:m,t

(ℓxn,t:m,t|x) · Px(x)∑
x∈X Plxn,t:m,t

(ℓxn,t:m,t|x) · Px(x)
, (30)

ψx
n,t:m,t =

∑
x∈X x

2 ·Plxn,t:m,t
(ℓxn,t:m,t|x)·Px(x)∑

x∈X Plxn,t:m,t
(ℓxn,t:m,t|x)·Px(x)

−(x̂n,t:m,t)2.

(31)

For the particular case of M -ary quadrature amplitude
modulation (M -QAM) with M = 4, the soft-replica and MSE
computations reduce to closed-form expressions given by

x̂n,t:m,t =

√
EX
2
·

(
tanh

[√
2
EX
·
ℜ{µx

n,t:m,t}
Ψx

n,t:m,t

]

+ jtanh
[√

2
EX
·
ℑ{µx

n,t:m,t}
Ψx

n,t:m,t

])
, (32)

ψx
n,t:m,t = EX − |x̂n,t:m,t|2, (33)

where EX ≜ Ex[|x|2] denotes the average symbol power of
the constellation X , and tanh(·) denotes the trigonometric
hyperbolic tangent function.

Finally, the consensus PDF, which is taken after the itera-
tions is given by

P̃lxn,t
(ℓ̃xn,t|xn,t) =

NANR∏
p=1

Pȳx
n,t:m,t

(ȳx
n,t:p,t|xn,t)

∝ exp
[
−
|xn,t − µ̃x

n,t|2

Ψ̃x
n,t

]
, (34)

with the consensus mean µ̃x
n,t and variance Ψ̃x

n,t expressed
as

µ̃x
n,t = Ψx

n,t ·

(
NANR∑

p=1

(gp,n)∗ · ȳx
n,t:p,t

νx
n,t:p,t

)
, (35)

Ψ̃x
n,t =

(
NANR∑

p=1

|gp,n|2

νx
n,t:p,t

)−1

, (36)

yielding the final soft estimate

x̃n,t =

∑
x∈X x · P̃lxn,t

(ℓ̃xn,t|xn,t) · Pxn,t
(xn,t)∑

x∈X P̃lxn,t
(ℓ̃xn,t|xn,t) · Pxn,t(xn,t)

. (37)

Equations (23) to (37), collected in the form of a pseu-
docode in Algorithm 2, fully describe the linear GaBP module
for the estimation of the signal matrix X given the environment
vector v, which together with the previously described module
for the estimation of v given X, completes the proposed
AL-ISAC scheme. All that remains is to describe the alter-
nating procedure to estimate both unknown variables, which
is addressed in the sequel.

3) Combined Alternating Modular Structure: With the two
estimation modules given by Algorithm 1 and Algorithm 2,
either of the two variables v or X may be estimated, assuming
full information of the other variable. However, the very
inherent problem of ISAC in equation (6), is that neither of
the variables are fully known such that the linear modules may
not be directly applied for estimation.

To address the problem, the proposed AL-ISAC algorithm
successively applies the two linear GaBP modules to estimate
the two sets of variables. To enable this, the received signal
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Algorithm 2 : Linear GaBP Estimator for Signal Matrix X

Inputs: Received signal matrix Y, channel matrices H, A,
and B, environment vector v, noise variance N0, and prior
distribution of transmit symbols Pxn,t(xn,t).

Outputs: Estimated transmit signal matrix X̃.

1: Compute the effective channel matrix G ≜ H +
Adiag(v)B;

2: Initialize the soft-replica at all variable nodes as
x̂n,t:m,t = Exn,t

[xn,t];
3: Initialize the MSE at all variable nodes as ψx

n,t:m,t
via (23);
Until termination criteria is satisfied∗, ∀k,m, t, do

4: Compute the soft-IC received signal ȳx
n,t:m,t via (24);

5: Compute the conditional variance νx
n,t:m,t via (26);

6: Compute the extrinsic mean µx
n,t:m,t via (28);

7: Compute the extrinsic variance Ψx
n,t:m,t via (29);

8: Compute the new soft-replica x̂n,t:m,t via (30);
9: Compute the MSE ψx

n,t:m,t via (31);
10: Update the soft-replica and MSE via damping [67];

end
11: Compute the consensus mean µ̃x

n,t via (35);
12: Compute the consensus variance Ψ̃x

n,t via (36);
13: Compute the final soft-estimate x̃n,t via (37);
14: Project x̃n,t to the symbol constellation X ;
15: Output projected x̃n,t as final hard estimate;
∗ The termination criteria can be set in accordance to Section IV-C and as
described in Algorithm 1.

is separated into the blocks corresponding to the pilot phase
and the data phase, as

YP =
(
H + Adiag(v)B

)
XP + WP ∈CNANR×NP , (38a)

YD =
(
H + Adiag(v)B

)
XD +WD∈CNANR×ND , (38b)

where Y ≜ [YP YD] and W ≜ [WP WD], as defined with
X = [XP XD].

First, by using only the pilot phase of the system (38a),
Algorithm 1 is applied to estimate the initial environment
vector ṽinit with the pilot block XP as known input signal
matrix. Next, by using the data phase of the system (38b),
Algorithm 2 is applied to estimate the unknown data block X̃D

using the initial environment estimate ṽinit as the known input
environment vector. Finally, the environment vector is obtained
by using Algorithm 2 again, but with the initial environment
estimate ṽinit as the initialization value of the soft-replicas at
all factor nodes, and [XP X̃D] as the input transmit signal
matrix. The described AL-ISAC algorithm is illustrated in a
schematic form in Fig. 7, and summarized as pseudocode in
Algorithm 3.

Despite having a potential complexity advantage, especially
for scenarios with large numbers of UEs, as shown later in
Subsection IV-A, the alternating approach of the AL-ISAC
algorithm has the drawback of causing a heavy dependence
on the length of the pilot sequence XP , which as shall be
shown in Section IV, affects the performance of both envi-
ronment and data signal estimation, in addition to the obvious
trade-off with the total communication throughput.

Algorithm 3 : Proposed Alternating Linear ISAC (AL-ISAC)†

Inputs: Received signal matrix Y, channel matrices H,
A, and B, pilot matrix XP , noise variance N0, prior
distribution of environment and transmit symbols Pvk

(vk)
and Pxn,t(xn,t).

Outputs: Estimated environment vector ṽ and estimated data
signal matrix X̃D.

Using only the block corresponding to the pilot sequence,
i.e., t = {1, · · · , NP }:

1: Estimate initial environment ṽinit via Algorithm 1, using
pilot XP as known signal input.

Using only the block corresponding to the data sequence,
i.e., t = {NP + 1, · · · , NP +ND}:

2: Estimate data signal X̃D via Algorithm 2, using ṽinit as
known environment input.

Using the entire time block, i.e., t = {1, · · · , NP +ND}:
3: Estimate ṽ via Algorithm 1, using [XP , X̃D] as the signal

input, and ṽinit as initialization.
4: Output ṽ as the estimated environment vector, and X̃D

as estimated data signal matrix.
†Although simulations indicate that a single iteration (as shown in Fig. 7) is
sufficient, the linear GaBP modules in steps 2 and 3 can be iterated multiple
times, with feedback at modular level and possibly adaptive MP denoising
between feedback loops. These, and other potential improvements remain open
points for a follow up work.

Aiming to circumvent this deficiency, in the next subsection
we propose another ISAC method in which both v and XD

are estimated simultaneously via a bilinear inference method.

B. Proposed Bilinear ISAC Algorithm (Bi-ISAC)

In this section, we develop a new ISAC algorithm in which
the sensing and communication variables v and XD are
estimated in parallel, by using a bilinear message passing
technique which incorporates the uncertainty of both estimates
at each iteration, thus requiring only a single estimation
module to acquire both variables, as illustrated in Fig. 8.

We start by observing that the unique asymmetric bilinear
relationship of v and XD, as per equation (7), prevents
the application of recently discovered bilinear estimators,
such as the bilinear generalized approximate message passing
(BiGAMP) [61], which operates only on symmetric systems
described by equations in the form Y = VX + W for
the joint estimation of the unknowns V and X; or the
parametric BiGAMP [64], [65], which works on systems with
the structure Y =

∑
kvkAkX+W to jointly estimate vk and

X with known Ak.
In contrast to these two examples, the problem dealt with

here is, as described by equation (6), in neither of the
aforementioned forms, nor can it be transformed to fit general
bilinear forms, which implies that new, purpose-built bilinear
Gaussian belief propagation (BiGaBP) [62], [63], [66] MP
rules must be derived for its solution. Therefore, the BiGaBP
message passing is performed on a tripartite factor graph as
illustrated in Fig. 9, where the factor nodes (square nodes)
are the received symbols, and the two sets of variable nodes
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Fig. 7. A schematic diagram of the proposed AL-ISAC algorithm (Algorithm 3).

Fig. 8. A schematic diagram of the proposed Bi-ISAC algorithm
(Algorithm 4).

Fig. 9. The tripartite factor graph of the bilinear system.

(circular nodes) corresponds to the environment vector v and
the signal matrix X, respectively. An important distinction
is made between the two types of variable nodes, which is
that a data variable node receives messages only from NANR

factor nodes corresponding to the same time instance t, while
an environment variable node receives messages from all
NANRNT factor nodes.

We highlight the higher complexity of the factor graph in
Fig. 9 compared to those of linear GaBP schemes shown in
Figs. 5 and 6, due to the asymmetric and embedded system
structure of equation (6) in relation to both variables together,
as opposed to those of linear systems where one variable is
considered at a time. Other than that, the messages transferred
over the graph edges are the same information as in the
linear GaBP in Section III-A, i.e., the soft-replicas, MSEs,
and conditional PDFs of the variables of interest. However,
since neither of the latter is known, except as soft-replicas, the
corresponding calculation of the messages must incorporate
the uncertainties in both variables, in the form of the MSEs.

In light of the above, similarly to Section III-A, the
exchanged messages are constructed on the basis of
soft-replicas of the variables. Since the entries in X corre-
sponding to t ∈ {1, · · · , NP } are pilot symbols XP , the
corresponding soft-replicas are set to their known values, i.e.,
x̂n,t:m,t = (xp)n,t ∀t ∈ {1, · · · , NP }, with the corresponding
MSE values set to 0. The remaining soft-replicas and MSEs for
t ∈ {NP +1, · · · , NT } are as given in equations (8) and (23).

The complete description of the proposed bilinear ISAC (Bi-
ISAC) algorithm is summarized in the form of a pseudocode in
Algorithm 4, and the corresponding equations of the message
passing rules are elaborated in the following.

In hand of the soft-replicas and their MSEs, the factor nodes
perform soft-IC for each variable vk and xn,t by following

ȳk:m,t = ym,t −
NU∑
u

(
hm,u +

NV∑
i ̸=k

am,iv̂i:m,tbi,u

)
x̂u,t:m,t

= vk

(
am,k

NU∑
u

bk,uxu,t

)
+

NU∑
u

hm,u(xu,t−x̂u,t:m,t)

+
NU∑
u

NV∑
i ̸=k

am,ibi,u
(
vixu,t−v̂i:m,tx̂u,t:m,t

)
+wm,t,

(39a)

ȳn,t:m,t = ym,t −
NU∑
u̸=n

(
hm,u +

NV∑
i

am,iv̂i:m,tbi,u

)
x̂u,t:m,t

=xn,t

(
hm,n+

NV∑
i

am,ivibi,n

)
+

NU∑
u̸=n

hm,u(xu,t−x̂u,t:m,t)

+
NU∑
u̸=n

NV∑
i

am,ibi,u
(
vixu,t−v̂i:m,tx̂u,t:m,t

)
+wm,t,

(39b)

where the soft-IC for the data symbol variables given in (39)
is only performed for unknown variable nodes with indices
t ∈ {NP + 1, · · · , NT }.

Following the soft-IC, the respective conditional PDFs are

Pȳv
k:m,t

(ȳv
k:m,t|vk)

∝ exp

[
−
∣∣ȳv

k:m,t −
(
am,k

∑NU

u=1 bk,u ·x̂u,t:m,t

)
vk

∣∣2
νv

k:m,t

]
,

(40a)
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Pȳx
n,t:m,t

(ȳx
n,t:m,t|xn,t)

∝exp

[
−
∣∣ȳx

n,t:m,t−
(
hm,n+

∑NV

i=1 am,i ·v̂i:m,t ·bi,n
)
xn,t

∣∣2
νx

n,t:m,t

]
,

(40b)

with the respective conditional variances νv
k:m,t and νx

n,t:m,t

given by eq. (41), shown at the bottom of the next page, where
the expectation Ev ≜ E{vk}[|vk|2] has been introduced for
convenience of notation.

In turn, all variable nodes compute the interference-
cancelled extrinsic belief PDFs given by

Plvk:m,t
(ℓvk:m,t|vk)

=
NANR∏
p ̸=m

NT∏
q ̸=t

P(ȳv
k:p,q|vk) ∝ exp

[
−
|vk − µv

k:m,t|2

Ψv
k:m,t

]
,

(42a)

Plxn,t:m,t
(ℓxn,t:m,t|xn,t)

=
NANR∏
p ̸=m

P(ȳx
n,t:p,t|xn,t) ∝ exp

[
−
|xn − µx

n,t:m,t|2

Ψx
n,t:m,t

]
.

(42b)

The corresponding extrinsic means are given by

µv
k:m,t

=Ψv
k:m,t ·

(NANR∑
p ̸=m

NT∑
q ̸=t

(ap,k

∑NU

u=1 bk,u ·x̂u,q:p,q)∗ · ȳv
k:p,q

νv
k:p,q

)
,

(43a)

µx
n,t:m,t

=Ψx
n,t:m,t ·

(NANR∑
p ̸=m

(hp,n +
∑NV

i=1 ap,i ·v̂i:p,t ·bi,n)∗ · ȳx
n,t:p,t

νx
n,t:p,t

)
,

(43b)

where the extrinsic variances are given by

Ψv
k:m,t =

(NANR∑
p ̸=m

NT∑
q ̸=t

|ap,k

∑NU

u=1 bk,u ·x̂u,q:p,q|2

νv
k:p,q

)−1

, (44a)

Ψx
n,t:m,t =

(NANR∑
p ̸=m

|hp,n +
∑NV

i=1 ap,i ·v̂i:p,t ·bi,n|2

νx
n,t:p,t

)−1

. (44b)

Using equations (43) through (44), the updated soft-replicas
and the MSEs can be obtained following the same operations
as in the linear GaBP, namely, equations (15) and (16) for vk,
and equations (30) and (31) for xn,t, with the post-convergence
consensus as in equations (20)-(22) for v̂k:m,t, and
equations (35)-(37) for x̂n,t:m,t, respectively.

IV. PERFORMANCE EVALUATION

A. Complexity Analysis

In Table I, the complexity orders of the two proposed
algorithms and their constituent modules are given, in terms

Algorithm 4 : Bilinear GaBP Estimator for Environment
Vector v and Data Matrix XD

Inputs: Received signal matrix Y, channel matrices H,
A, and B, pilot matrix XP , noise variance N0, prior
distribution of environment and transmit symbols Pvk

(vk)
and Pxn,t

(xn,t).
Outputs: Estimated environment vector ṽ and estimated data

signal matrix X̃D.

For data variable nodes corresponding to the pilot block,
i.e., for t ∈ {1, · · · , NP },

1: Initialize the soft-replicas as pilots by x̂n,t:m,t = (xp)n,t;
2: Initialize the MSEs ψx

n,t:m,t to 0;
For data variable nodes corresponding to the data block,

i.e., for t ∈ {NP + 1, · · · , NT },
3: Initialize the soft-replicas as x̂n,t:m,t = Exn,t

[xn,t];
4: Initialize the MSEs ψx

n,t:m,t via (23);
For all environment variable nodes, i.e., for t ∈ {1, · · · , NT },
5: Initialize the environment soft-replicas as v̂k:m,t =

Evk
[vk];

6: Initialize the MSEs ψv
k:m,t via (8);

Until termination criteria is satisfied∗ do
7: Compute the soft-IC signals ȳv

k:m,t and ȳx
n,t:m,t via (39);

8: Compute the conditional variances νv
k:m,t and νx

n,t:m,t
via (41);

9: Compute the extrinsic means µv
k:m,t, µ

x
n,t:m,t via (43);

10: Compute the extrinsic variances Ψv
k:m,t, Ψ

x
n,t:m,t via (44);

11: Compute the new occupancy soft-replicas v̂k:m,t via (15);
12: Compute the new symbol soft-replicas x̂n,t:m,t (30);
13: Compute the new MSEs ψv

k:m,t and ψx
n,t:m,t via (16)

and (31);
14: Update all soft-replicas and MSEs via damping [67];

end
15: Compute the consensus PDFs of the occupancy variables

with mean µ̃v
k and variance Ψ̃v

k via (20) and (21);
16: Compute the consensus PDFs of the symbol variables

with mean µ̃x
n,t and variance Ψ̃x

n,t via (35) and (36);
17: Compute the final estimates ṽk and x̃n,t via (22) and (37);
18: Output ṽk as final estimate;
19: Project x̃n,t to the symbol constellation X ;
20: Output projected x̃n,t as final estimate;
∗ The termination criteria can be set in accordance to Section IV-C and as
described in Algorithm 1.

of the system size parameters NU , NV , NA, NR, NP , NT , with
ρ ≜ NP /NT denoting the pilot length ratio, and λ denoting
the number of algorithm iterations which is assumed to be
equal between the two proposed algorithms, for comparison.

The comparison of the full order of complexity shows that
the Bi-ISAC has a second order complexity dependent on all
system size parameters and a linear complexity on the number
of iterations. Interestingly, it is found that the AL-ISAC
requires the same order of complexity as the Bi-ISAC, except
for the scaling factor (1− ρ)2 + ρ2+1

NU
, dependent on NU and

ρ. The latter is therefore a measure of the relative complexity
of the two proposed algorithms, which is plotted in Fig. 10,
for various values of NU as a function of ρ.

Considering first the case of NU = 1, it is seen that the
relative complexity is larger than 1 for all values of pilot
length ratio ρ ∈ [0, 1], indicating that in a single-UE case, the
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TABLE I
COMPLEXITY ORDERS THE PROPOSED AND THE SOTA ALGORITHMS

AL-ISAC algorithm requires a higher complexity over the
Bi-ISAC algorithm, regardless of amount of pilot symbols.
It is also seen, however, that in the multi-UE scenario (NU ≥
2), both algorithms have the same complexity order if pilot
length ratio ρeq = NU−|

√
NU

2−NU−1|
NU+1 ; and further, that when

ρ > ρeq , the relative complexity decreases below 1, indicating
that the AL-ISAC achieves a lower complexity than the
Bi-ISAC with increasing NU and sufficient ρ.

Fig. 10 also indicates that the relative complexity follows a
truncated quadratic behavior with the minimum value occuring
at the specific pilot ratio ρmin = NU

NU+1 , which converges to
1 for N → ∞. The result implies that a sufficiently high
pilot length ratio is required for the AL-ISAC algorithm to
achieve the optimal complexity, especially with increasing NU .
In conclusion, the Bi-ISAC algorithm enjoys a complexity
that is robust to the number of UEs and the length of
pilots (throughput), whereas the AL-ISAC algorithm has a
complexity that decreases with the number of UEs, but at the
cost of throughput.

5Unlike the proposed methods, the reference SotA scheme of [47] is tied
to a sparse code multiple access (SCMA) design [68], as can be inferred from
system parameters such as R, df , M , such that a direct comparison in terms
of complexity is not possible. We emphasize, however, that the proposed AL-
ISAC and Bi-ISAC are shown to outperform the SotA in both the environment
estimation MSE and bit-error-rate (BER) under the same SNR, as discussed
in Section and shown Fig. 11.

Fig. 10. The relative order of complexity (given by complexity of AL-ISAC
complexity of Bi-ISAC ) of

the two proposed algorithms for varying values of ρ and NU .

B. Performance Comparison Against the State-of-the-Art

In this section, we compare the performance of the two
proposed algorithms against the SotA method6 from [47],
which also utilizes a voxelated grid to perform ISAC via
leveraging multiple linear MP algorithms.

6To the best of our knowledge, the method in [47] is the only SotA ISAC
method based on a similar voxelated model.

νv
k:m,t = E{vk,xn,t}

[
|ȳv

k:m,t −
(
am,k

NU∑
u

bk,u ·x̂u,t:m,t

)
vk|2

]
= Ev ·|am,k|2

NU∑
u

|bk,u|2ψx
u,t:m,t +

NU∑
u

|hm,u|2ψx
u,t:m,t

+
NU∑
u

NV∑
i̸=k

|am,i|2
(
ψv

i:m,t|x̂u,t:m,t|2 + ψx
u,t:m,t(|v̂i:m,t|2 + ψv

i:m,t)
)
|bi,u|2 +N0, (41a)

νx
n,t:m,t = E{vk,xn,t}

[
|ȳx

n,t:m,t −
(
hm,n +

NV∑
i

am,i ·v̂i:m,t ·bi,n
)
xn,t|2

]
= EX ·

NV∑
i

(|am,i|2ψv
i:m,t|bi,n|2) +

NU∑
u ̸=n

(|hm,u|2ψx
u,t:m,t)

+
NU∑
u̸=n

NV∑
i

|am,i|2
(
ψv

i:m,t|x̂u,t:m,t|2 + ψx
u,t:m,t(|v̂i:m,t|2 + ψv

i:m,t)
)
|bi,u|2 +N0. (41b)
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We highlight, however, that the latter reference utilizes
the support of a fully known intelligent reflective surface
(IRS) in the ROI, and strongly relies on sparsity in the
received signal, offered by means of an SCMA interface
between the UEs and the AP, while our contributions are not
limited to such a conditions. Instead, the proposed methods
operate over fully dense received signals and with no support
of IRSs.

Due to this distinction in system set-up, an adequate system
parametrization must be considered for a fair comparison of
our proposed algorithms against the SotA method of [47].
Specifically, in the SCMA scheme of [47], each single-antenna
UE transmits an M -bit code by utilizing df out of R orthogo-
nal frequency bands, which is received by a single AP with NR

receive antennas. Since the considered system for our proposed
algorithms is a single-frequency model (4), the diversity gain
between each UE and the CPU is mimicked by setting the
number of APs as NA = df , such that NANR = df · NR,
such that the number of nodes and edges of the final factor
graph is the same in both systems.

Fig. 11 illustrates the sensing and communication perfor-
mances of the two proposed ISAC algorithms in comparison
to the SotA ISAC algorithm of [47], in terms of the MSE and
SERs, respectively. First, in Fig. 11a, the sensing performance,
i.e., the MSE of the voxel occupancy coefficients, is evaluated.
Under equivalent system parameters, in particular with a pilot
ratio7 of ρ = 0.5, the MSE of the proposed Bi-ISAC algorithm
is found to significantly outperform that of the SotA method
at all signal-to-noise ratio (SNR) values, while the AL-ISAC
is found to be slightly outperformed by the latter at the high
SNRs regime.

Then, in Fig. 11b, the communication performances of the
ISAC systems are evaluated in terms of the SER of the esti-
mated symbols. It can be seen that both proposed algorithms
exhibit superior symbol estimation performances compared
to the SotA, with the Bi-ISAC exhibiting the additionally
desirable feature that no error floors are observed even at
higher SNRs.

All in all, the results corroborate the claim that both pro-
posed methods generally outperform the SotA method of [47]
in both sensing and communication functionalities.

C. Convergence Behavior of the Proposed Algorithms
In view of the superior performance of the two proposed

ISAC algorithms in comparison with the SotA [47], we pro-
ceed in this section to further analyze the two proposed ISAC
algorithms in detail, aiming also to clarify advantages of
each relative to the other. To that extent, we first study the
convergence behavior of the proposed ISAC algorithms so as
to obtain insight on the appropriate MP termination criteria
and damping parameters to be utilized.

Figure 12 depicts the convergence behavior of the proposed
ISAC algorithms in terms of the MSE of the voxel coefficient
soft-replicas v̂k:m,t and the SER of the data symbol soft-
replicas x̂n,t:m,t, for three selected combinations of their
respective damping parameters ηx ∈ [0, 1] and ηv ∈ [0, 1],

7The value ρ = 0.5 is taken from [47] in order to enable direct comparison.

Fig. 11. MSE and symbol-error-rate (SER) performances of the SotA [47]
against the proposed algorithms, with NU = 6, NR = 9, NA = df = 2,
NV = 8× 8× 8, Ev = 1.5%, M = 4, NT = 100, and ρ = 0.5.

following the damped update rule given by [67]

x̂
(τ)
n,t:m,t

update←− ηx ·x̂(τ−1)
n,t:m,t + (1− ηx)·x̂(τ)

n,t:m,t, (45a)

v̂
(τ)
k:m,t

update←− ηv ·v̂(τ−1)
k:m,t + (1− ηv)·v̂(τ)

k:m,t, (45b)

where the superscript [ · ](τ) denotes the soft-replica at the τ -th
iteration of the MP loop.

It can be observed in Fig. 12a that while different values
of ηv all result in convergence of MSE, the convergent value
is sensitive to the parameterization of ηv , especially for the
Bi-ISAC which suffers from high MSE with low damping,
as opposed to the AL-ISAC which is less prone to such errors
in both the initial (white circles) and the final (black circles)
estimation. Similar and consequent results in the SER are
observed in Fig. 12b, where convergence is also achieved in
all cases, but the convergent value is largely affected by the
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Fig. 12. Convergence behavior of the proposed AL-ISAC and Bi-ISAC
algorithms with varying damping factors ηx and ηv with ρ=0.1, Ev =1.5%,
SNR = 15dB, in a system with NU = 4, NANR = 12, NV = 512, and
NT = 100.

MSE performance and ηv , while the effect of ηx is not as
prominent to the final result compared to ηv .

In light of the above results, the parameterization ηx =
0.5 and ηv = 0.9 and the convergence criteria of λ = 100
iterations is selected in the following simulations to ensure a
reliable convergence behavior8.

D. Robustness Analysis of the Proposed Algorithms

To that end, we shall utilize performance metrics for the
sensing and communication functions of ISAC systems other
than the MSE of the estimated voxel coefficients and the SER
of the estimated communication symbols, which were used
in [47], [48], and [49] and the previous section.

For the sensing function in particular, we remark that met-
rics used for radar-based ISAC cannot be used directly due to

8In principle, the optimal damping parameters resulting in the best MSE
and SER performances can be heuristically searched for each simulation set
up, but this is not considered here due to the prohibitive complexity.

the unique voxelated occupancy grid-based approach followed
here. It is therefore sensible to instead introduce a new metric,
referred to as the voxel-occupancy-error-rate (VOER), which
measures the rate of false-positive (FP) and false-negative (FN)
elements, defined as the incorrect estimation of an occupied
voxel element in presence of an empty ground-truth, and the
incorrect estimation of an empty voxel element in the presence
of an occupied ground-truth, respectively. Mathematically, the
VOER is therefore defined as E

[
||v − ṽ||0

]
/NV , where v is

the ground truth, ṽ is the estimate vector, while ∥ · ∥0 denotes
the ℓ0-norm of a vector.

Notice that for the trivial all-empty (or “blind”) estimator,
which returns ṽ = 0NV ×1, the VOER reduces to Ev ≜
E[||v||0]/NV = VOERempty , which is the average sparsity
of the environment. We can therefore utilize this figure as an
absolute reference of performance, in the sense VOER ≪
VOERempty indicates a good sensing performance.

Finally, instead of the SER often used in related literature,
we opt to evaluate the communication performance of the
proposed ISAC schemes in terms of the more descriptive BER,
defined as BER ≜ E[Be]/B, where Be denotes the number
of errorneously detected data bits of XD, and B is the total
number of bits conveyed in XD.

First, we evaluate the robustness of the two proposed
algorithms in terms of their VOER performances, as a function
of different system parameters including the pilot ratio ρ, SNR,
and environment sparsity Ev (voxel occupancy probability).

In Fig. 13a, the effect of varying the pilot ratio ρ is
illustrated for various SNRs. The results show that, for a
specific value of ρ, the Bi-ISAC outperforms the AL-ISAC for
the entire SNR range; or alternatively, that for a given SNR,
the Bi-ISAC scheme requires a much lower number of pilots to
achieve the same VOER performance of the AL-ISAC method.
Next, Fig. 13b depicts the effect of environment sparsity
Ev on the VOER performance of the proposed algorithms,
where it is observed that the AL-ISAC can actually achieve a
superior performance over the Bi-ISAC in extremely sparse
environments as can be seen in the single voxel case of
Ev = 1/512 ≈ 0.2%. On the other hand, the Bi-ISAC is
more robust in the sense that it exhibits smaller gradient, which
suggests that the Bi-ISAC is less affected by changes in Ev .
The Bi-ISAC also tends to outperform the AL-ISAC as Ev

increases (i.e., for Ev > 1%).
Next, we proceed to evaluate the BER performance of the

proposed algorithms, which are compared in Fig. 14a as a
function of the SNR and for different environment sparsities,
namely Ev = 0.2%, 1.5%, 5%, which respectively correspond
to 1, 8, and 26 occupied voxels (out of 512) in the ambient9.

Since the VOER performance as seen in Fig. 13 degrades
with larger Ev , BER performance can be expected to follow
the same behavior. However, extremely sparse environment
exhibists in a BER performance degradation.

While counter-intuitive at a first sight, these results
are actually intuitive if analyzed from an information/

9The selected range of the environment sparsities in the numerical simula-
tions of Fig. 13 and Fig. 14 are aligned with the common values evaluated in
the relevant literature [1], [47], [48], [49], which also correspond to typical
scenes as illustrated by the example scene in Fig. 1.
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Fig. 13. VOER performance of the proposed AL-ISAC and Bi-ISAC
algorithms in a system with NU = 4, NANR = 12, NV = 512, and
NT = 100.

estimation-theoretical viewpoint. Although fundamental limits
on the performances of ISAC are still to be derived, it is
to be expected that with a certain amount of resources such
as power, side information (i.e., pilot signals) and computa-
tional complexity, a fundamental limit on the joint estimation
and communications performances exists. Indeed, from an
algorithmic viewpoint, a large number of voxels implies that
much of the degrees-of-freedom are utilized for environment
estimation, which negatively impacts the communications per-
formance. Similarly, an extremely sparse environment implies
that most voxel coefficients are 0, such that the corresponding
edges in the factor graph are nullified, deteriorating BER
performance.

Next, Fig. 14b evaluates the effect of the pilot ratio on the
BER performance, where it can be seen that for small pilot
ratios (i.e., ρ < 0.2), the two proposed algorithms achieve a
similar performance, but that for larger pilot ratios (i.e., ρ >
0.3), the AL-ISAC outperforms the Bi-ISAC in moderate SNR

Fig. 14. BER performance of the proposed AL-ISAC and Bi-ISAC algorithms
in a system with NU =4, NANR =12, NV = 512, and NT = 100.

cases (i.e., 5dB). This result, which can be counter-intuitive to
the reader, is actually expected and explained by the fact that
linear MP modules of the AL-ISAC scheme are constructed
on the assumption of perfect symbol knowledge (0 uncertainty
for symbol estimates), whose assumptions are increasing met
with large pilot ratios. Ultimately, however, at significantly
high SNRs (i.e., SNR ≥ 15dB), the Bi-ISAC is again shown
to outperform AL-ISAC, which is a direct consequence of the
error-floor behavior exhibited by the AL-ISAC algorithm.

Finally, Fig. 15 elucidates the effect of channel blockages as
discussed in Section II-C. In particular, the figure compares the
VOER and BER performances of the two proposed ISAC algo-
rithms with respect to the critical angle θ∗, which determines
the channel blockage rate following the stochastic-geometric
empirical model derived in Sec. II-C (see Fig. 4).

The environment sensing performance illustrated in Fig. 15a
exhibits a similar behavior to the effect of ρ, where the
Bi-ISAC achieves a superior performance for all cases.
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Fig. 15. Performance of the proposed AL-ISAC and Bi-ISAC with varying
pilot ratios ρ, with Ev = 1.5%, SNR = 15dB, as a function of the critical
channel blockage angle θ∗.

In addition, the Bi-ISAC curves exhibit a slower increase
in gradient compared to those of AL-ISAC, which indicates
the higher robustness of Bi-ISAC to path blockages. The
superior robustness of the Bi-ISAC algorithm against both
pilot length and random channel blockages can be accredited
to the increased number of edges in the full factor graph arising
from the bilinear representation of the system, which can be
seen by comparing Fig. 5 and Fig. 6 of the linear case against
Fig. 9 of the bilinear case. Each factor node of the bilinear
factor graph is connected to a significantly larger number of
variable nodes as compared to the linear factor graphs, which
implies more remaining edges for stable message passing even
when a large number of edges are removed. MP over the
pruned graph is only feasible when there are sufficient pilot
data still connected to the main graph, therefore making the
Bi-ISAC more dependent on the pilot ratio for stability.

As for the communications performances, compared in
Fig. 15b, it is found that the behavior of both schemes
differ with the pilot ratio. For low pilot ratios, the AL-ISAC
is shown to slightly outperform the Bi-ISAC, whereas for

high pilot ratios, the Bi-ISAC exhibits a significantly superior
performance to the AL-ISAC, further corroborating the results
of Fig. 13a.

V. CONCLUSION

We proposed two new ISAC schemes in which a voxelated
3D representation of a ROI is extracted from the scattering
features present in the effective CSI, utilizing the same physi-
cal layer communications air interface of an uplink connection
between multiple single-antenna UEs and multi-antenna APs.
The first scheme, AL-ISAC, relies on a modular feedback
structure in which the transmit data and the environment are
estimated alternately, whereas the second method, referred to
as Bi-ISAC, leverages the bilinear inference framework to
estimate both variables concurrently. Both contributed meth-
ods were shown via computer simulations to outperform the
SotA in accurately recovering the transmitted data, as well
as in obtaining a voxelated 3D image of the environment.
An analysis of the computational complexities and robust-
ness of the proposed methods revealed distinct advantages
of each scheme, namely, that Bi-ISAC exhibits an overall
best performance and robustness to short pilots and channel
blockages, while AL-ISAC offers lower complexity especially
in scenarios with large numbers of UEs, and can exhibit
superior performance under ideal conditions such as long pilot
blocks, high environment sparsity, and no channel blockages.
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