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Abstract— We consider a multi-source relaying system where
independent sources randomly generate status update packets
which are sent to the destination with the aid of a relay through
unreliable links. We develop transmission scheduling policies to
minimize the weighted sum average age of information (Aol)
subject to transmission capacity and long-run average resource
constraints. We formulate a stochastic control optimization prob-
lem and solve it using a constrained Markov decision process
(CMDP) approach and a drift-plus-penalty method. The CMDP
problem is solved by transforming it into an MDP problem using
the Lagrangian relaxation method. We theoretically analyze the
structure of optimal policies for the MDP problem and subse-
quently propose a structure-aware algorithm that returns a prac-
tical near-optimal policy. Using the drift-plus-penalty method,
we devise a near-optimal low-complexity policy that performs
the scheduling decisions dynamically. We also develop a model-
free deep reinforcement learning policy for which the Lyapunov
optimization theory and a dueling double deep Q-network are
employed. The complexities of the proposed policies are analyzed.
Simulation results are provided to assess the performance of our
policies and validate the theoretical results. The results show up
to 91 % performance improvement compared to a baseline policy.

Index Terms— Age of information (Aol), relay, constrained
Markov decision process (CMDP), drift-plus-penalty, deep rein-
forcement learning.
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I. INTRODUCTION

N MANY emerging applications of wireless communica-

tions such as the Internet-of-Things (IoT), cyber-physical
systems, and intelligent transportation systems, the freshness
of status information is crucial [3], [4]. The age of informa-
tion (Aol) has been proposed to characterize the information
freshness in status update systems [5]. The Aol is defined as
the time elapsed since the latest received status update packet
was generated [4], [5]. Recently, the Aol has attracted much
interest in different areas, e.g., queuing systems [6], [7], [8],
[9], and scheduling and sampling problems [10], [11], [12],
(131, [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. The reader can refer to [25] for a survey on the Aol.

In some status update systems, there is no direct com-
munication link between the source of information and the
intended destination, or direct communication is costly.
In such systems, deploying an intermediate node, called relay',
is indispensable to enable a long-distance communication.
Deploying such a node has an array of benefits, e.g., saving
on power usage of wireless sensors and improving the trans-
mission success probability. However, minimizing the Aol is
particularly challenging in such relaying systems due to need
of jointly optimizing scheduling on both source and relay
sides, especially in a multi-source setup [10], [11]. Moreover,
minimizing the Aol becomes more challenging in the presence
of unreliable wireless connectivity due to the possibility of
losing some updates [13]. At the same time, in practical status
update systems, the number of transmissions is limited due
to resource constraints (power, bandwidth, etc.), especially in
power-limited sensor networks [10], [11], [14], [15].

In this paper, we consider a multi-source relaying status
update system with stochastic arrivals. The sources indepen-
dently generate different types of status update packets which
randomly arrive at a buffer-aided transmitter. The transmitter
sends the packets to a buffer-aided full-duplex relay which
further forwards the packets to the destination. The buffers
store the last arrived packet from each source. All transmission

IThis relay could be a static node [10] or a mobile node, e.g., unmanned
aerial vehicle (UAV) [26], [27], [28], [29], [30], [31] or a vehicle in the
vehicular communications [32]. For instance, in [30], multiple UAVs serve
as mobile relays between the sensors and the base station, and the goal is
to optimize the UAVs’ trajectories to minimize the average Aol and energy
consumption.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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links (channels), i.e., the transmitter-to-relay and relay-to-
destination links, are unreliable (error-prone) and have a
limited transmission capacity. A practical application for the
considered system could be industrial monitoring, where status
updates of various sensors in a given factory zone are first
gathered by a low-power transmitter and then sent to a remote
monitoring center with help of a relay. Another application
could emerge in vehicular networks, where status updates
about various physical processes related to a vehicle are sent
to a controller (e.g., a road side unit) for supporting vehicle
safety applications [32]. However, the vehicle is far from
the coverage of the controller, and thus, a relay (could be
another vehicle [32], or a UAV [27]) is needed to establish
the communication.

We formulate a stochastic control optimization problem
aiming to minimize the weighted sum average Aol (AAol)
subject to transmission capacity constraints and a long-run
average resource constraint, which limits the average number
of all transmissions in the system. We develop three different
(transmission) scheduling polices by solving the problem.
Namely, we provide: (1) a deterministic policy, (2) a drift-
plus-penalty-based scheduling policy (DPP-SP), and (3) a deep
reinforcement learning policy. A constrained Markov decision
process (CMDP) approach and a drift-plus-penalty method are
proposed. For the former, we first show that the unichain
structure holds for the CMDP problem and then apply the
Lagrangian relaxation method to solve it. We theoretically
analyze the structure of an optimal policy for the resulting
MDP problem and subsequently propose a structure-aware
algorithm that provides a near-optimal deterministic policy
(which is an optimal policy for the MDP problem) and
another deterministic policy that gives a lower bound on the
optimal value of the CMDP problem. We note that an optimal
policy can be obtained by randomizing the proposed near-
optimal deterministic policy and the lower-bound deterministic
policy; however, obtaining such randomized policy might be
computationally intractable. In the drift-plus-penalty method,
we transform the main problem into a sequence of per-
slot problems and then devise a near-optimal low-complexity
DPP-SP, which performs the scheduling dynamically, using
a scheduling rule described by a closed-form solution to the
per-slot optimization problem. Moreover, we provide a model-
free deep reinforcement learning algorithm for which we
first employ the Lyapunov optimization theory to transform
the main problem into an MDP problem and then adopt a
dueling double deep Q-network (D3QN)? to solve it. The
proposed learning-based policy addresses the case in which the
packet arrival rates and the error probabilities of the wireless
channels are not known a priori, i.e., so-called unknown
environment. It should be noted that the environment model
may not be (readily) available, or using a perfect model is
not applicable in practice owing to computational difficulties.

2This method integrates double deep Q-network (DQN) and dueling DQN
to further alleviate the overestimation problem of DQN and improve its
convergence rate [33], [34]. Moreover, it was shown, e.g., in [33], [35],
that D3QN generally gives better performance than the other two mentioned
methods.

The computational complexity of the proposed policies is
analyzed. Finally, extensive numerical analysis are provided
to validate the theoretical results and show the effectiveness
of the proposed scheduling policies.

A. Contributions

The main contributions of this paper are summarized as
follows:

e We study the Aol in a multi-source buffer-aided full-
duplex relaying status update system with stochastic
arrivals and unreliable links. We formulate a stochastic
optimization problem that aims to minimize the weighted
sum AAol subject to transmission capacity constraints
and a long-run time average resource constraint.

« By solving the main optimization problem, we develop
three distinct scheduling policies. Specifically, we pro-
pose the CMDP approach and the drift-plus-penalty
method, and also devise a deep reinforcement learning
algorithm by combining the Lyapunov optimization the-
ory and D3QN.

o We theoretically analyze the structure of an optimal
policy of the MDP problem (obtained via the Lagrangian
relaxation) and develop a structure-aware iterative algo-
rithm for solving the CMDP problem. The convergence
of the algorithm is also proven.

e We devise a dynamic near-optimal low-complexity
scheduling policy, i.e., DPP-SP, by providing a closed-
form solution to the per-slot problem obtained under
the drift-plus-penalty method. Moreover, we prove that
DPP-SP satisfies the average resource constraint.

« We analyze the computational complexity of the proposed
scheduling policies.

e We provide numerical analysis to verify the theoretical
results and assess the effectiveness of the devised policies.
The results show up to 91% performance improvement
compared to a greedy-based baseline policy.

B. Related Works

Recently, the Aol in relaying systems has been studied in,
e.g., [10], [14], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46]. The authors of [36] analyzed the Aol in a
discrete-time Markovian system for two different relay settings
and analyzed the impact of relaying on the Aol. In [37], the
authors analyzed the AAol in a two-way relaying system under
the generate-at-will model (i.e., possibility of generating a new
update at any time) model in which two sources exchange
status data. The Aol performance under different policies
(e.g., a last-generated-first-served policy) in general multi-
hop single-source networks was studied in [38]. In [14], the
authors studied the Aol in a single-source energy harvesting
relaying system with error-free channels and designed offline
and online age-optimal policies. Reference [39] analyzed the
AAOI in a single-source relaying system with and without the
automatic repeat-request technique, where results show that
the automatic repeat-request technique can reduce the AAol.
The age-energy tradeoffs in a relay-aided status update system



452 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

were studied in [45], where the expressions for the AAol
and average energy cost were derived. In [42], the expression
of the Aol distributions in a single-source relaying system
under different circumstances were derived. Minimization of
the AAol through optimizing the blocklengths in short-packet
communications in decode-and-forward relaying IoT networks
was conducted in [46]. Authors of [43] optimized the steady-
state Aol violation probability with respect to the sampling
rate of monitoring a process in both single-hop and two-
hop systems. In [40], the authors considered a single-source
relaying system under stochastic packet arrivals where the
source communicates with the destination either through the
direct link or via a relay. They proposed two different relaying
protocols and derived the respective AAol expressions.

In summary, only a few works, such as [10], [11], and
[14], have incorporated a resource constraint (as we do in
this paper) when analyzing and/or optimizing the Aol in a
relaying system. Moreover, different from our multi-source
system, most of the discussed works, e.g., [14], [36], [38],
[39], [40], [41], [42], [43], [45], [46], consider single-source
relaying systems. Clearly, multi-source scheduling is gener-
ally substantially challenging, especially when there are also
resource constraints (as in this paper). Because one needs to
properly allocate a limited amount of resources among multi-
ple sources, taking into account each source’s characteristics
(e.g., the arrival rate of each source and the source’s informa-
tion importance).

Our relaying system, considered as a two-hop network,
is an extension of work [12], where the authors provided
scheduling policies for minimizing the AAol in a one-hop
buffer-free network with stochastic arrivals and an error-free
link with no average resource constraint. In contrast, our
two-hop network is a buffer-aided network with error-prone
links. The most-related works to our paper are [10], [11].
The work [10] studied the Aol minimization in a multi-
source relaying system with the generate-at-will model and
unreliable channels. The authors proved that the greedy policy
is an optimal scheduling policy for a setting called the error-
prone symmetric IoT network whereas for the general setting,
they applied DQN. In [11], the authors studied the AAol
minimization problem in a single-source half-duplex relaying
system with the generate-at-will model under a constraint on
the average number of forwarding transmissions at the relay.
In contrast to [11], we consider a multi-source setup; because
of the single-source setup in [11], the scheduling problem
of [11] is essentially the problem of optimizing whether the
relay should receive or transmit at each slot, whereas our
problem is multi-source scheduling. Different to [12], we have
two-dimensional decision variables in our problem which
makes constructing optimal/good scheduling policies more
difficult. We further consider an average resource constraint so
that our problem is a CMDP problem, whereas the problems
of [10] and [12] are MDP problems. Notably, not only solving
a CMDP problem is substantially challenging but analyzing its
optimal policy structure is also challenging. Furthermore, the
stochastic arrival model considered in our setup generalizes the
generate-at-will model in [10] and [11] and brings additional

Buffers

Fig. 1. A multi-source relaying status update system in which different status
updates arrive at random time slots at the transmitter, which then sends the
packets to the destination via a buffer-aided relay over unreliable links.

challenges in the design and analysis of scheduling policies
since the statistics of the arrivals and the Aol at the transmitter
are also involved in the system dynamics. Finally, besides
the MDP/CMDP approach proposed in [10], [11], and [12],
we also propose the two different scheduling policies, i.e.,
DPP-SP, and the deep reinforcement learning policy that
copes with unknown environments. Even though [11] also
develops a low-complexity double threshold relaying policy,
the thresholds need to be optimized numerically. In contrast,
our low-complexity scheduling policy requires to execute two
simple operations.

C. Organization

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The CMDP formulation and its solution are presented in
Section III. The DPP-SP is presented in Section IV. The deep
reinforcement learning algorithm is provided in Section V. The
computational complexity of the proposed policies is analyzed
in Section VI. The numerical analysis and conclusions are
provided in Section VII and Section VIII, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a status update system consisting of a set
T = {1,...,1} of I independent sources, a buffer-aided
transmitter’, a buffer-aided full-duplex relay, and a destination,
as depicted in Fig. 1. The sources model physically separated
fully autonomous sensors (i.e., they cannot be controlled and
commanded) where their (status update) packets are sent to the
transmitter using a random access protocol (see Remark 1).
Thus, the stochastic arrivals model is used to account for
possible random packet losses on the links between the
sources and the transmitter due to, e.g., collisions, and/or
for possible idle slots where the source sensors do not send
updates. Additionally, there is no direct communication link
between the transmitter and the destination, and thus, the
transmitter sends all status update packets to the destination via
the relay.

Remark 1: It is worth noting that the reason behind con-
sidering random access protocols for sensors (sources) is
the consideration of low-cost uncontrollable (uncoordinated)
autonomous sensors. Moreover, the stochastic arrivals can
also capture any other multiple accesses scheme; however,

3Even though there is one transmitter, the system is mathematically
equivalent to one where each source directly sends its updates to the relay
using a shared channel and where at most one source is allowed to occupy
the channel at each slot.
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TABLE I
THE KEY SYMBOLS WITH THEIR DEFINITIONS USED IN THE PAPER
Notation(s) Definition(s)
Z/I/i The set/number/index of sources
0;[t]/4:[t]/0:[t] | The Aol of source 7 at the transmitter/relay/destination
i The arrival rate of source ¢
w; The weight of source
p1/p2 The reliability of the transmitter-relay/relay-destination link
p1[t]/p21t] The successful packet reception indicator of the transmitter-relay/relay-destination link
alt]/Blt] The transmission decision at the transmitter/relay
N The bound of the Aol values
[max The transmission budget
K The average number of total transmissions
) The weighted sum average Aol at the destination

the details of the protocol (and its optimization) are out of the
scope of this paper.

We assume that each status update is encapsulated in one
packet*. The buffer size is one packet per source and each
buffer stores the most recently arrived packet of a source,
as they contain the freshest information. More specifically,
a packet of a source arriving at the transmitter replaces the
packet of the same source in the transmitter’s buffer; similarly,
a packet of a source received by the relay replaces the packet
of the same source in the relay’s buffer. It is worth noting that
considering one packet size buffer for each source is sufficient
in our system, as storing and transmitting outdated packets
does not improve the Aol. Moreover, the relay transmits the
packet available in the buffer at the beginning of the slots,
while the buffer is updated at the end of the slots (if a new
packet is successfully received).

We consider a discrete-time system with unit time slots
t € {0,1,2,...}. The sources, indexed by ¢ € Z, inde-
pendently generate status update packets according to the
Bernoulli distribution with parameter p;. Note that p; = 1
gives the same performance when considering the system
with the generate-at-will model and no sampling cost. Let
u;[t] be a binary indicator that shows whether a packet
from source ¢ arrives at the transmitter at the beginning
of slot t, i.e., u;[t] = 1 indicates that a packet arrived;
otherwise, u;[t] = 0. Accordingly, Pr{u;[t] = 1} = u;.
For clarity, the definitions of the main symbols are collected
in Table I.

1) Wireless Channels: As the wireless channels fluctuate
over time, reception of updates (both by the relay and the
destination) are subject to errors. However, unsuccessfully
received packets can be retransmitted; we assume that all
retransmissions have the same reception success probability.
Let p; and p, be the successful transmission probabilities of
the transmitter-relay and relay-destination links, respectively.
Also, let pi[t] be a binary indicator of a successful packet
reception by the relay in slot ¢, i.e., p1[t] = 1 indicates that

4A status update packet of each source contains a time stamp representing
the time when the sample was generated and the measured value of the
monitored process.

the transmitted packet is successfully received by the relay;
otherwise, pi[t] = 0. Similarly, let ps[t] be a binary indicator
of a successful packet reception by the destination in slot Z, i.e.,
p2[t] = 1 indicates that the transmitted packet is successfully
received by the destination; otherwise, pa[t] = 0. We have
Pr{p1[t] = 1} = p1 and Pr{ps[t] = 1} = ps. We assume
that perfect feedback (i.e., instantaneous and error-free) is
available for each link, and there is no interference between
the links>.

2) Decision Variables: We assume that at most one packet
transmission per slot is possible over each link. Let «ft] €
{0,1,...,1} denote the (transmission) decision of the trans-
mitter in slot ¢, where aft] = 4, ¢ € Z, means that the
transmitter sends the packet of source i to the relay, and
aft] = 0 means that the transmitter stays idle. Similarly,
let 8lt] € {0,1,...,I} denote the (transmission) decision
of the relay in slot ¢, where ([t] = 4, ¢ € Z, means
that the relay forwards the packet of source ¢ to the des-
tination, and ([t} = 0 means that the relay stays idle.
We assume that there is a centralized controller performing the
scheduling.

Age of Information: Let 6;[t] denote the Aol of source i
at the transmitter in slot ¢. Also, let ;[t] denote the Aol of
source 4 at the relay and ¢;[t] denote the Aol of source i
at the destination in slot . We make a common assumption
(see e.g., [21], [22], [50]) that Aol values are upper-bounded
by a finite value N. Besides tractability, this accounts for
the fact that once the available information about the process
of interest becomes excessively stale, further counting would
be irrelevant. The evolution of the Aols of each source i € 7

SWe assume that the relay receives and transmits on non-overlapping
orthogonal (frequency) channels (e.g., see [31] and references therein), which
allows for a practically manageable operational complexity and affordable
hardware cost of the relay. This is because efficiently using non-orthogonal
channels requires to implement highly effective self-interference cancellation
algorithms, which entails sophisticated and computationally intensive algo-
rithms and very expensive extra hardware components for the relay [47], [48],
leading to a high-cost relay. It is also worth noting that with non-orthogonal
channels the performance of the full-duplex relay would highly depend on
the internal self-interference cancellation mechanism [49], which is beyond
the scope of this paper.
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is given by
. 0, if wit +1) = 1,
it + 1=
min (6;[t] + 1,N), otherwise,
il 1] min (0;[t] + 1,N) if a[t] =i, pi[t] =1,
it + 1) =
min (1/Ji [t] + 1, N), otherwise,
it [ LN, A =i el =1
’ min (6;[t] + 1, N), otherwise.
(D

Remark 2: When N is not sufficiently large, the system
performance without bounding the Aol will be different from
that with bounded Aol. The appropriate choice of N depends
on the system parameters such as the number of sources and
the links’ reliabilities.

B. Problem Formulation

We denote the weighted sum average Aol at the desti-
nation (WS-AAol) by ¢ and the average number of total
transmissions per slot in the system by K, which are
defined as

§ £ limsup
T— o0

1 7
LS BT, wibil).

K £ limsup
T— o0

L 1
7 21 B {Ljamzo) + Ligpzoy }

where w; > 0, Vi, denotes the weight of source i; 1 is
an indicator function which equals to 1 when the condition
in {-} holds; and E{-} is the expectation with respect to
the system randomness (i.e., random wireless channels and
packet arrival processes) and the (possibly random) decision
variables aft] and ([t]°. Moreover, K represents a measure
of system-wide resource consumption since the number of
transmissions affects the total bandwidth consumption and/or
power consumption in the system.

By these definitions, we aim to solve the following stochas-
tic optimization problem:

minimize 1) (2a)
{a(t),8(t) }e=1,2,...
subject to K < Tpay, (2b)

with variables {«(t), 5(t)}1=1,2,..., where the real value
Tmax € (0,2] is the maximum allowable average number of
total transmissions per slot in the system; note that according
to the definition of «[t] and 3[t], the maximum value of per-
slot total transmissions equals to 2, hence, we have [',x €
(0,2] (the values I'jyax > 2 make constraint (2b) inactive).
As noted before, the time average constraint (2b) represents
a system-wide resource constraint. Thus, problem (2) essen-
tially provides a trade-off between the WS-AAol and the
system’s resource consumption. Besides, the Slater condition

6We assume that the decision variables «[t] and B[t] are determined based
on the past and current Aol values; thus, we consider a set of control
(scheduling) policies that contains all causal policies [7].

[51, Eq. 9.32] clearly holds for problem (2), i.e., there exists
some set of decisions for which K < T'jax.

In the next section, we will present a CMDP approach to
solve problem (2).

III. CMDP APPROACH TO SOLVE PROBLEM (2)

In this section, we recast problem (2) into a CMDP problem
which is then solved by using the Lagrangian relaxation
method.

A. CMDP Formulation

We specify the CMDP by the following elements:

e State: The state of the CMDP incorporates the knowledge
about all the Aol values in the system. We define the state
in slot ¢ by S[t] £ (Hl[t],xl[t], yl[t]7 e ,ej[tL.'L'][t],yI[t]),
where l‘i[t] = ’le[t] — Gi[t], Vi € Z, and yi[lf] =
8i[t] — ilt], Yi € I, are the relative Aols at the relay
and the destination in slot ¢, respectively. Using the rela-
tive Aols simplifies the subsequent analysis and derivations.
The intuition is that the evolution of the Aol of source %
at the destination from slot ¢t to ¢ + 1 can be expressed
as 61[15 + 1] = min ((51[1,‘] +1-— ]l{ﬁ[t]:i,pz[t]:l}yi[ﬂvN)v
and the evolution of the Aol of source ¢ at the relay
from slot ¢ to ¢ + 1 can be expressed as [t + 1] =
min (wz [t] +1-— ﬂ{a[t]:i,pl[t]:l}xi[t]a N) We denote the
state space by S which is a finite set.

e Action: We define the action taken in slot ¢ by a[t] =
(alt], B[t]), where «[t], B[t] € {0,1,...,I}. Let A denote the
action space. Actions are determined by a policy, denoted by
7, which is a (possibly randomized) mapping from S to A.
We consider stationary randomized policies because they are
dominant (see [51, Definition 2.2]) if unichain structure’ exists
[51, Theorem 4.1]; we will show in Theorem 1 below that the
unichain structure exists for the transition probability matrix
of the underlying (C)MDP.

e State Transition Probabilities: We denote the state transi-
tion probability from state s to next state s’ under an action
a = (a,0) by Psy(a). Since the evolution of the Aols
in (1) and the arrivals are independent among the sources,
the transition probability can be decomposed as Psy(a) =
[1; Pr{s}|si,a}, where Pr{s}|s;a},Vi € Z, denotes the
state transition probability of source ¢ under an action a,
s; is the part of the current state associated with source
i € I, ie., s; = (0;,24,9;), and s, is the part of the
next state associated with source i, i.e., s, = (6}, 2%, y}).
Mathematically, Pr{s] |si,a} is given by (3), where 6, £
min (9i+1,N), Z; £ min (xi—l—Qi—l—l,N) —min (Hi—&—l,N),
and ¥; £ min (yiJr:ci +0; + 1,N) — min (:cl +0; + l,N).
Moreover, to facilitate a compact description of Pr{s/ ’ si,a},
we employ the shorthand notations fi; = 1—pu,, p1 = 1—py,

"We say the unichain structure exists if the transition probability matrix
corresponding to every stationary deterministic policy is unichain, that is,
it consists of a single recurrent class plus a possibly empty set of transient
states [52, Sec. 8.3.1].
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and po £ — Ppa.

Pr{s]|s;, a}

pipip2, o =i, B=1i; 0;=0, x; =0;, yj =,
pipipe, a=i, B=1i; 0, =0, 2} =& +0; y, =0,
pipip2, =1, B=1i; 0, =0, a}=0;, y, = i+ &,
pipip2, =i, B=1; 0 =0, z, =3 +0;, y. =G,
pipip2, =i, B=1i; 0] =0;, x; =0, y; = &,
fipp2, a=i, B=1; 0 =0; x;=2i; y, =0,
papibe, a =i, B=1i; 0, =0, x; =0, y; = Gi+ &,
fipip2, o =i, B=1i; 0} =0;, o} =23y, ¥ =10,
pipt, a=i, B#i; 00=0, xf =0;, yj = i+,
=9 D1, a=1, 3F#i; 9; =0, m; =1 +‘§17 y: = Ui,
ppr,  a=i, BF6 0, =0, x;=0, y = Gi+ &,
by, a=i, f#E 0, =0;, 2} =%, yi =G
Hip2, a#i, B=1i; 0, =0, v =3;+0; y, =0,
pip2,  a#i, B=i; 0, =0, zi =3+ 0;, yl =G,
Bip2, ai, B=1i; 0, =10, o} =% y, =0,
fiP2, a#i, B=1i; 0)=0;, o} =3, ¥ =,
iy a#i, BF#1; ngo,x;:ilJréi, yizgm
fi, a#i, B£i 0, =0; o} =i y. =i,
0 otherwise.
(3)

Theorem 1: The transition probability matrix with ele-
ments Psg (a) corresponding to every deterministic policy is
unichain.

Proof: See Appendix A. ([
e Cost Functions: The (immediate) cost functions include: 1)
the Aol cost, and 2) the transmission cost. The Aol cost is
the weighted sum of Aols at the destination, i.e., C(s[t]) =
> wi(05[t] + ;[t] + y;[t]). The transmission cost is given by
D(a[t]) = Liafg20) + Lisioy-

Given a stationary randomized policy 7, we denote the WS-
AAol cost by J() and the average transmission cost by D(7),
defined as follows

J(m) = limsup % 23:1 E{C(s[t)}, €]
T—o00

D(w) = limsup % Z;‘ll E{D(alt])}. 5)
T—o0

Note that we have omitted the dependence on the initial state
in (4) and (5) because they do not vary with the initial state,
due to the unichain structure [52, Proposition 8.2.1]. By these
definitions, problem (2) can equivalently be recast as the
following CMDP problem

minimize J ()
wellsr

subject to D(7) < IMpax, (6)

where IIgr is the set of all stationary randomized policies.
The optimal value of the CMDP problem (6) is denoted by
J* and an optimal policy is denoted by 7*.

In the section below, we solve the CMDP problem (6).

B. Solving the CMDP Problem (6)

In order to solve the CMDP problem (6), we transform it
into an (unconstrained) MDP problem using the Lagrangian
relaxation method [51], [53]. The states, the actions, and the
state transition probabilities of the MDP are the same as those
of the CMDP. The immediate cost function of the MDP is
defined as L(s[t],a[t);\) = C(s[t]) + A(D(aft]) — I'max).
where A\ > 0 is a Lagrange multiplier. Accordingly, the MDP
problem is defined by

minimize L(m,N), (7
where L(m,\) 2 limsupr_. +3 E{C(s[t]) +
AM(D(a[t]) — Tmax) } is the Lagrangian and Ilgp is the set
of all deterministic policies; here, we restrict to the class
of deterministic policies without loss of optimality because
there always exists an optimal deterministic policy to the
MDP problem (7) [52, p. 370], which is a result of The-
orem 8.4.5 in [52] under the unichain structure shown in
Theorem 1.

Definition 1: (M-optimal policy) A M-optimal policy is a
solution to (7) and is denoted by Ty.

By [51, Theorem 12.8], under the Slater and two other
technical conditions®, there exists a Lagrange multiplier \*
such that J* = Iglﬁn L(m, \*). Moreover, if D(7}.) = Timaxs

then 7). is an gptifsr?al policy for the CMDP problem (6).

Remark 3: Under the unichain structure shown in
Theorem 1, by results of [53], it can be shown that an
optimal policy of the CMDP problem (6) is a stationary
randomized policy that performs randomization between two
deterministic S\-Optimal policies where one is feasible and the
other is infeasible to (6) (e.g., [11], [15]). However, given
such S\-Optimal policies, finding a randomization factor of
such optimal policy is computationally difficult [54, Sec. 3.2].
As stated in Remark 3, it is difficult to obtain an optimal sta-
tionary randomized policy (by randomizing the two A-optimal
policies) to the CMDP problem (6). Therefore, we will develop
a practical near-optimal (as empirically shown in Section VII)
deterministic policy to the CMDP problem (6). In particular,
we propose a solution relying on bisection search over the
Lagrange multiplier A and relative value iteration algorithm
(RVIA). Namely, we alternate between solving the MDP
problem (7) for a given A and searching for a particular value
of A for which 73 is feasible for problem (6) and gives the
best performance among all feasible A-optimal policies.

1) Solution of the MDP Problem (7): Towards solving
the MDP problem (7), first, we present the following theo-
rems related to a A-optimal policy; particularly, Theorem 2
characterizes a A-optimal policy and Theorem 3 specifies
its structure. Then, we utilize these theorems to develop a
structure-aware RVIA [52, Sec. 8.5.5] that gives a A-optimal
policy.

8The (immediate) Aol cost must be bounded below (see [51, Eq. 11.1])
and satisfy the moment condition [51, Eq. 11.21]. It can be verified that these
conditions hold for our problem.
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Theorem 2: There exists h(s), for each state s € S, such
that

L*(A) + h(s) = Eéiﬁ{L(s’ a; ) + > s csPssr(@)h(s')}, (8)

where L*()\) is the optimal value of the MDP problem (7) for
given \. Moreover, an optimal action taken by a M\-optimal
policy in each state s € S, w3 (s), is given by

mi(s) € arg min {L(s,a;\) + >y csPss (@)R(s)} . (9)
Proof: Because of Theorem 1, the first part, i.e., (8),
follows from [52, Theorem 8.4.3]. Then, the second part, i.e.,
(9), directly follows from [52, Theorem 8.4.4]. U
Theorem 3: Any M\-optimal policy of problem (7) has
a switching-type structure for [3 with respect to'y =
(y1,...,yr). This is, if the policy takes action § = i, i €
{1,...,I}, at state s, it also takes the same action at all
states s + kes;, for all k € N, where es; is a vector in which
the (3i)-th element is 1 and the others are 0.

Proof: See Appendix B. (]
RVIA is an iterative procedure that utilizes the optimality
equation (8). Particularly, at each iteration n € {0,1,...},
for each state s € S, we have

Viyi(s) = ggg {L(Sv a;\) + ZS/GSPSS’ (a)hn(s/)} )

hnt1(8) = Vag1(s) — Viga(Sref), (10)
where s, € S is an arbitrarily chosen reference state. The
structure-aware RVIA is presented in Alg. 1 (see Steps 3—16),
where € is a small constant for the RVIA termination crite-
rion. In particular, at each iteration of RVIA, in Steps 6-9,
we exploit the switching-type structure specified in The-
orem 3 to find an optimal action for each state s, i.e.,
a* £ argminaca{L(s, a; A) + Yo csPss (a)A(s')}; specifi-
cally, in computing a* = (a*, 3*), whenever we have deter-
mined an optimal decision of 5* in Step 6, then we only need
to find an optimal decision of a*.

The following theorem shows that RVIA given by (10)
(i.e., Steps 3—16 of Alg. 1) converges and returns the optimal
value of the MDP problem (7).

Theorem 4: For any initialization Vy(s), the sequences
{hn(s)}tn=1,2,.. and {V,(8)}n=1,2,.., generated by
(10),  converge, ie, lim, .o h,(s) 2 h(s) and
lim, oo Vin(s) £ V(s). Moreover, h(s) =V (s) — V(siet)
satisfies (8) and V (syet) = L*(N).

Proof: The proof follows directly from [55, Prop. 4.3.2].
Thus, we need to show that the hypothesis of [55, Prop. 4.3.2]
holds. According to [55, p. 209], it is sufficient to show that the
Markov chain, described by the transition probability matrix
with elements Psg (a), corresponding to every deterministic
policy, is unichain and aperiodic. The unichain structure has
been proven in Theorem 1, and aperiodicity follows from
the fact that the recurrent state s*°° (see Appendix A) has
self transition (i.e., Pgacegacc (a) > 0, Va € A); this is because
from [56, Exercise 4.1], such (recurrent) state is also aperiodic,
and then, by [56, Theorem 4.2.8], all states that belong to the
same class as the recurrent state s are aperiodic. (]

Algorithm 1 Structure-Aware RVIA With Bisection
to Solve the CMDP Problem (6)

Input: 1) System parameters: Dmax, I, {ui, witicz, p1, p2,
2) RVIA and bisection parameters: N, ¢, ¢, AT, A~, and
3) arbitrarily chosen sy € S
// Bisection search over A

1 while At — A7 > do

2 )\bis = >\+J2r>\_ N
// Initialization of RVIA
3 Set foreachs € S: V(s) =0, h(s) =0, houa(s) =
1
// RVIA for a given Apis
4 while maxses |h(s) — howa(s)| > € do
5 for each s € S do
// Using the switching-type
structure
6 if there exists k € N such that 8 = 1 for
S — k’egi then
7 a* — (a”,1), where
8 " = argmingeqo,1,23 { L (s, a; Apis) +
e Pest (A)R()}:
9 else
10 a® — argminac4{L(s, a; Abis) +
> sresPss’ (a)h(s")}s
11 end
2 V(s) — L(s,a% Aoia) + Yy s Posr (2)R(S):
13 htmp(s) — V(S) - V(Sref);
14 end
15 hoa(8) < h(s), h(s) < htmp(S);
16 end
17 Compute D(WKMS);
18 if D(7},. ) > I'max then
19 | AT — Abiss
20 else
n | AT = s
22 end
23 end

24 Compute 734 and 75_ using (9);
Output: 75_ and 7}

2) Searching for Lagrange Multiplier: By [53, Lemma 3.1],
J(w%) is increasing in A and D(7) is decreasing in \’.
Accordingly, we are interested in the smallest value of
Lagrange multiplier A for which policy 7} is feasible
for the CMDP problem (6). Formally, we want to find
A2 inf{\ > 0: D(7%) < Timax}. To search for A, we apply
bisection that exploits the monotonicity of D(r}) with respect
to A. We initialize bisection with A= = 0 and A" as a large
positive real number. Then, bisection iterates until [A\T—A7| <
¢, where ( is a small constant for the bisection termination
criterion. Details are stated in Alg. 1.

It is worth stressing that, as stated in Remark 3, there is
no guarantee, even for an arbitrarily small , that the feasible
deterministic policy 7}, obtained by Alg. 1, would be an
optimal policy for the CMDP problem (6). Nevertheless, the
empirical results in Section VII will show that policy 7}, has
near-optimal performance. At the same time, the infeasible
policy mw}_ can serve as a benchmark, because it provides a

OIntuitively, increasing A penalizes more the transmission cost in the
Lagrangian; thus, by increasing A, the average number of transmissions
D(7}) decreases, which, in turn, increases the WS-AAol J(77}).
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lower bound to an optimal solution of (6). In Section VII,
we will empirically show that policy 7}_ is a tight lower
bound solution.

It is essential to note that the computational complexity of
the (relative) value iteration algorithms dramatically grows as
the state and action spaces increase, i.e., the curse of dimen-
sionality problem; the detailed complexity analysis of Alg. 1
can be found in Sec. VI. Since RVIA is run at each iteration
of bisection, Alg. 1 becomes computationally inefficient when
applied for a large number of sources. To circumvent the curse
of dimensionality, we propose a low-complexity scheduling
policy in the next section.

IV. Low-COMPLEXITY SCHEDULING PoOLICY
TO SOLVE PROBLEM (2)

In this section, we devise DPP-SP (i.e., drift-plus-penalty-
based scheduling policy), using the idea of the drift-plus-
penalty method [57], to solve the main problem (2). The
proposed DPP-SP is a heuristic policy that has low complexity
and, as empirically shown in Section VII, obtains a near-
optimal performance. We prove that DPP-SP is guaranteed
to satisfy constraint (2b).

According to the drift-plus-penalty method [57], the time
average constraint (2b) is enforced by transforming it into
queue stability constraint. Accordingly, a virtual queue is
associated for constraint (2b) in such a way that the stability
of the virtual queue implies satisfaction of the constraint. Let
H[t] denote the virtual queue associated with constraint (2b)
in slot ¢ which evolves as

Ht + 1] = max{H|[t] — T'max + D(a[t]), 0}. (11)
By [57, Ch. 2], the time average constraint (2b) is
satisfied if the virtual queue is strongly stable, i.e.,
limsupy_, o & 3_, E{H[t]} < +oo. Next, we define the
Lyapunov function and its drift which are used to define the
virtual queue stability condition.

We define a quadratic Lyapunov function as
L(H[t]) = £H?[t] [57, Ch. 3]. The Lyapunov function
indicates the size of the virtual queue, i.e., if the Lyapunov
function is small, then the virtual queue is small, and if the
Lyapunov function is large, then the virtual queue is large.
By minimizing the expected change of the Lyapunov function
from one slot to the next, the virtual queue can be stabilized
[57, Ch. 4]. Let Z[t] = {s[t], H[t]} denote the system state
in slot ¢t. The one-slot conditional Lyapunov drift, denoted
by A[t], is defined as the expected change in the Lyapunov
function over one slot given the current system state Z[t].
Accordingly, Aft] is given by

Alt] =E{L(H[t+1]) - L(H[t]) | Z[]}, (12
where the expectation is with respect to the (possibly random)
decisions made in reaction to the current system state.

Applying the drift-plus-penalty method to main problem
(2), we seek for a control policy that minimizes an upper
bound on the following drift-plus-penalty function, ¢lt],

at slot ¢:
elt] = A + VI, wilB{(6i[t + 1] + o[t + 1)) | Z[t]}
= A+ VY wE{(20]t + 1] + 24t + 1]

+uilt+1)) | Z[)}, (13)

where the expectation is with respect to the channel random-
ness (i.e., p1[t] and ps[t]) and (possibly random) decisions
made in reaction to the current system state; parameter V' > 0
adjusts a trade-off between the size of the virtual queue and the
objective function. It is noteworthy that, in (13), different from
considering the original immediate objective function (i.e., the
sum Aol at the destination) as the penalty term, we have
added the sum Aol at the relay to the penalty term so that
minimizing the upper bound of the drift-plus-penalty function
at each slot also concerns the evolution of the sum Aol at
the relay.

To obtain the upper bound of the drift-plus-penalty function,
we derive an upper bound for the drift term A[t], given by the
following proposition.

Proposition 1: The upper bound for the conditional Lya-
punov drift in (12) is given by

Alt] < B+ H[t](E{D(a[t]) | Z[t]} - Tmax) (14)

where B =1/2T'2 _+2.

Proof: See Appendix C. (|
Let us express the evolution of the Aol and the relative Aols
of each source i € Z by the following compact formulas'®

xi[t'i'l]:(l_pl[t]]l{a z})xz[]+ut[t+1](0 H"’l)
yilt +1] = (1 = pa[t]p=iy)yi[t] + p1 [t {agg=a i [t].

5)

Using Proposition 1 and substituting (15) into (13), the upper
bound for the drift-plus-penalty function ¢[t] can be derived as

olt] < B+ H[t|(E{D(alt]) | Z[t]} — Tmax)
+ Vzwi (E{( 1—02 =iy )yilt]

+(1—P1[]]1{a[t] iy )a[t]
+z[t] + 20;[t] + 2 | Z[t]}) .

Now, we turn to minimize the upper bound of the drift-
penalty-function given in (16). To this end, we first compute
the expectations with respect to the channel randomness, i.e.,
we have E{pg[t]ﬂ{g[t]:i} | Z[t]} ZPQE{]I{ﬁ[t]:i} ‘ Z[ﬂ}
and E{p1[t]L{aip)=i} | Z[t]} = p1E{L{aiy=iy | Z[t]}. Then,
after removing the terms in (16) that are independent of
the decision variables, we need to minimize the following
expression:

HE{1 {120 | Z[t]}
= Vpo ZwiE{ﬂ{B[t

(16)

=iy | 21t} wslt]

10These expressions are for unbounded Aol values as the derivation of
DPP-SP does not require to bound them.
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+ H[E{L{apy20) | Z[t]}

-V Z wiB{L o=y | 21t st (17)
where the expectation is with respect to the (possibly random)
decisions.

To minimize the expression in (17), we follow the approach
of opportunistically minimizing a (conditional) expectation
[57, p. 13], i.e., the expression in (17) is minimized by the
algorithm that observes the current system state Z[t] and
chooses aft] and S[t] to minimize

H[t o120y — V1 Z wi L o=y i[t]
+ H[t]1{g1 20y — VP2 Zwiﬂ{ﬁ[t]zi}yi[t]~ (18)
The expression in (18) is separable with respect to «t] and

B[t], thus we obtain «ft] and S[t] by solving the following
problems:

inimi H[t]1 -V wil farmein@i[t],

ominimize  H[t]1ap20) = VP12 wil o=y ilf]
(19)

Hit|1 -V cwile g =inyilt].

piminimize  H{{]L g0y — VP2 225 will (si=y ill
(20)

It can be inferred from problem (19) that if H[t] > max;cr
{Vprw;z;[t]}, then the optimal action is «a[t] = 0; otherwise,
the optimal action is «[t] = arg max;c-{Vpiw;x;[t]}. Prob-
lem (20) has the similar solution with respect to 3[t].

In summary, the proposed DPP-SP works as follows: at
each slot ¢, the controller observes Z[t]'! and determines the
transmission decision variables according to the rules given by
(21), shown at the bottom of the page.

What remains is to show that DPP-SP, operating according
to (21), satisfies constraint (2b). We prove this in the following
theorem.

Theorem 5: Assume that E{L(HI[0])} is finite. For any
finite V, the virtual queue under DPP-SP that operates accord-
ing to (21) is strongly stable, implying that DPP-SP satisfies
constraint (2b).

Proof: See Appendix D. ([
As it can be seen in (21), DPP-SP performs only two simple
operations to determine the actions at each slot. Hence, DPP-
SP has low complexity and can easily support systems with

U7t is worthwhile to mention that the observed state Z[t] has the virtual
queue H[t] in addition to the observed state of RVIA. However, the virtual
queue is just an extra variable maintained in the internal memory and
updated according to the action taken in the past and consists of only one
variable regardless of the number of sources. Thus, observing the virtual
queue does not need any signaling or exchange of information in the system
because it is, as the name suggests, virtually created by the controller and
its dynamic only depends on its current value and the transmission actions
taken.

large numbers of sources. The detailed complexity analysis of
DPP-SP can be found in Sec. VI.

V. A DEEP REINFORCEMENT LEARNING
ALGORITHM TO SOLVE PROBLEM (2)

In this section, we develop a deep reinforcement learning
algorithm to solve the main problem (2). Inspired by [58],
we use the Lyapunov optimization theory to convert the CMDP
problem (6) into an MDP problem which is then solved
by a model-free deep learning algorithm, namely, D3QN
(i.e., dueling double deep Q-network) [34], [35]. Note that
another approach to the CMDP problem (6) could be a primal-
dual reinforcement learning algorithm. In contrast to our
algorithm, such an algorithm leads to an iterative optimiza-
tion procedure. Thus, the proposed Lyapunov-based learning
algorithm is in general simpler than a primal-dual DRL-based
algorithm.

It is worth pointing that: i) as D3QN is a model-free
algorithm, we do not require the state transition probabilities
of the MDP problem, thus, the proposed deep learning is
applicable for unknown environments (i.e., when the packet
arrival rates and the successful transmission probabilities of
the (wireless) links are not available at the controller), and
ii) there is no guarantee that the proposed deep learning
algorithm provides an optimal policy to the main problem (2);
however, an advantage of the deep learning algorithm is coping
with unknown environments with large state and/or action
spaces which can be used as a benchmark policy. We further
note that to implement the proposed learning algorithm, we do
not need to bound the Aol values and store the state space
(which may require considerable memory).

We define the expected time average reward function,
obtained by policy 7, as

R(7) £ limsup % S E{r[H},

T— o0

(22)

where 7[t] = — (L(Ht + 1]) = L(H[E]) + V X, widit +1])
is the immediate reward function, and L(H[t]) = $H?[t] is
the quadratic Lyapunov function with virtual queue H [t] given
by (11). It is worth pointing out that the Lyapunov drift in the
reward function is introduced to guarantee the satisfaction of
the average constraint (2b) [58], [59]. We want to solve the

following problem:

maxirmize R(m). (23)

Problem (23) can be formulated as an MDP problem, where
r[t] is the immediate reward, the state is Z[t] = {s[t], H[t]},
and the action is aft] = («[t], B[t]). To solve the MDP prob-
lem, we apply D3QN. Implementation details are presented in
Sec. VIL

If mazgc{Vplwixi[t]} > H[t], then «aft] = arg max{Vpjw;x;[t]}; otherwise, aft] =0,
1€

If meal)_c{Vpgwiyi [t]} > HJt], then S[t] = arg max{Vpaw;y;[t]}; otherwise, B[t] = 0.
i €T

€T
(2D
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TABLE II
THE OVERALL COMPUTATIONAL COMPLEXITY OF THE PROPOSED POLICIES
Policy Offline phase Online phase
Deterministic policy O (M, MoI>N°T) o(1)
DPP-SP — o)
Deep learning policy | O (MyMsMgPy (P, + M3P, + P,)) | O (Py(P. + MsP, + P,))

VI. COMPLEXITY ANALYSIS

Here, we analyze the (overall) computational complexity of
the proposed policies. First, in terms of complexity, there are
two different phases: 1) offline phase, i.e., an initial phase
to find a policy, and 2) online phase where the (offline-
derived) policy is used to generate the corresponding action
at each slot. DPP-SP does not have the offline phase, whereas
the deterministic policy obtained by Alg. 1 and the deep
learning policy have both the offline and online phases.
Next, we elaborate the complexity of the proposed polices
in each phase. The complexity of the policies is summarized
in Table II.

e The deterministic policy: The complexity of the offline
phase of the deterministic policy is the complexity of run-
ning Alg. 1. Alg. 1 is an iterative algorithm that involves
iterating between bisection and RVIA. The complexity order
of each iteration of RVIA is at most O(].A4||S|?), where the
state space size |S| is approximately N3/ and the action
space size |A| is (I + 1)2. Accordingly, the complexity of the
offline phase of the deterministic policy is O (M; M>I*>N®T),
where M, and M, are, respectively, the iterations required
in bisection and RVIA. The complexity of the online phase is
O(1) since it is needed to just fetch the corresponding action
of each state from the lookup table obtained in the offline
phase.

e DPP-SP: As mentioned above, DPP-SP does not have
the offline phase. In the online phase, the policy needs [
comparisons for each of the two decision variables, thus, 27
comparisons in total. Therefore, the complexity of DPP-SP in
the online phase is O(I).

o The deep learning policy: The offline phase of the deep
learning policy is its training phase. Because the policy is
based on the deep neural network, its (computational) com-
plexity is mainly related to the model and size of the neural
network and the training process. The training complexity of
the neural network consists of two stages: 1) the forward prop-
agation algorithm (forward pass) and 2) the backpropagation
algorithm (backward pass). The complexity of the forward
propagation algorithm is O (P, (P + M3 P, + P,)) [60], [61],
where P, = 1431 is the number of neurons of the input layer
(which equals the number of elements in the state vector),
and P, = |A| is the number of neurons of the output layer.
Moreover, P, is the number of neurons in each hidden layer
and Ms3 is the number of hidden layers; it is assumed that
all the hidden layers have the same number of neurons. The
complexity of the backpropagation algorithm is similar to
that of the forward propagation algorithm [60]. In terms of
the training process, the complexity is mainly related to the
number of episodes M, and iterations (per episode) Ms5,

and the batch size Mg (i.e., the number of samples used
to update the weights of the neural network). Accordingly,
the overall complexity of the offline phase of the policy is
O (MyMsMgPy, (P, + MsP, + P,)). In the online phase, the
action selection is done by executing the forward propagation
algorithm and thus, the complexity of the online phase of the
policy is O(Py (P + M3P, + P,)).

VII. NUMERICAL RESULTS

In this section, we numerically evaluate the WS-AAol
(i.e., weighted sum average Aol at the destination) perfor-
mance of the three proposed policies: 1) the deterministic
policy 7}, obtained by the structure-aware RVIA in Alg. 1,
2) DPP-SP given by (21), and 3) the deep learning policy
provided in Section V. For Alg. 1, we set N = 10, I = 2,
¢ = 0.1, and € = 0.001. For the deep learning policy,
we consider a fully-connected deep neural network consisting
of an input layer (|Z[t]| = 6 + 1 = 7 neurons), 2 hidden layers
consisting of 512 and 256 neurons with ReLU activation
function, and an output layer (|.4] =9 neurons). Moreover,
the number of steps per episode is 600, the discount factor
is 0.99, the mini-batch size is 64, the learning-rate is 0.0001,
and the optimizer is RMSProp [62]. The sources’ weights are
set to 1 for all sources. The system parameters, i.e., the arrival
rates g = (1, p2), the channel reliabilities p = (p1, p2), and
the constraint budget I';,,, are specified in the caption of each
figure.

Next, we provide algorithm-specific analysis in
Section VII-A and performance comparison in Section VII-B.

A. Algorithm-Specific Analysis

1) Algorithm 1: Here, we verify Theorem 3 by visual-
izing the switching-type structure of A-optimal policies and
investigate the WS-AAol performance of the deterministic
policy 73 .

Fig. 2(a) shows the structure of a A-optimal policy for the
decision at the relay 8 with respect to the relative Aols at
the destination y; and yo for state s = (1,0,y1,2,1, y2). The
figure validates Theorem 3 and unveils that the relay schedules
an available packet of the source that has higher relative Aol
at the destination; this is because the contribution of delivering
such packet in the Aol reduction is higher than the other who
has a lower relative Aol at the destination. Having 5 = 0 at
(y1 = 0, yo = 0) is because the most recent status update
packets of the sources at the relay are also available at the
destination; thus, re-sending them would not reduce the Aol.

Fig. 2(b) exemplifies the structure of the A-optimal policy
for the decision at the transmitter o with respect to the relative
Aols at the relay z; and x5 for state s = (1,21,4,1,29,4).
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A=1.25 p=(0.8,0.7), and p = (0.6, 0.9).

Having o = 0 at (z1 = 0, 2 = 1) implies that transmission
does not occur at every state due to the resource budget.
Moreover, a« = 0 at (x1 = 0, 9 = 0) is because the most
recent status update packets of the sources at the transmitter
were already sent to the relay. The figure also shows that for
fixed y; and yo, the transmitter will give a higher priority to
schedule transmissions of Source 1 who has a lower arrival
rate. That is, while the low packet arrival rate of Source 1
inevitably leads to infrequently receiving status updates by
the destination, the optimal policy partly compensates for this
by prioritizing to send fresh packets from Source 1, whenever
possible.

Fig. 3 illustrates the WS-AAol performance of the proposed
policies obtained by Alg. 1 as a function of the constraint
budget I';,ox obtained by averaging over 100,000 time slots.
The “lower bound” is obtained by the infeasible policy 73 _.
First, Fig. 3 shows that the deterministic policy 7}, achieves
near-optimal performance and the lower bound is tight because
the difference between the feasible policy and the infeasible
policy is small. In addition, we observe that the gap between
the deterministic policy and the lower bound increases as I'ax
decreases. Thus, randomizing these two policies will produce
the highest relative gain in this regime.

2) DPP-SP: For DPP-SP, we investigate the impact of the
trade-off parameter V' on the WS-AAol and the average num-
ber of transmissions in the system in Fig. 4. Fig. 4(a) shows
the evolution of the WS-AAol over time slots for different
values of V. We observe that, for sufficiently small values of
V, by increasing V, the WS-AAol decreases. Fig. 4(b) shows
the evolution of the average number of transmissions over

Fig. 3.
where p = (0.7,0.8) and g = (0.5,0.6).
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time slots
Fig. 4. Impact of parameter V' on DPP-SP, where I'max = 1.2,

p = (0.3,0.4), and p = (0.5,0.7).

time slots. The figure validates Theorem 5 by showing that the
time average constraint (2b) is satisfied for all V. However,
the convergence speed decreases as V' increases. These obser-
vations give us some practical guidelines in that we should
set parameter V' large (but not excessively high) to obtain a
low value of the WS-AAol, because increasing V' beyond a
certain value does not bring significant improvements.

3) Deep Learning Policy: For the deep learning policy,
we show the evolution of the episodic reward over episodes in
Fig. 5(a), the evolution of the average number of transmissions
over episodes in Fig. 5(b), and the evolution of the WS-AAol
over episodes in Fig. 5(c) for different values of I';,,x. The
episodic reward is defined by the sum of rewards obtained
at each episode. Fig. 5(d) validates that the proposed deep
learning policy satisfies the time average constraint (2b) for
all the constraint budgets. However, the convergence speed is
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Fig. 5. Results of the deep learning policy for different I'max, where
V =100, p=(04,0.5), and p = (0.6,0.8).

highly affected by I'.x, i.e., as ' ax increases, the policy
converges quickly. The same convergence behavior is seen for
the episodic reward function in Fig. 5(a) and the WS-AAoI in
Fig. 5(c).

B. Performance Comparisons

In this subsection, we provide a performance comparison of
the proposed policies. The results are averaged over 100,000
time slots and the parameter V' is set to 100. For comparison,
we also consider a greedy “baseline policy”, which determines
the transmission decision variables at each slot ¢ according to
the following rule: If D; < Tpay, then aft] = arg max; z;[t]
and ([t] = arg max, y;[t]; otherwise, a[t] = 0 and B[t] = 0,

where D, denotes the average number of transmissions until
slot ¢. This policy satisfies the time average constraint (2b).

E 30 —e—Deterministic policy | |
< —=—DPP-SP
g 25+ —o—Deep learning policy|
2 ——Baseline policy
E 20 ]
5]
= 15 ]
=

10 ]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

The constraint budget, I'ax

Fig. 6. The WS-AAol versus the constraint budget for the different policies,
where p = (0.7,0.8) and i = (0.5,0.6).

It is remarkable that the baseline policy and DPP-SP (given
by (21)) have similar computational complexity.

1) Effect of the Constraint Budget: Fig. 6 depicts the WS-
AAoI performance of the proposed policies and the baseline
policy as a function of the constraint budget I'y, .. First,
Fig. 6 reveals that the low-complexity DPP-SP has near-
optimal performance because it nearly coincides with the
(near-optimal) RVIA-based deterministic policy 7} obtained
by Alg. 1. The figure also shows that the deep learning policy
obtains near-optimal performance when the constraint budget
becomes sufficiently large, e.g., I'max > 0.8. Moreover, the
figure shows that the WS-AAol performance gap between
the baseline policy and the proposed policies is extremely
large when the constraint budget is small; this is because
in such cases, performing good actions in each slot becomes
more critical due to having a high limitation on the average
number of transmissions. The figure shows that the proposed
policies achieve up to almost 91% improvement in the WS-
AAol performance compared to the baseline policy. Finally,
we can observe that, as the constraint budget increases, the
WS-AAol values decrease; however, from a certain point
onward, increasing the constraint budget does not considerably
decrease the WS-AAol.

2) Effect of the Arrival Rates: In Fig. 7(a), we examine
the impact of the arrival rates p; and po on the WS-AAol
performance of the different policies. The figure shows that
the WS-AAol increases as the arrival rates decrease. This
is because when the arrival rates decrease, the rate of fresh
update delivery at the destination decreases. The figure also
reveals that, as the arrival rates increase, the reduction of
the WS-AAol by the proposed policies in comparison to the
baseline policy becomes increasingly more prominent. The
reason for this behavior is that by the increase of the arrival
rates there are more new fresh packets which can potentially
reduce the Aol if they are delivered timely/optimally to
the destination. The greedy baseline policy, however, cannot
deliver them timely. Moreover, it is observable that when
the arrival rates are sufficiently large, increasing them further
does not considerably reduce the WS-AAol. This observation
is due to the fact that in our system, only one packet can be
transmitted in each slot, and for large values of the arrival
rates, the probability of having at least one fresh packet does
not change considerably by changing the arrival rates.
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3) Effect of the Successful Transmission Probabilities:
In Fig. 7(b), we examine the impact of the successful trans-
mission probabilities p; and po on the WS-AAol performance
of the different policies. First, the figure shows that the
WS-AAol performance gap between the proposed policies
and the baseline policy is significant, especially when the
successful transmission probabilities are small. The reason is
that when the successful transmission probabilities are small,
finding optimal transmission times become more critical,
as there are resource limitations. Moreover, the figure shows
that the WS-AAol considerably decreases as the successful
transmission probabilities increase; this is expected, because
the probabilities of successfully receiving the transmitted
status update packets through the unreliable links increase, and
consequently, the destination receives updates more frequently.

4) Effect of Number of Sources: In Fig. 8, we show the
effect of the number of sources on the WS-AAol for different
values of the constraint budget I',.x without bounding the
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Fig. 9. Impact of weight w; on the AAol of sources in a two-source
setup, where wa = 1 — w; and w; = [0.05: 0.05 : 0.95]. Moreover,
p = (0.7,0.7) and p = (0.6,0.6).

Aol. Here, we utilize the DPP-SP, the deep learning policy, and
the greedy baseline policy; notably, as explained in Section VI,
Alg. 1 is not scalable to a multi-source setup (with a high
number of sources). The figure shows that WS-A Aol increases
by increasing I. This is because, for a fixed I',,,x, when [
increases, the opportunity of having transmissions for each
source decreases; thus, the WS-AAol increases.

5) Effect of the Source’s Weight: Fig. 9 illustrates the impact
of the weight w; on the AAol of sources for DPP-SP in a two-
source setup. As can be seen, by increasing the weight of a
source, its AAol decreases, as expected. The reason is that by
increasing the weight of a source, we put more emphasis on
the Aol of the source, and thus, the policy tries to keep its
Aol lower.

VIII. CONCLUSION AND FUTURE WORKS

We studied the WS-A Aol minimization problem in a multi-
source relaying system with stochastic arrivals and unreliable
channels subject to transmission capacity and the average
number of transmissions constraints. We formulated a stochas-
tic optimization problem and solved it with three different
algorithms. Specifically, we proposed the CMDP approach in
which we first conducted analysis to show that an optimal
policy of the MDP problem has a switching-type structure
and subsequently, utilized this structure to devise a structure-
aware RVIA that gives a near-optimal deterministic policy and
a tight lower bound; the convergence of the algorithm was also
proven. We devised a dynamic near-optimal low-complexity
DPP-SP, representing an efficient online scheduler for systems
with large numbers of sources. Moreover, we devised a deep
learning policy combining the Lyapunov optimization theory
and D3QN.

We numerically investigated the effect of system parame-
ters on the WS-AAol and showed the effectiveness of our
proposed policies compared to the baseline policy; the results
showed up to 91% improvement in the WS-A Aol performance.
Accordingly, an age-optimal scheduler design is crucial for
resource-constrained relaying status update systems, where
greedy-based scheduling is inefficient. Moreover, the results
showed that the proposed deep learning policy satisfies the
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time average constraint and achieves performance close to the
other proposed near-optimal policies in many settings.

An interesting future work would be to consider individual
constraints on the average number of transmissions for both
the transmitter-relay and relay-destination links. This would
lead to a stochastic optimization problem with multiple aver-
age constraints, which may be tackled via solution methods
developed in [63].

APPENDIX
A. Proof of Theorem 1

By [56, Exercise 4.3], it is sufficient to show that the
Markov chain, described by the transition probability matrix
with elements Psg/(a), corresponding to every deterministic
policy has a state which is accessible from any other state.
We show this by dividing the sources into two different groups
7: and Z, based on the values of the arrival rates u;, i.e.,
sources with p1; = 1 belongs to Z; and sources with p; € (0,1)
belongs to Z,. Let us express each state s € S by s =
{si}iez,uz,, Where recall that s; = (6;,x;,y;). Then, in the
Markov chain induced by every deterministic policy, state
s2¢ = {s2°},c1,uz,, Where s2°¢ = (0, N,0),Vi € Z; and
s2°¢ = (N,0,0),Vi € Iy, is accessible from any other state.
This is due to the fact that regardless of actions taken: (1) there
is always new arrivals for sources belong to Zp, (2) the
probability of having no arrivals for all sources belong to 7,
for at least N consecutive slots is [[,(1—pu;)", i € Z,, which
is positive, and (3) the probability of having unsuccessful
receptions in both the relay and the destination for at least
N consecutive slots is (1 —p1)™ (1 —po)Y, which is positive.
Thus, according to the evolution of the Aols, starting from any
state at any slot ¢ leads to state s*“ with a positive probability,
which completes the proof. that in Markov chain induced
by any deterministic policy, state s = (N,0,0,N,0,0) is
accessible from any other state including the initial state,
which completes the proof.

B. Proof of Theorem 3

To show the switching-type structure w.r.t. y for a A-optimal
policy, we use Theorem 2. First, by turning the optimality
equation (8) into the iterative procedure (10), for each state
s € S, we can iteratively obtain h(s) 2 V(s) — V(s,ef) and
consequently 75(s) (see (9)). We then use (10) and show
a monotonic property of the function V(s) in the following
lemma, which will be used in the next steps of the proof.

Lemma 1: The function V (8) is a non-decreasing function
with respect to every sj, where s;, j=1,...,31, is the j-th
element of state vector s = (01,21, y1,---,01,21,Y71)-

Proof: 'The proof is based on the induction hypoth-
esis. First, the sequence {V,,(s)}n=1,2,.., updated by (10),
converges to V(s) for any initialization (see Theorem 4).
Also, Lemma 1 holds for Vj(s). Now, we assume that V,,(s)
is non-decreasing in s;. The immediate cost of the MDP
L(s,a;A) = S0 wi(0; + z + yi) + A (D(aft]) — Tiax) s
a non-decreasing function in s;, j =1,...,3I. In addition,
Y sesPss'(a)Vi(s') is a non-decreasing function in s; via
the induction hypothesis, and the minimum operator in (10)

preserves the non-decreasing property. Thus, we conclude that
Vin+1(s) is non-decreasing in every s;, which completes the

proof. ]
Now, we need to show that if for an arbitrary state
s a A-optimal policy takes action 3 = 4, then for all

states s + kes; the policy takes also action § = i,
where k is a positive integer. Let us define a function
V(s,a;\) £ L(s,a;\) + E{V(s) | s,a} — V(ster), where
E{V(s') | s,a} Y oesPss' (@) V(s'). Without loss of
generality, suppose that / = 2 (for notation simplicity) and
an optimal policy takes action a = (2,1) at state s which
implies the following:

V(s,(2,1);0) <V(s,(2,2);0) =

E{V(s) |s,(21)} <E{V(s') |5 (2,2)}.

To show the switching-type structure w.r.t. y, we must show
that E{V(s') | §,(2,1)} <E{V(s') | §,(2,2)}, where § =
(01,21,11 + k,02,22,y2). Let us express V(s) as V(sy,s2)
(with slight abuse of notation), where s; = (61, z1,y1) and
s2 = (02, 72, y2).

We calculate the expectations as follows:

B{VE) |521)
= pypop1p2V (s1,1,82,1)
+ pipepipaV o (s1,1,82,2) + pifiepip2V (S1,1,82,3)
+ p1fiep1p2V (s1,1,82,4) + pipepiD2V (S1,2,82,1)
+ pipep1P2V (S1,2,82,2) + p1fiap1P2V (S1,2,82,3)
+ pifiep1p2V (1,2, 82,4) + flipropip2V (s1,3,82,1)
+ [ pePip2V (s1,3,82,2) + fifiepip2V (S1,3,82,3)
( ) ( )
( ) ( )
( )

(24)

+ [1fiep1p2V (81,3,82,4) + f1p2p1D2V (S1,4,82,1

+ fipep1p2V (S1,4,82,2) + f1jiop1P2V (S1,4,82,3

+ f1fi2p1p2V (S1,4,82,4) ,
where 811 = (0,1 + 51,0), s12 = (0,71 + él,y'l), S1,3 =
(01,21,0), s1,4 = (61,%1,91), s2,1 = (0,02, P2 +72), S22 =
(0,2 + 02,72), s2,3 = (02,0,72 + T2), s24 = (02, T2, 72),
where y; = min (y1 +k+ oz + 0, + l,N) — min (xl +
01 + 1,N); recall that 0;, T;, and y; were defined (see
Section III-A) as follows: §; = min (91- + I,N), 3 &
min (9cZ +0; + l,N) — min (91- + LN), and §; £ min (yz +
z; + 60; + 1,N) — min (z; + 6; + 1,N). We calculate
E{V(s') | 5 (2,2)} by
E{V(s') |5,(2,2)}

= papep1p2V (s1,2,85 ;)

+ ppeprpaV (s1,2,85,2) + pifiopip2V (s1,2,85 3)

+ pfap1p2V (s1,2,85.4) + papep1p2V (s1,.2,82,1)

+ pipep1paV o (s1,2,82,2) + pafiepiP2V (S1,2,82,3)

+ pafieprp2V (s1,2,82,4) + firpiap1p2V (S1,4,85 1)

+ fapep1p2V (S1,4,8h2) + B1f2pip2V (S1,4,85 3)

+ f1jizp1paV (S1,4,85.4) + 1 piep1p2V (s1,4,82,1)

+ [i1p2p1p2V (S1,4,82,2) + fi1fizp1p2V (814,823

+ fi1fiop1Pp2V (S1,4,82,4) 5
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where sp1 = (07521552), spo = (0,72 + 05,0), Shy =
(02,0,22), sy, = (02,72,0). By the above two equations,
we have
U£E{V(s) |5 21D} -E{V(s)|5(22)}
= papiep1pz [V (s1,1,82,1) — V (s1,2,85,) ]
+ prpopripe [V (s1,1,822) = V (s1,2,85 5)]
+ pafizpipz [V (s1,1,823) = V (s1,2,85 5)]
+ pafiepip2 [V (s1,1,824) — V (s1,2,85 4)]
+ fpopipz [V (s1,3,82,1) — V (14,85 )]
+ fipepipz [V (s13,822) = V (s1,4,855)]
+ fjiopip2 [V (s1,3,82,3) — V (14,85 5)]
+ ffiopripz [V (s1,3,824) — V (81,4,85 4)]

Let G be the same as U, except for the following changes:
s1,2 — (0,21 + 61,71) and 81 4 — (01, %1, 71). Now, we have
(a) (b
E{V(s) |5 (21} -E{V(s)|5(22)}=U <G <0,
where (a) follows from the monotonicity of V (s) by Lemma 1
and (b) follows from (24). We have shown that a A-optimal

policy has the switching-type structure, which completes the
proof.

C. The Upper Bound for the Conditional Lyapunov
Drift in (12)

To derive the upper bound for the conditional Lyapunov
drift A[t], we use the following inequality in which, for any
A1 >0, As >0, and A3 > 0, we have [57, p. 58]

(max{A; — Ay + A3,0})> < A2 + A2 + A2 + 24,
X (A3 — AQ) (25)

By applying (25) to the evolution of the virtual queue in (11),
we obtain

H2[t+1] < HP[t] + T, +
- 1—‘max)-

By applying (26) to the conditional Lyapunov drift A[t] in
(12), we obtain

Alf] < T2,./2 + E{D(a[t])? | Z[1]}/2
HI(E{D(@[t]) | Z[]} — Tma)
Y B4 HIE(D@) | Z10) - D),

1/212. + 2 and (a) is due to using
Z[t]} < 4.

D(alt])* + 2H[t](D(alt))
(26)

27

where B =

E{D(alt])* |

D. Proof of Theorem 5

To show the strong stability of the virtual queue under
DPP-SP, first, we define an idle policy that chooses the idle
decisions in each slot ¢, i.e., &'¥![t] = 0 and 5'4![t] = 0; hence,
a'dl[t] £ (0,0). By using inequality (16), we have

o[t] < B+ H[)(E{D(alt]) | Z[t]} — I'max)
+ Vzwi { (1 = p2[t]Lyp=iy)vilt]

+ (1= ;[T gag=iy)zill]
+ aift] +2601)+ 2 | Z[1})

(<) B+H ]E{D ldl ) i Z[ti} *Fmax)
+ Vzwi( { (1 = p[tlLgiaryy—iy )vilt]

+ (1 = pr[t] L aipg=iy)@i[t] + 24t
+ 260;[t] +2 | Z[t })

(<) B+ H[t)(E{D@"]) | Z[t]} — Tmax)
+ Vzwi yilt] + wilt] + @i[t] + 20;[t] + 2)

%

(28)

where (a) is due to inequality (16), (b) follows because DPP-
SP, given by (21), minimizes the upper bound of the drift-
plus-penalty function, i.e., the RH.S of (a) in (28), in each
slot ¢ among all the possible decisions, including the idle
decisions, and (c) is due to the fact that, for any decisions
in slot ¢, the inequalities E{1 — p1[t]l{apg=y | Z[t]} < 1and
E{1 - {lﬁ #=i} | Z[t]} <1 hold. In (28), using the fact
that E {D idlfg]) | Z[t]} = 0 and the Aol values are bounded
by finite IV, and takmg expectations with respect to Z[t] and
using the law of iterated expectations yields:

[t +1]) = L(H[t]) + V3,0t + 1]}
<B - TouB{H[t]} + VN +4) 3, w;

E{L(H
(29)

oy

In (29), summing over ¢t = 0,...,7 — 1 (using the law
of telescoping sums), dividing by positive 7' and I'y,x, and
rearranging yields

1= B E{L(H[T])} — E{L(H[0])}
T ; E{Hiti} < Fmax - TrmaX
T—
Z A E{5 [t + 1]}
f/ -
—i_ Fmax
@ BF+V N E{;(F oD} (30)

where (a) follows because we neglected the negative terms in
the L.H.S of (a). By taking a limsup of (30) as " — oo, and
due to that E{L(H|[0])} is finite, we obtain

E{H[]}<B+V, (31)

Tmax

li !
1m su -
T~>oop T

which implies that the virtual queue is strongly stable.
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