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Abstract— With its privacy preservation and communication
efficiency, federated learning (FL) has emerged as a promising
learning framework for beyond 5G wireless networks. It is
anticipated that future wireless networks will jointly serve
both FL and downlink non-FL user groups in the same time-
frequency resource. While in the downlink of each FL iteration,
both groups simultaneously receive data from the base station
in the same time-frequency resource, the uplink of each FL
iteration requires bidirectional communication to support uplink
transmission for FL users and downlink transmission for non-
FL users. To overcome this challenge, we present half-duplex
(HD) and full-duplex (FD) communication schemes to serve both
groups. More specifically, we adopt the massive multiple-input
multiple-output technology and aim to maximize the minimum
effective rate of non-FL users under a quality of service (QoS)
latency constraint for FL users. Since the formulated problem
is nonconvex, we propose a power control algorithm based on
successive convex approximation to find a stationary solution.
Numerical results show that the proposed solutions perform sig-
nificantly better than the considered baselines schemes. Moreover,
the FD-based scheme outperforms the HD-based counterpart in
scenarios where the self-interference is small or moderate and/or
the size of FL model updates is large.

Index Terms— Massive multiple-input multiple-output
(MIMO), federated learning (FL), resource allocation, successive
convex approximation (SCA).

I. INTRODUCTION

THE use of mobile phones and wearable devices enables
continuous collection and transfer of data [2], [3], which
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has been the main driving force behind the explosive increase
in data mobile traffic in recent years. Also, due to a constant
growing interest in new features and tools, the computational
power of these devices is increasing day by day. Thus, in many
applications, part of data processing is carried out at user
equipment (UE). In this context, questions over the transmis-
sion of private information over wireless networks naturally
arise. To preserve data privacy, a potential solution is to store
data on local servers and move network computation to the
edge [4], [5]. In fact, data privacy has drawn significant interest
in developing new machine learning techniques that can ensure
data privacy and exploit the computational resources of users
at the same time. One such a promising technique is known
as Federated Learning (FL) which was first introduced in [6].
In a FL process, base station and users do not share the raw
data but only the training updates, and hence, the user privacy
is preserved. On the other hand, edge computing does not
aim to protect data privacy. Specifically, in edge computing,
computations are shifted to the edge devices that are placed
close to user devices to reduce the computing burden on
user devices. Therefore, there is a risk of privacy leakage as
already happened in the third-party companies like Google,
Facebook in the past [7]. Moreover, modern user devices are
now equipped with more powerful computational capabilities
with dedicated and integrated processors like Hexagon DSP
with Qualcomm Hexagon Vector eXtensions on Snapdragon
835 [8]. Therefore, computing local updates at user devices
in FL is entirely possible. Due to the data privacy attribute,
FL has been used in a wide range of real-world digital appli-
cations e.g., Gboard, FedVision, functional MRI, FedHealth,
etc. [9], [10], [11].

FL has also gained growing attention from the wireless
communications research community recently due to its pri-
vacy protection and resource utilization features [4], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
mainly from the viewpoint of implementing FL over wireless
networks. The deployment of an FL framework has been
studied for 5G and beyond networks [12], [13]. Moreover,
pioneering studies on FL in wireless communications can be
classified as “learning-oriented” or “communication-oriented.”
The learning-oriented category aims to improve the learning
performance (e.g., training loss, test accuracy) subject to
inherent factors in wireless networks such as thermal noise,
fading, and estimation errors [15], [16], [17], [18], [19].
Specifically, in [15], Chen et al. considered user selection to
minimize the FL training loss function under the presence of
network constraints. Amiri and Gündüz in [16] optimized the
test accuracy to schedule devices and allocate power across
time slots. Sun et al. improved the training efficiency by jointly
considering the effects of uplink resource, energy consumption
and latency constraints [17]. Bouzinis et al. in [18] considered
the problem of minimizing the total delay in each round

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9079-0290
https://orcid.org/0000-0002-8342-4567
https://orcid.org/0000-0002-3367-2220
https://orcid.org/0000-0002-9317-9980


248 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

of FL process in the case of compute-then-transmit non-
orthogonal multiple access (NOMA). In [19], Wu et al. jointly
optimized the overall latency for the FL process and the
sum energy consumption of the BS and user devices for the
NOMA assisted FL. The communication-oriented category,
on the other hand, focuses on enhancing the communication
performance (e.g., training latency, energy efficiency) in the
framework of FL [20], [21], [22]. For example, in [20], Yang et
al. considered the problem of minimization of the total energy
consumption to train the FL model under a latency constraint.
Vu et al. in [21] focused on minimizing the training latency
under transmit power and data rate constraints. In [22], Tran
et al. investigated the problem of optimizing the computation
and communication latencies of mobile devices subject to
various trade-offs between the energy consumption, learning
time, and learning accuracy parameters. Zeng et al. in [23]
investigated the problem of maximizing the energy efficiency
of the FL process by designing a joint computation-and-
communication resource management scheme. Pham et al. also
studied the energy-efficient resource allocation problem for
the FL framework under various resource constraints [24].
All above-mentioned works take into account serving only
FL UEs. However, it is certain that future wireless net-
works will need to serve both the FL and non-FL UEs
if FL is to be realized, which calls for novel communica-
tion designs. We address this fundamental problem in this
paper.

As it is foreseen that future wireless networks will include
simultaneously both learning and non-learning users, it will be
a natural requirement to serve both group of users at the same
time. In this regard, our motivation is to provide an answer
to this forward-looking use case. The main challenge of the
above coexistence is that how to optimize the data rate of
non-FL UEs while ensuring a QoS constraint on the execution
time of the FL UEs, which has not yet been studied in the
existing literature. To understand this design challenge, let us
briefly describe a communication round of an FL iteration in
the presence of only FL UEs, which consists of four steps:
(i) A central server transmits the global update of an ML
model to FL UEs; (ii) FL UEs calculate their local model
updates based on their local data set; (iii) The local model
updates are sent back to the central server; and (iv) The central
server calculates the global update by aggregating the received
local model updates [25]. It is clear that problems arise when
there are non-FL UEs that need to be served in the downlink.
First and most importantly, in Step (iii), the base station needs
to set up a two-way communication channel to implement
the uplink of FL UEs and the downlink of non-FL UEs.
Second, efficient resource allocation approaches are required
at all the steps to control the inter-user interference among
FL UEs and non-FL UEs to satisfy their different service
requirements.

There are two types of communication schemes that are
possible to serve the two-way communication between the cen-
tral server and UEs, namely half-duplex (HD) and full-duplex
(FD). Each of these communication schemes has its own
advantages and disadvantages [26]. The main draw back of the
FD scheme is the self-interference (SI) between transmit and
receive antennas of the BS can cause significant performance
degradation, which does not appear in the HD communication.
However, for small or moderate SI, the FD communication

can approximately double the spectral efficiency compared
to the half duplex (HD) scheme [27]. Both HD and FD
schemes are popular in the literature of massive multiple-input
multiple-output (MIMO) networks [28], [29], [30]. However,
they cannot be straightforwardly applied to the massive MIMO
systems that serve both FL and non-FL UEs.

In this paper, we follow the communication-oriented
approach and propose a novel network design for jointly
serving FL and downlink non-FL UEs1 at the same time. First,
we propose a communication scheme using massive MIMO
and let each FL communication round be executed in one
large-scale coherence time.2 Because of the high array gain,
multiplexing gain, and macro-diversity gain, massive MIMO
provides a reliable operation of each FL communication round
as well as the whole FL process [21]. Here, in the first step of
each FL communication round, both groups are jointly served
in the downlink by the central server and in the third step,
either the HD scheme or the FD scheme is considered to
serve the uplink transmission of FL UEs and the downlink
transmission of non-FL UEs. Next, we formulate an optimiza-
tion problem that optimally allocates power and computation
resources to maximize the fairness of effective data rates for
non-FL UEs, while ensuring a quality-of-service time of each
FL iteration for FL UEs. A successive convex approximation
algorithm is then proposed to solve the formulated problem.
In particular, our contributions are as follows:

• We propose HD and FD communication schemes to
jointly serve both FL and non-FL UEs in a massive
MIMO network, which has not been studied previously.
In the proposed HD scheme, the total system bandwidth
is divided equally between the FL and non-FL groups in
the uplink of each FL iteration such that both groups are
served at the same time in different bandwidths. In the FD
communication scheme, both FL UEs and non-FL UEs
transmit and receive data in the same time and bandwidth
resource under the presence of SI.

• We propose a new performance measure, called the
“effective data rate”, which is defined as the amount of
data received by the non-FL UEs, per unit latency time
taken by FL UEs. Then, we formulate two optimization
problems, each of which is dedicated to the HD and
FD scheme, to maximize the minimum effective data
subject to a QoS constraint on the execution time for
FL UEs. The formulated problems are non-convex with
a fractional structure of the objective function and non-
convex constraints. To solve the formulated problems,
we first transform them into a more tractable form where
the SCA is more amendable. Then we apply several con-
vex approximations to arrive at iterative algorithms that
are numerically shown to converge very fast. Note that
the underlying mathematical structure of the formulated
problem is unique and different from any existing works
that aim to support federated learning using wireless
communications. Therefore, the optimization methods in
those works cannot be straightforwardly applied to solve
the considered problems in this paper.

1The network design for uplink non-FL UEs is open for future works.
2Large-scale coherence time is a time interval where the large-scale fading

coefficient remains reasonably invariant.
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• We provide an extensive set of simulation results to
compare the proposed HD-based and FD-based schemes
with two baseline schemes: The first baseline scheme
makes use of the frequency division multiple access
(FDMA) approach to serve each user independently in an
allocated bandwidth, while the second baseline scheme
considers an equal power allocation (EPA) approach to
find the power control. It is observed that the proposed
HD and FD schemes provide significantly better solution
than two considered baseline schemes. Numerical results
also show that the FD scheme is a better choice than the
HD scheme when the size of the model updates is large
and/or when the SI is small or moderate.

Notations: Bold lower and upper case letters represent
vectors and matrices, respectively. The notations R and C
represent the space of real and complex numbers, respectively.
∥·∥ represents the Euclidean norm; |·| is the absolute value of
the argument. CN (0, a) denotes a complex Gaussian random
variable with zero mean and variance a. XT and XH stand for
the transpose and Hermitian of X, respectively. The operators
E{·} and Var{·} represent expectation and variance of the
argument, respectively.

II. SYSTEM MODEL AND PROPOSED TRANSMISSION
SCHEMES

A. System Model
We consider a massive MIMO system where a BS serves

simultaneously non-FL UEs and FL UEs. We assume that the
non-FL UEs are only those receiving data in the downlink
transmission.3 Let L ≜ {1, . . . , L}, and K ≜ {1, . . . ,K} be
the sets of FL UEs and non-FL UEs, respectively. All FL and
non-FL UEs are equipped with a single antenna, while the BS
has M transmit antennas and M receive antennas.

To serve FL UEs, the BS acts as a central server. There
are four main steps in each iteration of a standard FL frame-
work, i.e., global update downlink transmission, local update
computation at the UEs, local update uplink transmission,
and global update computation at the BS [6], [22], [31].
To serve non-FL UEs, as mentioned above, the BS constantly
transmits downlink data to the non-FL UEs at the same time
when all four steps of each FL iteration are executed. Thus,
the transmission protocol of our considered system can be
summarized as the following four steps in each FL iteration:
(S1) The BS sends a global update through the downlink

channel to FL UEs. At the same time, non-FL UEs also
receive downlink data from the BS.

(S2) The FL UEs update their local training model based on
the global update and solve their local learning problems
to obtain their local updates. During this time duration,
non-FL UEs continue receiving downlink data from BS.

(S3) The locally computed updates are sent by FL UEs to the
BS in the uplink channel while the downlink data is still
being sent from the BS to non-FL UEs.

3The system model is more general if both uplink and downlink non-FL
UEs are included. However, as the first attempt to study a new scenario,
we only consider the downlink non-FL UEs to simplify the system model and
the resulting mathematical presentation which enables us to obtain important
insights. Note that, even for this simplified model, the problem of maximizing
the minimum effective rate of non-FL UEs is still non-convex and thus
challenging to solve as shall be discussed in the next section. While it is
always interesting to consider both uplink and downlink non-FL UEs, we leave
it for future research due to the exploring nature of this paper.

TABLE I
TABLE OF FREQUENCY USED NOTATIONS

(S4) The BS computes the global update by aggregating the
received local updates.

In Step (S3), we need to serve both FL and non-FL UEs.
In this regard, there are two types of possible communication
schemes: HD and FD. In the HD scheme, the FL and non-FL
groups are served in different frequency bands, while in the FD
scheme, both groups are served in the same time and frequency
resource. During Step (S4), the BS computes its global update
after receiving all the local update, the delay of computing the
global update is negligible since the computational capability
of the central server is much more powerful than that of
the UEs. Therefore, the amount of downlink data received
by the non-FL UEs during the fourth step is not considered
in the rest of the paper. Before proceeding further, we define
some frequently used notations in Table I.

B. Proposed Transmission Schemes

In this section, we propose transmission strategies to serve
both FL and non-FL UEs at the same time in a massive MIMO
network. Such scenario of jointly serving both learning and
non-learning group of users has not been addressed in the
literature previously. In particular, we propose to use a scheme
in [21] to support FL iterations as in Fig. 1(a). We assume that
each FL iteration is executed within a large-scale coherence
time. All the FL UEs start each step of their FL iterations at
the same time, and wait for others to finish their steps before
starting a new step. We remark that the small-scale fading
coefficients remain constant over each small-scale coherence
block, and change in the following coherence blocks. The
global and local updates in Steps (S1) and (S3) are transmit-
ted in multiple (small-scale) coherence blocks, as shown in
Fig. 1(b). Each small-scale coherence interval in Step (S1) or
(S3) includes two phases: channel estimation and downlink or
uplink transmission. In the following, we will provide details
of our proposed transmission protocol for both HD and HD
modes at the BS in Step (S3).

1) Step (S1): In this step, the BS wants to send the global
updates to all FL UEs via a downlink transmission while
simultaneously sending the payload data to all the non-FL
UEs.
• Channel estimation: The BS estimates the channels by

using uplink pilots received from all the UEs with a
time-division-duplexing (TDD) protocol and exploiting
channel reciprocity. Let √τd,pρpφℓ ∈ Cτd,p×1, where
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Fig. 1. (a): Illustration of FL iterations over the considered massive MIMO
network with two groups of FL and non-FL UEs, and two UEs in each group.
(b): Detailed operation of one FL iteration of the FL group.

∥φℓ∥ = 1, be the dedicated pilot symbols assigned
to the ℓ-th FL UE, and √τ1,pρpφ̄k ∈ Cτ1,p×1, where
∥φ̄k∥ = 1, be the pilot sequence assigned to the k-
th non-FL UE, where ρp is the normalized signal to
noise ratio (SNR) of each pilot symbol.4 In addition, τd,p

and τ1,p are the corresponding pilot lengths. We assume
τd,p, τ1,p ≥ L+K, and the pilots of non-FL UEs and FL
UEs are pairwisely orthogonal i.e. φH

ℓ φ̄k = 0,∀ℓ,∀k,
φH

ℓ φℓ′ = 0, ∀ℓ′ ̸= ℓ and φ̄H
k φ̄k′ = 0, ∀k′ ̸= k. In other

words, pilot contamination is not considered in our paper.
Let Gd = [gd,1, . . . ,gd,L] ∈ CM×L and H1 =
[h1,1, . . . ,h1,K ] ∈ CM×K be the channel matrices from
the BS to the FL and non-FL groups in Step (S1),
respectively. Here, gd,ℓ represents the channel vector
from the BS to the ℓ-th FL UE, while h1,k is the
channel vector between the BS and non-FL UE k in
Step (S1). We assume Rayleigh fading, i.e., gd,ℓ ∼
CN (0, βℓIM ) and h1,k ∼ CN (0, β̄kIM ), where βℓ and
β̄k represent large-scale fading. The minimum mean
square error (MMSE) estimate of gd,ℓ can be written as
ǧd,ℓ = σd,ℓ zd,ℓ, where zd,ℓ ∼ CN (0, IM ), and σ2

d,ℓ =
ρpτd,pβ2

ℓ

ρpτd,pβℓ+1 . Similarly, the MMSE estimate of h1,k can be
written as ȟ1,k = σ1,k z1,k, where z1,k ∼ CN (0, IM ),
and σ2

1,k = ρpτ1,pβ̄2
k

ρpτ1,pβ̄k+1
. Let Ǧd = [ǧd,1, . . . , ǧd,L],

Ȟ1 = [ȟ1,1, . . . , ȟ1,K ], Zd = [zd,1, . . . , zd,L], Z1 =
[z1,1, . . . , z1,K ], σd ≜ [σd,1, . . . , σd,L]T , and σ1 ≜
[σ1,1, . . . , σ1,K ]T . Denote by Ed = [ϵd,1, . . . , ϵd,L] and
E1 = [ϵ1,1, . . . , ϵ1,K ] be the channel estimate error
matrices of Gd and H1, i.e., ϵd,ℓ = ǧd,ℓ − gd,ℓ and
ϵ1,k = ȟ1,k − h1,k. From the property of MMSE
estimation, we have that ϵd,ℓ, ǧd,ℓ, ϵ1,k, and ȟ1,k are
independent, and hence, ϵd,ℓ ∼ CN (0, (βℓ − σ2

d,ℓ)IM ),
ϵ1,k ∼ CN (0, (β̄k − σ2

1,k)IM ).

4We follow the practice of normalizing the transmit power to the noise
power as done in the literature such as [32, Sec. 3.1.3].

• Downlink transmission for both FL and non-FL UEs:
The BS encodes downlink data desired for non-FL UE
k into the symbol s1,k ∼ CN (0, 1),∀k ∈ K, and the
global training update intended for the FL UE ℓ into
symbol sd,ℓ ∼ CN (0, 1),∀ℓ ∈ L. Note that the global
update is the same for all FL UEs but we use different
coding schemes for different UEs. The zero-forcing (ZF)
precoding scheme is then applied to precode the symbols
for FL and non-FL groups. Let sd ≜ [sd,1, . . . , sd,L]T ,
s1 ≜ [s1,1, . . . , s1,K ]T . With ZF, M ≥ L+K is required,
and the signal transmitted at the BS in Step (S1) is given
by

x1 =
√
ρd Ud D1/2

ηd
sd +
√
ρd U1 D1/2

ζ1
s1,

where [Ud U1] =
√

(M − L−K)Z(ZH Z)−1 [32,
(3.49)], with Z = [Zd,Z1]. In addition, Dηd

and Dζ1

are diagonal matrices with the elements of ηd and ζ1

on their diagonal, respectively, where the ℓ-th element of
ηd denoted by ηd,ℓ and the k-th element of ζ1 denoted
by ζ1,k are the power control coefficients associated with
the ℓ-th FL UE and k-th non-FL UE, respectively. The
transmitted power at the BS is required to meet the
average normalized power constraint, i.e., E{|x1|2} ≤ ρd,
which can be expressed as:∑

ℓ∈L
ηd,ℓ +

∑
k∈K

ζ1,k ≤ 1. (1)

The received signal vector collected from all FL UEs is
given by

yd = GH
d x1 +nd

=
√
ρdGH

d Ud D1/2
ηd

sd +
√
ρd GH

d U1 D1/2
ζ1

s1 +nd,

(2)

where nd ∼ CN (0, IL) is the additive noise. Since
Ǧ

H

d Ud =
√
M − L−KDσσσd

and Ǧ
H

d U1 = 0, the ℓ-th
FL UE receives

yd,ℓ =
√
ρdηℓ(M − L−K)σd,ℓsd,ℓ + nd,ℓ

− √ρdϵ
H
d,ℓ Ud D1/2

ηd
sd−
√
ρdϵ

H
d,ℓ U1 D1/2

ζ1
s1 .

(3)

Following [32, Sec. 3.3.2], the effective SINR at the ℓ-th
FL UE is given by

SINRd,ℓ(ηd, ζ1)

=
ρdηd,ℓ(M − L−K)σ2

d,ℓ

1 + ρd Var{ϵH
d,ℓ Ud D1/2

ηd
sd +ϵH

d,ℓ U1 D1/2
ζ1

s1}
.

(4)

Since ϵd,ℓ is independent of Ud D1/2
ηd

sd and U1 D1/2
ζ1

s1,
we get the closed-form expression for SINRd,ℓ as

SINRd,ℓ(ηd, ζ1)

=
ρdηd,ℓ(M − L−K)σ2

d,ℓ

1+ρd(βℓ−σ2
d,ℓ)

∑
i∈L ηd,i+ρd(βℓ−σ2

d,ℓ)
∑

k∈K ζ1,k
.

(5)

Similarly, the received signal vector combined from all
the non-FL UEs in Step (S1) is given by

y1 = HH
1 x1 +n1
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=
√
ρdHH

1 U1 D1/2
ζ1

s1 +
√
ρd HH

1 Ud D1/2
ηd

sd +n1,

(6)

where n1 ∼ CN (0, IK) is the additive noise. Using the
fact that Ȟ

H

1 U1 =
√
M − L−KDσσσ1 and Ȟ

H

1 Ud = 0,
the effective SINR of the k-th non-FL UE is given by

SINR1,k(ηd, ζ1)

=
ρdζ1,k(M − L−K)σ2

1,k

1 + ρd Var{ϵH
1,k U1 D1/2

ζ1
s1 + ϵH

1,k Ud D1/2
ηd

sd}

=
ρdζ1,k(M−L−K)σ2

1,k

1+ρd(β̄k−σ2
1,k)

∑
i∈K ζ1,i+ρd(β̄k−σ2

1,k)
∑

ℓ∈L ηd,ℓ
.

(7)

Since all the FL UEs start and end a step together, the
achievable rate (bps) of each FL UE is the minimum
achievable rate of the FL group, i.e.,

Rd(ηd, ζ1) = min
ℓ∈L

Rd,ℓ(ηd, ζ1)

≜ min
ℓ∈L

τc−τd,p

τc
B log2

(
1+SINRd,ℓ(ηd, ζ1)

)
,

(8)

where B is the bandwidth and τc is the coherence interval.
The achievable rate of non-FL UE k is given by

R1,k(ηd, ζ1) =
τc − τ1,p

τc
B log2

(
1 + SINR1,k(ηd, ζ1)

)
.

(9)

• Downlink delay of the FL group: Let Sd (bits) be the
data size of the global training update of the FL group.
The transmission time that the BS needs to send the
global update to all FL UEs is given by

td(ηd, ζ1) =
Sd

Rd(ηd, ζ1)
. (10)

• Amount of downlink data received at the non-FL UEs:
The amount of downlink data received at non-FL UE
k ∈ K is

D1,k(ηd, ζ1) = R1,k(ηd, ζ1)td(ηd, ζ1). (11)

2) Step (S2): After receiving the global update, each FL
UE ℓ computes its local training update on its local dataset,
while each non-FL UE k keeps receiving its data from the BS.
• Local computation: Each FL UE executes Nc local

computing rounds over its data set to compute its local
update. Let cℓ (cycles/sample) be the number of process-
ing cycles for a UE ℓ to process one data sample [22].
Denote by Dℓ (samples) and fℓ (cycles/s) the size of
the local data set and the processing frequency of UE
ℓ, respectively. To provide a certain synchronization in
this step, we choose fℓ = Dℓcℓf

Dmaxcmax
, where Dmax =

maxℓ∈LDℓ, cmax = maxℓ∈L cℓ, and f is a frequency
control coefficient. The computation time at all the FL
UEs of the FL group is the same tC(f), which is given
by [21], [22]

tC(f) = tC,ℓ(f) =
NcDℓcℓ
fℓ

=
NcDmaxcmax

f
,∀ℓ ∈ L .

(12)

• Channel estimation for non-FL UEs channel: In Step
(S2), the channel estimation is performed similarly to
Step (S1) for the non-FL UEs. The MMSE estimate
of h2,k (the channel between the BS and non-FL UE
k in Step (S2) can be written as ȟ2,k = σ2,k z2,k,
where z2,k ∼ CN (0, IM ) and σ2

2,k = ρpτ2,pβ̄2
k

ρpτ2,pβ̄k+1
, where

τ2,p ≥ K is the length of pilot sequence in Step (S2).
• Amount of downlink data received at the non-

FL group: Similarly to Step (S1), ZF is used at the
BS to transmit signals to K non-FL UEs. Let ζ2 ≜
[ζ2,1, . . . , ζ2,K ]T be the power control coefficients for
non-FL UEs. The transmitted power at the BS is required
to meet the average normalized power constraint, which
can be expressed as:∑

k∈K
ζ2,k ≤ 1. (13)

The achievable downlink rate (bps) of non-FL UE k, ∀k ∈
K, is given by [32, (3.49)]

R2,k(ζ2) =
τc − τ2,p

τc
B log2

(
1 + SINR2,k(ζ2)

)
, (14)

where SINR2,k(ζ2) is the effective SINR given as

SINR2,k(ζ2) =
ρdζ2,k(M −K)σ2

2,k

1 + ρd(β̄k − σ2
2,k)

∑
i∈K ζ2,i

. (15)

The above equation is similar to (7) except that there is
no interference induced by FL UEs in Step (S2). Thus,
the total amount of downlink data received at non-FL UE
k is

D2,k(ζ2, f) = R2,k(ζ2)tC(f). (16)

3) Step (S3) Using HD:
• Channel estimation: In Step (S3), the channels between

the BS and FL UEs are estimated using the MMSE
estimation technique similarly to Steps (S1) and (S2).
The channel gu,ℓ between the BS and FL UEs ℓ in
Step (S3) has an estimate ǧu,ℓ = σu,ℓ zu,ℓ, where

zu,ℓ ∼ CN (0, IM ), σ2
u,ℓ = ρpτu,pβ2

ℓ

ρpτu,pβℓ+1 , and τu,p ≥
L + K is the pilot length. The channel h3,k between
the BS and the k-th non-FL UEs in Step (S3) has an
estimate ȟ3,k = σ3,k z3,k, where z3,k ∼ CN (0, IM ) and
σ2

3,k = ρpτ3,pβ̄2
k

ρpτ3,pβ̄k+1
. Here, τ3,p ≥ L +K is the length of

pilot sequence in Step (S3). Let Zu ≜ [zu,1, . . . , zu,L],
Z3 ≜ [z3,1, . . . , z3,K ], Gu ≜ [gu,1, . . . ,gu,L], Ǧu =
[ǧu,1, . . . , ǧu,1], H3 ≜ [h3,1, . . . ,h3,K ], and Ȟ3 =
[ȟ3,1, . . . , ȟ3,K ]. Denote by Eu = [ϵu,1, . . . , ϵu,L] and
E3 = [ϵ3,1, . . . , ϵ3,K ] be the channel estimate error
matrices of Gu and H3, i.e., Ed = Ǧd − Gd and
E3 = Ȟ3−H3. Here, ϵu,ℓ ∼ CN (0, (βℓ−σ2

u,ℓ)IM ), ǧu,ℓ,
ϵ3,k ∼ CN (0, (β̄k−σ2

3,k)IM ), and ȟ3,k are independent.
• Uplink transmission of FL UEs: After computing the

local update, all FL UEs transmit their local updates to
the BS. The signal transmitted from FL UE ℓ is

xu,ℓ =
√
ρuηu,ℓsu,ℓ,

where su,ℓ ∼ CN (0, 1) is the data symbol, ηu,ℓ is the
power control coefficient chosen to satisfy the average
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transmit power constraint, i.e., E
{
|xu,ℓ|2

}
≤ ρu, which

can be expressed as

ηu,ℓ ≤ 1, ∀ℓ ∈ L . (17)

The received signal vector at the BS is then given as

yHD
u =

√
ρu Gu D1/2

ηu
su +nu, (18)

where ηu = [ηu,1, . . . , ηu,L]T and nu ∼ CN (0, IM ) is
the additive noise vector.
After receiving signals from all the UEs, the BS applies a
ZF decoding scheme for detecting the FL UEs’ symbols.
With ZF, signal used for detecting su,ℓ is given by

yHD
u,ℓ =

√
ρu uH

u,ℓ Gu D1/2
ηu

su +uH
u,ℓ nu

=
√
ρu uH

u,ℓ Ǧu D1/2
ηu

su−
√
ρu uH

u,ℓ Eu D1/2
ηu

su

+ uH
u,ℓ nu

=
√
ρuηu,ℓ(M−L)σu,ℓsu,ℓ−

√
ρu uH

u,ℓ Eu D1/2
ηu

su

+ uH
u,ℓ nu, (19)

where uu,ℓ =
√

(M − L)Zu(ZH
u Zu)−1eℓ,L is the

zero-forcing decoding vector. For synchronization,
we choose the rates of FL UEs to be the same as the
minimum achievable rates in the FL group, i.e.,

RHD
u (ηu) = min

ℓ∈L
RHD

u,ℓ(ηu)

≜ min
ℓ∈L

τc − τu,p

τc

B

2
log2

(
1 + SINRHD

u,ℓ(ηu)
)
,

(20)

where 1/2 appears in the pre-log factor of the rate comes
from the fact that the system bandwidth is equally divided
between the FL and non-FL groups, and

SINRHD
u,ℓ(ηu) =

ρuηu,ℓ(M − L)σ2
u,ℓ

1 + ρd Var{uH
u,ℓ Eu D1/2

ηu
su}

. (21)

The above equation is then reduced to

SINRHD
u,ℓ(ηu) =

ρuηu,ℓ(M − L)σ2
u,ℓ

1 + ρu

∑
i∈L(βi − σ2

u,i)ηu,i
. (22)

• Downlink transmission for Non-FL UEs: Denote
by s3 = [s3,1 . . . s3,K ]T the vector of K sym-
bols intended for K non-FL UEs, and U3 =√

(M −K)Z3(ZH
3 Z3)−1 the ZF precoding matrix.

Then, the transmitted signal from the BS to the non-FL
UEs is given by

x3 =
√
ρd U3 D1/2

ζ3
s3,

where ζ3 ≜ [ζ3,1, . . . , ζ3,K ]T , and ζ3,k the power control
coefficient allocated for non-FL UE k chosen to meet
the average normalized power constraint at the BS, i.e.,
E{|x3 |2} ≤ ρd, which can be expressed as:∑

k∈K

ζ3,k ≤ 1. (23)

For the k-th non-FL UE, the received signal can be
written as

yHD
3,k =

√
ρdȟ

H

3,k U3 D1/2
ζ3

s3−
√
ρd ϵH

3,k U3 D1/2
ζ3

s3 +n3,k

=
√
ρdη3,k(M −K)σ3,ks3,k

− √ρd ϵH
3,k U3 D1/2

ζ3
s3 +n3,k. (24)

In the above equation, the term ϵ3,k is independent of
U3 D1/2

ζu
s3. Thus, under the HD scheme in Step (S3),

the effective SINR for the downlink payload at non-FL
UE k is

SINRHD
3,k(ζ3) =

ρdζ3,k(M −K)σ2
3,k

1 + ρd Var{ϵH
3,k U3 D1/2

ζ3
s3}

=
ρdζ3,k(M −K)σ2

3,k

1 + ρd(β̄k − σ2
3,k)

∑
i∈K ζ3,i

, (25)

and the achievable downlink rate for non-FL UE k,∀k ∈
K, is

RHD
3,k(ζ3) =

τc − τ3,p

τc

B

2
log2

(
1 + SINRHD

3,k(ζ3)
)
. (26)

• Uplink delay: Denote by Su (bits) the data size of the
local training update of the FL group. The transmission
time from each FL UE to the BS is the same and given
by

tHD
u (ηu) =

Su

RHD
u (ηu)

. (27)

• Amount of downlink data received at the non-FL
group: The amount of downlink data received at the
non-FL UE k,∀k ∈ K, in Step (S3) using HD is

DHD
3,k(ηu, ζ3) = RHD

3,k(ζ3)t
HD
u (ηu). (28)

Before proceeding further, we remark that in Step (S3) using
HD, the uplink transmission of FL users and the downlink
transmission of non-FL users need to be served at the same
time. However, a traditional half-duplex base station only
operates in either uplink mode or downlink mode, which
raises a challenge for the system design. Therefore, a simple
approach is to divide the bandwidth equally for the half-duplex
base station to serve each user group in each half of the
bandwidth, as done in our paper. However, even with the
equal bandwidth allocation, as shall be seen shortly, the
problem is already very complicated and challenging to solve.
We also remark that looking from an algorithmic viewpoint,
our proposed solution for the HD case to be presented in
the next section is also applicable to any fixed bandwidth
allocation. However, finding the optimal bandwidth allocation
will make the resulting problem more intractable, which is out
of the scope of the paper and thus will be left for future work.

4) Step (S3) Using FD: Step (S3) involves transmission
in both directions. This motivates us to consider the FD
communications to serve both groups of UEs simultaneously.
Specifically, FL UEs send their local updates to the BS in
the uplink channel and at the same time, non-FL UEs receive
the downlink data from the BS. The proposed FD scheme is
detailed in what follows.
• Uplink transmission of FL UEs: In the FD commu-

nications, channel coefficients are estimated similarly to
what was done in the case of the HD communications.
FL UEs transmit the locally computed updates to the
BS in the presence of non-FL UEs which are receiving
the downlink data. Therefore, SI is present between the
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receiver and transmit antennas of the BS which is denoted
by GSI ∈ CM×M . The elements of matrix GSI are
modeled as i.i.d. random variables with a variance being
given by σ2

SI = βSIσ
2
SI,0, where βSI represents the path

loss from a transmit antenna to a receive antenna of the
BS due to their physical antenna separation and σ2

SI,0 is
the power of the residual interference at each BS antenna
after the SI suppression, respectively. Similar to the HD
scheme, the baseband signal is subjected to the average
transmit power constraint (17). The received signal vector
at the BS in the FD communication is expressed as

yFD
u =

√
ρu Gu D1/2

ηu
su +
√
ρd GSI U3 D1/2

ζ3
s3 +nu,

(29)
where nu ∼ CN (0, IM ) is the vector of additive noise
components. Note that SI is caused from transmit anten-
nas of the BS to receiving antennas and thus, the effective
noise has an additional SI term caused by the downlink
transmission to non-FL UEs. After receiving signals from
all the UEs, the BS applies a ZF decoding scheme for
detecting the FL UEs’ symbols. The detected signal for
the ℓ-th FL UE is given in (30), as shown at the bottom
of the page. The SINR for the ℓ-th FL UE in case of FD
communications is given as
SINRFD

u,ℓ(ηu, ζ3)

=
ρuηu,ℓ(M − L)σ2

u,ℓ

1+ρd Var{uH
u,ℓ Eu D1/2

ηu
su+uH

u,ℓ GSI U3 D1/2
ζ3

su}
.

(31)

Proposition 1: The SINR for the ℓ-th FL UE in case of
FD communications given in (31) can be approximated
by

SINRFD
u,ℓ(ηu, ζ3)

≈ ŜINR
FD
u,ℓ(ηu, ζ3)

=
ρuηu,ℓ(M − L)σ2

u,ℓ

1+ρu

∑
i∈L(βi−σ2

u,i)ηu,i+ρdMβSIσ2
SI,0

∑
j∈K ζ3,j

.

(32)
Proof: See Appendix A.

For synchronization, we again choose the rates of FL UEs
to be the same as the minimum achievable rates in the
FL group.

RFD
u (ηu, ζ3)

= min
ℓ∈L

RFD
u,ℓ(ηu, ζ3)

≜ min
ℓ∈L

τc − τu,p

τc
B log2

(
1 + ŜINR

FD
u,ℓ(ηu, ζ3)

)
. (33)

The above equation is similar to (20) except that FL UEs
make use of the full bandwidth in the FD communication.

• Downlink transmission for Non-FL UEs: In FD, non-
FL UEs continue receiving data from the BS in the
downlink channel in the presence of FL UEs which
simultaneously send the local updates to the BS in the
uplink channel. Therefore, the received signal at each
non-FL UE contains the inter-group interference (IGI)
from the group of FL UEs. To approximate the SINR in
this case, the transmitted power at the BS is constrained
to meet the average normalized power constraint (23)
similar to the HD scheme.
The received signal for the k-th non-FL UE can be written
as

yFD
3,k =

√
ρd hH

3,k U3 D1/2
ζ3

s3 +
√
ρu HIGI D1/2

ηu
su +n3,k,

(34)

where HIGI ∈ CL×K is the inter-group channel matrix
whose elements are modeled as hIGI,kℓ = β

1/2
IGI,kℓh̄IGI,kℓ,

where βIGI,kℓ is the large-scale fading and h̄IGI,kℓ ∼
CN (0, 1) is the small-scale fading of the inter-group
channel. After the channel estimation, the first term in
the above equation can be broken into the estimation term
and the error term and thus, the above equation can be
rewritten as given in (35), as shown at the bottom of
this page. The effective SINR in the downlink payload at
non-FL UE k is given by

SINRFD
3,k(ηu, ζ3)

=
ρdη3,k(M −K)σ2

3,k

1 + Var{ρd ϵH
3,k U3 D1/2

ζ3
s3 +ρu HH

IGI,k D1/2
ηu

su}
.

(36)

Note that in the above equation, ϵ3,k is independent of
U3 D1/2

ζu
s3. Moreover, Var{ρu HH

IGI,k D1/2
ηu

su} simpli-
fies to ρu

∑
i∈L ηu,iβIGI,ki. Thus, the effective SINR can

be rewritten as

SINRFD
3,k(ηu, ζ3)

=
ρdη3,k(M −K)σ2

3,k

1 + ρd(β̄k − σ2
3,k)

∑
j∈K ζ3,j + ρu

∑
i∈L ηu,iβIGI,ki

.

(37)

Now, the achievable downlink rate for non-FL UE
k,∀k ∈ K, is

RFD
3,k(ηu, ζ3) =

τc − τ3,p

τc
B log2

(
1 + SINRFD

3,k(ηu, ζ3)
)
.

(38)

yFD
u,ℓ =

√
ρu uH

u,ℓ Gu D1/2
ηu

su +
√
ρd uH

u,ℓ GSI U3 D1/2
ζ3

s3 +uH
u,ℓ nu

=
√
ρu uH

u,ℓ Ǧu D1/2
ηu

su−
√
ρu uH

u,ℓ Eu D1/2
ηu

su +
√
ρd uH

u,ℓ GSI U3 D1/2
ζ3

s3 +uH
u,ℓ nu

=
√
ρuηu,ℓ(M − L)σu,ℓsu,ℓ −

√
ρu uH

u,ℓ Eu D1/2
ηu

su +
√
ρd uH

u,ℓ GSI U3 D1/2
ζ3

s3 +uH
u,ℓ nu . (30)

yFD
3,k =

√
ρdȟ

H

3,k U3 D1/2
ζ3

s3−
√
ρd ϵH

3,k U3 D1/2
ζ3

s3 +
√
ρu HIGI D1/2

ηu
su +n3,k

=
√
ρdη3,k(M −K)σ3,ks3,k −

√
ρd ϵH

3,k U3 D1/2
ζ3

s3 +
√
ρu HIGI D1/2

ηu
su +n3,k. (35)
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• Uplink delay: Denote by Su (bits) the data size of the
local training update of the FL group. The transmission
time from FL UE ℓ to the BS is the same and given
by

tFD
u (ηu, ζ3) =

Su

RFD
u (ηu, ζ3)

. (39)

The above equation is similar to (27) except that the trans-
mission time now depends on power control coefficients
from both FL and non-FL UEs.

• Amount of downlink data received at the non-FL
group: The amount of downlink data received at all
non-FL UE k, ∀k ∈ K, in Step (S3) is

DFD
3,k(ηu, ζ3) = RFD

3,k(ηu, ζ3)t
FD
u (ηu, ζ3). (40)

This equation is also similar to (28) while the only
difference is that the downlink rate of k-th non-FL UE
and the transmission time of the FL UEs depend on both
ηu and ζ3.

5) Step (S4): After receiving all the local update, the BS
(i.e., central server) computes its global update. Since the
computational capability of the central server is much more
powerful than that of the UEs, the delay of computing the
global update is negligible.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

The problem of fairness among the non-FL UEs in terms
of effective data received is one of the key challenges in
wireless communications. In this section we first define a
new performance metric which is referred to as the effective
data rate of non-FL UEs and then formulate the optimiza-
tion problems to achieve the max-min fairness of non-FL
UEs subject to a QoS constraint on the execution time of
FL UEs.

A. Effective Data Rate of Non-FL UEs
From the discussions in the preceding section, the data rate

of each non-FL UE is changed for different steps. Thus, it is
practically reasonable to use the average data rate accounting
for all steps as a representative data rate for the system design
purposes. More specifically, the total amount of data received
by the k-th non-FL UE in Steps (S1)-(S3) is D1,k +D2,k +
Dmode

3,k , where mode ∈ {HD,FD}. Also, the time of each step
is determined by the FL UEs. It is obvious that the total time of
the three steps is td + tC + tmode

u . Thus, we define the effective
data rate for the k-th non-FL UE as

D1,k+D2,k+Dmode
3,k

td+tC+tmode
u

. In the
following we use this definition of the effective data rate for
non-FL UEs to formulate max-min fairness problems for HD
and FD approaches.

B. HD Scheme
1) Problem Formulation for HD Scheme: The considered

problem for the HD communication scheme can be mathe-
matically expressed as follows:

max
xHD

mink∈K
(
D1,k(ηd, ζ1) +D2,k(f, ζ2) +DHD

3,k(ηu, ζ3)
)

td(ηd, ζ1) + tC(f) + tHD
u (ηu)

(41a)
s.t. (1), (13), (17), (23),

ηd,ℓ, ζ1,k, ζ2,k, ηu,ℓ, ζ3,k ≥ 0, ηd,ℓ ≤ 1, (41b)
fmin ≤ fℓ ≤ fmax, ∀ℓ (41c)

td(ηd, ζ1) + tC(f) + tHD
u (ηu) ≤ tHD

QoS, (41d)

where xHD ≜ [ηT
d , ζ

T
1 , f, ζ

T
2 ,η

T
u , ζ

T
3 ]T . The constraint (41d)

is introduced to ensure that the time taken by the FL UEs is
bounded by tHD

QoS.
2) Solution for HD Scheme: We now present a solution to

(41) based on successive convex approximation (SCA). Our
idea is to equivalent transform the sophisticated constraints
into simpler ones where convex approximations are easier to
find. To this end, using the epigraph form, we first equivalently
rewrite (41) as

max
x̄HD

tHD

tHD
Q

(42a)

s.t. (1), (13), (17), (23), (41b), (41c),
td(ηd, ζ1) + tC(f) + tHD

u (ηu) ≤ tHD
Q , (42b)

D1,k(ηd, ζ1) +D2,k(f, ζ2) +DHD
3,k(ηu, ζ3) ≥ tHD, ∀k

(42c)

tHD
Q ≤ tHD

QoS, (42d)

where x̄HD = [(xHD)T , tHD, tHD
Q ]T . Next, it is straightforward

to see that (42) can be further equivalently reformulated as

max
x̄HD

tHD

tHD
Q

(43a)

s.t. (1), (13), (17), (23), (41b), (41c), (42d),
Sd

Rd(ηd, ζ1)
+
NcDmaxcmax

f
+

Su

RHD
u (ηu)

≤ tHD
Q ,

(43b)

R1,k(ηd, ζ1)
Sd

Rd(ηd, ζ1)
+R2,k(ζ2)

NcDmaxcmax

f

+ RHD
3,k(ζ3)

Su

RHD
u (ηu)

≥ tHD, ∀k. (43c)

It is now clear that (43b) and (43c) are troublesome. We note
that (43b) is equivalent to the following set of constraints

Sd

rd
+
NcDmaxcmax

f
+

Su

rHD
u

≤ tHD
Q , (44a)

rd ≤ Rd,ℓ(ηd, ζ1), ∀ℓ (44b)

rHD
u ≤ RHD

u,ℓ(ηu), ∀ℓ (44c)

rd ≥ 0, rHD
u ≥ 0. (44d)

It is easy to see that (43b) and (44) are equivalent since
if Rd,ℓ(ηd, ζ1) and RHD

u,ℓ(ηu) are feasible to (43b), then
they are also feasible to (44) and vice versa. We note that
(44a) is convex. Intuitively, rd and rHD

u are lower-bounds of
Rd,ℓ(ηd, ζ1) and RHD

u,ℓ(ηu), respectively, for all ℓ ∈ L. In the
same way, to deal with (43c), we rewrite it as

r1,k
Sd

r̃d
+ r2,k

NcDmaxcmax

f
+ rHD

3,k

Su

r̃HD
u

≥ tHD, ∀k (45a)

Rd,ℓ(ηd, ζ1) ≤ r̃d, ∀ℓ (45b)

RHD
u,ℓ(ηu) ≤ r̃HD

u , ∀ℓ, (45c)
r1,k ≤ R1,k(ηd, ζ1), ∀k (45d)
r2,k ≤ R2,k(ζ2), ∀k (45e)
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rHD
3,k ≤ RHD

3,k(ζ3), ∀k (45f)

r̃d ≥ 0, r̃u ≥ 0, r1,k ≥ 0, r2,k ≥ 0, rHD
3,k ≥ 0, ∀k (45g)

where r̃d and r̃HD
u are respectively seen as upper-bounds

of Rd,ℓ(ηd, ζ1) and RHD
u,ℓ(ηu) for all ℓ ∈ L, and r1,k,

r2,k and rHD
3,k the lower-bounds of R1,k(ηd, ζ1), R2,k(ζ2)

and RHD
3,k(ζ3). We can now further equivalently express

(45a) as

tHD ≤ a1Sd + a2NcDmaxcmax + aHD
3 Su, (46a)

a1 ≤
r1,k

r̃d
⇔ a1r̃d ≤ r1,k, ∀k (46b)

a2 ≤
r2,k

f
⇔ a2f ≤ r2,k, ∀k (46c)

aHD
3 ≤

rHD
3,k

r̃HD
u

⇔ aHD
3 r̃HD

u ≤ rHD
3,k, ∀k. (46d)

The above transformations mean (41) is equivalent to the
following problem

max
x̃HD

zHD (47a)

s.t. zHDtHD
Q ≤ tHD,

(1), (13), (17), (23), (41b), (41c), (42d),
(44), (45b)− (45f), (46), (47b)

where x̃HD ≜ [(x̄HD)T , rd, r
HD
u , a1, a2, a

HD
3 , rT

1 , r
T
2 , (r

HD
3 )T ,

r̃d, r̃
HD
u , zHD]T , r1 = {r1,k}, r2 = {r2,k}, rHD

3 = {rHD
3,k}.

Problem (47) is still difficult to solve due to nonconvex
constraints (44b)-(45f), (46b)-(46d), and (47b). However, these
constraints are amenable to applying the SCA method, which
we show next.

In the sequel, we denote x̃HD(n) to be the value of x̃HD

after n iterations. We first note that constraints (44b), (44c),
(45d)–(45f) are of the same type in the sense that concave
lower bounds of the involving rate expressions are required to
obtain convex approximate constraints. To this end we recall
the following inequality

log
(
1 +

x

y

)
≥ log

(
1 +

x(n)

y(n)

)
+

2x(n)

(x(n) + y(n))

− (x(n))2

(x(n) + y(n))x
− x(n)y

(x(n) + y(n))y(n)
, (48)

where x > 0, y > 0 [33, (76)]. Applying the above inequality
we obtain the following inequalities

R̃d,ℓ(ηd, ζ1) ≤ Rd,ℓ(ηd, ζ1), ∀ℓ (49a)

R̃HD
u,ℓ(ηu) ≤ RHD

u,ℓ(ηu), ∀ℓ (49b)

R̃1,k(ηd, ζ1) ≤ R1,k(ηd, ζ1), ∀k (49c)

R̃2,k(ζ2) ≤ R2,k(ζ2), ∀k (49d)

R̃HD
3,k(ζ3) ≤ RHD

3,k(ζ3), ∀k (49e)

where R̃d,ℓ(ηd, ζ1), R̃HD
u,ℓ(ηu), R̃1,k(ηd, ζ1), R̃2,k(ζ2), and

R̃HD
3,k(ζ3) are concave lower bounds of Rd,ℓ(ηd, ζ1), RHD

u,ℓ(ηu),
R1,k(ηd, ζ1), R2,k(ζ2), and RHD

3,k(ζ3), respectively. The
expressions of these lower bounds are given in (75) in
Appendix C. Consequently, in light of SCA, (44b), (44c),

(45d)–(45f) are approximated by the following convex con-
straints

rd ≤ R̃d,ℓ(ηd, ζ1), ∀ℓ (50a)

rHD
u ≤ R̃HD

u,ℓ(ηu), ∀ℓ (50b)

r1,k ≤ R̃1,k(ηd, ζ1), ∀k (50c)

r2,k ≤ R̃2,k(ζ2), ∀k (50d)

rHD
3,k ≤ R̃HD

3,k(ζ3), ∀k. (50e)

To proceed further we note that constraints (46b)–(46d) and
(47b) are of the same type. To deal with these, let us recall
the following equality

xy =
1
4
[(x+ y)2 − (x− y)2]. (51)

Since we need a convex upper bound of the term xy, a simple
way is to linearize the term (x− y)2.

xy ≤ 1
4
[(x+ y)2 − 2(x(n) − y(n))(x− y) + (x(n) − y(n))2],

(52)

where x ≥ 0, y ≥ 0, and x(n) and y(n) are the values of x
and y at the n-th iteration, respectively [21]. Thus, using (52)
we can approximate (46b)–(46d) and (47b) by the following
convex constraints, respectively.

1
4
[(a1 + r̃d)2 − (a(n)

1 − r̃(n)
d )2 + 2(a1 − r̃d)

× (a(n)
1 − r̃(n)

d )] ≤ r1,k, ∀k (53a)
1
4
[(a2 + f)2 − (a(n)

2 − f (n))2 + 2(a2 − f)

× (a(n)
2 − f (n))] ≤ r2,k, ∀k (53b)

1
4
[
(aHD

3 + r̃HD
u )2 − (aHD(n)

3 − r̃HD(n)
u )2 + 2(aHD

3 − r̃HD
u )

× (aHD(n)
3 − r̃HD(n)

u )
]
≤ rHD

3,k, ∀k (53c)
1
4
[
(zHD + tHD

Q )2 − (zHD(n) − tHD(n)
Q )2 + 2(zHD − tHD

Q )

× (zHD(n) − tHD(n)
Q

)]
≤ tHD. (53d)

We now turn our attention to (45b) and (45c). It is obvious
now we need to derive convex upper bounds of the rate
functions present in these two constraints. To this end we resort
to the following inequality

log
(
1 +

x

y

)
≤ log

(
1 +

x(n)

y(n)

)
+

y(n)

(x(n) + y(n))

×
( (x2 + (x(n))2)

2x(n)y
− x(n)

y(n)

)
, (54)

where x > 0, y > 0, and x(n) and y(n) are the values of x
and y at the n-th iteration, respectively [34, (75)]. Using this
inequality we can approximate constraints (45b) and (45c) by
the following convex constraints

R̂d,ℓ(ηd, ζ1) ≤ r̃d, ∀ℓ (55a)

R̂HD
u,ℓ(ηu) ≤ r̃HD

u , ∀ℓ, (55b)
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Algorithm 1 Algorithm for Solving (41)

1: Input: Set n = 0 and choose an initial point x̃HD(0) ∈ F̃HD

2: repeat
3: Solve (56) to get x̃HD∗

4: x̃HD(n+1) ← x̃HD∗

5: n← n+ 1
6: until convergence

where R̂d,ℓ(ηd, ζ1) and R̂HD
u,ℓ(ηu) are convex upper bounds of

Rd,ℓ(ηd, ζ1) and RHD
u,ℓ(ηu), respectively. The detailed expres-

sions of R̂d,ℓ(ηd, ζ1) and R̂HD
u,ℓ(ηu) are given in (76) in

Appendix C.
In summary, at iteration n+1, problem (43) is approximated

by the following convex problem:

max {zHD | x̃HD ∈ F̃HD}, (56)

where F̃HD
≜ {(1), (13), (17), (23), (41b), (41c), (42d), (44a),

(44d), (45g), (46a), (50), (53), (55)}. We outline the main
steps to solve problem (47) in Algorithm 1.

Remark 1: Algorithm 1 requires a feasible point to start
the iterative procedure. In general, it is difficult to find a
feasible solution to (47). We now describe a practical way to
overcome this issue. It is not difficult to see that by randomly
generating and properly the variables in xHD we can meet
(1), (13), (17), (23), (41b), (41c). The remaining variables
in x̃HD can be found by letting the corresponding inequality
constraint (47) be binding (i.e., occur with equality). If (42d) is
satisfied, then we can use this initial point to start Algorithm 1.
When the requirements are high (e.g., when tHD

QoS is small),
it is likely that (42d) is not met. In such cases, we intro-
duce a slack variable s and replacing (56) by the following
problem

max
s≤0,x̃HD

zHD + αs (57a)

s.t. x̃HD ∈ F̃HD \ (42d), (57b)

tHD
Q + s ≤ tHD

QoS. (57c)

Intuitively, s represents the violation of (42d) and α > 0 is
the penalty parameter. It is easy to see that (57c) is met if s
is sufficiently small, and thus (57) is always feasible. On the
other hand, the maximization of the regularized objective in
(57a) will force s to approach 0 when the iterative process
progresses. Thus, when Algorithm 1 converges and if |s| is
smaller than a pre-determined error tolerance, we will take
x̃HD∗ as the final solution. Otherwise, we say that (41) is
infeasible.

C. FD Scheme
1) Problem Formulation for FD Communication Scheme:

The considered problem for the FD communication scheme is
mathematically stated as

max
xFD

mink∈K
(
D1,k(ηd, ζ1) +D2,k(f, ζ2) +DFD

3,k(ηu, ζ3)
)

td(ηd, ζ1) + tC(f) + tFD
u (ηu, ζ3)

(58a)
s.t. (1), (13), (17), (23),

ηd,ℓ, ζ1,k, ζ2,k, ηu,ℓ, ζ3,k ≥ 0, ηd,ℓ ≤ 1, (58b)
fmin ≤ fℓ ≤ fmax, ∀ℓ (58c)

td(ηd, ζ1) + tC(f) + tFD
u (ηu, ζ3) ≤ tFD

QoS, (58d)

where xFD ≜ [ηT
d , ζ

T
1 , f, ζ

T
2 ,η

T
u , ζ

T
3 ]T .

2) Solution for FD Scheme: The solution for the FD scheme
follows closely the derivations of that for the HD scheme.
First, we equivalently rewrite (58) as

max
x̄FD

tFD

tFD
Q

(59a)

s.t. (1), (13), (17), (23), (58b), (58c),

R1,k(ηd, ζ1)
Sd

Rd(ηd, ζ1)
+R2,k(ζ2)

NcDmaxcmax

f

+ RFD
3,k(ηu, ζ3)

Su

RFD
u (ηu, ζ3)

≥ t, ∀k (59b)

Sd

Rd(ηd, ζ1)
+
NcDmaxcmax

f
+

Su

RFD
u (ηu, ζ3)

≤ tFD
Q ,

(59c)

tFD
Q ≤ tFD

QoS, (59d)

where x̄FD = [(xFD)T , tFD, tFD
Q ]T , which is then equivalent to

max
x̃FD

zFD (60a)

s.t. (1), (13), (17), (23), (58b), (58c), (59d),
a1Sd + a2NcDmaxcmax + aFD

3 Su ≥ tFD, ∀k (60b)
Sd

rd
+
NcDmaxcmax

f
+
Su

rFD
u

≤ tFD
Q , (60c)

zFDtFD
Q ≤ tFD, (60d)

a1r̃d ≤ r1,k, ∀k (60e)
a2f ≤ r2,k, ∀k (60f)

aFD
3 r̃FD

u ≤ rFD
3,k, ∀k (60g)

rd ≤ Rd,ℓ(ηd, ζ1), ∀ℓ (60h)

rFD
u ≤ RFD

u,ℓ(ηu, ζ3), ∀ℓ (60i)
r1,k ≤ R1,k(ηd, ζ1), ∀k (60j)
r2,k ≤ R2,k(ζ2), ∀k (60k)

rFD
3,k ≤ RFD

3,k(ηu, ζ3), ∀k (60l)
Rd,ℓ(ηd, ζ1) ≤ r̃d, ∀ℓ (60m)

RFD
u,ℓ(ηu, ζ3) ≤ r̃FD

u , ∀ℓ (60n)

where x̃FD ≜ [(x̄FD)T , rd, r
FD
u , a1, a2, a

FD
3 , rT

1 , r
T
2 , (r

FD
3 )T , r̃d,

r̃FD
u , zFD]T , r1 = {r1,k}, r2 = {r2,k}, rFD

3 = {rFD
3,k}. It is

clear that the nonconvexity of problem (60) is due to (60d)-
(60n). We remark that (60e) and (60f) are indeed (46b) and
(46c), respectively, and their convex approximations are given
in (53a) and (53b). Similar to (53c) and (53d), constraints
(60d) and (60g) can be approximated by the following convex
constraints

1
4
[
(zHD + tHD

Q )2 − (zHD(n) − tHD(n)
Q )2 + 2(zHD − tHD

Q )

× (zHD(n) − tHD(n)
Q

)]
≤ tHD, (61a)

1
4
[(aFD

3 + r̃FD
u )2 − (aFD(n)

3 − r̃FD(n)
u )2 + 2(aFD

3 − r̃FD
u )

× (aFD(n)
3 − r̃FD(n)

u )] ≤ rFD
3,k,∀k (61b)



FAROOQ et al.: MASSIVE MIMO FOR SERVING FEDERATED LEARNING AND NON-FEDERATED LEARNING USERS 257

Algorithm 2 Algorithm for Solving (58)

1: Input: Set n = 0 and choose an initial point x̃FD(0) ∈ F̃FD

2: repeat
3: Solve (63) to get x̃FD∗

4: x̃FD(n+1) ← x̃FD∗

5: n← n+ 1
6: until convergence

where aFD(n)
3 and r̃FD(n)

u are the values of aFD
3 and r̃FD

u at the
n-th iteration, respectively.

To proceed further, we note that the convex approximate
constraints of (60h), (60j), (60k), and (60m) are already
presented in (50a), (50c), (50d), and (55a), respectively. Also,
(60i), (60l), and (60n) are similar to (44c), (45f), and (45c).
Thus, following the same steps to obtaining (50b), (50e),
and (55b), we can approximate (60i), (60l), and (60n) as the
following convex constraints

rFD
u ≤ R̃FD

u,ℓ(ηu, ζ3), ∀ℓ (62a)

rFD
3,k ≤ R̃FD

3,k(ηu, ζ3), ∀k (62b)

R̂FD
u,ℓ(ηu, ζ3) ≤ r̃FD

u , ∀ℓ (62c)

where R̃FD
u,ℓ(ηu, ζ3), R̃FD

3,k(ηu, ζ3), and R̂FD
u,ℓ(ηu, ζ3) are given

in (77) and (78) in Appendix C.
At iteration n + 1, for a given point x̃FD(n), problem (58)

is approximated by the following convex problem:

max {zFD | x̃FD ∈ F̃FD}, (63)

where F̃FD
≜ {(1), (13), (17), (23), (58b), (58c), (59d), (60b),

(60c), (53a), (53b), (50a), (50c), (50d), (55a), (61), (62)}.
We outline the main steps to solve problem (60) in
Algorithm 2.

Remark 2: Similar to Algorithm 1, Algorithm 2 requires a
feasible point to (60) which is not trivial for find, especially
when the SI is high. To overcome this issue we follow
the same procedure as described in Remark 1. Specifically,
if scaling randomly generated variables cannot produce a
feasible solution, we introduce add a slack variable s and
consider the following problem

max
s≤0,x̃FD

zFD + s (64a)

s.t. x̃FD ∈ F̃FD \ (59d), (64b)

tFD
Q + s ≤ tFD

QoS. (64c)

Then, problem (64) is solved iteratively until convergence.
If |s| is smaller a pre-determined error tolerance, we will take
x̃FD as the final solution. Otherwise, (60) (and thus (58)) is
said to be infeasible.

Remark 3: In practical wireless networks, channel esti-
mation is a critical part. In the previous section, we have
explained how channels can be estimated in all steps of the
proposed system model. Specifically, users send pilot signals
to the BS to estimate the channels. We note that the channels
are estimated at the BS, not at users. We also note that channel
estimation is only required for the BS for beamforming in the
downlink channel, and the achievable rate derived in the paper
is based on the assumption that channel estimations are not
available in the downlink channel since no pilots are sent from

the BS. This is a standard approach in massive MIMO using
TDD. We remark that in our paper, optimization problems
are solved at the BS, and thus, the users do not need to
obtain channel information or spend any computing resources.
In other words, we adopt a centralized optimization method
in this paper. After solving the optimization problems, the BS
sends the power coefficients to the UEs through dedicated
feedback channels. Importantly, the optimization problems are
performed on the large-scale fading time scale which changes
slowly with time.

IV. NUMERICAL RESULTS

A. Parameter Setting
We consider a D×D m2 area where the BS is at the centre,

while L FL UEs and K non-FL UEs are randomly distributed.
The large-scale fading coefficients are modeled in the same
manner as [35, Eq. (46)]:

βℓ[dB] = −148.1− 37.6 log10

( dℓ

1 km
)

+ zℓ, (65)

where dℓ ≥ 35 m is the distance between UE ℓ and the BS,
zℓ is a shadow fading coefficient which is modeled using a
log-normal distribution having zero mean and 7 dB standard
deviation. We set N0 = −92 dBm, tQoS = 3 s, B = 20
MHz, ρd = 10 W, ρu = ρp = 0.2 W, τd,p = τu,p = 20,
τS1,p = τS2,p = τS3,p = 20, τc = 200, fmin = 0, fmax =
5 × 109 cycles/s, Dℓ = Dmax = 1.6 × 105 samples, cℓ =
cmax = 20 cycles/sample, Nc = 20, Sd = Su = 16× 106 bits
or 16Mb. The path loss βSI is taken as βSI = 10

PL
10 , where

PL = −81.1846 dB [36]. If not otherwise mentioned, the
value of σ2

SI,0/N0 is set to 20 dB. In Fig. 2, we plot the
convergence behavior of proposed algorithms for two random
channel realizations. In the remaining figures, the minimum
effective rate of non-FL UEs is plotted by averaging it over
100 random channel realizations. Before proceeding further,
we remark that there could be considerable amount of FL UEs
present compared to the non-FL UEs in many applications
of future wireless networks due to the growing interest of
machine learning techniques in wireless communication. Thus,
the number of FL and non-FL UEs are assumed to be equal
for simulations purpose, except where otherwise stated.

B. Results and Discussions
Since we are the first to introduce a system model to support

both groups of FL and non-FL users, we are not aware of
any existing closely related baseline schemes to benchmark
our proposed solutions in this paper. Therefore, we ourselves
present two baseline schemes based on equal power allocation
(EPA) and frequency-division multiple access (FDMA) meth-
ods, and compare them to the proposed solutions. We remark
that the EPA and FDMA are well-known approaches in wire-
less communications, and we merely customize them to fit the
considered system model. The purpose is to show the potential
gains of optimizing the involving parameters, compared to
the two simple heuristic solutions. As an introductory work,
we believe that comparing our proposed solutions with these
baseline schemes is sufficient enough. The two considered
baseline schemes are detailed as follows.
• BL1: Steps (S1) and (S3) of this scheme have the

same designs as shown in the proposed scheme. In Step
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Fig. 2. Convergence of the proposed Algorithm 1 and Algorithm 2 for two
different channel realizations. Here L = K = 5, and M = 50.

(S3), the uplink transmission for the FL group and
the downlink of the non-FL group are executed using
a frequency-division multiple access (FDMA) approach
for transmission. In particular, we equally allocate the
frequency band to all UEs such that each FL UE or
non-FL UE has one single bandwidth subband for its
transmission. This FDMA scheme is widely used in FL
literature (e.g., [20], [37]). The uplink and downlink rates
of FL UEs in BL1 are derived in Appendix B. The
optimization problem of BL1 has the same mathematical
structure as that of the proposed scheme. Therefore, it can
be solved by slightly modifying Algorithm 1 using the
same approximations.

• BL2: The downlink powers to FL and non-FL UEs in
Step (S1) are equal, i.e., ηd,ℓ = ζ1,k = 1

L+K ,∀ℓ, k. The
downlink powers to non-FL UEs in Step (S2) and (S3)
are also the same, i.e, ζ2,k = ζ3,k = 1

K ,∀k. In addition,
in Step (S3), each FL UE uses full power, i.e, ηu,ℓ =
1,∀ℓ. The processing frequencies are f = NcDmcm

tQoS−td−tu
.

We first provide the convergence of the proposed scheme in
comparison with BL1 and BL2 schemes. The convergence plot
is shown in Fig. 2. It can be observed that both algorithms con-
verge in less than 30 iterations for both channel realizations.
Further, we note that for both channels, FD-based solution
provides a better objective than the HD-based solution when
SI is 20 dB as considered in this figure.

Next, in Figs. 3 and 4, we compare the minimum effective
rate of the non-FL UEs by the two proposed schemes and
the two considered baseline schemes. As seen clearly, both
proposed schemes offer a better performance than the baseline
counterparts. The figures not only demonstrate the significant
advantage of a joint allocation of power and computing
frequency over the heuristic scheme BL2, but also show the
benefit of using massive MIMO. Thanks to massive MIMO
technology, the data rate of each non-FL UE increases when
the number of antennas increases, which then leads to a
significant increase in the minimum effective data rates.

Moreover, Figs. 3 and 4 also confirm that in each frequency
band used for each group, serving all the UEs simultaneously
is better than serving them using the EPA approach. Specif-
ically, the proposed approaches outperform BL2 in almost

Fig. 3. Minimum Effective rate of non-FL UEs for different values of number
of BS antennas. Here L = K = 5.

Fig. 4. Minimum Effective rate of non-FL UEs for different values of number
of FL UEs. Here K = 5, and M = 50.

every case. The gap between the proposed schemes and BL1
is even bigger when the number of FL UEs increases. This is
because the effective rate of non-FL UE k can be considered
as the weighted rate Rk ≜ R1,ktd+R2,ktC+R3,ktu

td+tC+tu
, where

td, tC , tu are the weights associated with R1,k, R2,k, and R3,k,
respectively. Here, R2,k is the dominant term because in Step
(S2), all the non-FL UEs are served simultaneously without
interference from FL UEs. In BL1, Ru,ℓ is very small due to
its prelog factor 1

L+K , which leads to a large tu. When the
weight tu becomes dominant compared to td and tC , Rk of
BL1 is close to Ru,ℓ which is much lower than Rk of the
proposed schemes. As L increases, Ru,ℓ decreases further and
hence, Rk also decreases.

We now investigate the effect of high SI on the performance
of the FD-based solution to understand when the FD-based
algorithm is superior to the HD counterpart. For this purpose,
the minimum effective rate of non-FL UEs is plotted in Fig. 5
for different values of σ2

SI,0/N0. We also introduce a hybrid
scheme which selects the approach that has the better objective
among the two. For low values of SI (i.e., upto 65 dB), the
FD-based approach performs better, which is expected and
thus, the hybrid scheme is the same as the FD-based scheme.
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Fig. 5. Minimum Effective Rate of non-FL UEs for different values of
σ2

SI,0/N0 in dB.

On the other hand, for large values of SI (i.e., beyond 65 dB),
the effectiveness of the FD-based approach starts to decrease
due to the increased SI between the FL and non-FL groups.
Especially, the HD-based scheme outperforms the FD-based
approach when the SI is around than 80 dB. Thus, the hybrid
scheme is equal to the HD-based scheme for very large SI as
can be seen clearly in Fig. 5.

In the final numerical experiment, we plot the minimum
effective rate of non-FL UEs against the values of Sd and Su

in Fig. 6 to compare the performance of both proposed algo-
rithms for different data sizes. We introduce a parameter µ ≜
RFD

k −RHD
k

RHD
k

× 100, which defines the gain in percentage of the
FD-based solution over the HD-based solution. From Fig. 6,
we can observe that as the data size increases, the performance
of FD-based scheme decreases very slowly compared to the
HD-based scheme. As a result, the gain in percentage of the
FD-based scheme over the HD-based scheme, µ, increases
with the data size. Thus, we can conclude that for problems
with large sizes of FL model updates, the FD-based scheme
should be preferred over the HD-based scheme for SI of 20 dB.

V. CONCLUSION

We have presented two communication schemes that can
support both the FL and non-FL UEs using massive MIMO
technology which has not been considered previously. In par-
ticular, we have defined and maximize the effective rate of
downlink non-FL UEs in presence of a QoS latency constraint
on FL UEs. We have also presented the HD and FD based
solutions to the considered problem, specifically during the
uplink of each FL iteration where the uplink FL UEs and
downlink non-FL UEs receive their corresponding data simul-
taneously. In the downlink of each FL iteration, both FL and
non-FL UEs continue to be served in the same time-frequency
resource. The simulation results have showed that the proposed
HD-based and FD-based schemes outperform the considered
baseline schemes in all considered scenarios. It has also been
shown that the FD-based scheme is superior to the HD-based
scheme for the SI of upto 70 dB. The FD-based scheme is
also more beneficial than the HD-based scheme in terms of
the effective rate achieved by the non-FL UEs in the cases of
the model updates of large sizes.

Fig. 6. Minimum effective rate of non-FL UEs for different values of Sd

and Su. Here L = K = 5.

APPENDIX A
ACHIEVABLE RATES FOR FD IN STEP (S3)

Uplink Transmission of FL UEs: In this appendix, we sim-
plify (31). Particularly, we need to find two variance terms:
Var{uH

u,ℓ Eu D1/2
ηu

su} and Var{uH
u,ℓ GSI U3 D1/2

ζ3
su}. For

the first term, we know that Zu is independent of Eu. Thus,
we can state that

Var{uH
u,ℓ Eu D1/2

ηu
su}

=
∑
i∈L

(βi − σ2
u,i)ηu,i. (66)

Var{uH
u,ℓ GSI U3 D1/2

ζ3
su}

= E{|uH
u,ℓ GSI U3 D1/2

ζ3
su |2}

= E{uH
u,ℓ GSI U3 D1/2

ζ3
su sH

u D1/2
ζ3

UH
3 GH

SI uu,ℓ}
= E{uH

u,ℓ GSI U3 Dζ3
UH

3 GH
SI uu,ℓ}

= (
∑
i∈K

ζ3,i) E{uH
u,ℓ GSI U3 UH

3 GH
SI uu,ℓ}
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= (
∑
i∈K

ζ3,i) E{uH
u,ℓ GSI GH

SI uu,ℓ}. (67)

Using law of large numbers, E{GSI GH
SI} ≈ MβSIσ

2
SI,0.

Therefore, the above equation can be approximated as

Var{uH
u,ℓ Eu D1/2

ηu
su} ≈MβSIσ

2
SI,0(

∑
i∈K

ζ3,i) E{uH
u,ℓ uu,ℓ}

= MβSIσ
2
SI,0

∑
i∈K

ζ3,i. (68)

APPENDIX B
ACHIEVABLE RATES AND DATA RECEIVED FOR

BASELINE 1 (BL1) SCHEME

For the FD communication in Step (S3), FL UEs observe
SI from non-FL UEs, while non-FL UEs observe IGI from
FL UEs. Assume the FDMA approach is used in this scheme.
The entire system bandwidth for FL UEs and non-FL UEs
are divided into (L + K) subbands, and in each bandwidth
subband, only one FL or non-FL user is allowed to transmit,
and thus, there is no interference between any other FL and
non-FL user. In this context, the FDMA approach is the same
for both HD scheme and FD scheme. The uplink rate for the
FL group is expressed as

RFDMA
u (ηu, ζ3) ≜ min

ℓ∈L

τc − τu,p

(L+K)τc
B log2

(
1 + SINRFDMA

u,ℓ (ηu, ζ3)
)
,

(69)

where τu,p = 1 and SINRFDMA
u,ℓ (ηu) is given by

SINRFDMA
u,ℓ (ηu, ζ3) =

ρuηu,ℓMσ2
u,ℓ

1 + ρuβℓηu,ℓ
. (70)

Then, the time for each FL UE to complete its uplink trans-
mission is the same, which is given by

tFDMA
u (ηu) =

Su

RFDMA
u (ηu)

. (71)

Similarly for non-FL UEs, the downlink rate is written as

RFDMA
3,k (ηu, ζ3)=

τc−τ3,p

(L+K)τc
B log2

(
1+SINRFDMA

3,k (ηu, ζ3)
)
,

(72)

where τ3,p = 1 and SINRFDMA
3,k (ηu, ζ3) is calculated as

SINRFDMA
3,k (ηu, ζ3) =

ρdζ3,kMσ2
3,k

1 + ρdβ̄kζ3,k
. (73)

The transmission time from each FL UE to the BS and the
amount of downlink data received at all non-FL UE k, ∀k ∈
K are given by (27) and (28), respectively. The optimization
problem in this scheme is

max
xFDMA

mink∈K
(
D1,k(ηd, ζ1)+D2,k(f, ζ2)+DFDMA

3,k (ηu, ζ3)
)

td(ηd, ζ1)+tC(f)+t FMDA
u (ηu)

(74a)
s.t. (1), (13), (17), (23), (41b), (41c),

td(ηd, ζ1) + tC(f) + tFDMA
u (ηu) ≤ tQoS. (74b)

APPENDIX C
EXPRESSIONS OF LOWER AND UPPER BOUNDS OF RATE

FUNCTIONS

From (48), the concave lower bounds of Rd,ℓ(ηd, ζ1),
RHD

u,ℓ(ηu), R1,k(ηd, ζ1), R2,k(ζ2), and RHD
3,k(ζ3) are found as

given in (75a)-(75e), as shown at the bottom of the page,
where ψd,ℓ = ρd(M − L − K)σ2

d,ℓηd,ℓ, ψ
(n)
d,ℓ = ρd(M −

L − K)σ2
d,ℓη

(n)
d,ℓ , θd,ℓ = 1 + ρd(βℓ − σ2

d,ℓ)
∑

i∈L ηd,i +
ρdβℓ

∑
k∈K ζ1,k, θ

(n)
d,ℓ = 1 + ρd(βℓ − σ2

d,ℓ)
∑

i∈L η
(n)
d,i +

ρdβℓ

∑
k∈K ζ

(n)
1,k , ψu,ℓ = ρu(M −L)σ2

u,ℓηu,ℓ, ψ
(n)
u,ℓ = ρu(M −

L)σ2
u,ℓη

(n)
u,ℓ , θ

HD
u,ℓ = 1 + ρu

∑
i∈L(βi − σ2

u,i)ηu,i, θ
HD(n)
u,ℓ =

1 + ρu

∑
i∈L(βi − σ2

u,i)η
(n)
u,i , ψ1,k = ρd(M − L −

K)σ2
1,kζ1,k, ψ

(n)
1,k = ρd(M − L − K)σ2

1,kζ
(n)
1,k , θ1,k =

1 + ρd(β̄k − σ2
1,k)

∑
i∈K ζ1,i + ρdβ̄k

∑
ℓ∈L ηd,ℓ, θ

(n)
1,k =

1 + ρd(β̄k − σ2
1,k)

∑
i∈K ζ

(n)
1,i + ρdβ̄k

∑
ℓ∈L η

(n)
d,ℓ ;ψ2,k =

ρd(M−K)σ2
1,kζ2,k, ψ

(n)
2,k = ρd(M − K)σ2

kζ
(n)
2,k , θ2,k =

1 + ρd(β̄k − σ2
2,k)

∑
i∈K ζ2,i, θ

(n)
2,k = 1 + ρd(β̄k −

σ2
2,k)

∑
i∈K ζ

(n)
2,i , ψ3,k = ρd(M−K)σ2

3,kζ3,k, ψ
(n)
3,k = ρd(M−

K)σ2
3,kζ

(n)
3,k , θ

HD
3,k = 1 + ρd(β̄k − σ2

3,k)
∑

i∈K ζ3,i, θ
HD(n)
3,k =

1 + ρd(β̄k − σ2
3,k)

∑
i∈K ζ

(n)
3,i .

From (54) convex upper bounds of Rd,ℓ(ηd, ζ1) and
RHD

u,ℓ(ηu) are given in (76), as shown at the top of the next
page.

R̃d,ℓ(ηd, ζ1) =
τc − τd,p

τc log 2
B

[
log

(
1 +

ψ
(n)
d,ℓ

θ
(n)
d,ℓ

)
+

2ψ(n)
d,ℓ

ψ
(n)
d,ℓ + θ

(n)
d,ℓ

−
(ψ(n)

d,ℓ )2

(ψ(n)
d,ℓ + θ

(n)
d,ℓ )ψd,ℓ

−
ψ

(n)
d,ℓ θd,ℓ

(ψ(n)
d,ℓ + θ

(n)
d,ℓ ) θ(n)

d,ℓ

]
(75a)

R̃HD
u,ℓ(ηu) =

τc − τu,p

τc log 2
B

2

[
log

(
1 +

ψ
(n)
u,ℓ

θ
HD(n)
u,ℓ

)
+

2ψ(n)
u,ℓ

ψ
(n)
u,ℓ + θ

HD(n)
u,ℓ

−
(ψ(n)

u,ℓ )
2

(ψ(n)
u,ℓ + θ

HD(n)
u,ℓ )ψu,ℓ

−
ψ

(n)
u,ℓ θ

HD
u,ℓ

(ψ(n)
u,ℓ + θ

HD(n)
u,ℓ ) θHD(n)

u,ℓ

]
(75b)

R̃1,k(ηd, ζ1) =
τc − τ1,p

τc log 2
B

[
log

(
1 +

ψ
(n)
1,k

θ
(n)
1,k

)
+

2ψ(n)
1,k

ψ
(n)
1,k + θ

(n)
1,k

−
(ψ(n)

1,k)2

(ψ(n)
1,k + θ

(n)
1,k)ψ1,k

−
ψ

(n)
1,k θ1,k

(ψ(n)
1,k + θ

(n)
1,k) θ(n)

1,k

]
(75c)

R̃2,k(ζ2) =
τc − τ2,p

τc log 2
B

[
log

(
1 +

ψ
(n)
2,k

θ
(n)
2,k

)
+

2ψ(n)
2,k

ψ
(n)
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(n)
2,k

−
(ψ(n)
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(n)
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]
(75d)

R̃HD
3,k(ηu, ζ3) =

τc − τ3,p

τc log 2
B

2

[
log

(
1 +

ψ
(n)
3,k

θ
HD(n)
3,k

)
+

2ψ(n)
3,k

ψ
(n)
3,k + θ

HD(n)
3,k

−
(ψ(n)

3,k)2

(ψ(n)
3,k + θ
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3,k )ψ3,k

−
ψ
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3,k ) θHD(n)

3,k

]
(75e)
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R̂d,ℓ(ηd, ζ1) =
τc − τd,p

τc log 2
B

[
log

(
1 +

ψ
(n)
d,ℓ

θ
(n)
d,ℓ

)
+

θ
(n)
d,ℓ

ψ
(n)
d,ℓ + θ

(n)
d,ℓ

−
(ψd,ℓ)2 + (ψ(n)

d,ℓ )2

2× ψ(n)
d,ℓ × θd,ℓ

−
ψ

(n)
d,ℓ

θ
(n)
d,ℓ

]
, (76a)

R̂HD
u,ℓ(ηu) =

τc − τu,p

τc log 2
B

2

[
log

(
1 +

ψ
(n)
u,ℓ

θ
HD(n)
u,ℓ

)
+

θ
HD(n)
u,ℓ

ψ
(n)
u,ℓ + θ

HD(n)
u,ℓ
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(ψu,ℓ)2 + (ψ(n)

u,ℓ )
2

2ψ(n)
u,ℓ θ

HD
u,ℓ

−
ψ

(n)
u,ℓ

θ
HD(n)
u,ℓ

]
. (76b)

R̃FD
u,ℓ(ηu) =

τc − τu,p

τc log 2
B

2

[
log

(
1 +

ψ
(n)
u,ℓ

θ
FD(n)
u,ℓ

)
+

2ψ(n)
u,ℓ

ψ
(n)
u,ℓ + θ

FD(n)
u,ℓ

−
(ψ(n)

u,ℓ )
2

(ψ(n)
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FD(n)
u,ℓ )ψu,ℓ

−
ψ
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u,ℓ θ
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u,ℓ

(ψ(n)
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FD(n)
u,ℓ ) θFD(n)
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]
, (77a)

R̃FD
3,k(ηu, ζ3) =

τc − τ3,p

τc log 2
B

2

[
log

(
1 +

ψ
(n)
3,k

θ
FD(n)
3,k
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2ψ(n)
3,k
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, (77b)

R̂FD
u,ℓ(ηu) =

τc − τu,p

τc log 2
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2

[
log

(
1 +
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θ
FD(n)
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)
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2
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u,ℓ θ

FD
u,ℓ

−
ψ

(n)
u,ℓ

θ
FD(n)
u,ℓ

]
, (78)

Similarly, the concave lower bounds of RFD
u,ℓ(ηu, ζ3) and

RFD
3,k(ηu, ζ3) for the FD scheme given in (77), as shown at

the top of the page, and the convex upper bound of RFD
u,ℓ(ηu)

is given in (78), as shown at the top of the page, where θFD
u,ℓ =

1+ρu

∑
i∈L(βi−σ2

u,i)ηu,i+ρdMβSIσ
2
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