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Abstract— Radio frequency fingerprint identification (RFFI)
is a physical layer security methodology to recognize individ-
ual devices by leveraging hardware imperfections inevitably
induced in the manufacturing process. However, the performance
degradation caused by the time-varying channel impacts and
interferences has severely restricted the development of RFFI.
To this end, we present a channel-agnostic RFFI system, which
consists of three modules, i.e., signal preprocessing module,
feature extraction module, and classification module. In the signal
preprocessing module, we first propose a novel approach, referred
to as limiter-based spectral circular shift bidirectional division
(LB-SCSBD), to generate two parallel spectral quotient (SQ)
sequences. Then, we define the spectral quotient constellation
(SQC) symbols according to different modulation formats, and
thereby transform the SQ sequences into four magnitude-based
sequences in terms of two channel-robust signal representations,
i.e., the SQ magnitude (SQM) and SQC error vector magnitude
(SQC-EVM). In the feature extraction module, we present a
moment-based statistical feature extractor (MB-SFE) to extract
the device-specific information from the above four sequences.
In the classification module, the extracted statistics are fed
into the multi-class support vector machine (SVM) for train-
ing and testing. We take WiFi as a case study and evaluate
the performance of the proposed RFFI system by classifying
eight simulated device models and six universal software radio
peripheral (USRP) transmitter radios. Experimental results show
that (i) the proposed method achieves the accuracies of 99.84%
and 98.26% with eight devices in QPSK and 16QAM cases,
as well as the accuracy of 92.42% with six USRP devices (ii) the
proposed method exhibits superior classification performance
in comparison to some existing RFFI methods, leading to a
significant accuracy improvement of at least 38.33%.

Index Terms— High-order moments, multipath fading chan-
nel, radio frequency fingerprint identification, spectral quotient
constellation errors, WiFi.
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I. INTRODUCTION

IN RECENT years, the Internet of Things (IoT) has gained
great popularity and achieved unprecedented growth in both

the number and variety of applications, such as connected
healthcare, smart home and industrial control [1], [2]. With
the explosive growth of IoT device numbers, safeguarding IoT
systems in wireless connectivity will be accompanied by more
challenges. Conventional authentication techniques including
cryptographic schemes on software addresses and pre-shared
keys are effective strategies for physical layer security authen-
tication [3]. However, cryptography-based authentication tech-
niques usually consume massive computing resources, which
makes them difficult to deploy in the limited power and
computation resources, such as IoT devices, and their effec-
tiveness can be impacted by robustly detecting and revoking
compromised keys [4].

Radio frequency fingerprint identification (RFFI) has
emerged as an effective physical layer security methodol-
ogy, which employs the distinctive transmitter imperfections
extracted from the received signals to recognize individual
devices. Since the hardware imperfections are unintentionally
introduced in the manufacturing process, the radio frequency
fingerprints (RFF) resulting from them are nearly impossible
to mimic. For this reason, RFFI has attracted great interest
and has been widely investigated in WiFi [5], ZigBee [6],
LoRa [7], and Bluetooth [8].

Generally speaking, RFF can be extracted from both the
transient and steady-state portions of a signal. The corre-
sponding transient-based method involves recognizing distinc-
tive RFF presented in the transient turn-on waveforms. The
challenging issue is how to properly capture the transient
signal portion in a short time [9], [10], [11]. In contrast,
the steady-state signals are comparatively simple to capture
and detect. Therefore, RFFI based on the steady-state signals
has been investigated in many works [12], [13], [14], [15],
[16], [17]. Since a vast majority of existing wireless com-
munication systems send the preambles for synchronization,
the attention to feature extraction is initially transferred into
the preamble of the steady-state signals. In [12] and [13],
the mean, variance, skewness, and other statistics extracted
from the time-frequency analysis of preambles are utilized
as the discriminative features for identification. Subsequently,
the RFF research on the payload instead of the preamble has
been a hotspot. According to the literature [4], [14], [15],
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Fig. 1. The flow chart of the WiFi datasets generation and identification.

[16], and [17], the synchronization correlation, mixer offset,
constellation error as well as some statistics are employed
as distinct RFF and achieve significant classification perfor-
mance. Moreover, other RFFI methods like the deep neural
network (DNN) and conventional neural network (CNN) also
have been conducted in many works [18], [19], [20], [21], [22],
[23], [24], as this end-to-end approach can directly process the
raw signal and make predictions without feature engineering.
However, these approaches require intensive computational
complexity and have poor generalizability. Considering the
limited computation resources on the low-cost IoT devices,
our goal is to extract the handcraft features from the payload
as the distinct RFF for device recognization.

A major challenge for RFFI is that the time-varying channel
effects can result in unreliable classification performance.
At present, most current RFFI works only consider the noise
effects without the channel or simply assume the static chan-
nels in the controlled environment [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], and only a few works have
considered the time-varying impacts of the multipath fading
channel [26], [27], [28], [29], [30]. For instance, Tugnait
added the Gaussian artificial noise to the received signal in
order to compensate for the channel changes [26]. Besides,
Zhou et al. also proposed an artificial noise adding algorithm
to improve the classification accuracy by regularization and
channel adaptation [27]. However, the level of artificial noise
required to add is still uncertain. In [28], Sankhe et al.
proposed the ORACLE framework to mitigate the channel
effects through the undercomplete demodulation approach.
However, this method requires channel estimation and equal-
ization, which can induce extra errors and additional com-
putational complexity. Shen et al. in [29] first employed the
short-time Fourier transform (STFT) to construct the channel-
independent spectrogram, and then fed it into the CNN for
devices recognization. Their RFFI framework successfully

achieved excellent classification performance and effective
channel mitigation. However, this method only focuses on
the preambles and neglects the phase information of the
spectrogram. In our prior work [30], we attempted to use
the signal preprocessing method named spectral circular shift
division (SCSD) to generate the channel-robust spectral quo-
tient (SQ) signals. However, the SQ signals generated by the
SCSD method fluctuate heavily, and this decreases the stability
of the extracted RFF as well as degrades the classification
performance.

In this paper, a channel-agnostic RFFI system is designed,
which consists of three modules, i.e., signal preprocessing
module, feature extraction module, and classification module.
To combat the time-varying channel effects, our approach
first converts the received signals to other channel-robust
representations in the signal preprocessing module and then
uses the moment-based statistical feature extractor (MB-SFE)
to extract the device-specific RFF in the feature extraction
module. After that, the extracted feature samples are fed into
the multi-class support vector machine (SVM) for training
and testing in the classification module. During the training
stage, we train the SVM using the feature samples without
any channel effects. During the testing stage, we evaluate
the classification performance of the trained SVM using the
feature samples extracted under different channel conditions.
In our experimental evaluation, we take WiFi as a case study
and employ eight simulated device models and six universal
software radio peripheral (USRP) transmitters (in an open
dataset) for classification. The main contributions of this work
are summarized as follows:
• We propose a novel approach, referred to as

limiter-based spectral circular shift bidirectional division
(LB-SCSBD), to generate two parallel SQ sequences
in the submodule of the signal preprocessing module.
Moreover, we show that the proposed RFFI system using
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Fig. 2. The legacy WiFi frame structure.

the LB-SCSBD method can enhance the classification
accuracies of 14% - 47% in comparison to that using
the SCSD method at SNR = 27 dB.

• We define the spectral quotient constellation (SQC) sym-
bols in terms of the quadrature amplitude modulation
(QAM) constellation symbols and then construct
the SQC error vectors by performing the minimum
Euclidean distance between the SQ sequences and
the SQC symbols. It is worth noting that the SQC
symbols don’t contain any hardware imperfections,
which suggests that the SQC error vectors have
abundant RFF.

• We investigate two novel channel-robust signal rep-
resentations, namely SQ magnitude (SQM) and SQC
error vector magnitude (SQC-EVM), to generate four
magnitude-based sequences in another submodule of
the signal preprocessing module. Later, we present an
effective RFF extractor named MB-SFE in the feature
extraction module, which can extract four moments (i.e.,
first, second, third, and fourth moments) from each
observed sequence as the distinct RFF.

• We carry out extensive experiments to evaluate the
classification performance of the proposed RFFI sys-
tem. In comparison to the RFFI methods given in [17]
and [30], our method exhibits the best classification per-
formance, with at least 38.33% accuracy improvements
when the signal-to-noise ratio (SNR) level is equal to
30 dB. Moreover, the proposed RFFI system can achieve
the accuracies of 99.84% and 98.26% with eight devices
in QPSK and 16QAM cases at SNR = 32 dB, as well
as the accuracy of 92.42% with six USRP devices in the
open dataset.

The rest of the paper is organized as follows. Section II
details the generation of the WiFi datasets used in our
experiments. The identification process of the proposed
channel-agnostic RFFI system is briefly given in Section III.
In Section IV, we first introduce the experimental setup and
then analyze the experiment results of the proposed RFFI
system. Finally, we conclude this paper in Section V.

II. DATASET GENERATION AND SIGNAL MODEL

As shown in Fig. 1, the overall work can be divided into
two steps: the WiFi datasets generation and the identification
process. In this section, we first introduce the generation of
the simulated datasets, where the standard-compliant IEEE
802.11a WiFi frames are generated as the transmitted signals.
Then, we give the impairments modeling of the transmitter
with a special focus on the in-phase (I) and quadrature
(Q) imbalance, power amplifier (PA) nonlinearity, frequency
and phase mismatch, typically seen in actual hardware imple-
mentations. Finally, the received signal model is given, where
the carrier frequency offset (CFO) estimation and correction
are performed to decrease the impacts of oscillator imperfec-
tion. The detailed operations are provided in the following.

A. WiFi Frame Structure

Fig. 2 shows the IEEE 802.11a WiFi OFDM frame struc-
ture [28], which consists of a legacy short training field
(L-STF, 8 microseconds, i.e., µs), legacy long training field
(L-LTF, 8 µs), legacy signal field (L-SIG, 4 µs), and data
field. The data field contains K random OFDM symbols and
each OFDM symbol lasts for 4 µs. The L-STF is primarily
used for coarse CFO estimation, while the L-LTF is mainly
used for fine CFO estimation.

For simplicity, the WiFi signals are represented in the
complex form as follows

x(t) = xI(t) + jxQ(t); 0 ≤ t ≤ T, (1)

where xI(t) and xQ(t) denote the WiFi signals on the I and Q
branches, respectively; T (in µs) is the duration of each WiFi
full frame.

B. IQ Imbanlance

Quadrature mixers are used for upconversion and are often
impaired by IQ imbalances, which is one of the main aspects
of the transmitter’s impairments. Considering the distortion
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Fig. 3. The detailed architecture of channel-agnostic RFFI system.

caused by the IQ imbalances, the corrupted baseband signal
can be modeled as

z(t) = gtx
I xI(t)e

jθtx

2 + jgtx
Q xQ(t)e

−jθtx

2 , (2)

where θtx (in rad) is the phase mismatch; gtx
I and gtx

Q denote
the gain on the I and Q branches, respectively. As referred
from [24], the IQ gains in the linear scale can be denoted as

gtx
I = 100.5 Gtx

20 , (3)

gtx
Q = 10−0.5 Gtx

20 , (4)

where Gtx (in dB) is the gain imbalance.

C. Power Amplifier Nonlinear Distortion

Generally speaking, a power amplifier in a communication
system is used to boost a signal to a power level suitable
for transmission. Due to the demand for PA efficiency, non-
linearity is caused in the process of power amplification and
plays a key role in the generation of transmitter imperfection.
Considering the memoryless nonlinearity caused by PA, the
distorted baseband signal can be expressed as

y(t) = F (z(t)), (5)

where y(t) is the PA output at t time, and F (·) is the power
amplifier transfer function. Several memoryless PA models
including the Saleh model, Rapp model, and polynomial model
are employed, and the detailed descriptions are given in
Appendix A.

D. Received Signal Model

The transmitted signal attached by the distinct RFF will
be captured at the receiver after passing through the wireless
channel. Due to the frequency mismatch between the trans-
mitter and receiver, CFO and phase offset (PO) occur in the
process of downconversion. Hence, the continuously received
baseband signal interrelated with the transmitter RFF and these
time-varying distortions can be represented as

r(t) = e−j(2πBεt+Φ)
I∑

i=1

hτi
(t)y(t− τi)+w(t);

0 ≤ t < T, (6)

where B (in MHz) is the transmission bandwidth and ε is the
normalized CFO with respect to B; Φ is the PO within [−π, π];

I is the maximum channel delay taps and τi denotes the
channel delay of the ith tap; hτi(t) is the channel coefficient of
the ith delay tap at t time; w(t) is the additive white Gaussian
noise (AWGN) and w(t) ∼ CN (0, σ2

n).
Synchronization is often employed to detect the accurate

start of the received packet so that we can extract the signal
of interest easily with the prior information of the signal
configuration. The well-known Schmidl-Cox algorithm [31]
can be implemented when there is a need for synchronization.
Since synchronization is unnecessary in the simulated WiFi
frames (because the start of the WiFi signal is already known
in the simulated cases), we straightly divide the received WiFi
frame into two parts: preamble and OFDM data. As referred
from the literature [32], we can use the L-STF (t ∈ [0, 8)µs)
and L-LTF (t ∈ [8, 16)µs) signals in the preamble for the
coarse and fine CFO estimation according to the conventional
two-step CFO estimator. Assuming the overall estimated CFO
is ∆f , after performing the CFO correction, the corrected
baseband signal without oversampling in the data field can
be expressed as

s(n) = e−j(2πε′n+Φ′)
I∑

i=1

hτ ′i
(n)y(n−τ ′i) + ŵ(n);

0 ≤ n ≤ N − 1, (7)

where n is the discrete-time index of the sampling signal and
n = (t − 20)B (i.e., the start of the data field); N is the
length of the sampling signal in the WiFi data field; Φ′ denotes
the residual PO; ε′ is the normalized residual CFO and ε′ =
ε − ∆f/B; τ ′i is the discrete-time channel delay of the ith

path and hτ ′i
(n) is the corresponding nth channel coefficient;

ŵ(n) is the AWGN after performing the CFO correction.
After performing the above operations, the simulated WiFi

frames will be kept in several datasets according to the channel
conditions and modulation formats. Meanwhile, this completes
the generation of the simulated WiFi datasets.

III. CHANNEL-AGNOSTIC RFFI SYSTEM

A. System Overview

As shown in Fig.1, the identification process comprises
two essential stages, namely training and inference stages.
In the training stage, we only use the noise-affected dataset
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to train the proposed RFFI system. In the testing stage,
the well-trained RFFI system will predict the device label
according to the received samples of the multipath fading
channel datasets. Fig. 3 shows the detailed architecture of the
proposed channel-agnostic RFFI system, where three modules,
i.e., signal preprocessing module, feature extraction module,
and classification module are illustrated. In the signal prepro-
cessing module, we first generate two parallel SQ sequences
through the LB-SCSBD submodule. Then, we convert the SQ
sequences to two channel-robust signal representations, i.e.,
the SQM and the SQC-EVM, so that we can obtain four
magnitude-based sequences in the next submodule. In the
feature extraction module, we present the MB-SFE to explore
the hardware-introduced information from these sequences,
where the first, second, third, and fourth moments are extracted
from each sequence and then applied as the RFF features.
At last, the multi-class SVM classifiers are trained and tested
with the extracted feature samples in the classification module.

B. Limiter-Based Spectral Circular Shift Bidirectional
Division

Since the division-based algorithm is sensitive to the denom-
inator value, the SQ signal value generated by the SCSD
method is unstable and fluctuates heavily. This characteristic
decreases the statistical stability with a small amount of data
and then degrades the identification accuracy of the statistical
features-based RFFI system. On these bases, we propose a
novel approach named LB-SCSBD to generate two parallel SQ
signal sequences within a limited range. Additionally, we take
into account the null and pilot subcarriers of the WiFi OFDM
data in the proposed method.

Let sk = [sk(0), sk(1), . . . , sk(I1 − 1)] denote the kth

corrected OFDM signals in the data field of a WiFi frame and
ID = [id(0), id(1), . . . , id(I2 − 1)] denote the data subcarrier
indices, where I1 is the length of an OFDM symbol after
removing the cyclic prefix (CP) and I2 is the total number of
the data subcarriers. Then, we can derive the OFDM symbol
Sk = [Sk(0), Sk(1), . . . , Sk(I1 − 1)] by performing the fast
Fourier transform (FFT) as

Sk(n1) =
I1−1∑
i1=0

sk(i1)e−j2πi1n1/I1 ; 0 ≤ n1 ≤ I1 − 1. (8)

Due to the fact that the duration of an OFDM symbol is 4
µs, the slow fading channel behaves in a correlated manner
during such a short period. Thus, we can expect the channel
coefficients to remain unchanged during the transmission of
each OFDM symbol. In this case, according to [30], Sk(n1)
can be approximated as

Sk(n1) ≈ λ ·H(n1) · Yk(n1) + Ŵ (n1), (9)

where λ is a constant factor related to the PO and residual
CFO; H(n1) is the nth

1 channel frequency response; Yk(n1)
is the nth

1 element of the kth OFDM symbol distorted with the
transmitter imperfections; Ŵ (n1) is the nth

1 frequency-domain

Algorithm 1 Limiter-Based Spectral Circular Shift Bidirec-
tional Division (LB-SCSBD)
Input: A complete OFDM signal without CP, sk;

the data subcarrier indices, ID; the maximum limiter
output, Amax; the initial index of output, i3 = 0;

Output: The spectral quotient signal sequences: vr
k; vl

k;
1: Performing the FFT operation on sk to derive Sk;
2: Generating the shifted data subcarrier indices vector IDrcs

by Eq. (11);
3: Calculating the SQ vector Υr

k with Eq. (12);
4: for i2 = 0; i2 < I2; i2 + + do
5: if id(i2)− idrcs(i2) = 1 then
6: Extracting the qualified SQ signal as:
7: Υ̂r

k(i3) = Υr
k(i2);

8: Deriving the SQ signal of left circular shift as:
9: Υ̂l

k(i3) = 1/Υ̂r
k(i3);

10: Generating vr
k(i3) and vl

k(i3) by Eq. (14)
11: i3 + +;
12: else
13: end if
14: end for
15: return vr

k, vl
k.

noise. Moreover, λ, H(n1) and Yk(n1) can be expressed as

λ = e−j(πε′I1+Φ′),

H(n1) =
I∑

i=1

hτ ′i
W

τ ′in1
I1

,

Yk(n1) =
I1−1∑
i1=0

yk(i1)W i1n1
I1

, (10)

where WI1 = e−j2π/I1 and yk(i1) is the ith1 element of the
kth transmitted OFDM signal.

It is clear that the hybrid impacts caused by the multipath
fading channel, PO and residual CFO can be roughly deemed
as the multiplicative interferences in the frequency domain.
Hence, by leveraging the strong correlations of the channel
frequency responses at the neighboring subcarriers, the mul-
tiplicative interferences can be significantly suppressed in the
SQ domain [30].

Hence, we first perform the right circular shift by one step
on ID vector, then a new vector of the data subcarrier indices
can be obtained as

IDrcs = [idrcs(0), idrcs(1), . . . , idrcs(I2 − 1)]
= [id(I2 − 1), id(0), . . . , id(I2 − 2)]. (11)

Thereafter, we can generate the index pairs of the data
subcarriers as {id(i2), idrcs(i2)}, (0 ≤ i2 ≤ I2 − 1). Let
Υr

k = [Υr
k(0), . . . ,Υr

k(i2), . . . ,Υr
k(I2 − 1)] denote the right

circular shift SQ signal vector, then its ith2 element can be
calculated as

Υr
k(i2) =

Sk(id(i2))
Sk(idrcs(i2))

. (12)

To effectively mitigate the channel effects, we extract the
SQ signals that can satisfy the condition of id(i2)−idrcs(i2) =
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1 from Υr
k, and then the extracted SQ vector is denoted

as Υ̂
r

k = [Υ̂r
k(0), . . . , Υ̂r

k(i3), . . . , Υ̂r
k(I3 − 1)], where I3 is

the total number of the qualified SQ signals. Meanwhile,
we also generate the left circular shift SQ signal vector Υ̂

l

k =
[Υ̂l

k(0), . . . , Υ̂l
k(i3), . . . , Υ̂l

k(I3− 1)] via the above steps. It is
noted that the elements in Υ̂

l

k are exactly the reciprocal of
that in Υ̂

r

k, which can be expressed as

Υ̂l
k(i3) =

1
Υ̂r

k(i3)
. (13)

After passing through a limiter with the maximum output
amplitude of Amax, we can derive the parallel SQ sequences,
i.e., vr

k = [vr
k(0), . . . , vr

k(i3), . . . , vr
k(I3 − 1)] and vl

k =
[vl

k(0), . . . , vl
k(i3), . . . , vl

k(I3 − 1)], and their elements can be
calculated as

v℘
k (i3) =

Υ̂℘
k (i3), |Υ̂℘

k (i3)| ≤ Amax

Amax·Υ̂℘
k (i3)

|Υ̂℘
k (i3)|

, otherwise,
(14)

where the superscript ℘ denotes r or l.
The detailed steps of the LB-SCSBD are summarized in

Algorithm 1. After K times repetitive operations on different
OFDM data, we can derive the following parallel SQ signal
vectors from a complete WiFi frame as

vr = [vr
1, vr

2, . . . , vr
K ],

vl = [vl
1, vl

2, . . . , vl
K ], (15)

where the length of each vector is KI3.

C. Channel-Robust Signal Representations

Considering the need for signal analysis, we first define the
SQC symbols as follows:

Definition 1: Given Q is the complex-valued set comprised
of M -QAM symbols, then it can be used to generate a
second-dimension space D = {(A , B)|A ∈ Q, B ∈ Q}.
Let f : D 7→ P denote a function of two variables, which can
also be written in the following form:

f(D) = {P|P = A /B, A ∈ Q, B ∈ Q}, (16)

where P is the set of spectral quotient constellation symbols
based on M -QAM and P ∈ P .

Fig. 4 provides the spectral quotient constellation diagrams
in terms of QPSK and 16QAM. It should be noted that the
SQC symbols are the transformation of the QAM symbols and
don’t contain any imperfections. Hence, the variations between
the SQ signal and SQC symbols can be attributed to the hybrid
effects of the transmitter impairments and interferences (noise,
residual channel effects, etc.).

The SQC error vector is a measure of how accurately the
generated SQ signal is within its constellation, which can be
obtained as

er = vr − pr,

el = vl − pl, (17)

where pr and pl are the vectors of decided symbols after
performing the minimum Euclidean distance between each SQ

Fig. 4. The scatterplot of the QAM constellation diagrams and the
corresponding spectral quotient constellation diagrams.

signal and the SQC symbols in P , and their nth elements are
derived as

pr(n) = argmin
P∈P

|vr(n)−P|,

pl(n) = argmin
P∈P

|vl(n)−P|. (18)

In the following, we investigate two channel-robust and
magnitude-based signal representations that can be fed into
the subsequent feature extractor.

1) Spectral Quotient Magnitude: The SQ signal, especially
its magnitude, contains abundant device-specific informa-
tion, which can be used for device identification. The SQM
sequences are expressed as

vM
r = |vr|,

vM
l = |vl|. (19)

2) Spectral Quotient Constellation Error Vector Magnitude:
EVM is a popular system-level performance metric that helps
gauge the impacts of all impairments simultaneously from
a single value. Therefore, the signal representation of the
SQC-EVM vectors can be derived as

eM
r = |er|,

eM
l = |el|. (20)

D. Moment-Based Statistical Feature Extractor

In the feature extraction module, we propose a novel
feature extractor named MB-SFE to exploit the discriminant
information induced by transmitter imperfections. Specifically,
a total of sixteen moment-based statistics (i.e., first, second,
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TABLE I
IMPAIRMENTS OF EIGHT DEVICES USED IN SIMULATIONS

third and fourth moments) are extracted from four magnitude-
based sequences, and then they are employed to serve as
the discriminative features in the proposed RFFI system.
Let Ψ = [Ψ1,Ψ2,Ψ3,Ψ4] denote the extracted statistical
feature vector and Ψλ = [Ψv

r,λ, Ψv
l,λ, Ψe

r,λ, Ψe
l,λ] is the λ-order

moment vector. Then, the elements of Ψλ can be calculated
as follows

Ψv
r,λ =

1
KI3

KI3∑
n=1

|vM
r (n)|λ, (21)

Ψv
l,λ =

1
KI3

KI3∑
n=1

|vM
l (n)|λ, (22)

Ψe
r,λ =

1
KI3

KI3∑
n=1

|eM
r (n)|λ, (23)

Ψe
l,λ =

1
KI3

KI3∑
n=1

|eM
l (n)|λ. (24)

E. SVM Classifier

SVM is originally designed for binary classification.
Broadly, RFFI is used for multi-class classification scenarios.
The conventional way to extend binary-classification SVM to
multi-class scenarios is to decompose a multi-class problem
into several two-class classification problems, and then we
can implement the one-against-one strategy for the multi-class
SVM classifier training [33].

Considering a γ-class classification scenario in an
RFFI system, where we have L training samples:
{Ψtrain

1 , Λi1}, . . . , {Ψ
train
L , ΛiL

}. Here Λi is the device
code and i ∈ [1, 2, . . . , γ]. According to the one-against-one
strategy, we should construct J = γ(γ − 1)/2 binary-
classification SVM classifiers. During the SVM training
stage, the polynomial is chosen as the kernel function and the
hyperparameters of each SVM are independently updated in
terms of the training samples. Supposing that we have trained
J binary-classification SVMj (j ∈ [1, 2, . . . , J ]) and a testing

TABLE II
THE DELAY TAPS AND NORMALIZED POWER OF THE MULTIPATH FADING

CHANNEL MODELS IN SIMULATIONS

sample {Ψtest
l , Λil

} is fed into the well-trained classifier,
then each SVM classifier will make a prediction on the
testing sampling label Λj (prediction of SVMj). Obviously,
J prediction results of the testing sampling will be obtained
in the meanwhile. To make the final prediction, we adopt a
voting approach named max wins strategy [17] to decide the
predicted device code Λℵ (ℵ ∈ [1, 2, . . . , γ]).

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup for
the WiFi datasets generation and multi-class SVM training
as well as the evaluation metrics. Then, we will validate
the effectiveness of the LB-SCSBD method. Meanwhile, the
classification performance of the proposed channel-agnostic
RFFI system is investigated by experimental evaluations.
Moreover, we compare the performance of our methods with
some other existing RFFI methods on the simulated datasets.
Finally, we use the data originating from an open dataset [28]
to evaluate the proposed RFFI system in the face of the
real-world collected signals. The detailed experimental designs
and results are given in the following.

A. Experimental Setup

This subsection will introduce the configuration parameters
used for the generation of the datasets in terms of the device
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TABLE III
THE GENERATED CONDITIONS OF TWELVE SIMULATED DATASETS

impairments and WiFi signal settings as well as the multipath
fading channel models. Meanwhile, the evaluation metrics are
also provided in this part.

1) Device Impairments: To generate the simulated datasets,
eight device models with different impairments are config-
ured in this subsection. As reported from [24], the phase
imbalance usually ranges from 2 to 11.42 degrees and the
absolute gain imbalance generally runs from 0.02 to 1 dB,
so we use a set of gain and phase imbalances within these
ranges. Moreover, the utilized power amplifier models are
referred from the literature [34], [35], [36], [37], [38], [39].
Since the OFDM technique will cause a large peak-to-average
power ratio (PAPR) in waveforms, the input back-off (IBO)
technique1 prior to PA is adopted to keep the simulated signals
away from severe nonlinear distortions (especially the satu-
rated distortions). Furthermore, the CFO values of different
devices are set within limited ranges2 and follow the uniform
random distribution [42], while the PO values follow the same
distribution within [−π, π]. The detailed parameters of the
device impairments used in our simulations are summarized
in Table I.

2) WiFi Signal Settings: The carrier frequency and trans-
mission bandwidth are set to 5GHz and 80MHz, respectively.
The preamble duration is 20 µs, including 8 µs of L-STF,
8 µs of L-LTF, and 4 µs of L-SIG. We adopt both the QPSK
and 16QAM modulation techniques to generate the OFDM
symbols in the WiFi data field. On the one hand, the WiFi
frame modulated with QPSK lasts for 0.48 milliseconds (ms)
and contains 115 OFDM symbols (3.2 µs) with CP (0.8 µs).
On the other hand, the WiFi frame modulated with 16QAM
lasts for 0.364 ms and contains 86 OFDM symbols with CP.
After removing the CP, the length of each OFDM symbol in
the data field is 256.

3) Multipath Fading Channel Models: As shown in [43],
the varying channel will interfere with the transmitter impair-
ments and degrade the classification performance of the RFFI

1According to [40], the IBO level is defined as 10lg Psat
Pin

, where Psat

is the input saturation power and Pin is the average input power. Since the
average PAPR is about 7.8 dB, we set the IBO level to 12 dB for all simulated
models in this paper.

2According to the IEEE 802.11a specification [41], the CFO tolerance with
respect to fc is equal to ±20 parts per million (ppm, 10−6), hence the
maximum tolerable value of ε in Eq. (6) is ±40 · fc/B ppm.

Fig. 5. The classification performance with different Amax.

system. In order to focus on the channel-agnostic RFFI system,
we take the Rician multipath fading channel into consideration,
where five different channel conditions are detailed in Table II.
In the first delay tap, there is a line-of-sight (LOS) compo-
nent and a complex Gaussian variable, while the envelope
follows the Rayleigh distribution in other delay taps. Since
the channel’s coherence time is almost always larger than
the duration of 8 µs in wireless local area network (WLAN)
settings [44], it is reasonable to assume that the channel
is time-invariant in each 8 µs duration. Therefore, for each
WiFi frame, the channel fading coefficients are randomly and
periodically regenerated every 8 µs.

4) Datasets Description: To test the proposed RFFI method
with different channel conditions and modulation types, eight
simulated datasets are generated in terms of Table III, where
the WiFi datasets under the AWGN channel are also included
due to the need for the RFFI system training. Each dataset
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Fig. 6. The performance comparison of Pcc considering different SQ-generation methods.

contains 800 samples of the WiFi frames, where the preamble
(after performing the CFO correction) and CP (in the data
field) are deliberately neglected. In other words, 100 samples
of each device are kept in each dataset.

5) Multi-Class SVM Training: To investigate the perfor-
mance of the proposed RFFI method, we run LIBSVM3 [45]
to train the multi-class SVM classifiers in the following
experiments. It should be noted that the moment-based features
are extracted from the complete data field (i.e., 115/86 OFDM
symbols of QPSK/16QAM) of a single WiFi frame.

6) Evaluation Metrics: The confusion matrix and the over-
all classification accuracy are used as evaluation metrics,
which allow visualization of the classification performance.
Generally, the probability of correct classification Pcc can be
measured as

Pcc =
γ∑

i=1

P (Λi)P (Λℵ = Λi|Λi), (25)

where P (Λi) is the prior probability of the device Λi and
P (Λi) = 1/γ; P (Λℵ = Λi|Λi) is the conditional probability
of the event that the predicted device code of testing sample
(Λℵ) is Λi given that the device code of testing sample is Λi.

B. Effectiveness of the LB-SCSBD Method

First of all, we explore the impacts of the maximum output
amplitude (Amax) employed in the LB-SCSBD submodule on
the classification performance of the proposed RFFI system.
As shown in Fig. 5, the classification results with different
Amax are provided at SNR = 27 dB. It is clear that we can
obtain the best Pcc performance when Amax = 1.2 in the
QPSK cases. Meanwhile, all of the Pcc values are close to
the best performance when Amax = 3.8 in the 16QAM cases.
Hence, the Amax values are set to 1.2 (QPSK) or 3.8 (16QAM)
in the following simulations, respectively.

As mentioned in Section III, the LB-SCSBD is a novel
method to generate parallel SQ signals within a limited range.
To validate its effectiveness, we compare the classification
performance of the proposed system under different SQ-
generation methods, i.e., the SCSD and LB-SCSBD. The

3In our training process, the type of SVM is C-SVC and the type of kernel
function is the polynomial base function, where the gamma is equal to 60 and
other hyperparameters are defaults. Moreover, we only use the feature samples
without any channel effects to train the SVM.

comparison results are provided in Fig. 6, where the SCSD and
LB-SCSBD methods are tested in the proposed RFFI system,
respectively. We can find that the proposed RFFI system using
the LB-SCSBD method leads to the best classification perfor-
mance in these cases, with 14% – 47% accuracy improvements
in comparison to that using the SCSD method. Therefore,
we can conclude that the LB-SCSBD method is effective in
the experimental scenarios.

C. Evaluation of the Proposed RFFI System

In this subsection, we evaluate the proposed
channel-agnostic RFFI system. To investigate the noise
effect on classification accuracy, we add artificial AWGN
of different SNR levels to the simulated datasets. Since the
channel-mitigation effect of the SQ signal degrades severely
at high noise levels [30], we simulate the SNR range within
19 dB to 32 dB and the classification results are given in
Fig. 7.

It can be observed from Fig. 7(a) and Fig. 7(b) that the
overall identification accuracies are dependent on the channel
conditions when the noise level is fixed, especially in the
medium-level SNR regions (i.e., 23 dB – 29 dB). For instance,
there are 1.6% – 29.1% gaps among the accuracy results
tested under different channels at SNR = 25 dB. Moreover,
when SNR is equal to 32 dB, it is clear that the recogniza-
tion accuracy of our RFFI system can reach up to 99.84%
and 98.26% in the QPSK and 16QAM cases, respectively.
Meanwhile, focusing on the SNR regions within 21 dB to
29 dB, we can clearly observe two interesting phenomena from
these curves. On the one hand, in terms of the curves marked
with the blue pentagram, red triangle, and yellow square, it is
apparent that the recognition accuracies will rise up as the
normalized power in the main fading path increases when the
path delay taps are fixed. On the other hand, according to
the curves marked with the yellow square, violet circle, and
green snowflake, the recognition accuracies can be degraded
with the increase of the path delay taps when the normalized
power in the main fading path is fixed. These phenomena
can be explained by the fact that the concentration of the
channel power distribution will increase the channel frequency
correlation between the adjacent subcarriers, then the channel
effects can be suppressed more significantly in the generated
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Fig. 7. The overall classification accuracy curves of the proposed RFFI system on different datasets (i.e., collected under different channel conditions).

SQ signals, and hence improving the overall identification
accuracies.

D. Performance Comparison With Existing Methods

In this subsection, we further compare the classification
performance of our method with other two existing RFFI
methods based on statistical features:

1) In [17], the skewness and kurtosis extracted from the first
two decomposed signals of empirical mode decomposi-
tion (EMD) are served as RFF under the fading channels.
For simplicity, this method is referred to as EMD-SK.

2) In [30], the root mean square, variance, skewness, and
kurtosis are extracted from I and Q branches of the
spectral quotient sequences generated by the SCSD
method, and then they can be employed for devices
classification. This approach is called SQ-RVSK.

Note that the EMD-based RFFI method is operated with
the baseband signal of the WiFi data field in our experiment.
In detail, we first use the EMD algorithm to decompose
the I and Q branches of the baseband signals, respectively.
Then, we extract the skewness and kurtosis from the first
two decomposed signals in each branch. Finally, the extracted
features will be fed into the SVM for training and testing.

Table IV shows the classification results of these methods
with respect to different datasets at SNR = 30 dB, where
the same training conditions are considered. Obviously, the
proposed method achieves the best performance in all exper-
iments. However, the accuracy of EMD-SK can only reach
12.71% – 13.81%, which means this method is inefficient in
the simulated scenarios. This is because EMD can’t alleviate
the multipath fading channel effects and then the decomposed
signals are heavily impacted by the channel effects. Although
the SQ-RVSK method is effective, its accuracies have signifi-
cant gaps (38.33% – 60.44%) in comparison to the accuracies

TABLE IV
THE CLASSIFICATION RESULTS OF THREE RFFI SCHEMES

UNDER DIFFERENT DATASETS

of the proposed method. Hence, we can draw the conclusion
that the proposed method exhibits robustness and superiority
in comparison to the SQ-RVSK and EMD-SK methods for the
channel-agnostic RFFI tasks.

E. Performance on the Open Dataset

In [28], the authors first use the B210 radio receiver to
collect the raw IQ samples from over-the-air transmissions
of different USRP X310 transmitter radios and then release
this dataset online. As can be learned from their work, it is
hard to classify raw samples collected from the same devices
but at different times (due to the dynamic channel), and the
classification result will be unpredictable even for four devices.

In this part, we use the six devices’ data collected at
different times4 to verify the effectiveness of our RFFI system.

4The data used in our experiments is saved in the “ft” folder, and
their device codes are 3124E4A, 3123D7B, 3123D64, 3123D65, 3123D78,
3123D89. Moreover, we use the data recorded in the first run for training and
then use the data recorded in the second run for testing.
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Fig. 8. Classification results on the open dataset with different Lf .

Specifically, we first implement the Schmidl-Cox algorithm to
detect the start of the WiFi frame in the received data streams.
Then, the CFO estimation and correction should be performed
by the two-step CFO estimator. Afterward, we use Lf WiFi
frames to generate the parallel SQ sequences according to the
proposed LB-SCSBD method, where the Amax is 1.08. After
extracting the moment-based features, we will feed them into
the multi-class SVM classifier for training. Finally, we test the
classification performance of the trained SVM by predicting
the feature vectors extracted from the samples collected at
different times. Fig. 8 shows the confusion matrixes of the
classification results using the proposed RFFI system with
different Lf , where the overall classification accuracies are
80.17% at Lf = 1 and 92.42% at Lf = 5, respectively.
A significant improvement of the overall accuracy can be made
with the growth of Lf , since in this case the statistical stability
can be enhanced, and then the extracted statistical features
are more separable in multi-class SVM. Finally, we can make
a conclusion that our RFFI system is still effective on the
real-world collected dataset.

V. CONCLUSION

In this paper, we proposed a channel-agnostic RFFI method
and employed the legacy WiFi frame as a case study for
experimental evaluation. We first configured eight device mod-
els of the transmitter with different IQ imbalances and PA
nonlinearity. Then, we generated the simulated WiFi datasets
in terms of these models under different channel conditions,
where two types of modulation formats were considered.
The AWGN datasets were used for training the multi-class
SVM, while others were used for testing. In our experimental
evaluation, we showed that the proposed RFFI system using
the LB-SCSBD method outperformed that using the SCSD
method, resulting in 14% – 47% accuracy improvements at
SNR = 27 dB. Moreover, when SNR = 32 dB, our RFFI
system can reach up to 99.84% and 98.26% accuracies in

the QPSK and 16QAM cases, respectively. In comparison to
two existing RFFI methods based on statistical features, our
method provided the superior and the most robust classification
performance when facing channel-agnostic RFFI tasks. At last,
we tested the proposed method on the open datasets collected
at different times, the experimental results showed that our
method was also effective and achieved an accuracy of 92.42%
with six USRP devices.

APPENDIX A
POWER AMPLIFIER MODELS

A. Saleh Model

Saleh model [34] is one of the typical PA models used
to characterize both the amplitude-modulation-to-amplitude-
modulation (AM-AM) and amplitude-modulation-to-phase-
modulation (AM-PM) distortions. which is denoted as

y(t) = F (z(t)) = A(|z(t)|)ej(ϕ(z(t))+φ(|z(t)|)), (26)

where ϕ(·) is the phase operator, respectively; A(·) denotes the
AM-AM function and φ(·) is the function used to describe the
AM-PM effects. Besides, A(·) and φ(·) can be denoted as

A(|z(t)|) =
α1|z(t)|

1 + β1|z(t)|2
, (27)

φ(|z(t)|) =
α2|z(t)|2

1 + β2|z(t)|2
, (28)

where α1, β1, α2 and β2 are the hyperparameters.

B. Rapp Model

Rapp model is a memoryless semi-physical behavioral
model, which only considers the AM-AM effects. Hence, the
Rapp model can be expressed as [37]

y(t) = F (z(t)) =
az(t)

(1 + (a|z(t)|
b )2c)

1
2c

, (29)
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where a is the weak-signal gain; b is the saturation output
amplitude; c controls the smoothness of the transition from a
linear region to a saturated region.

C. Memoryless Polynomial Model

Memoryless polynomial model is a widely used PA model
for describing memoryless nonlinear behavior. This model
can individually describe both the AM-AM and AM-PM
distortions of PA, which is given as [39]

y(t) = F (z(t)) =
Q∑

q=1

a2q−1z(t)|z(t)|2q−1, (30)

where Q is the number of polynomial terms and 2Q−1 denotes
the maximum order of nonlinear terms; a2q−1 is the complex
coefficient of the (2q − 1)th order nonlinearity.
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