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Abstract— Motivated by the increasing computational capa-
bilities of wireless devices, as well as unprecedented levels
of user- and device-generated data, new distributed machine
learning (ML) methods have emerged. In the wireless community,
Federated Learning (FL) is of particular interest due to its
communication efficiency and its ability to deal with the problem
of non-IID data. FL training can be accelerated by a wire-
less communication method called Over-the-Air Computation
(AirComp) which harnesses the interference of simultaneous
uplink transmissions to efficiently aggregate model updates.
However, since AirComp utilizes analog communication, it intro-
duces inevitable estimation errors. In this paper, we study the
impact of such estimation errors on the convergence of FL and
propose retransmissions as a method to improve FL accuracy
over resource-constrained wireless networks. First, we derive the
optimal AirComp power control scheme with retransmissions
over static channels. Then, we investigate the performance of
Over-the-Air FL with retransmissions and find two upper bounds
on the FL loss function. Numerical results demonstrate that
the power control scheme offers significant reductions in mean
squared error. Additionally, we provide simulation results on
MNIST classification with a deep neural network that reveals
significant improvements in classification accuracy for low-SNR
scenarios.

Index Terms— Federated learning, over-the-air computation,
retransmissions.

I. INTRODUCTION

THE data collection rate in wireless devices is growing
at an exceptional speed due to the increasing adoption

of smartphones, tablets, and Internet of Things (IoT) devices
[1], [2]. These devices are expected to provide a broad range
of Artificial Intelligence (AI) services in Sixth Generation
(6G) networks, such as predictive healthcare [3], search-and-
rescue drones [4], and environmental monitoring [5]. As a
consequence, new distributed machine learning methods, such
as Federated Learning (FL), have become essential to enable
privacy-preserving and communication-efficient model train-
ing [6]. A recent survey on open problems of FL argues that
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communication is often a primary bottleneck for FL because
wireless links operate at low rates that can be both expensive
and unreliable [7]. Communication-efficient FL is investigated
thoroughly in [8], where various compression techniques such
as quantization, random rotation, and sub-sampling are evalu-
ated. In [9], [10], and [11] it is established that new wireless
methods can greatly improve the communication efficiency of
edge AI.

A novel approach to wireless communication, called Over-
the-air computation (AirComp), has recently been adapted to
support Machine Learning (ML) services [12], [13]. AirComp
is an analog communication scheme that orders its users to
communicate simultaneously over the same frequency band,
thereby promoting interference. This interference is leveraged
to compute a function of the transmitted messages by utiliz-
ing the superposition property of the wireless channel [14].
By appropriately precoding the transmitted signals and post-
coding the received signal, all nomographic functions can
be calculated over the air [15]. In FL, the central server is
interested in collecting the arithmetic mean of model updates
from the participating devices. Since the arithmetic mean is a
nomographic function, AirComp is a suitable communication
solution [11].

Compared to conventional point-to-point digital commu-
nications, AirComp is attractive from a communication-
efficiency standpoint, with throughput gains approximately
proportional to the number of users [12]. The reason for this
drastic improvement is that the entire wireless spectrum can
be utilized concurrently by all devices, rather than dividing
it and allocating smaller resource blocks to each device.
Additionally, AirComp obfuscates the participating users
since the central server directly receives the arithmetic mean
rather than the individual model updates, thereby enhancing
privacy [16].

Currently, AirComp is reliant upon specialized hardware
and fine synchronization that might be difficult to achieve in
practice [17]. Additionally, AirComp is unable to guarantee
perfect reconstruction of the transmitted messages at the
receiver. Shannon’s “fundamental theorem for a discrete chan-
nel with noise” establishes that for any degree of noise con-
tamination, it is possible to communicate discrete data with an
arbitrarily small frequency of errors [18]. However, to achieve
a non-zero communication rate, redundant information must
be transmitted in the form of a code. Since the information
transmitted in AirComp is not discrete, existing codes do not
appear to be directly applicable. Instead, AirComp settles for
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estimating the desired function as closely as possible, while
retaining some non-zero estimation error [19]. In [20], it is
proven that these errors harm the convergence properties of
FL, both the rate of convergence and post-convergence loss.

In the current AirComp literature, the main way of reducing
the estimation error is to optimize the transmission powers.
In [19] and [21], the authors propose a closed-form power
control scheme that minimizes the mean squared error (MSE)
between the received signal and the desired function of the
sources’ messages under a peak transmission power constraint.
For the case of multiple antennas, no closed-form power con-
trol scheme has been found, but [13] develops a strong heuris-
tic by using a difference-of-convex-functions representation of
the problem. In [22] and [23], the multi-antenna problem is
coupled with wireless power transfer to improve the battery
life of participating IoT devices. To further improve the power
control, [24] proposes a gradient-statistics aware scheme that
learns statistical properties of the model updates to improve
the AirComp estimation error. In [25], the temporal structure
of gradient sparsity is leveraged to develop a Bayesian prior
that improves the estimation. Another common approach is
to incorporate intelligent reflective surfaces with AirComp to
reach substantially lower estimation errors [26], [27], [28].

As a general pattern, none of these works offer avenues to
trade off communication resources for improved estimation.
In digital communications, such communication-estimation
trade-offs are the main way to reduce errors. For instance, it is
standard to adaptively control the modulation order and coding
rate to compensate for poor channels [29]. Unfortunately, none
of these approaches are directly compatible with AirComp
since the communication is analog. In this paper, we take a first
step towards enabling this communication-estimation tradeoff
for Over-the-Air federated learning with a system we call
AirReComp. The contributions of this paper are summarized
as follows.
• A power control scheme for AirReComp is proposed.

The proposed scheme is proven to be globally optimal in
terms of MSE between the estimated and desired func-
tion, given assumptions on the first and second moments
of the local model updates.

• Upper bounds on the FL loss function are derived for
single-epoch Lipschitz-smooth functions, both for the
strongly convex and convex case.

• To further support the feasibility of AirReComp under
non-convex functions, we provide numerical results with
Deep Neural Networks (DNNs). These results suggest
that AirReComp can beat state-of-the-art Over-the-Air FL
in terms of classification accuracy.

The remainder of the paper is organized as follows. Section II
introduces the system model. Section III presents and solves
the power control problem to minimize the MSE between
the desired and received sum. Section IV provides worst-
case analyses on the performance of AirReComp in terms of
two upper bounds on the FL loss function. In Section V, the
proposed AirReComp scheme and the convergence bound are
numerically evaluated for non-convex and convex loss func-
tions. Finally, section VI concludes the paper and discusses
future work.

Notation: z is a scalar, z is a vector, and Z is a matrix.
Element i of vector z is expressed as z(i). To denote element-
wise operations of vectors, we overload the scalar equivalent,
e.g. x/y is the element-wise division of x and y. z̄ denotes
the complex conjugate. ẑ denotes an estimate of z.

II. SYSTEM MODEL

In this section, we describe the system model and the
AirReComp algorithm. We consider a distributed ML system
consisting of K single-antenna user devices each carrying a
distinct dataset Dk and a single-antenna parameter server (PS)
which can be reached by all devices in a single hop. The
objective of the system is to solve the following optimization
problem

w∗ = argmin
w

F (w) = argmin
w

1
K

K∑
k=1

Fk(w), (1)

using the datasets at the user devices. The vector w ∈ Rd is
the d × 1 parameter vector that defines the ML model, F (w)
is denoted the global loss function, and Fk(w) is a local loss
function.

The uplink wireless channel is modeled as a block-fading
multiple access channel (MAC) with additive noise [30]. If the
K users simultaneously transmit a vector xk ∈ Rd over the
MAC, the PS receives

y =
K∑

k=1

hkxk + z, (2)

where hk ∈ C denotes the channel coefficient from device
k to the PS and z ∈ Cd denotes additive white Gaussian
noise (AWGN) with variance σ2

z . Additionally, we consider
retransmissions over this channel, where we assume that the
coherence time of the wireless channel is long enough to
accommodate M uplink transmissions. If the PS aggregates
the result of these transmissions, we get

y = M
K∑

k=1

hkxk +
M∑

m=1

zm, (3)

where the desired signal strength is increased by a factor M
but the aggregate of the noise terms zm is diminished due to
the random sampling. These kinds of static fading channels
exist in several practical wireless applications, such as indus-
trial communications. As a conservative example, consider an
IEEE 802.11 factory wireless sensor network with coherence
times of around 100ms [31]. Such a network provides at least
L = 10 parallel communication channels [32] and has a
symbol period of less than T = 10µs [33]. Considering a
small neural network with d = 10, 000 parameters, it takes
MdT/L = 10M ms to perform M uplink transmissions,
which accommodates M = 10 transmissions within the
coherence time. For other scenarios with fast-fading channels,
we refer to our recent work [34].

For simplicity, we assume error-free broadcast transmission
in the downlink, which is an acceptable approximation for
most practical scenarios since the PS generally has much
greater communication capability than the user devices [35].
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A. Federated Learning Algorithm

FL is an iterative algorithm to solve (1), where each iteration
is denoted a communication round and consists of downlink
broadcast, model training at the user devices, and uplink
aggregation.

Communication round n starts when the PS broadcasts the
global model wn to all user devices in the downlink. Upon
receiving the model, user device k solves the local problem

w∗n,k = argmin
w

Fk(w) = argmin
w

∑
ui∈Dk

l(w,ui) (4)

where ui denotes one training sample and l(w,ui) is the
sample-wise loss function. Generally, (4) can not be solved
exactly. Instead, each device runs E epochs of gradient descent
to approximately solve (4) as follows

wn,k(i)← wn,k(i− 1)− β∇Fk(wn,k(i− 1)),
∀i = 1, . . . , E, (5)

where the first communication round is based on the global
model, i.e. wn,k(0) = wn, and β is the step size. After
executing E epochs, device k calculates a local model update
as ∆wn,k = wn − wn,k(E). After all local model updates
have been computed, they are transmitted in the uplink to
the PS.

At the PS, the local model updates are aggregated to form
a global model update. In this paper, we consider the original
FedAvg update [6], written as

∆wn =
1
K

K∑
k=1

∆wn,k. (6)

Finally, the PS concludes the communication round by gener-
ating the next iteration of the model parameters

wn+1 = wn −∆wn. (7)

The algorithm repeats for N communication rounds until wN

is generated as the final model.

B. Over-the-Air Computation Protocol

In the uplink aggregation step of FL, see (6), the PS
reconstructs the sum of K model updates. In this section,
we describe how this is achieved by AirComp. To start, the
model updates are embedded into the transmit signals xn,k as

xn,k = ∆wn,k
h̄n,k

|hn,k|
√

pn,k, (8)

where hn,k is the channel coefficient of device k for com-
munication round n. All devices transmit xn,k simultaneously
over the MAC (2), which yields the following received value
at the PS

yn =
K∑

k=1

|hn,k|
√

pn,k∆wn,k + zn. (9)

Ideally, the transmission powers would be chosen as pn,k =
1/|hn,k|2, which would completely compensate for the fading
effect. However, with a natural constraint on the maximum
transmission power, pn,k = 1/|hn,k|2 might be impossible to

achieve. Because of this limitation and due to the additive
noise, the PS can never perfectly reconstruct ∆wn. Instead,
it estimates ∆wn by dividing the received signal by a post-
transmission scalar

√
ηn and the number of devices K

yn =
yn√
ηnK

=
K∑

k=1

|hn,k|∆wn,k
√

pn,k
√

ηnK
+

zn√
ηnK

. (10)

In practice, the division of
√

ηnK takes place in the baseband
of the PS, i.e., an operation in the digital hardware of the
receiver. Coupled with the transmission powers,

√
ηn has an

important role. We see that the ideal choice of the transmission
powers is now √pn,k =

√
ηn/|hn,k|. As such, the selection

of a small ηn will reduce the amount of energy required to
invert a channel and thereby reduce the fading error. However,
lowering ηn will also increase the relative power of the noise.
Therefore, the post-transmission scalar

√
ηn will play the role

of a tradeoff parameter between the fading error and the noise-
induced error [19].

In this work, we propose AirReComp, which considers
retransmissions in the uplink aggregation step. Specifically,
the devices transmit the same values in the uplink M times
such that the signal part of (10) combines constructively, while
the additive noise is different for each transmission. After
receiving M values, the PS forms its estimate by calculating
their arithmetic mean

yn =
∑M

m=1 yn,m

M
√

ηnK

=
K∑

k=1

|hn,k|∆wn,k
√

pn,k
√

ηnK
+

M∑
m=1

zn,m

M
√

ηnK
. (11)

Next, the PS takes the real part of yn to reduce the power
of the noise

∆ŵn = Re(yn) =
K∑

k=1

|hn,k|∆wn,k
√

pn,k
√

ηnK
+

M∑
m=1

Re(zn,m)
M
√

ηnK
.

(12)

With appropriate choices of pn,k and ηn (elaborated upon in
Section III), the estimate described in (12) can be a close
estimate of ∆wn. However, note that due to the analog
modulation protocol, the norm of the model update ∥∆ŵn∥
depends on the transmission powers pn,k. To ensure that the
transmission protocol does not affect the length of the global
update step, the PS updates the model as

wn+1 = wn −
∆ŵn

c1/K
, (13)

where

c1 :=
∑K

k=1

√
pn,k|hn,k|
√

ηn
. (14)

This particular choice of normalization is motivated by that
E[∆ŵn/(c1/K)] = β∆wn, given that the model updates are
independent and identically distributed (IID). See Appendix
A, (43) for details.

The whole AirReComp process is summarized
in Algorithm 1.
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Algorithm 1 AirReComp
1: Parameter Server:
2: initialize w0

3: for each round n = 0, 1, . . . , N − 1 do
4: Parameter Server:
5: broadcast wn to devices
6: Device k:
7: wn,k(E)← Equation (5)
8: ∆wn,k ← wn −wn,k(E)
9: xn,k ← Equation (8)

10: for each m = 1, 2, . . . ,M do
11: all devices simultaneously:
12: transmit xn,k to server
13: end for
14: Parameter Server:
15: yn ← Equation (11)
16: ∆ŵn ← Equation (12)
17: wn+1 ← Equation (13)
18: end for

Remark 1: The expected transmission power of xn,k at
device k is

E[∥xn,k∥2] = E[∥∆wn,k
h̄n,k

|hn,k|
√

pn,k∥2]

= E[∥∆wn,k∥2]pn,k, (15)

where xn,k is defined in (8). Since the expected power
is not pn,k, a maximum transmission power constraint of
P , leads to pn,k ≤ P/(maxk E[∥∆wn,k∥2]). Throughout
this paper, we refer to this maximum value as Pmax,n :=
P/(maxk E[∥∆wn,k∥2]).

Remark 2: While retransmissions improve the ability to
accurately estimate the global model update, the total training
time is increased significantly. If the slowest device consumes
approximately Tc seconds to solve (5) and Tu seconds for
uplink communication, the total time spent in one communi-
cation round will be

T = (Tc + MTu)N, (16)

which is roughly proportional to M for communication-
constrained systems. However, in the convergence bounds and
numerical results we demonstrate that in low-SNR scenarios,
this additional cost can be necessary to achieve sufficient
performance.

Note that Tc corresponds to the slowest device due to the
straggler problem of FL, which could potentially be improved
through the use of coded computing [36] or by introducing a
relay [37], which is not considered in this work. In practice,
the time for transmission could be estimated using information
about the wireless protocol [38] and the computational time
could be estimated using standard formulas relating to the
computational capacity of the devices [39].

III. POWER CONTROL

In this section, we consider a power control problem to
minimize the mean-squared estimation error defined as

E[(∆wn −∆ŵn)2], (17)

where the expectation is taken over the AWGN, and ∆wn and
∆ŵn are defined in (6) and (12) respectively. For mathemat-
ical tractability, as done in the related literature, we assume
that these model updates are IID, zero mean, and have unit
variance [19], [21]. To perform the minimization, we seek
the optimal choice of the transmission powers √pn,k and
the post-transmission scalar

√
ηn. Since we consider static

fading coefficients, the power control problem only has to be
solved once per communication round (the same solution is re-
used for M transmissions). To model the limited transmission
power of the devices, we consider the following constraint

pn,k ≤ Pmax,n ∀k, (18)

where Pmax,n is defined in Remark 1. The minimization of
(17) is formulated as

min
p,η

E

( K∑
k=1

|hk|∆wk
√

pk√
ηK

+
M∑

m=1

Re(zm)
M
√

ηK
−

K∑
k=1

∆w
K

)2
s.t. pk ≤ Pmax, ∀k ∈ {1 < k < K}, (19)

where the subscript n has been ommitted for brevity. Note that
the number of transmissions M is given as an input parameter
and is selected before the power control problem is solved.

Proposition 1: Problem (19) has a unique solution. The
optimal post-transmission scalar is given by the solution to
the K subproblems

η∗n = min
k

η̃n,k, (20)

where

η̃n,k =

(∑k
j=1 |hn,j |2Pmax,n + σ2

z/M∑k
j=1 |hn,j |

√
Pmax,n

)2
. (21)

The optimal transmission powers are

p∗n,k = min
(

Pmax,n,
η∗n
|hn,k|2

)
. (22)

The proof of Proposition 1 follows the proof in [19] and is
omitted from this paper.

Remark 3: From (21), we see that the post-transmission
scalar η∗n assumes a lower value when more retransmissions
are used. As we increase the number of retransmissions,
the signal-to-noise ratio (SNR) increases and consequently,
the noise-induced error reduces. Therefore, the fading error
becomes dominant and the optimal post-transmission scalar
η∗n is lowered to improve it.

Corollary 1: The optimal transmission powers pk, given in
Proposition 1, are decreasing in M .

Proof: From (21) it is clear that all ηn,k’s are strictly
decreasing in M . The post-transmission scalar ηn is selected
according to (20), which in turn is selected as the smallest
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of K different ηn,k. The transmission powers pn,k is selected
according to (22), from which it is clear that pn,k is decreasing
in ηn, and therefore decreasing in M .

IV. CONVERGENCE ANALYSIS

In this section, we analyze the learning performance of
Algorithm 1. For the analysis, we assume that there is only one
epoch of local training in each communication round (E = 1).
Additionally, we assume that the channels remain static for the
entire duration of the training process. As a result, we drop
the n index in the channel coefficients hk, the transmission
powers pk, and the post-transmission scalar η. The effect of
dynamic channels is evaluated numerically in Section V. The
performance is measured as the gap between the FL loss gap
at communication round n, defined as

E[F (wn)]− F (w∗). (23)

We derive two upper bounds on this loss gap, one for strongly-
convex functions and one for convex functions. For both
bounds, we use the following well-known lemma [20], [40].

Lemma 1: Let F (x): Rd → R be a convex function with
L-Lipschitz gradient. Then, the following inequality holds:

F (y)− F (x)−∇F (x)T (y − x) ≤ L

2
∥x− y∥2. (24)

Additionally, we make an assumption regarding the similar-
ity of the local model updates ∆wn,k and the global model
update ∆wn [24], [30].

Assumption 1: The local model updates ∆wn,k are
assumed to be independent and unbiased estimates of the
global model update ∆wn.

E[∆wn,k] = ∆wn, ∀k ∈ {1, 2, . . . ,K}. (25)

The local gradients and the global gradient are in general dif-
ferent. The difference has coordinate bounded variance [30]:

E

(∇F
(i)
k (wn(0))− 1

K

K∑
k=1

∇F
(i)
k (wn(0))

)2 ≤ (σ(i))2,

(26)

and as a consequence, the model update difference can be
bounded as

E[(∆w
(i)
n,k −∆w(i)

n )2] ≤ β2(σ(i))2, (27)

where ∆w
(i)
n,k is the i-th element of ∆wn,k, and (σ(i))2 are

the element-wise upper bounds. We will also use σ ∈ Rd to
denote the vector of variance bounds.

A. Strongly-Convex Loss

In this subsection, we assume that the FL loss is µ-
strongly convex. For such a loss, we use the following
lemma [20], [40]:

Lemma 2: Let F (x): Rd → R be a µ-strongly convex func-
tion with L-Lipschitz gradient. Then, the following inequality
holds:

(∇F (x)−∇F (y))T (x− y)

≥ µL

µ + L
∥x− y∥2 +

1
µ + L

∥∇F (x)−∇F (y)∥2. (28)

Before we are ready to state the upper bound, we must
also assert that the local step size β has been selected to be
sufficiently small for convergence.

Assumption 2: Let the local step size β be

β < min

µ + L

2µL
,

2
K(µ + L)

(∑K
k=1

√
pk|hk|

)2

∑K
k=1 pk|hk|2

 , (29)

where pk is determined according to Proposition 1.
Note that even though the power normalization step (13)

makes the expected gradient norm independent of the power
control parameters, the squared norm is still dependent.
Therefore, the step length β must be selected with respect
to the power, as seen in (29). We are now ready to give
the first upper bound on the FL loss function (23). Given
Assumption 1 and 2, the update described in (12) and (13)
converges according to Proposition 2.

Proposition 2: Let

c2 := 1− 2β
µL

µ + L
, (30)

and

c3 := β2∥σ∥2K
K∑

k=1

pk|hk|2 +
dσ2

z

M
. (31)

Then the FL loss is upper bounded by

E [F (wn)]− F (w∗)

≤ L

2
cn
2 E[r2

0] +
Lc3

2
(∑k

k=1

√
pk|hk|

)2

(1− c2)
, (32)

where r0 = ∥w0 − w∗∥ is the distance between the initial
weight vector and the optimal one, σ is a vector of the
coordinate bounded variances from (27), and d is the number
of model parameters.

Proof: The proof is provided in Appendix A.
We refer to the first term on the RHS of (32) as the dimin-

ishing term because it approaches zero if n→∞. Along the
same line, we refer to the other term as the post-convergence
term because it remains non-zero even if n→∞. From (32),
we know that the convergence rate of the diminishing term
is O(cn

2 ), typically called linear convergence. Implications of
Proposition 2 are given in Section IV-C.

B. Convex Loss

In this subsection, we relax the assumption on strong
convexity and develop a bound for Lipschitz smooth and
convex loss functions. For this bound, we need a different
guarantee on the fixed step size than for the strongly convex
case.

Assumption 3: The fixed step size β is selected to satisfy:

0 < β <
1

LK

(∑K
k=1

√
pk|hk|

)2
∑K

k=1 pk|hk|2
. (33)
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Proposition 3: Consider Assumption 1 and 3. Then the FL
loss is upper bounded by

E[F (wn)]− F (w∗) ≤ 1
2nβ

E[r2
0] +

2 + L

2
(∑K

k=1

√
pk|hk|

)2 c3,

(34)

where c3 is defined in (31).
Proof: The proof is provided in Appendix B.

From (34), it is clear that the convergence rate of the
diminishing term is O(1/n), typically called sub-linear
convergence.

C. Discussion on Proposition 2 and 3

Since the propositions are upper bounds, we are discussing
the worst-case properties of the FL loss using AirReComp.
We are specifically interested in the impact of the number of
retransmissions.

1) Diminishing Term: In both bounds, the diminishing
term is unaffected by M . Similar results can be seen in the
optimization literature. For instance, an illuminating parallel
can be drawn to the convergence bound for mini-batch gradient
descent (GD) [41]

f(xn) ≤ f(x∗) +
∥x0 − x∗∥2

2βn
+

β var(v)
2

, (35)

where var(v) is the variance introduced by the random selec-
tion of samples. Similar to our system, where the variance of
the gradient is reduced by adding retransmissions, var(v) in
mini-batch GD is reduced by increasing the batch size. As seen
in (35), the effect of this variance reduction is only reflected
in the post-convergence term, just as how M only shows up in
the post-convergence term of (32) and (34).

2) Final Error: Since both bounds have post-convergence
terms, the algorithm does not converge to a local optimum.
Instead, the algorithm converges to a region of optimality,
where the expected remaining loss gap is given by the post-
convergence terms. There are two reasons why AirReComp
does not converge exactly. Firstly, the channel noise (char-
acterized by σz) causes unavoidable errors which prevent
exact convergence. Secondly, the difference between local
and global model updates (characterized by σ) causes a
global model update that differs from what is achieved in
centralized gradient descent. This result aligns with what was
found in [30].

We investigate the post-convergence terms of the two
bounds closer. Since we are interested in the impact of
retransmissions, we focus on the terms that are affected by M .
To start, consider the post-convergence terms of (32) and (34),
which can be expressed as

C(∑K
k=1

√
pk|hk|

)2
(

β2∥σ∥2K
K∑

k=1

pk|hk|2 +
dσ2

z

M

)
, (36)

where C := L/(2(1− c2)) and C := (2 + L)/2 for (32) and
(34), respectively. It is worth noting that the first term, caused
by the gradient difference σ cannot be completely eliminated,

even with perfect communication. In fact, by the Cauchy-
Schwarz inequality, we can lower-bound the first term to

Cβ2∥σ∥2
K
∑K

k=1 pk|hk|2(∑K
k=1

√
pk|hk|

)2 ≥ Cβ2∥σ∥2, (37)

which is completely unaffected by the communication scheme.
As for the noise-induced term, we see an improvement of order
O(1/M). However, from Corollary 1, we know that this order
is slightly diminished by the fact that the transmission powers
pk are decreasing in M . Since the relationship between pk and
M cannot be stated in closed form, we analyze the diminishing
terms further in the numerical results.

V. NUMERICAL RESULTS

The performance of the proposed AirReComp system is now
evaluated in terms of the model update estimation error, fed-
erated learning loss, and classification accuracy. Specifically,
we have four goals with this section:
• To demonstrate the need for retransmission-aware power

control, by comparing our proposed solution with the
state-of-the-art single transmission schemes proposed
in [19], [20], and [21] and a perfect communication
baseline;

• To demonstrate that introducing retransmissions is also
beneficial for non-convex loss functions. Note that our
analytical results assumed convex loss functions;

• To demonstrate that the proposed method is viable both
when the channels change every communication round
(as assumed in Section II) and when the channels remain
static for the entire training process (as assumed in
Section IV);

• To demonstrate the rate that the post-convergence terms
of the bounds we developed in Section IV are decreas-
ing in M .

A. Power Control

In this subsection, we wish to evaluate the impact of our
proposed power control scheme on the estimation error of
the global update ∆wk. Specifically, we compare the MSE
of the ∆wk for different choices of M , and compare the
AirReComp power control scheme to the baseline solutions
of [19] and [21] wh ere the power control algorithm is unaware
of the number of retransmissions. For this, we consider the
transmission of randomly generated scalars instead of running
a complete FL simulation setup. For this simulation, we con-
sider K = 20 users and varying noise powers σ2

z . To simulate
the network, we generate channel coefficients according to unit
Rayleigh fading hk ∼ N (0, 1/2) + jN (0, 1/2) and additive
noise components as z ∼ N (0, σ2

z). The transmitted scalars
∆wk are generated according to the unit normal distribution,
which matches the assumption in Section III. The maximum
transmission power is selected as Pmax = P = 1, according
to Remark 1. The PS estimate of the arithmetic mean ∆ŵ is
generated according to (13), where the transmission powers
pk and the post-transmission scalar

√
η are selected according
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Fig. 1. Estimation error evaluation of AirReComp. We consider K = 20 devices and evaluate the squared estimation error. Left: The estimation error of a
single transmission (M = 1) is compared to using retransmissions (M > 1). Note that even though SNR scales linearly with the number of transmissions, the
estimation error is not reduced as drastically. Right: The estimation error of optimal retransmission-aware power control is compared to a retransmission-unaware
baseline. The results demonstrate the importance of designing the power control scheme with retransmissions in mind.

to Proposition 1. Upon calculating the estimate, it is compared
to the true arithmetic mean of ∆wk according to

MSE = (
1
K

K∑
k=1

∆wk −∆ŵ)2. (38)

This process is repeated 20,000 times for each value of σ2
z . The

resulting MSEs are averaged to form the plot in Fig. 1. In the
left plot of the figure, the estimation errors using different
numbers of transmissions M are illustrated. The plot demon-
strates that the mean squared estimation error is approximately
linear with the variance of the additive noise, regardless of M .
In the right plot of Fig. 1, we compare the AirReComp power
control scheme (Aware) to the retransmission-unaware scheme
proposed in [19] and [21]. Their proposal is the optimal
power control scheme for single retransmissions (Unaware).
The numerical results demonstrate that AirReComp has a
significantly lower estimation error when M > 1. The gap
between AirReComp and the baseline is also increasing with
M , which demonstrates the importance of designing the power
control scheme with retransmissions in mind. From the left
plot, it is clear that the reduction in estimation error is
worse than proportional to M . Instead, the system using
M = 8 achieves approximately three times lower estimation
error that the baseline of M = 1. Compared to using a
forward error-correcting code, this result is significantly worse.
However, since such codes are not compatible with analog
communication, retransmissions are a good first step towards
enabling a communication-estimation trade-off.

B. Federated Learning Convergence

In this subsection, we have two goals: to verify that the
post-convergence classification accuracy is increasing in M
for non-convex loss functions and to demonstrate the level
of improvement compared to other baselines. For the FL
simulation, the network setup is identical to Section V-A,

except that σ2
z is fixed for each simulation and K = 10.

The ML task is multi-label classification on the MNIST
dataset [42] with |Dk| = 6000 training samples per user
device. The classifier is a DNN which consists of an input
layer of 784 nodes, a hidden layer with 10 neurons, and an
output layer of 10 neurons. The network is trained with a static
learning rate of β = 0.1, ReLU activation, sparse categorical
cross-entropy loss, L2 regularization with ϵ = 10−5, and
without dropout. We run 2 epochs (E = 2) per communication
round, for N = 50 rounds. The whole training process is
repeated 10 times for each considered value of M , these results
are then averaged to get the plots in Figs 2a and 2b.

AirReComp is compared to two baseline solutions. The first
baseline (max power) is based on the scheme proposed in [20].
This scheme is a maximum power transmission scheme that
does not require any channel information for the devices and
thus allows for simple implementation. The second baseline
(error-free) considers the case where there is no noise or
fading and therefore that the server retrieves perfect copies of
the model updates. Comparing AirReComp with the error-free
baseline quantifies the performance gap caused by estimation
errors of the model update aggregation.

In Figs 2a and 2b, the results of two simulations with
σz = 1 and σz = 2 are presented. We wish to highlight that
these simulations correspond to low SNR scenarios, because
even though pk has a maximum value of Pmax,n = 1, the actual
transmission power is much lower, as mentioned in Remark 1.
In our simulations, we measured the average update norm to
be E[∥wn,k∥2] = 329. Because this is lower than the number
of parameters in the model (d = 7960), the average signal
strength is less than 1. As a result, the average SNR was
−5.3dB and −11.3dB for σz = 1, and σz = 2, respectively.

These results clearly demonstrate that the classification
accuracy is improved as additional retransmissions are intro-
duced, at least in low-SNR scenarios. While the convergence
analysis in Section IV only holds for convex loss functions,
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Fig. 2. Federated Learning performance with AirReComp. We consider
K = 20 devices and train fully-connected DNNs over a multiple access
channel with fading. We consider AirReComp with M = 1, 2, 4, 8 and
two baselines. The first baseline corresponds to the max-power system and
the second corresponds to the error-free system. Both plots correspond to
low-SNR systems with varying levels of noise.

these results show that the method can also offer benefits
for more complicated non-convex models, such as DNNs.
Specifically, for σz = 1, the system with M = 1 achieved an
average classification accuracy of 58%, while the best system
with M = 8 achieved an average classification accuracy
of 88%. The poor result of 58% is largely due to the low
SNR of the network. This can also be seen by comparing
Figs 2a and 2b, where the latter has a significantly wider gap
between M = 1 and M = 8.

If we compare our proposal to the baselines, it is clear
that the max-power basline performs closely to M = 1. This
is unexpected since it does not perform any power control
and therefore should be experiencing a worse MSE. However,
it could potentially be explained by the assumption that
E[(∆w

(i)
n,k)2] = 1 in our power control scheme, which does

not hold in practice. Alternatively, if the MSE improvement
between the max-power baseline and M = 1 is minor, it might
not have a noticeable effect on the classification accuracy when
training with IID data, as suggested in [24].

While comparing to the error-free baseline, we notice that
our proposal with M = 8 transmissions achieves 6% worse

Fig. 3. Federated Learning performance with AirReComp. This simulation
uses the same setup as in Figure 2 except that channels remain static
throughout the training process. While the performance is not identical, the
results demonstrate that the overall trend matches that of dynamic channels
which change between communication rounds.

classification accuracy than perfect communication. This high-
lights the issue of estimation errors in FL performance and
suggests that further improvements are necessary for low-SNR
scenarios. One could always increase M , but at some point the
increased communication cost causes digital communications
to be a better alternative.

Finally, we provide a simulation for the case of static
channels. The simulation setup is identical to that of Fig. 2
except that the same channel coefficients are used for all N
communication rounds. As illustrated in Fig. 3, the classifi-
cation accuracies are slightly worse for all systems (except
for the error-free system) but the overall trend matches that
of Fig. 2. A possible explanation for the performance decline
is that, with static channels, any device that experiences a
poor channel coefficient will consistently contribute less to
the global update. Therefore, the knowledge contained in
its dataset will be underrepresented, leading to model drift
between its local model and the global model. Whereas in
the dynamic case, where new channels are experienced for
each communication round, the model drift would be corrected
whenever a better channel is sampled.
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Fig. 4. The relative decline of the post-convergence terms in (32) and (34).
The ∥σ∥2-term refers to the term caused by the difference between the local
and the global model updates, this term cannot be completely eliminated even
with perfect communication, in contrast to the σ2

z -term caused by the additive
noise.

C. Convergence Bounds

In Section IV, we developed two bounds on the FL loss
function and illustrated that the post-convergence terms are
expected to decrease in M . However, due to the lack of a
closed-form expression for the relationship between the trans-
mission powers pk and the number of uplink transmissions M ,
we were unable to provide the rate of decline with respect to
M . Instead, we demonstrate the decline of these terms in this
section. Specifically, there are two post-convergence terms for
each bound, as expressed in (36).

In practice, the three learning-related variables ∥σ∥2, L,
and µ of the bounds are difficult to estimate. Therefore, rather
than attempting to evaluate the absolute magnitude of the post-
convergence terms, we are looking at the relative decline with
respect to M . We define the relative decline as the quotient of
the post-convergence term for M transmissions and the same
term evaluated for one transmission, given by

relative decline(∥σ∥2)

=
∑K

k=1 pk(M)|hk|2∑K
k=1 pk(M = 1)|hk|2

·

(∑K
k=1

√
pk(M = 1)|hk|

)2
(∑K

k=1

√
pk(M)|hk|

)2
(39)

and

relative decline(σ2
z) =

(∑K
k=1

√
pk(M = 1)|hk|

)2
M
(∑K

k=1

√
pk(M)|hk|

)2 , (40)

where pk(M) is the transmission power of device k evaluated
according to Proposition 1. For the simulation, we use the
same network setup with K = 20 devices, Rayleigh fading,
and σz = 1. We simulated the terms for 1,000 random
realizations of the channels and averaged to get the results
in Fig. 4.

As displayed in Fig. 4, the error caused by the difference
between local and global gradients is hardly affected by
introducing additional retransmissions. This is to be expected
since the only improvement comes from the slight decrease
of transmission powers that follow from an increased M ,
as highlighted in Corollary 1. The noise-induced error is how-
ever significantly improved, almost at the order of O(1/M),
but with a gap due to the decreased transmission powers,
as discussed in Section IV-C.

VI. CONCLUSION

In this paper, we propose retransmissions for Over-the-Air
FL, in a system we call AirReComp. Arguably, this is the first
work to enable a trade-off between communication resources
and convergence speed for Over-the-Air FL. To improve the
estimation error of AirReComp, we find a closed-form solution
for optimal power control in the uplink. This power control
solution shows that the number of retransmissions must be
known by the transmitters to realize the MMSE estimator.
We also prove two upper bounds on the FL loss for the
AirReComp system, both for strongly-convex and convex loss
functions. These bounds show that the post-convergence error
of FL is strictly decreasing in the number of retransmissions,
while the convergence rate is unaffected even though the
estimation error of the updates is decreased. This contradicts
to the findings of earlier works on AirComp [20], [30]. The
reason is that those works do not normalize the update step,
and thus the transmission scheme directly impacts the learning
rate. We numerically verify the improved post-convergence
performance for non-convex loss functions by training DNNs
with AirReComp. The simulations also demonstrate that Air-
ReComp can significantly outperform single uplink transmis-
sions as well as full power baselines.

There is interesting open work on the reduction of estima-
tion errors for Over-the-Air FL, including:
• Gradient Statistics for Power Control In a recent

work [24], the authors proposed that online estimation
of gradient statistics can significantly improve the power
control of over-the-air FL. They found the optimal power
control algorithm given that these statistics are known,
but only for one-shot transmission. By combining this
result with AirReComp, one could avoid the assumption
that E[(∆w

(i)
n,k)2] = 1 and find the optimal power control

scheme for more realistic assumptions.
• The consideration of fast-fading channels and diver-

sity gains for AirReComp. In this work, we consider a
network with static channels, which restricts the improve-
ments of retransmissions to reducing the power of the
noise. In a fast-fading scenario, the problem changes sub-
stantially, especially the power control problem described
in Section III. We have taken a first step in this direction
in [34], where we show that by exploiting the ergodic-
ity of the fast-fading channel, one can probibalistically
guarantee unbiased over-the-air computation under peak
transmission power constraints.

• The consideration of non-IID data distributions In this
work, we only consider IID data distributions both in
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the analytical and numerical results. It is likely that the
importance of improved estimation is more pronounced
when the datasets are non-IID, because the suppression
of any individual update should cause greater harm to the
convergence. There has been some work on over-the-air
FL with non-IID data [43] but, as far as we are aware,
no work that considers the gradient estimation.

• Other methods of controlling the estimation error for
Over-the-Air FL. For instance, one could consider the
possibility of a distributed channel code. With analog
communication, this appears to be inapplicable, but with
recent ideas of one-bit digital Over-the-Air Computation,
there might be possibilities to explore in this direc-
tion [44], [45]. Additionally, one could consider combin-
ing the retransmission scheme with device selection for
further improvements, as suggested in [46].

• Tradeoff between transmission power and retransmis-
sions. Instead of focusing on adding retransmissions to
improve the estimation error, one could consider changing
the transmission power. Similar to the tradeoff explored
in this work, there is a tradeoff between transmission
power and convergence rate. Especially for low-powered
IoT-devices, it would be interesting to analyze how much
the transmission power could be reduced without signif-
icantly harming the FL performance.

APPENDIX A
PROOF OF PROPOSITION 2

We start the proof by expressing the distance between the
optimal global model w∗ and the current global model wn at
communication round n as

r2
n := ∥wn −w∗∥2. (41)

This distance can be related to the FL loss function via
Lemma 1 and Lemma 2. The plan for the proof is to utilize
this relationship to form the upper bound. But before we get to
that stage, we need to introduce the impact of AirReComp on
the model update. To do so, we use (13) with (41) to express

r2
n+1 := ∥wn −w∗ − ∆ŵn

c1/K
∥2

= r2
n − 2

(∆ŵn)T

c1/K
(wn −w∗) + ∥∆ŵn

c1/K
∥2, (42)

where ∆ŵn is the model update from (12) and c1 is defined
in (14). Next, we take the expectation of (42) with respect
to ∆wn,k and zm. To do that, we first need to determine
E [∆ŵn] and E

[
∥∆ŵn∥2

]
. Beginning with E [∆ŵn], we use

(12) to get

E [∆ŵn] = E[∆wn]
K∑

k=1

|hk|
√

pk√
ηK

=
c1

K
E[∆wn] = β

c1

K
E[∇F (wn)]. (43)

which has been simplified using Assumption 1 and the final
equality holds since we assume there is only one epoch
(E = 1) and therefore that the model update is the gradient

of the global loss function. Next, we find E
[
∥∆ŵn∥2

]
, once

again using (12)

E
[
∥∆ŵn∥2

]
=

1
K2η

E

[
∥

K∑
k=1

√
pk|hk|∆wn,k∥2

]

+
1

M2K2η
E

[
∥

M∑
m=1

Re(zm)∥2
]
. (44)

The first term of (44) can be upper-bounded by the
Cauchy-Schwartz inequality as follows

∥
K∑

k=1

√
pk|hk|∆wn,k∥2 ≤ K

d∑
i=1

(
K∑

k=1

pk|hk|2(∆w
(i)
n,k)2

)
.

(45)

Then, we apply our assumption on the local model updates
from (27) to get

E
[
∥∆ŵn∥2

]
≤ β2

Kη

K∑
k=1

pk|hk|2(∥σ∥2 + E
[
∥∇F (wn)∥2

]
)

+
dσ2

z

MK2η
. (46)

With E [∆ŵn] and E
[
∥∆ŵn∥2

]
evaluated in (43) and (46),

we go back to the model distance. Taking the expectation on
both sides of (42) yields

E[r2
n+1] ≤ E[r2

n]− 2βE[∇F (wn)T (wn −w∗)]

+
β2K

∑K
k=1 pk|hk|2(∑K

k=1

√
pk|hk|

)2 (∥σ∥2 + E[∥∇F (wn)∥2])

+
dσ2

z

M
(∑K

k=1

√
pk|hk|

)2 . (47)

Now we are ready to introduce the FL loss by utilizing
strong convexity and Lipschitz smoothness. We do this by
rewriting Lemma 2 to

E
[
∇F (wn)T (wn −w∗)

]
≥ µL

µ + L
E[r2

n]

+
1

µ + L
E
[
∥∇F (wn)∥2

]
, (48)

where we have utilized ∇F (w∗) = 0 for the final term on the
RHS. Combining (47) and (48) yields

E[r2
n+1] ≤ E[r2

n]

− 2β

(
µL

µ + L
E[r2

n] +
1

µ + L
E
[
∥∇F (wn)∥2

])
+

β2K
∑K

k=1 pk|hk|2(∑K
k=1

√
pk|hk|

)2 (∥σ∥2 + E[∥∇F (wn)∥2])

+
dσ2

z

M
(∑K

k=1

√
pk|hk|

)2 . (49)
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Since this expression is getting long, we use three constants
c2, c3, and c4 to simplify it. The model distance is then

E[r2
n+1] ≤ c2E[r2

n]

+
1(∑k

k=1

√
pk|hk|

)2 c3 + βc4E[∥∇F (wn)∥2],

(50)

where c2 and c3 were defined in (30) and (31) respectively.
Because of our choice of learning rate in Assumption 2,
we have the following inequality for c4

c4 := βK

∑K
k=1 pk|hk|2(∑K

k=1

√
pk|hk|

)2 − 2
µ + L

< 0. (51)

Since c4 is less than zero, we can rewrite our bound
in (50) as

E[r2
n+1] ≤ c2E[r2

n] +
1(∑k

k=1

√
pk|hk|

)2 c3. (52)

At this point, the bound is almost complete. The only thing
that remains is to find an inequality comparing E[r2

n] and E[r2
0]

instead of comparing two adjacent communication rounds.
As such, we reduce the communication round counter by one
and replace E[r2

n] in (52) to get

E[r2
n+1] ≤ c2

2E[r2
n−1] + (c2 + 1)

1(∑k
k=1

√
pk|hk|

)2 c3. (53)

By induction we have

E[r2
n] ≤ cn

2 E[r2
0] +

1(∑k
k=1

√
pk|hk|

)2 c3

n−1∑
i=0

ci
2. (54)

Then we apply
∑n−1

i=0 ci
2 <

∑∞
i=0 ci

2 = 1/(1− c2) to achieve

E[r2
n] ≤ cn

2 E[r2
0] +

c3(∑k
k=1

√
pk|hk|

)2
(1− c2)

. (55)

Finally, we utilize convexity and Lipschitz smoothness from
(24) to relate the LHS of (55) to the FL loss, which yields

E [F (wn)]− F (w∗) ≤ L

2
cn
2 E[r2

0]

+
Lc3

2
(∑k

k=1

√
pk|hk|

)2

(1− c2)
,

(56)

which is the bound from Proposition 2.

APPENDIX B
PROOF OF PROPOSITION 3

Just as in the first proof, we utilize the properties of
convexity and Lipschitz smoothness to relate the distance
between the optimal global model w∗ and the current global
model wn to the FL loss function. In contrast to the first proof,

we use these properties immediately. Specifically, we start with
Lemma 1 and take the expectation on both sides to get

E [F (wn+1)] ≤ E [F (wn)]
+ E

[
∇F (wn)T (wn+1 −wn)

]
+

L

2
E
[
∥wn+1 −wn∥2

]
. (57)

Then, we add the global update via (13) to get

E [F (wn+1)] ≤ E [F (wn)]

− 1
c1/K

E
[
∇F (wn)T ∆ŵn

]
+

L

2(c1/K)2
E
[
∥∆ŵn∥2

]
. (58)

Next, (43) gives us

E [F (wn+1)] ≤ E [F (wn)]
−βE

[
∥∇F (wn)∥2

]
+

L

2(c1/K)2
E
[
∥∆ŵn∥2

]
. (59)

We insert the bound for E
[
∥∆ŵn∥2

]
from (46) to get

E [F (wn+1)]
≤ E [F (wn)]− βE

[
∥∇F (wn)∥2

]
+

L

2
β2K

∑K
k=1 pk|hk|2(∑K

k=1

√
pk|hk|

)2 (∥σ∥2 + E[∥∇F (wn)∥2])

+
L

2
dσ2

z

M
(∑K

k=1

√
pk|hk|

)2 . (60)

Next, we recognize c3 from (31) and substitute it into the
bound

E [F (wn+1)]
≤ E [F (wn)]

−β

1− KLβ

2

∑K
k=1 pk|hk|2(∑K

k=1

√
pk|hk|

)2

E
[
∥∇F (wn)∥2

]
+

L

2
(∑K

k=1

√
pk|hk|

)2 c3. (61)

This expression can be simplified by using Assumption 3 to
bound the second term on the RHS

E [F (wn+1)] ≤ E [F (wn)]

− β

2
E
[
∥∇F (wn)∥2

]
+

L

2
(∑K

k=1

√
pk|hk|

)2 c3. (62)

Next, we are going to upper bound the first term on the RHS
of (62). We use the following standard property of convexity
(see equation 2.1.2 from [40]):

E[F (wn)] ≤ F (w∗) + E[∇F (wn)T (wn −w∗)]. (63)
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Plug this into (62)

E [F (wn+1)] ≤ F (w∗) + E[∇F (wn)T (wn −w∗)]

− β

2
E
[
∥∇F (wn)∥2

]
+

L

2
(∑K

k=1

√
pk|hk|

)2 c3. (64)

Some tedious algebraic manipulation transforms (64) to

E [F (wn+1)]
≤ F (w∗)

+
1
2β

E
[
∥wn −w∗∥2 − ∥(wn −w∗)− β∇F (wn)∥2

]
+

L

2
(∑K

k=1

√
pk|hk|

)2 c3. (65)

Let r2
n := ∥wn −w∗∥2 (same as (41)) and

r̃2
n+1 := ∥wn −w∗ − β∇F (wn)∥2. (66)

Then (65) becomes

E [F (wn+1)] ≤ F (w∗) +
1
2β

E
[
r2
n − r̃2

n+1

]
+

L

2
(∑K

k=1

√
pk|hk|

)2 c3. (67)

Now, just like in the previous proof, we want to form a bound
with respect to r2

0 . However, instead of using induction, we use
a telescoping sum. To set it up, we start by taking a sum of
(67) over n communication rounds to get

n∑
i=1

E [F (wi)]− nF (w∗) ≤ 1
2β

n∑
i=1

E
[
r2
i−1 − r̃2

i

]
+

nL

2
(∑K

k=1

√
pk|hk|

)2 c3. (68)

The sum
∑n

i=1 E
[
r2
i−1 − r̃2

i

]
can be rewritten as

n∑
i=1

E
[
r2
i−1 − r̃2

i

]
= E[r2

0]− E[r̃2
n] +

n−2∑
i=0

E[r2
i+1 − r̃2

i+1]

(69)

and the middle terms
∑n−2

i=0 E[r2
i+1 − r̃2

i+1] will be upper
bounded to a constant. We develop this bound next. To start,
we plug in the definition of r2

i+1 and r̃2
i+1 into E[r2

i+1− r̃2
i+1]:

E
[
r2
i+1 − r̃2

i+1

]
= E

[
∥wi+1 −w∗∥2 − ∥wi −w∗ − β∇F (wi)∥2

]
. (70)

Applying (13) and doing some algebra yields

E
[
r2
i+1 − r̃2

i+1

]
=

1
c1/K

E
[

1
c1/K

∥∆ŵi∥2 − 2(wi −w∗)T ∆ŵi

]
+ βE

[
2(wi −w∗)T∇F (wi)− β∥∇F (wi)∥2

]
. (71)

Then we apply (43) to get

E
[
r2
i+1 − r̃2

i+1

]
= E

[
∥∆ŵi∥2

(c1/K)2
− β2∥∇F (wi)∥2

]
. (72)

Next, we insert ∥∆ŵi∥2 from (44), apply Assumption 1, and
do some algebra which yields

E
[
r2
i+1 − r̃2

i+1

]
= E

[
β2∥σ∥2 + ∥∆wn∥2

+
dσ2

z

M
(∑K

k=1

√
pk|hk|

)2 − β2∥∇F (wi)∥2
]
. (73)

Since we assume E = 1, we have E[∥∆wn∥2] =
β2E[∥∇F (wn)∥2], which yields

E
[
r2
i+1 − r̃2

i+1

]
=

1(∑K
k=1

√
pk|hk|

)2
( K∑

k=1

√
pk|hk|

)2
β2∥σ∥2 +

dσ2
z

M

.

(74)

Finally, we apply the Cauchy-Schwarz inequality to get

E
[
r2
i+1 − r̃2

i+1

]
≤ c3(∑K

k=1

√
pk|hk|

)2 (75)

That concludes the upper bound on E
[
r2
i+1 − r̃2

i+1

]
so we

plug it back into (68) to get
n∑

i=1

E [F (wi)]− nF (w∗)

≤ nL

2
(∑K

k=1

√
pk|hk|

)2 c3

+
1
2β

E

r2
0 − r̃2

n +
(n− 1)(∑K

k=1

√
pk|hk|

)2 c3

. (76)

Since r̃2
n is positive, we can add one to the RHS of

(76) without breaking the inequality. Similarly, we can add

c3/
(∑K

k=1

√
pk|hk|

)2
to the RHS, which together yields

n∑
i=1

E [F (wi)]− nF (w∗) ≤ 1
2β

E
[
r2
0

]
+

2n + nL

2
(∑K

k=1

√
pk|hk|

)2 c3. (77)

Finally, we note that E [F (wn)] ≤ E [F (wi)] for all i ≤ n.
Therefore

E [F (wn)]− F (w∗) ≤ 1
n

n∑
i=1

E [F (wi)]− F (w∗)

≤ 1
2nβ

E
[
r2
0

]
+

2 + L

2
(∑K

k=1

√
pk|hk|

)2 c3,

(78)

which is the bound from Proposition 3.
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