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Abstract— In this work, we propose novel HARQ prediction
schemes for Cloud RANs (C-RANs) that use feedback over a
rate-limited feedback channel (2 - 6 bits) from the Remote
Radio Heads (RRHs) to predict at the User Equipment (UE) the
decoding outcome at the BaseBand Unit (BBU) ahead of actual
decoding. In particular, we propose a Dual Autoencoding 2-Stage
Gaussian Mixture Model (DA2SGMM) that is trained in an
end-to-end fashion over the whole C-RAN setup. Using realistic
link-level simulations in the sub-THz band at 100 GHz, we show
that the novel DA2SGMM HARQ prediction scheme clearly
outperforms all other adapted and state-of-the-art schemes. The
DA2SGMM shows a superior performance in terms of blockage
detection as well as HARQ prediction in the no-blockage and
single-blockage cases. In particular, the DA2SGMM with 4 bit
feedback achieves a more than 200 % higher throughput in
average compared to its best alternative. Compared to regular
HARQ, the DA2SGMM reduces the maximum transmission
latency by more than 72.4 %, while maintaining more than
75 % of the throughput in the no-blockage scenario. In the
single-blockage scenario, DA2SGMM significantly increases the
throughput for most of the evaluated Signal-to-Noise-Ratios
(SNRs) compared to regular HARQ.

Index Terms— Early HARQ, feedback, prediction, machine
learning, cloud RAN.

I. INTRODUCTION

THE emergence of new services, such as Vehicle-To-
Everything (V2X), Virtual Reality (VR), Ultra-Reliable

Low Latency Communication (URLLC) and many more, has
increased the need for higher data rates and extremely low
latencies. This has directed the interest of mobile communica-
tion standards to cover new and higher frequency bands. The
Fifth Generation (5G) standardization body, the 3rd Genera-
tion Partnership Project (3GPP), has recently finished a new
work item targeting frequencies up to 71 GHz for access [1].
In particular, recent advances in hardware have paved the
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way for using these bands. The sub-THz and THz bands,
which reach from 100 GHz up to 3 THz, are now in the focus
for beyond 5G technologies [2], [3]. However, the use of
high-frequency bands has the disadvantage of being highly
dependent on an unobstructed Line-Of-Sight (LOS) path and
having significantly shorter channel coherence times, which
require a higher control signaling overhead due to more fre-
quent channel measurements [2]. Especially, the latter poses a
bottleneck for the Channel State Information at the Transmitter
(CSIT), which arrives with a delay [4]. CSIT is essential
to estimate the appropriate transmission parameters, such as
the Modulation and Coding Scheme (MCS), precoding, etc.
Especially, for highly mobile User Equipments (UEs), such as
cars or trains, the CSIT is already outdated when it is available
at the transmitter. Although, exploiting geometrical properties
of the environment and employing Machine Learning (ML)
enables predicting the CSIT over larger time windows [4], the
fast fading behavior of the channel may still make the channel
estimation inaccurate.

To cope with inaccurate CSIT, physical layer retransmis-
sion mechanisms, such as Hybrid Automatic Repeat reQuest
(HARQ), are used. However, HARQ, also known as reac-
tive HARQ, increases the end-to-end latency because the
transmitter requires feedback from the receiver after each
transmission round in form of an ACKnowledgment (ACK) or
Non-ACKnowledgment (NACK). Especially, for 5G URLLC
use cases with end-to-end latency requirements of down to
1 ms [5], reactive HARQ poses a limitation. For Sixth Gener-
ation (6G) use cases, where end-to-end latency requirements
even down to 100 µs are foreseen [6], this becomes even more
an issue. This drawback is compensated by proactive HARQ
that continuously transmits further retransmissions until an
ACK is received [7], [8]. Proactive HARQ combines high
reliability with extremely short latencies [9]. Nevertheless,
it trades these advantages for a degraded spectral efficiency
due to unnecessary retransmissions [10].

The dependence on the LOS path also poses a major issue
for reliable communication, as any obstruction by an object
causes a severe degradation of the channel quality. As a rem-
edy, Cloud Radio Access Network (C-RAN) architectures with
multiple reception points at different locations, i.e. Remote
Radio Heads (RRHs), are foreseen for sub-THz and THz
communications [11]. The BaseBand Unit (BBU), which is
responsible for higher layer processing, decodes the packet
by combining all received signals from the different RRHs.
However, in the context of C-RAN architectures, the afore-
mentioned drawbacks of reactive HARQ and proactive HARQ
become even more critical due to the significantly larger
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feedback delay [12]. In particular, a fronthaul latency of up to
250 µs is assumed [13]. Hence, many papers in the scientific
literature studied ways for reducing the feedback delay using
prediction mechanisms [12], [14], [15]. For architectures with
a single reception point, different HARQ feedback prediction
methods exist [10], [12], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. In contrast, for architectures
with multiple reception points, i.e. C-RANs, we know only
Signal-to-Noise Ratio (SNR)-based HARQ schemes proposed
by Khalili and Simeone in [14] and Makki et. al. in [15].
Other prediction mechanisms, such as Log-Likelihood Ratio
(LLR)-based and subcode-based approaches, [10], [20], [21],
[22], [23], [24], [25], have not been adapted yet to C-RAN
architectures. Current state-of-the-art designs assume that the
predictor has full knowledge of the prediction features. How-
ever, in C-RAN architectures, the RRHs only have partial
knowledge and further, the feedback channels to the UE are
rate-limited. Hence, in C-RAN architectures, HARQ predic-
tion schemes that consider the locality of the information are
required. Due to the rate-limitation of the feedback chan-
nels, schemes also have to develop efficient representations
of the local feedback and rules on how to combine these.
Furthermore, even for the SNR-based approach, no evaluation
using realistic link-level simulations in the C-RAN context,
in particular considering blockage, is available. Against this
background, the contributions of this paper are summarized in
the following:
• To address the HARQ prediction problem in C-RANs

in a holistic manner, we present a novel Dual Autoen-
coding 2-Stage Gaussian Mixture Model (DA2SGMM)
that exploits subcode features as well as channel esti-
mation features. Furthermore, to reduce the dimen-
sionality of the input features we propose over [25]
and [10] a subcarrier-based averaging of the LLRs for
the DA2SGMM.

• To enable the application of state-of-the-art feedback
prediction mechanisms for single reception points in C-
RANs, we propose a distributed HARQ prediction setup
with quantization of the feedback and a combining rule
at the UE. Within this setup, we develop a distributed
Logistic Regression on LogLikelihood Ratios (LR-LLR)
based on [23].

• Finally, we compare all schemes in the context of our
HARQ system evaluation methodology using realistic
link-level simulations. In particular, we also consider
the single-blockage case, where one RRH is blocked.
We show that the DA2SGMM clearly outperforms all
other schemes in all experiments.

A. Related Work on HARQ Feedback Prediction

As mentioned in the previous section, different HARQ
prediction schemes have been proposed and studied in the
literature. The variety of schemes reaches from simple thresh-
olding, e.g. [12], up to complex machine learning schemes,
e.g. [22] and [25]. In particular, the latter has gained interest
recently, also in the context of the new Rel. 18 standardiza-
tion [26]. In the following, we classify these schemes into
three categories:

1) Channel-estimation-based feedback prediction:
In [15], Makki et al. investigated a mixture of
proactive and reactive HARQ protocols to reduce the
expected latency. In the proposed scheme, the receiver
accumulates the received signal until the sum channel
gain that is estimated over quantization regions, exceeds
a certain threshold associated with a sufficiently high
decoding probability. In case of a negative prediction,
i.e. the transmitted redundancy is not sufficient for
successful decoding, the receiver switches to a reactive
HARQ approach. In [12], Rost and Prasad and, in [14],
Khalili and Simeone put the channel-estimation-based
prediction schemes into the context of C-RANs and
showed the benefits of early feedback in C-RANs with
non-ideal backhaul.
Besides that, in [19], AlMarshed et al. proposed a Deep
ML scheme that uses the received complex signal to
estimate the decodability of a packet. Although being
different from the previously described schemes, we cat-
egorize the Deep ML as a channel-estimation-based
approach because it does not involve the computation
of LLRs or any other channel-code-aware features.

2) LLR-based feedback prediction: In [20] and [21],
Berardinelli et al. used a Bit Error Rate (BER) estimate
based on LLRs to predict the decoding outcome ahead
of the actual decoding. They empirically computed a
threshold for the BER estimate to predict the decodabil-
ity. In contrast to the channel-estimation-based schemes,
the LLRs inherently contain a reduced form of the
channel estimates. Nevertheless, different from the first
category, the LLR-based schemes consider the whole
received data signal for the prediction instead of relying
only on pilots used for the channel estimation. As an
improvement over the simple thresholding that was used
by Berardinelli et ., Hummert et al. proposed in [22] to
use a neural network, designated as NN ForeCast, that
can mimic the decoder. A hybrid pathway was proposed
by AlMarshed et al. in [23]. They combined both LLR-
and channel-estimation-based features using a logistic
regression. The proposed logistic regression showed a
significant enhancement over other approaches that use
only one of both.

3) Subcode-based feedback prediction: In [10], [24],
and [25], the authors proposed a feedback prediction
mechanism that observes the partial decoding behavior
of so-called subcodes. The subcodes reflect dependen-
cies between received symbols arising from the structure
of the channel code. Similar to the LLR-based feedback
prediction, this approach uses the LLRs as a basis.
However, in contrast to these, subcode-based schemes
apply additional processing on the LLRs based on the
knowledge of the code structure. In [24], Göktepe et al.
empirically determined thresholds for these code-aware
features. As an improvement over this thresholding
approach, in [25], the authors applied machine learning
techniques, i.e. logistic regression, random forests, iso-
lation forests and supervised autoencoders, on the LLR
and subcode features. Especially, the logistic regression
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and the supervised autoencoder have proven to be fruit-
ful approaches to enhance the feedback prediction.

Apart from the previously described HARQ prediction
schemes that are mainly designed for single reception
points, [12], [14], and [15] presented similar approaches for
implementing the channel-estimation-based feedback predic-
tion in C-RANs. The works proposed collecting the channel
gains and the SNRs over the received Redundancy Versions
(RVs), respectively. In [12], Rost and Prasad applied Gal-
lager’s error exponent Er to convert the channel estimation
into an estimated error probability ϵ, as this metric is easier
to work with (see [27] for more details):

ϵ(R, γ) = c1e
−NEr(R,γ) , (1)

Er(R, γ) = R0(γ)−R , (2)

where γ is the average SNR, R is the code rate, N is the
code length, and R0 is the cut-off rate associated with the
SNR. After calculating Gallager’s error exponent locally at
the RRHs, they proposed applying a threshold to generate
a positive or negative feedback. However, they ignored the
case of multiple RRHs receiving the same packet. This was
investigated by Khalili and Simeone in [14]. They proposed
using a vector quantization, as described in [28], to compress
the channel state at the RRHs. Following the compression, the
RRHs transmit this compressed feedback over a rate-limited
feedback channel to the UE where a joint feedback is calcu-
lated. Furthermore, they also analyzed the impact of quanti-
zation of feedback on the system performance.

Notation: Throughout the paper, we use C to denote the
set of complex numbers and N the set of natural numbers.
Furthermore, Cn, n ∈ N, denotes the n-dimensional complex
vector space. Bold letters are used to indicate vectors, while
bold capital letters are used to indicate matrices. Random
variables are noted in capital letters, where random matrices
are further highlighted by bold font. E[·] is the expected value.
diag(·) : Cn → Cn×n, n ∈ N, denotes the mapping of an n-
dimensional complex vector to an n × n complex diagonal
matrix where the diagonal elements of the matrix are the
components of the vector. N (µ, σ2) designates the normal
distribution with mean µ and variance σ2 and CN (µ, σ2)
designates its circularly-symmetric complex counterpart.

II. SYSTEM MODEL

Fig. 1 shows the system setup which is used throughout
the paper. The definitions of commonly used variables are
summarized in Tab. I. We assume an uplink scenario where a
UE is transmitting a packet, which is simultaneously received
by two RRHs. After partially receiving a packet, the RRHs
generate a local feedback based on the evaluated prediction
algorithms. The generated local feedback is transmitted and
combined at the UE. In the meanwhile, the received signals
from the RRHs are accumulated and jointly decoded at the
BBU which determines the final decoding outcome.

Let A := Cn and B := B1 × B2 = Cp × C(n−p) =
Cn designate the input and output sets. Furthermore, let
each channel be characterized by its respective conditional
probability measure PY (1)|X : A 7→ B and PY (2)|X : A 7→ B.

Fig. 1. Uplink C-RAN scenario with local HARQ feedback generated at the
RRHs which is combined at the UE.

TABLE I
DEFINITION OF PARAMETERS

Given n modulation symbols, the channel probability measures
represent the following association between the random vector
representing the transmitted signal X ∈ A and the received
signal random vectors Y (1), Y (2) ∈ B:

Y (i) = H(i)X + Z(i), i = 1, 2 , (3)

where H(i) ∈ B, i = 1, 2, are random fading matrices and
Z(i) ∈ B, i = 1, 2, are random noise vectors with each
element distributed according to CN (0, 1). In our link-level
simulations, we assume a spatially filtered Clustered Delay
Line (CDL) channel model [29]. The assumed channel model,
which is explained more in detail in Sec. III-G, can be modeled
as complex channel gains that distort each symbol individually
and additive normally distributed noise on top.

To determine the final decoding outcome, the BBU com-
bines and jointly decodes the received signal vectors Y (1)

and Y (2) from both RRHs. On the other hand, the RRHs
calculate the feedback, which is a map T (i) : B1 → S,
i = 1, 2, where S is the sample space of the feedback. T (i)

is specified differently depending on the prediction scheme.
As we assume binary communication, the feedback sample
space reduces to S := FNb

2 where Nb is the number of bits
used for the feedback transmission. Finally, the UE applies a
combination rule F : S × S → {ACK, NACK}, which leads
to the corresponding UE behavior, i.e. stop transmitting or
transmit more redundancy.

III. DISTRIBUTED EARLY HARQ STRATEGIES

In this paper, we consider early HARQ strategies that
attempt to predict the decodability of a packet ahead of
the actual decoding. In particular, we take only a part of
the whole transmitted signal vector into account. In contrast
to early HARQ strategies that use the whole signal vector,
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Fig. 2. SNR based distributed prediction approach.

this approach allows for providing the feedback at an earlier
stage, which is crucial especially for latency-constrained use
cases. In the broadest sense, the decodability prediction can
be interpreted as binary statistical hypothesis testing, where
the early HARQ predictor tries to discriminate between two
probability distributions P and Q: the probability distribution
of decodables and the probability distribution of undecodables.
The feedback maps T (1) and T (2) have to be chosen such that
the two distributions become as distinguishable as possible.
Ideally, these maps are sufficient statistics to the statistical
hypothesis testing problem. However, in practice, depending
on the type of feedback, it is a notoriously difficult problem to
exactly characterize these distributions and hence, also finding
sufficient feedback maps.

In terms of the system model, the prediction is based on p
modulation symbols with p < n. Hence, given projpY (1) and
projpY (2), the binary hypothesis testing task at the UE is to
decide between the two distributions

P := P(T (1)(projpY (1)),T (2)(projpY (2)))|D=ACK (4)

Q := P(T (1)(projpY (1)),T (2)(projpY (2)))|D=NACK , (5)

where D ∈ {ACK, NACK} respresents the decoding outcome
at the BBU with n modulation symbols available at the
decoder and projp : Ck×p × Ck×(n−p) 7→ Ck×p, p, k, n ∈ N,
p < n, denotes the function, which maps an element from
the Cartesian product of two vector spaces on the first vector
space.

A. Channel-Estimation-Based HARQ Prediction (Q-SNR)

Channel estimation predictors focus on the estimated chan-
nel realization Ĥ

(i)
, i = 1, 2, at each RRH. The estimation

is performed based on known parts of the transmitted signal,
e.g. reference signals, such as Demodulation Reference Signal
(DMRS). In the particular case of the paper’s transmission
model, one DMRS is located at the beginning of each RV.
We use these DMRS to obtain the received SNRs, γ(1) and
γ(2), at each RRH, respectively.

For the channel-estimation-based prediction, we evaluate
the scheme proposed in [15] that accumulates the quantized
received SNRs from the RRHs at the UE and applies a
threshold to the sum to predict an ACK or NACK. In par-

ticular, FQ−SNR := T
(1)
SNR + T

(2)
SNR ≶

NACK

ACK

CQ−SNR, where

T
(i)
SNR, i = 1, 2, are the quantized received SNRs from the

respective RRHs and CQ−SNR is a constant that controls
the trade-off between false-positive and false-negative errors.
In the constant power case, the received SNR is equivalent
to the accumulated channel gain, which is used in [15].
Furthermore, we model the quantization by a quantization
layer. We assume both quantization functions TSNR(γ) :=

T
(1)
SNR(γ) = T

(2)
SNR(γ)∀γ to be the equal and further to

be piece-wise constant functions. The constant intervals are
chosen, such that each interval contains approximately the
same number of data points, over the relevant SNR range,
where the relevant range is determined by the minimum and
maximum values of the training set. See “quantile” in [30]
for more details. Then, TSNR assigns the value of the interval
center to each SNR that falls into that interval. This scheme
is designated as Quantized Signal-to-Noise-Ratio (Q-SNR) in
the following. In [14] and [15], the authors use the error
probability approximation from [31, Eq. (59)] to estimate the
failure probability. In particular, in [14], Khalili and Simeone
apply a threshold to the estimated error probability. However,
in our evaluated scenario, the Q-SNR scheme achieves the
same performance as the scheme in [14] at a significantly
lower complexity. Hence, we restrict only to the Q-SNR
scheme.

B. LLR-Based HARQ Prediction (LR-LLR)

The LLR-based approaches assume that each element xi ∈
S ⊂ C, i = 1, 2, . . . , n, of the transmitted signal vector x is
i.i.d. and each element of the symbol set S representing M bits
has the same probability. We are aware that this assumption
does not hold in practice due to the channel code. Nevertheless,
in the next section, we discuss a scheme that does not resort
to this assumption. Using the i.i.d. assumption, the LLRs are
calculated as

Λ(i)
(q−1)M+j := log

P (b(q−1)M+j = 1|rq)
P (b(q−1)M+j = 0|rq)

, i = 1, 2 , (6)

where rq , q = 1, 2, . . . , n, is the q-th received and equalized
symbol and b(q−1)M+j , j = 1, 2, ..,M , is the j-th bit in the
q-th equalized symbol. This definition of LLRs leads to the
following bit error probability:

v
(i)
l =

1

1 + e|Λ
(i)
l |

, l = 1, 2, . . . , p , i = 1, 2. (7)

Against the background of [20], we provide in Eq. (7) a
corrected version for the bit error probability [20, Eq. (7)].

In order to reduce the high dimensionality of p bit error
estimates vl, l = 1, . . . , p, we average over all received bit
error estimates:

v(i) :=
1
p

p∑
l=1

v
(i)
l , i = 1, 2. (8)

We apply first a local logistic regression at each RRH that is
fed with v(i) and the received SNR γ(i). We train the local
logistic regression with the BBU decoding outcome as the
ground truth. We apply l2 regularization, see [32] for more
details, and balanced weight classes to the logistic regression
using the liblinear solver from the scikit-learn package [33].
The local feedback function T

(i)
LLR, i = 1, 2, is given as

T
(i)
LLR(γ(i), v(i)) := Q

(
exp(θ20 +

(
γ(i) v(i)

)
θ2)

1 + exp(θ20 +
(
γ(i) v(i)

)
θ2)

)
,

(9)
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Fig. 3. Logistic Regression (LR) based distributed prediction approach.

where Q is the quantization function and {θ20 ∈ R, θ2 ∈ R2}
is the parameter set of the logistic regression. The quantization
function Q is determined analogously to the Q-SNR scheme.
The range between the minimum and maximum value from
the training set is divided into uniform intervals, where each
interval assigns the value of its center. After having generated
the local feedback T

(i)
LLR, we again use a logistic regression at

the UE to learn the feedback combination rule F [34]:

P
ACK|T (1)

LLRT
(2)
LLR

≈ PLLR(T (1)
LLR, T

(2)
LLR) (10)

with

PLLR(T (1)
LLR, T

(2)
LLR) :=

exp(θ30 +
(
T

(1)
LLR T

(2)
LLR

)
θ3)

1 + exp(θ30 +
(
T

(1)
LLR T

(2)
LLR

)
θ3)

,

(11)

where {θ30 ∈ R, θ3 ∈ R2} is the learnt parameter set of the
logistic regression. Then, the combination rule is defined by

FLR−SNR(T (1)
LLR, T

(2)
LLR) := PLLR(T (1)

LLR, T
(2)
LLR) ≶

NACK

ACK

CLLR,

where CLLR is an appropriately chosen constant. This scheme
is referred to as LR-LLR.

C. Subcode-Based HARQ Prediction

As LLR-based schemes, subcode-based HARQ predictors
take the LLRs as a basis. However, instead of assuming
i.i.d. components of the signal vector X , the subcode-based
prediction considers constraints defined by the parity-check
matrix P ∈ FL×nM

2 . The relation between the bit vector
b := (bi,j) ∈ FnM

2 , i = 1, 2, . . . , n, j = 1, 2, . . . ,M , and the
parity check matrix is defined as PbT = 0. Message passing
decoders, such as the min-sum implementation, iteratively
update the LLRs based on P , which is described by:

Λ(i)
l,k = Λ(i)

l,k−1 +
∑

m∈M(l)

δ
(i)
m,k , i = 1, 2 , (12)

where M(l) is the set of check nodes that are associated with
the bit bl, δ

(k)
m,k is the check node to variable node message

at the k-th iteration, and Λ(i)
l,k is the updated LLR at the k-th

iteration with Λ(i)
l,0 := Λ(i)

l . In contrast to tree codes where
message passing decoders always converge to the best solu-
tion, for modern Low-Density Parity-Check (LDPC) codes, the
evolution of the LLRs can be interpreted as a sequence which
may or may not converge to a “degraded” marginalization [35].
Compared to considering only the received LLRs, this behav-
ior provides additional information on the healthiness of the
received codeword.

Fig. 4. A supervised DA2SGMM to compress the feedback information at
the RRHs and evaluate the combined result at the UE. The yellow boxes are
only used for training purposes and are removed for inference.

1) Supervised Dual Autoencoding 2-Stage Gaussian Mix-
ture Model (DA2SGMM) for Anomaly Detection: In the
machine learning literature, autoencoders are well established
for unsupervised anomaly detection tasks [36], [37], [38]
due to their unprecedented dimensionality reduction capabil-
ities [39]. Also for HARQ prediction purposes, a supervised
autoencoder proposed in [25] outplayed other machine learn-
ing techniques, such as logistic regression, random forests,
and others. However, the approach in [25], which builds on
the DAGMM architecture that was proposed for anomaly
detection in [37], assumes a scenario with a single receive
point. In this section, we extend this autoencoder to handle
two separated RRHs. This novel approach, referred to as
DA2SGMM, achieves a dimensionality reduction of the input
features. Furthermore, we use two independent classifiers at
each RRH to convert the compressed subcode features together
with the received SNR features to a decodability feedback,
which is afterwards combined at the UE classifier. In Fig. 4,
we show the schematic design of the proposed DA2SGMM
architecture. As can be seen, we incorporate the constraints of
the architecture of the communication system directly into the
setup of the DA2SGMM. The upper box represents the parts
executed at the first RRH, the lower box the parts at the second
RRH and finally, the right small box represents the network at
the UE. We provide further details of the DA2SGMM setup
and training in Appendix.

The subcode features are generated from a partial decoding
process at the RRHs. In particular, the subcode features at the
RRHs are represented as:

s(i) :=
(
s
(i)
1 . . . s

(i)
Nsc/4

)
, i = 1, 2, (13)

where

s
(i)
k :=

1
4p

4∑
j=1

p∑
l=1

1

1 + e
|Λ(i)

l,4(k−1)+j
|
, k = 1, . . . , Nsc/4.

(14)

In contrast to the previous schemes, the training is
performed in an end-to-end manner. Hence, we do
not have to distinguish the feedback T (i) and the
combination rule F . Instead, we can see the whole
network, represented by PDA2SGMM, as part of the
combination rule FDA2SGMM

(
s(1), γ(1), s(2), γ(2)

)
:=
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TABLE II
MEMORY CONSUMPTION IN NUMBER OF STORED FLOATING POINT VARIABLES AND COMPUTATIONAL COMPLEXITY IN TERMS OF ELEMENTARY

FLOATING POINT OPERATIONS

PDA2SGMM ≶
NACK

ACK

CDA2SGMM, where CDA2SGMM again is a

constant controlling the trade-off between false-positives and
false-negatives.

D. Complexity Comparison

The different HARQ prediction strategies come at different
costs in terms of computations and memory. In particular, the
required processing time, which results from the computational
complexity, is critical for low-latency applications. In order to
compare the different schemes, we assume that the SNR and
LLR features themselves are available without any processing
cost. In [40], the decoding latency of a flexible offset min-sum
LDPC decoder is given by

δdec =
⌈

Ndv

Z

⌉
I

f
, (15)

where N is the size of the codeword, dv is the average variable
node degree, Z is the lifting size of the code, i.e. 104, I is
the number of performed iterations and f is the clock rate of
the decoder. This decoder type is implementation-wise very
similar to the optimized min-sum LDPC algorithm, which has
been used for the simulations. Applying to the used subcode
and assuming a decoder frequency of 1 GHz, as motivated
in [40], we obtain a decoding latency of 305 ns for the partial
decoding to obtain the subcode features from the LLRs.

For the evaluation of the classifiers, we determine the
amount of memory required to store the model parameters
and input features and the number of elementary floating-
point operations. Furthermore, to validate the estimated we
perform a processing time measurement of a single-threaded
implementation of the schemes on an Intel(R) Xeon(R) CPU
E5-2687W v3 @ 3.10GHz processor. The LR-LLR scheme
uses logistic regressions with 2 input features each. Hence,
besides the features themselves, the parameter set of the
logistic regression also has to be stored on the devices. This
results to a memory consumption of Cmem,LR = 5. Further-
more, the computational complexity is given by Ccomp,LR =
5 C+, ∗ + 1 C/ + 1 Cexp, where C+, ∗ is the computational
complexity of an elementary multiplication or addition, C/ is
the computational complexity of an elementary division and
Cexp is the complexity of computing the exponential function.
We use Cquant to designate the computational complexity of
the quantization. Different from the logistic regression, the
DA2SGMM scheme is built up by multiple Fully Connected
(FC) layers, see Appendix for more details. The overall
memory consumption of an FC layer results to

Cmem,FC = (Nin + 3)Nout . (16)

Furthermore, the overall computational complexity of an FC
layer is given by

Ccomp,FC = 2 Nout(Nin + 1)C+, ∗ . (17)

The Softmax layer does not have any stored parameters and
hence, Cmem,SM = 0. The computational complexity is given
by Ccomp,SM = 2 C+, ∗+ 1 C/ + 1 Cexp.

Tab. II summarizes the overall complexity of all schemes.
Obviously, the Q-SNR scheme has the least memory con-
sumption as well as the least computational complexity at
all devices. Compared to that, the LR-LLR slightly increases
the memory consumption and computational complexity at the
RRHs. The DA2SGMM clearly has the highest memory con-
sumption and computational complexity on all devices. The
complexity of the elementary operations can be approximated
by weights corresponding to the number of performed floating
point operations: C+, ∗ := 1, C/ = 4 and Cexp = 8 [42]. For
the quantization, we take PyTorch’s FakeQuantize implemen-
tation as baseline [43]. Hence, the computational complexity
of the quantization results to Cquant = 4 C+, ∗. Tab. III shows
the estimated processing times for a Raspberry Pi 3 processor
and the results of actual processing time measurements on
an Intel Xeon processor. In a practical implementation, the
processing time may vary based on the capabilities of the pro-
cessor platform, the latency of memory access, the efficiency
of the implementation and many more factors. However, this
impact also heavily depends on the actual implementation.
This also explains discrepancies between the estimated pro-
cessing times and the actual processing times. Obviously, the
quantization operation requires much more time on the Intel
processor than estimated. In contrast to the DA2SGMM that
uses PyTorch also for the quantization, we use scikit-learn’s
KBinsDiscretizer for the quantization of the other schemes.
Also, the implementation of the linear regression is not opti-
mized for the particular case and hence, performs unnecessary
double calculations. Furthermore, we do not consider memory
access delays for our estimated processing times. However,
with specialized hardware, such as GPUs or even TPUs,
a significantly better performance is to be expected. In Tab. IV,
we show a simple estimation of the processing times of the
DA2SGMM on multi-core platforms. We assume that matrix
multiplications resulting in an output vector, i.e. a linear layer,
can easily be parallelized by computing each entry of the
output vector separately. We observe that the processing time
on the RRH scales almost linearly up to 16 cores. In contrast
to that, on the UE, 16 cores only have a very small advantage
compared to 8 cores. However, a UE processing time of 25.8 ns
already is very small. Nevertheless, the processing times are
at most in the small µs range on single-threaded platforms,
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TABLE III
SINGLE-THREADED PROCESSING TIME ON DIFFERENT PROCESSOR PLATFORMS

TABLE IV
ESTIMATED PARALLELIZED PROCESSING TIME OF DA2SGMM ON A

RASPBERRY PI 3 PLATFORM

which is extremely small even compared to stringent latency
budgets, such as 1 ms and even 0.1 ms. In particular, special-
ized hardware, such as GPUs and TPUs, are widely used
to run neural networks. Overall, our evaluation shows that
the processing time are expected to be sufficiently small on
practical platforms.

E. Data Transmission Model

We assume an incremental redundancy HARQ protocol
with up to four RVs. In our simulation setup, an RV spans
over 14 Orthogonal Frequency Division Multiplexing (OFDM)
symbols in time, which is equivalent to 15.63 µs. The UE
transmits the RVs in a consecutive manner, as depicted in
Fig. 5. After receiving each RV, the RRHs provide feedback
using the previously described prediction schemes. The UE
decides based on a combination rule F whether further RVs
are required or not. This approach enables a good trade-off
between reliability and spectral efficiency since some RVs are
omitted, if an early decoding is successfully predicted. After
having received all RVs from the UE, the RRHs forward the
received signals to the BBU where a single decoding attempt
is conducted. In this work, we simulate four RVs; hence, there
are three prediction points:

1) the first prediction point (Pos#1), which uses the
received RV#0 to decide whether RV#2 is required or
not,

2) the second prediction point (Pos#2), which uses RV#0
and RV#1 to decide whether RV#3 is required or not.

3) the blockage prediction point (Pos#3), which uses
RV#0-2 to decide whether blockage is detected or not.

A positive prediction at the first prediction point causes the
UE to stop transmitting further RVs. Hence, the second pre-
diction point would not be reached in that case. However, this
depends on the particular prediction scheme and modeling this
accurately would require to incorporate the prediction directly
into the link-level simulations, which increases the complexity

Fig. 5. Data transmission model incorporating the feedback delay.

extremely. Instead, we assume that all prediction schemes
correctly identify transmissions that are already decodable
with the first RV and only the remaining transmissions reach
the second prediction point.

F. Evaluation Methodology

In addition to achieving the reliability and the latency
targets which are mandatory requirements, the performance
of the HARQ prediction schemes can be compared in terms
of their achieved throughput. In contrast to commonly used
classifier performance metrics, such as precision and recall,
the throughput provides a measure with direct takeover to
practical scenarios. Especially, when considering edge cases
with extremely low-reliability requirements, common classifier
metrics may not provide a good metric for comparison [25].

Based on the renewal-reward theorem [44], the throughput
is expressed as η = E[R]

E[L(T )] , where E[R] is an expected reward
and, E[L(T )] is the expected transmission latency with L(T )
as defined in (18) and (19) and T ∈ N+ being the number
of requested RVs. Furthermore, the reward is R := 0 in
case the transmission failed within the latency budget. In case
the transmission was successful, R is Npacket, the size of
the packet in nats. Hence, the expected reward is given as
E[R] := (1 − ϵtot)Npacket, where ϵtot is the associated total
error probability. The transmission latency of the prediction
schemes is composed of multiple components:

Le(T ) =


TδRV + (T − 1)δexc if 1 ≤ T ≤ Tmax

TmaxδRV + Lblk

+ (Tmax − 1)δexc

if T > Tmax,

(18)

where δexc := max(δproc + δfb − δRV, 0) and δRV is the time
to transmit an RV, δproc is the processing time required by
the specific prediction scheme and δfb is the time required to
transmit the feedback. Furthermore, Lblk is a latency penalty.
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For simplicity, we assume Lblk = TblkδRV, where Tblk

is a spectral efficiency penalty when blockage is detected.
In contrast to that, the latency of a regular HARQ system
is composed as:

Lr(T ) =


TδRV + (T − 1)(δfh + δfb) if 1 ≤ T ≤ Tmax

TmaxδRV + Lblk

+ (Tmax − 1)(δfh + δfb)
if T > Tmax,

(19)

where δfh is the fronthaul round-trip time, which is the time
required for transporting the received signal vectors to the
BBU, decoding the packet at the BBU, and sending the result
back to the RRHs.

The probability distribution of T for a feedback delay of
δ := 1 is determined by the performance of the different
estimators:

P[T = t] =



pt−2ϵt−1αt−1

+ pt−2(1− ϵt−1)
· (1− βt−1)

if 2 ≤ t ≤ Tmax

pTmax−1 if t = Tmax + Tblk

0 otherwise

(20)

with

pt :=
t∏

j=1

ϵj(1− αj) + (1− ϵj)βj , (21)

where Tmax is the maximum number of transmissions, Tblk

is an additional spectral efficiency penalty in case blockage
is detected, ϵj , j ∈ {1, 2, . . . , Tmax − 1}, are the error
probabilities at the (j + 1)-th RV given that previous RVs
were unsuccessful, αj , j ∈ {1, 2, . . . , Tmax− 1}, are the false
positive probabilities, i.e. predicting an unsuccessful decoding
as an ACK, and βj , j ∈ {1, 2, . . . , Tmax − 1}, are the false
negative probabilities, i.e. predicting a successful decoding as
a NACK. The false-positive and false-negative probabilities
are defined as

αj := PDj+1=NACK|Fj=ACK , (22)

and

βj := PDj+1=ACK|Fj=NACK , (23)

where Dj+1 is the decoding outcome with (j + 1) RVs and
Fj is the outcome of the j-th prediction.

The total error performance ϵtot is determined by the error
probabilities ϵi but also the false positive error probability
αi. The total error performance in a non-blockage scenario
is given by [10]:

ϵtot|nb =

Tmax−2∑
t=1

t−1∏
j=1

ϵj(1− αj)

 ϵtαt


+

(
Tmax−2∏

i=1

ϵi(1− αi)

)
ϵTmax−1 , (24)

where the false-positive, false-negative and error probabilities
are estimated from non-blockage scenarios. However, in a

blockage scenario a sufficiently low error probability cannot be
maintained and hence, alternative procedures, e.g. additional
redundancy, switching to a lower frequency or adapting the
beam, have to be initiated. However, instead of making an
assumption on the specific blockage recovery scheme, we use
the spectral efficiency penalty Tblk to model the blockage
case. This also means that an effective blockage, i.e. non-
decodability of the Tmax RVs, has to be detected with the
same target error probability. The probability of blockage
misdetection is given by

ϵblk|sb =

Tmax−3∑
t=1

t−1∏
j=1

ϵj(1− αj)

 ϵtαt


+

Tmax−3∏
j=1

ϵj(1− αj)

 ϵTmax−1αTmax−1 , (25)

where the false-positive, false-negative and error probabilities
are derived from single-blockage scenarios.

The false-positive probabilities and the false-negative prob-
abilities behave in a conflicting manner, where the trade-off
between both can be controlled by adjusting the bias s of the
respective predictor. However, the functional relation between
αi(s) and βi(s), i = 1, . . . , Tmax − 1, is not known. Hence,
we determine 1000 admissible pairs (αi(sj), βi(sj)), j =
1, 2, . . . , 1000, from the link-level simulations and interpolate
them piece-wise linearly. Obviously, any false-positive false-
negative curve of a reasonable predictor is a convex function,
where at the extreme case when no prediction is possible,
this function becomes a straight line connecting the points
(0, 1) and (1, 0). Hence, a piece-wise linear interpolation is a
conservative approximation, where the actual performance of
the predictors at an interpolated point is expected to be better
than the approximated value.

With s := (s1, s2, . . . , sTmax−1) being the vector of biases
per prediction, we derive the following optimization problem
for the expected number of RVs under no blockage:

minimize
s

E[T (αnb(s),βnb(s))]

subject to ϵtot|nb(αnb(s)) ≤ ϵtarget

and ϵblk|sb(αsb(s)) ≤ ϵtarget , (26)

where ϵtarget corresponds to the overall reliability requirement.
We use the Sequential Least Squares Programming (SLSQP)
algorithm [45] with a Monte-Carlo approach to numerically
find a valid solution to the aforementioned optimization prob-
lem.

G. Link-Level Simulation Setup

To compare the performance of previously described HARQ
prediction schemes, we conduct link-level simulations to
collect the required LLR, subcode and channel estimation
features. We choose the frame structure of the transmission,
i.e. the mapping of the code block to resource elements and
reference signals, e.g. DMRS, in accordance with the Rel.
16 3GPP specifications. Furthermore, we use a subcarrier
spacing of 960 kHz, which is currently being specified in
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TABLE V
LINK-LEVEL SIMULATION ASSUMPTIONS FOR TRAINING, HYPER AND

TEST SET GENERATION

the “NR operation up to 71 GHz” work item [1]. Tab. V
summarizes the link-level parameters. We assume that differ-
ent UEs are scheduled on different orthogonal time-frequency
resources and hence, interference from other transmitters can
be neglected. In the sub-THz frequency spectrum, the use
of beamforming is necessary due to the high pathloss, even
for free space propagation. However, Multiple-Input Multiple-
Output (MIMO) schemes that allow dynamic beamforming are
complex in the sense that they offer a large set of tunable
parameters and transmission modes. Optimizing these goes
beyond the scope of this work. Hence, we use a spatially
filtered Clustered Delay Line D (CDL-D) channel model that
already incorporates the effects of beamforming [29], see
Sec. III-G for more details.

We evaluate the performance in a single-blockage and a no-
blockage scenario. We do not consider the case where both
RRHs are blocked, as this would also make any communica-
tion at a feasible rate impossible. In the no-blockage scenario,
we assume no SNR difference between the two RRHs. In the
single-blockage scenario, we assume the same SNR at the
non-blocked RRH and an additional pathloss of 11.2 dB at
the blocked RRH. This is the pathloss difference of a blocked
and non-blocked channel with a UE at 20 m distance from
both RRHs in the UMi scenario [29]. At the RRHs, we use a
spatially filtered CDL channel model. In particular; at the un-
blocked RRH, we use CDL-D, which is a LOS channel model
with Rician distributed LOS component and Rayleigh dis-
tributed Non-Line-Of-Sight (NLOS) components [29]. At the
blocked RRH, we use the CDL-C, which is a NLOS channel
model [29]. Furthermore, we apply the directional antenna
pattern, as specified in [47], at both sides to generate a
spatially filtered Tapped Delay Line (TDL) channel which

models the effective channel between the UE and the RRHs.
The spatial filtration procedure is performed in accordance
with [29, Sec. 7.7.4]. For the decoding of the received signal
vector, we apply an optimized min-sum algorithm [48] with
50 iterations. In contrast to that, the subcode prediction uses
only 5 iterations. Hence, its complexity is only 1/10-th of the
complexity of a full decoding attempt.

IV. SIMULATION RESULTS

In this section, we present the results for the different
HARQ prediction approaches. We train all schemes jointly
on all SNRs except 6 dB. The SNR of 6 dB is not used during
training but only used for testing to evaluate the generalization
performance of the models.

A. False-Positive and False-Negative Performance

The false-positive and false-negative mispredictions deter-
mine the performance of the predictor, as we can see from
Eq. (20) and (24). Especially, the regime of low false-positives
is of special interest because the cost of a false-positive
misprediction is significantly higher than the cost of a false-
negative misprediction. However, due to the finite size of
the test sets, we have to deal with false-positives of zero,
which makes a logarithmic scale unusable. Hence, a symmet-
rical logarithmic scale has been chosen for the false-positive
axis. This scaling puts emphasis on the lower regime of
the false-positive probabilities while keeping the zero point
interpretable; however, special care has to be given to the linear
scaling between the zero and the first step.

Fig. 6 shows the SNR-averaged false-positive rate over the
false-negative rate at the first and the second prediction points
with a feedback size of 4 bits. In Fig. 6a, we note that all
schemes achieve a better performance in the no-blockage sce-
nario compared to the single-blockage scenario. In particular,
the Q-SNR and LR-LLR achieve in both scenarios a compara-
ble performance, whereas the LR-LLR performs slightly better
than the other schemes except at very small false-negative
rates in the no-blockage scenario. Furthermore, we note that
the DA2SGMM clearly outperforms all other schemes in
both scenarios. In the no-blockage scenario, it reaches zero
mispredictions on the test set already at an false-negative rate
of approximately 0.5. In contrast to that, the other schemes
reach zero mispredictions only at a false-negative rate of
1. This behavior even reinforces at the second prediction
point, seen in Fig. 6b. Here, in the no-blockage scenario,
the DA2SGMM reaches zero mispredictions already below a
false-negative rate of 0.2. In the single-blockage scenario, the
performance of the DA2SGMM degrades slightly compared
to the first prediction point. However, the performance of
the other prediction schemes degrades significantly in both
scenarios compared to the first prediction point.

The false-positive-false-negative curve only shows the aver-
aged performance. Hence, we also want to compare the
performance of the schemes at specific SNRs. In particular,
the SNR of 6 dB is of uttermost interest as this data was
excluded from the training. Hence, we further introduce the
notion of the Area Under the false-positive-Curve (AUC) as
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Fig. 6. False-positive prediction performance over false-negatives after the
first RV and after second RV with 4 bit feedback. No-blockage (circle).
Single-blockage (circle). (a) First prediction point. (b) Second prediction point.

AUC :=
∫ 1

0
f̃α,β(x)dx, where f̃α,β(x) is the piece-wise

linear interpolation of the false-positive-false-negative pairs
(α, β). In Fig. 7, we present the AUC performance in the
no-blockage and single-blockage scenarios with a feedback
size of 4 bits. In the no-blockage scenario, in Fig. 7a,
we observe at the first prediction point that the AUC decreases
with increasing SNR, i.e. the prediction accuracy increases.
In particular, for the SNR of 6 dB, we note that none of the
schemes show a particularly degraded AUC performance. For
the second prediction point, we observe that the AUC tends to
slightly increase with increasing SNR for all schemes except
the DA2SGMM, which shows an almost flat behavior over
the SNR range. As seen already in Fig. 6, it can be clearly
seen that the DA2SGMM achieves by far the lowest AUC at
all SNRs and both prediction points. In the single-blockage
scenario, in Fig. 7b, we observe the AUC tending to increase
with the SNR except for the DA2SGMM at the first prediction
point. Again, the DA2SGMM clearly outperforms the other
schemes at all SNRs and both prediction points. Furthermore,
we note as in the no-blockage scenario that no degradation of
the AUC at an SNR of 6 dB can be observed. Hence, a good
generalization of all models may be assumed.

Fig. 7. AUC performance over SNR with a feedback size of 4 bits. First
prediction point (solid). Second prediction point (dashed). (a) No-blockage
scenario. (b) Single-blockage scenario.

1) Impact of Feedback Size: In the previous section,
we show results for a feedback size of 4 bits. However, the
question of how many feedback bits are required is impor-
tant for the practicability of the HARQ prediction schemes,
as more bits result in a significantly higher control signaling
overhead. In Fig. 8, we show the SNR-averaged AUC over
different feedback sizes in the no-blockage and the single-
blockage scenarios, in Fig. 8a and Fig. 8b, respectively. In the
no-blockage scenario, Fig. 8a, we clearly note a trend of lower
AUC at higher feedback sizes. This matches the intuition that
more accurate feedback benefits the prediction accuracy. How-
ever, in the single-blockage scenario, in Fig. 8b, we observe
a lower AUC at lower feedback sizes. Although this seems
counter-intuitive, this behavior is explained by the trade-off
between the no-blockage AUC and the single-blockage AUC.
Depending on the hyperparameters, the feedback size itself
and in particular the ACK weight class for the DA2SGMM,
see Appendix, the schemes train for a different trade-off at
the different feedback sizes. Besides that, we observe that the
DA2SGMM achieves the lowest AUC at both prediction points
and in both scenarios even compared to higher feedback sizes
of the other schemes. Furthermore, we can see that all schemes
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Fig. 8. Averaged AUC performance over different feedback sizes. First
prediction point (solid). Second prediction point (dashed). (a) No-blockage
scenario. (b) Single-blockage scenario.

profit from more feedback bits. In particular, we observe that
Q-SNR gains the most until 3 bits and only benefits slightly
from more bits. The LR-LLR and DA2SGMM mostly improve
in terms of AUC until 4 bits. Although, the DA2SGMM has
an outlier for the first prediction point at 3 bits in the blockage
scenario, as seen in Fig. 8b.

2) Blockage Detection: In addition to the first and second
HARQ prediction points, the blockage prediction also plays a
crucial role for practical applications. In Fig. 9, we show the
SNR-averaged false-positive rate over the false-negative rate in
the no-blockage and the single-blockage scenarios, in Fig. 9a
and Fig. 9b, respectively. Similar to the previous prediction
points, we observe generally a better performance for all
schemes in the no-blockage scenario compared to the single-
blockage scenario. Again, the DA2SGMM clearly achieves a
significantly lower false-positive rate at the same false-negative
rates. These results indicate a superior performance for the
DA2SGMM scheme compared to the other schemes in terms
of HARQ prediction and also blockage detection.

B. HARQ System Performance

In the previous section, we evaluated the false-positive and
false-negative performance. However, the performance in a

Fig. 9. Blockage prediction at the third prediction point with a feedback
size of 4 bits. (a) No-blockage scenario. (b) Single-blockage scenario.

practical setup has to be shown to prove the efficiency of a
scheme. Hence, we evaluate the different prediction schemes
using the evaluation methodology described in Sec. III-F.

In Fig. 10, we show the HARQ performance of the pre-
diction schemes with 4 bits feedback size in terms of the
throughput with and without the blockage side constraint as
defined in (26). We assume Tblk := 4, which implies that a
positive blockage detection results in 4 additionally requested
RVs. Furthermore, we set δfb = δRV. Due to the downlink
control signaling design, i.e. PDCCH in 5G, it is possible
to achieve even smaller feedback delays. However, as it is
clear from (18), any smaller δfb would diminish the impact of
the complexity differences of the schemes. For the processing
latency of the schemes, we take the measurement results from
the single-threaded implementation on an Intel Xeon CPU as
a basis. In Fig. 10a, we observe in the no-blockage scenarios
that DA2SGMM with 23 - 25 Mbit/s throughput clearly out-
performs all other prediction schemes, which achieve approx-
imately 8 MBit/s at all SNRs. We note that the latency that
is required to achieve the target error rates, does not differ
significantly for the HARQ prediction schemes. Compared
to regular HARQ, DA2SGMM reaches approximately 20 %
less throughput. Nevertheless, the higher throughput of regular
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Fig. 10. Throughput (4 bits feedback) over the maximum transmission latency
(δfb = δRV) with and without the blockage side constraint at the evaluated
SNRs and corresponding target error rates, as provided in Tab. V. (a) With
blockage constraint. (b) Without blockage constraint.

HARQ comes at the cost of a significantly larger maximum
transmission latency compared to DA2SGMM. In the single-
blockage scenario, we note that the additional latency due to
retransmissions significantly degrades the throughput of regu-
lar HARQ. The DA2SGMM, Q-SNR and LR-LLR achieve
a similar and significantly higher throughput for all SNRs
except the 7 dB SNR of HARQ with δfh = 150µs. In Fig. 10b,
we show the throughput without the blockage side constraint.
We observe that the performance improves for all prediction
schemes in both scenarios. Especially, the Q-SNR and LR-
LLR significantly benefit from removing this side constraint.
This indicates that in the previous performance evaluations,
these schemes are mainly limited by the stringent blockage
detection side constraint defined in (26).

Another critical issue for machine learning schemes is the
robustness against unknown channel variations. In particular,
any learned scheme has to reliably perform for a larger range
of channel parameters, such as the SNR. In order to test the
robustness of the trained DA2SGMM, we exclude the SNR of
6 dB from training. We note that the throughput of DA2SGMM
behaves as expected also at this SNR point. Furthermore,

we note that the achieved throughput at 6 dB is even closer to
the throughput of 7 dB than 5 dB, which hints that the scheme
behaves as expected also in unknown channel variations.

V. SUMMARY AND CONCLUSION

In this work, we proposed novel machine-learning assisted
HARQ prediction schemes and evaluated them within the
context of a C-RAN scenario in the sub-THz regime con-
sider also blockage using link-level simulations. In partic-
ular, we extended the LLR- and subcode-based approaches
proposed in [25] enabling their usage in a C-RAN setup by
introducing quantization and a feedback combination module
using a logistic regression and we proposed a novel end-to-
end DA2SGMM architecture that exploits SNR and subcode
features. Using realistic link-level simulations, we showed that
the proposed DA2SGMM clearly outperforms other prediction
mechanisms in no-blockage as well as in single-blockage
scenarios within the context of the HARQ evaluation method-
ology. In particular, we present that the DA2SGMM HARQ
prediction achieves a more than 200 % higher throughput
compared to other HARQ prediction schemes at SNRs ranging
from 4 dB to 7 dB and target error rates from 1 · 10−4 to
3.5 · 10−6, if single-blockage is considered. Even without
blockage, we show that the throughput of the DA2SGMM is
approx. 29 % higher compared to the LR-LLR and even 45 %
higher compared to the Q-SNR. Compared to regular HARQ,
our proposed DA2SGMM with a sufficient feedback size
suffers only by a throughput reduction of approx. 20 % while
reducing the maximum transmission latency by a factor larger
than 4. Furthermore, we show that 4 bits for the feedback
transmission is sufficient and the schemes do not benefit from
more bits. In future research, the impact of double-blockage
as well as a setup with more than two RRHs may be studied.
Furthermore, the impact of non-ideal channel estimation on
the performance of the different schemes has to be evaluated
in further studies.

APPENDIX
DUAL-INPUT DENOISING AUTOENCODER

The network configuration for the encoders at each
RRH is [FCL(d,25), FCL(25,10), FCL(10,3)] and for the
decoder [FCL(3,15), FCL(15,40), Lin(40,d)], where FCL(x,y)
≡ [Lin(x,y), BN, L-ReLU] and d is the input dimension.
Furthermore, Lin(x,y) denotes a linear transformation layer,
BN a Batch Normalization-layer, L-ReLU a Leaky ReLU
activation layer with a slope of 0.01. Each RRH further
contains a classifier that operates on the compressed form
of the subcode features. The network configurations of the
RRH classifiers each read as [FC(5,10), FC(10,15), FC(15,
15), FC(15, 10), Lin(10, 2), SM], where FC(x,y) ≡ [Lin(x,y),
BN, ReLU] where ReLU is a ReLU activation layer and SM
is a softmax activation layer. The classifiers each receive the
compressed representation of s(i) and the received SNR γ(i)

as input. To prevent drifting off of the two “arms” of the
network, the local encoders and classifiers are tied together.
In particular this means, the weights and the biases of the
linear layers are updated equally at both RRHs. Furthermore,
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we implement the quantization layer by a FakeQuantize layer
with a MinMaxObserver in PyTorch using quantization-aware
training [49]. Lastly, the network configuration of the UE
classifier is given by [FC(2,20), FC(20,10), FC(10,5), Lin(5,2),
SM]. We train the DA2SGMM in an end-to-end fashion using
a loss function L that is composed by the L2 norm:

L2 =
1
N

2∑
i=1

N∑
k=1

||s(i)
k − ŝ

(i)
k ||22 , (27)

and the cross-entropy between the predicted output d̂ and the
actual decoding outcome d:

Lce =
1

1 + ωACK

(
dk log(d̂k)+ ωACK(1− dk) log(1− d̂k)

)
,

(28)

where N is the number of samples in a batch and ωACK is a
weight class for ACKs. The two loss functions are combined
as:

L = L2 + λLce , (29)

where λ is a fixed weight factor. The fixed weight factor and
the batch size are found to give the best results at 15.0 and
15,000, respectively, for all prediction points. For the first and
the blockage prediction point, the ACK weight class ωACK

achieves at 0.5 the best performance. For the second prediction
point, the ACK weight class is chosen to be 0.1. To train
DA2SGMM under the given loss function, we use the Adam
optimizer [50] at a learning rate of 0.001 and weight decay of
10−5. We initialize the parameters of the whole network with
the Kaiming normal initialization [51]. Due to the nature of the
sample data, the ratio between ACKs and NACKs is heavily
imbalanced. Hence, we undersample the majority class, i.e.
ACKs, to create a balance between ACKs and NACKs.
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