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Energy Harvesting Reconfigurable Intelligent
Surface for UAV Based on Robust Deep

Reinforcement Learning
Haoran Peng , Member, IEEE, and Li-Chun Wang , Fellow, IEEE

Abstract— Integrating unmanned aerial vehicles with RIS
(UAV–RIS) can offer ubiquitous deployment services in
communication-disabled areas, but is limited by the on-board
energy of the UAVs. In this paper, a novel energy harvesting (EH)
scheme on top of the UAV–RIS system, called EH-RIS scheme,
is developed for the next generation high performance wireless
system. The proposed EH-RIS scheme extends the simultaneous
wireless information and power transfer (SWIPT) system by
splitting the passive reflected arrays on the geometric space for
transporting information and harvesting energy simultaneously.
However, pedestrian mobility, and rapid channel changes post
challenges to efficient resource allocation in wireless systems.
Thus, a robust deep reinforcement learning (DRL)-based algo-
rithm is developed to improve the proposed EH-RIS scheme
for guaranteeing the quality of service (QoS) under dynamic
wireless environments. The simulation results demonstrate the
effectiveness and efficiency of the proposed robust DRL-based
EH-RIS system, which not only outperform the existing state-
of-the-art solutions but also approach to the performance of the
exhaustive search method.

Index Terms— Unmanned aerial vehicle, reconfigurable intel-
ligent surface, SWIPT, energy harvesting.

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs), an arti-
ficial meta-surface of an electromagnetic material

with large passive reflected arrays, have recently received
widespread attention as a promising solution for enhanc-
ing wireless communications [1]. The passive reflective
antenna elements in the RIS system can be intelligently
configured with amplitude, polarization, and phase shift in
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a programmable manner to create a desirable multipath
effect, thereby enhancing the signal strength of the overall
received signals or suppressing any interference [2], [3].
The utilization of RISs for sustainable and green wireless
communications has been explored and demonstrated [4].
Nevertheless, despite the numerous recent advances in
RIS technology, most systems are for static deployment
(e.g., installed on buildings), limiting their effectiveness in
dynamic scenarios.

Combining unmanned aerial vehicles (UAVs) with RISs
can provide on-demand deployment services in dynamic sit-
uations [5]. Because of their controllability and flexibility,
UAVs have numerous applications in the blind areas of fixed
communication infrastructures, such as serving as temporary
base stations (BSs), assisting internet of things (IoT) and
vehicle-to-vehicle networks, and enhancing hotspot cover-
age [6]. However, the finite on-board battery capacity on UAVs
limits the performance and endurance of UAV-assisted RIS
communications.

Energy harvesting (EH) can ensure that UAV-assisted RIS
communications last longer, whereas the simultaneous wire-
less information and power transfer (SWIPT) system collects
energy from impinging radiofrequencies (RFs) and therefore
mitigate the on-board energy issue of UAV–RIS systems [7].
One of the most efficient SWIPT modes, the harvest–
transmit–store (HTS) model, divides each time block into
two time slots for EH and information transmission [8].
However, the resource allocation for the HTS model in the
UAV–RIS system involves the joint optimization of trans-
mit power, reflective elements’ phase shifts, transmission
time scheduling, and RIS scheduling under UAV trajec-
tory design and communication quality requirements, which
is difficult to efficiently reach a near-global optimum by
splitting time domain only. Additionally, when there is a
small number of user terminals (UTs) in the service cov-
erage, using all the reflect-arrays for signal transmitting
may result in a waste of resources. A space-splitting EH
model, using partial reflection units to collect energy from
received RF signals, while the other units reflect any signal,
extends the dimension of resource allocation and improves
the energy efficiency of RIS [9]. Therefore, the endurance of
UAV–RIS systems has the potential to be further enhanced by
jointly optimizing resource allocation in the time and space
domains (dual domains) simultaneously. However, maximizing
the harvested energy while guaranteeing the communication
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quality in both the dual domains results in a nonconvex
problem.

Various studies have been conducted in relation to bal-
ancing the EH and communication qualities of UAV-aided
RIS wireless communications [1], [9], [10], [11]. However,
joint optimization problems are in general nonconvex and
intractable [12]. Various approaches, including alternating
optimization, decomposing the nonconvex problem into mul-
tiple subproblems, and penalty-based iteration approach have
been proposed to obtain low-complexity and suboptimal solu-
tions in practice [13], [14]. However, the previous solutions
are problem-specific and are hard to extend to the general
cases. Recently, deep reinforcement learning (DRL) has been
used to resolve nonconvex optimization problems pertaining to
wireless communications systems [15], including in terms of
resolving the coupled objective optimization and performing
instant decision making in communication networks [16]. This
provided the motivation behind applying DRL for the EH and
resource allocation pertaining to UAV-aided RIS communica-
tion networks. Nevertheless, the widely used DRL algorithms,
namely, the deep deterministic policy gradient algorithm
(DDPG) and the twin-delayed DDPG (TD3), suffer from
overestimation and underestimation issues, respectively [17],
[18], [19], which will reduce the performance of EH in com-
plex wireless communication environments. To address this
issue, we use a softmax operator and a clipped action space
approximation to develop a robust DRL-based EH as in [19].

Existing SWIPT techniques for UAV–RIS systems aim to
maximize energy efficiency by splitting time or space, while
this study takes advantage of time splitting and space split-
ting EH models simultaneously. Motivated by the successful
application of DRL [3], [7], [20], [21], [22], this technique
is used to handle complicated control problems related to
resource allocation. To the best of our knowledge, this is
the first method to enhance the endurance of UAV-aided RIS
communication systems through harvesting energy on dual
domains while meeting the required communication quality
of service (QoS) constraints. The contributions of the present
work are as follows:
• The energy-efficient optimization and endurance

enhancement issue of UAV-assisted RIS communications
systems is investigated and a novel scheme combining
SWIPT and resource allocation is proposed. A resources
allocation-based HTS (RAHTS) model and an access
point (AP-)-RIS–UT channel model are adopted to
formulate the proposed optimization problem while
satisfying the required communication QoS constraints.

• To address the formulated convex optimization problem,
a framework based on the robust DRL algorithm (SD3)
is developed for the dynamic resource allocation of
UAV–RIS systems on dual domains.

• The simulation results demonstrate the efficiency and
effectiveness of the proposed dual-domain EH scheme for
enhancing the endurance of UAV–RIS systems. The pro-
posed robust DRL-based SWIPT can harvest 62.5% and
44.6% of the energy of the received signal in single-UT
and multiple-UT cases, respectively, with an acceptable
computational complexity.

The remainder of the paper is organized as follows. The
related work is detailed in section II before the system
model is described in section III and the formulation of the
nonconvex optimization problem is described in section IV.
Section V presented the design of the UAV trajectory in the
dynamic scenario. Section VI then discusses the proposed
robust DRL-based SWIPT method for UAV–RIS communi-
cations before the effectiveness of the proposed robust DRL-
based SWIPT/RIS resource allocation system is verified in
section VII. Finally, concluding remarks and recommendations
for future work are provided in section VIII.

II. RELATED WORK

As an emerging technique, RIS technology has received
a great deal of attention since its potential to improve the
performance of wireless communication networks [1], [23].
However, the optimization of RIS-assisted communication
systems always involves multiple objectives, such as resource
allocation, phase shifts, and energy efficiency. Joint opti-
mization is nonconvex and cannot be resolved directly using
standard convex optimization algorithms. From the existing
works [3], [7], [20], [22], [24], DRL can efficiently resolve
the nonconvex optimization problem for RIS-assisted commu-
nication systems.

A. RIS-Assisted Signal Transmission

The RIS-assisted multiuser wireless communication system
in [10] minimizes the total transmit power through optimizing
the passive beamforming of the RIS and the transmit power
of the BSs. Subsequently, it was demonstrated in [11] that
an RIS system can overcome the non-line-of-sight (NLoS)
radio propagation problem between the UAV and the ground
terminals. Meanwhile, in [20], a UAV was integrated with
RISs to enhance the propagation environment between the BS
and the intended IoT devices (IoTDs). The UAV–RIS system
described in [20] effectively overcame the blockage between
the IoTDs and the BS, however, the battery-powered UAV
presented the challenge of limited service time. In terms of
the decode-and-forward-based RIS-assisted UAV communi-
cation system described in [25], the fixed RIS was able to
significantly improve the coverage and average capacity of
the UAV communication system, whereas the frame-based
RIS-assisted transmission protocol outlined in [26] enhanced
the coverage and communication quality of the UAV-user
link. Furthermore, the resource management problem of the
UAV–RIS system was studied in [27] to minimize the energy
consumption of the system by joint optimization of UAV
deployment, phase shift, and the UAV–RIS–user association.
However, this study focuses on investigating the performance
of the dual-domain EH model of UAV-RIS systems, whereas
the UAV–RIS–user association problem will be studied
in the future. In [12], an RIS system was deployed to enhance
the received power and mitigate the mutual interference in
the device-to-device communications, with an alternative opti-
mization algorithm used to maximize the system’s total rate
depending on the respective QoS, power, and practical discrete
phase shift constraints. Furthermore, a holographic multiple
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TABLE I
COMPARISON OF RELATED WORKS AND THIS WORK

input multiple output (MIMO) surface technique was explored
to reach low-cost, low power consumption for massive MIMO,
which is supported by RIS and intelligent resource allocation
algorithms [28], [29].

B. RIS-Assisted Energy Harvesting

In [7], the RIS was equipped with an energy storage
system for the EH, resulting in an improvement of the overall
energy efficiency of the RIS-assisted cellular network through
harvesting energy from the received RF signals. Focusing on
the research on RIS-assisted EH, the authors in [13] recently
demonstrated that the RIS-based SWIPT system can minimize
the transmit power of the AP through designing passive phase
shifts of all the RISs and optimizing the transmitter precoders
of the AP. An iterative algorithm was proposed to maximize
the secure energy efficiency of UAV–RIS systems by jointly
optimizing reflective elements’ phase shift, transmit power,
and UAV trajectory [30]. The distributed RISs architecture was
investigated to maximize energy efficiency in the joint opti-
mization of transmit power and RIS scheduling [31]. In [32],
the RIS-aided multiuser multiple-input single-output SWIPT
system was found to enhance the propagation of both the
energy signal and the information signal. The successive con-
vex approximation-based resource allocation algorithm in [33]
minimizes the BS transmit power of the large RIS-assisted
SWIPT systems, subject to the QoS requirement of both infor-
mation decoding receivers and energy harvesting receivers.
The author of [5] proposed a dual-domain EH scheme based
on DDPG to enhance the endurance of UAV–RIS systems,
whereas other EH schemes focused on the time-domain EH.
However, the DDPG-based EH approach was only validated
in the single-UT case and suffered from the underestimation
problem in reinforcement learning, resulting in limited EH
efficiency.

C. Deep Reinforcement Learning for RIS Systems

The DRL-based framework outlined in [3] efficiently opti-
mizes the RIS phase shifts and tackles the nonconvex unit

modulus constraints, whereas the DRL-based secure beam-
forming algorithm described in [34] optimizes the passive
and active beamforming at the RIS and BS, respectively.
In [35], the DRL-based framework was found to efficiently
improve the downlink throughput and reduce the intercell
interference of dynamic ultradense small cells. Elsewhere,
in [36], a DRL-based passive phase shifts optimization scheme
was developed for the RIS-assisted nonorthogonal multiple
access networks, whereas the DRL-based framework outlined
in [37] predicts the RIS interaction matrices with minimal
beam training overhead. A DRL-based algorithm was explored
to maximize the sum rate of massive MIMO systems by
jointly optimizing the active and passive beamforming of
BS and RIS, respectively [38]. Finally, the DDPG-based
power managing and passive phase shifts scheme described
in [16] enhances the energy effectiveness of RIS-assisted UAV
networks.

D. Limitation of Related Works

Table I shows a comparison of the related works on
RIS-assisted communication networks. As the table shows,
all the above-related works mainly focused on maximizing
the system’s total rate and minimizing energy consumption.
Although the work in [10], [11], [25], [26], and [12] guaran-
teed the communication QoS requirement of UTs, the active
energy efficiency solution for RIS-assisted communication
systems has not yet been considered. The successful paradigms
of the RIS-aided SWIPT framework outlined in [7], [13], [32],
and [33] can harvest energy on the time-domain. Despite many
benefits, the energy efficiency of RIS-assisted communication
systems is limited by the resource utilization of meta-surface
elements. In [20], various UAVs were integrated with RISs
to flexibly deploy the latter in dynamic scenarios, whereas
other approaches involve installing RISs on a static building.
However, the energy consumption of the battery-powered UAV
presents the challenge on the endurance of UAV-aided RIS
communications.
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Fig. 1. Considered application scenario.

III. SYSTEM MODEL

As shown in Fig. 1, a UAV–RIS system was deployed to
assist the signal transmission from the AP to the K single-
antenna with the UTs denoted by K = {1, 2, . . . ,K} since
the obstacles block the line-of-sight (LoS). The location of the
antenna of each UT k at time slot t is indicated as Ck(t) =(
xk(t), yk(t), Hk(t)

)
. Hk(t) is the altitude of the antenna of

the UT k of the Cartesian coordinate system where the AP is
located at the origin,

(
xk(t), yk(t)

)
is the horizontal position

of the UT k. In this work, the AP with Z antennas transmits
signals to UAV–RIS system consisting of L(= M ×N) meta-
surfaces, with the assumption that the UTs can only receive
signals reflected by the UAV–RIS system. The meta-surface
element at the i-th row and the j-th column is denoted by
Ri,j . The location of the meta-surface element Ri,j at each
time slot t is indicated as Cr

i,j(t) =
(
xr

i,j(t), y
r
i,j(t), H

r
i,j(t)

)
.

Hr
i,j(t) and

(
xr

i,j(t), y
r
i,j(t)

)
are the altitude and horizontal

position of the meta-surface element Ri,j , respectively. Fur-
thermore, the position of meta-surface elements is associated
with the trajectory of the UAV. Without a loss of generality,
the meta-surface element array of the UAV–RIS is denoted
as R = {Ri,j}M,N

i,j=1. Additionally, the RIS can exchange
channel state information with the AP via the attached smart
controller. To enhance the UAV’s endurance while transmitting
signals, the system model consists of three key components: an
HTS-based model, a reflecting unit RAHTS model, and a
AP–RIS–UT channel model.

A. Harvest–Transmit–Store Model

An HTS-based model was proposed to enhance the UAV’s
endurance via harvesting energy on the time-domain. The
UAV–RIS system was equipped with a rechargeable battery
that stores the harvested energy and converts it into electrical
power [7]. It was assumed that linear transmit precoding is
used at the AP for simplicity of implementation. For the
EH and reflecting signals, the whole time period was divided
into T equal time slots, denoted as T = {1, 2, . . . , t, . . . , T},
with each slot containing two phases: the EH phase and the
information transmission phase. Similar to in [39] and [40],
the normalized unit time slot in the sequel was considered.
At the t-th time slot, the length of the EH phase is denoted

by τ(t). Then, the length of the information transmission phase
at the t-th time slot was (1− τ(t)). During the EH phase, all
reflecting units only harvest energy. Following the EH phase,
the information transmission phase begins immediately, with
all the meta-surfaces used to reflect signals during this phase.
Following [13], the AP’s transmit signals can be presented as
follows:

X =
∑
k∈K

V kSk, (1)

where V k ∈ CD×1 and Sk are the precoding vectors and the
signals for the k-th UT, respectively, and Sk is a circularly
symmetric complex Gaussian random variable with zero mean
and unit variance, that is Sk ∼ CN (0, 1) [32]. Therefore, the
total transmit power at the AP is given by

E(XHX) =
∑
k∈K

∥V k∥2 ≤ pmax, (2)

where ∥ · ∥ represents the vector’s Euclidean norm and pmax

is the upper limit of the AP’s transmit power. pk = ∥V k∥2 is
the transmit power for UT k. Hence, the UAV–RIS harvested
energy at the t-th time slot can be expressed as follows:

E(t) = τ(t)
M∑
i=1

N∑
j=1

η∥gH
i,jX∥2, (3)

where gi,j =
[
g1

i,j , · · · , gz
i,j , · · · , gZ

i,j

]
is the channel vec-

tor between the Z antennas’ AP and the meta-surface
element Ri×j and follows the path loss of the air-to-
ground (ATG) propagation model [6], [11], [41]. Further-
more, small-scale channel fading in the channel matrix G =[
gH

1,1, · · · , gH
1,N , · · · , gH

M,N

]
∈ CZ×L is assumed to be the

Rayleigh fading distribution. η ∈ (0, 1) is the EH efficiency,
and p = E(XHX) is the transmission power of the AP. The
path loss, PLi,j , of the channel vector, gi,j , from the AP to
each reflective element, Ri,j , can be expressed as [11], [41]:

PLi,j = (Pi,j(LoS) + (1− Pi,j(LoS))φ)

×
(√
|xr

i,j(t)|2 + |yr
i,j(t)|2 + |Hr

i,j(t)|2
)−α

, (4)

where α is the path loss exponent from Ri,j to the AP, φ is the
additional attenuation factor caused by the NLoS connection,
and Pi,j(LoS) is the LoS probability between the AP and
meta-surface element Ri,j . Following [8], the LoS probability
Pi,j(LoS) could be calculated according to Eq. (5):

Pi,j(LoS) =
1

1 +A× exp (−B (θi,j −A))
, (5)

where A and B are constants depending on the environ-
ments [42]. The elevation angle between the AP and the
meta-surface element Ri,j is given by

θi,j =
180
π

sin−1

 Hr
i,j(t)√

|xr
i,j(t)|2 + |yr

i,j(t)|2 + |Hr
i,j(t)|2

 .

(6)



6830 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 10, OCTOBER 2023

Fig. 2. Resources allocation combined with an HTS model for the UAV-assisted RIS communication system.

B. Resources Allocation Based Harvest–Transmit–Store
Model

To further enhance the UAV’s endurance, a RAHTS model
was designed for harvesting energy on the dual domains.
As shown in Fig. 2, the UAV–RIS often operates in the
communication outage area. Unlike with the HTS model,
partial meta-surfaces in the UAV–RIS are used to reflect
signals at the information transmission phase, whereas the
remainder of the meta-surfaces in the system are for harvesting
energy. At each time slot t, the UAV–RIS harvested energy can
be redefined as follows:

Ê(t) = τ(t)
M∑
i=1

N∑
j=1

η∥gH
i,jX∥2

+ (1− τ(t))
M∑
i=1

N∑
j=1

(1−
∑
k∈K

ωk
i,j)η∥gH

i,jX∥2,

s.t. ωk
i,j ∈ {0, 1},∀i ∈ [0,M ], j ∈ [0, N ], k ∈ K,∑

k∈K

ωk
i,j ≤ 1, ∀k ∈ K. (7)

where ωk
i,j = 1 denotes the fact that the element Ri,j is

adopted to reflect signals to the k-th UT and ωk
i,j = 0

otherwise. Therefore, the energy harvesting efficiency of the
UAV–RIS system in each time slot t can be defined as

E(t) =
Ê(t)
H(t)

(8)

where H(t) =
∑M

i=1

∑N
j=1 ∥gH

i,jX∥2 is the total received
energy from the impinging RF signal in each time slot t.

C. Access Point–RIS–User Terminal Channel Model

In this work, passive reflective beamforming at the
UAV–RIS system is considered. At the information transmis-
sion phase in the time slot t, hr,k =

[
h1,1(k), · · · ,

h1,N (k), · · · , hM,N (k)
]

and G ∈ CZ×L represent the base-
band equivalent channels from the UAV–RIS to the k-th UT
and from the AP to the UAV–RIS, respectively. Moreover, the
UAV–RIS passively reflects the received information signals
via controlling reflecting phase shifts. Following [13], a diag-
onal matrix Φ was defined as the reflection coefficients matrix
of the UAV–RIS as follows:

Φ = diag(ϱ1e
jθr

1 , · · · , ϱLejθr
L) ∈ CL×L, (9)

where j =
√
−1 is the imaginary unit, θr

l ∈ (0, 2π) represents
the phase shift of the l-th reflection unit, and ϱl ∈ [0, 1]
represents the amplitude reflection coefficient. Furthermore,
ϱl is ideally set to unit since each meta-surface element’s
antenna can be independently controlled to maximize signal
reflection efficiency for simplicity [13]. Based on Eq. (1), the
received RF signal at the k-th UT via the AP–RIS–UT channel
can be expressed as follows:

Yk = ĥ
H

r,kΦ
HGHX + νk, k ∈ K, (10)

where νk ∼ CN (0, σ2
k) represents the additive white Gaussian

noise at the k-th UT with noise power σ2
k. ĥr,k is the channel

matrix from UAV–RIS to UT k with RIS scheduling and can
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be expressed as

ĥr,k =

 ωk
1,1h1,1(k) · · · ωk

1,Nh1,N (k)
...

. . .
...

ωk
M,1hM,1(k) · · · ωk

M,NhM,N (k)

 . (11)

The study considers path loss and small-scale fading for hr,k.
The path loss between the UAV–RIS and the UTs is given

by κ
(
dk

i,j(t)

d′

)−ᾱ

, where ᾱ represents the path loss exponent

for the RIS–UT links, dk
i,j(t) = ∥Ck(t) − Cr

i,j(t)∥2 is the
distance between the reflective element Ri,j and the UT k,
and ∥·∥2 is the Euclidean norm. κ corresponds to the path loss
exponent at the reference distance of d′ = 1m. The small-scale
channel fading in channel hr,k is assumed to be the Rician
fading distribution with the Rician factor Krician = 10, it is
represented as

hr,k =
√

Krician

1 +Krician
hLoS

r,k +
√

1
1 +Krician

hNLoS
r,k (12)

where hLoS
r,k and hNLoS

r,k represent the deterministic LoS
and the NLoS (Rayleigh fading) components, respectively.
As in [32], it was assumed that each UT can perfectly
cancel interference from other RIS–UT links before decoding
a desirable signal Sk. Hence, the received signal-to-noise
ratio (SNR) at the k-th UT is given by

SNRk =
|ĥ

H

r,kΦ
HGHV k|2

σ2
k

. (13)

According to Shannon’s capacity formula, the average
throughput in k -th UT in bits/ second/Hz during time slot
t is given by

Γk(t) = (1− τ(t))Blog2 (1 + SNRk) , k ∈ K, t ∈ T , (14)

where B is the bandwidth. The average throughput in each
UT must be greater than or equal to a given Γmin within the
finite time horizon to maintain the service quality, i.e.,

Γk(t) ≥ Γmin,∀k ∈ K, t ∈ T . (15)

IV. PROBLEM FORMULATION

This work aims to maximize the total energy harvesting
efficiency of the UAV–RIS within a finite time horizon T
while satisfying the required minimal throughput constraints.
Without loss of generality, the total transmits power at the AP
must also satisfy a constraint. The optimization problem is
formulated as the following:

(P1) : Ē = max
τ(t),P ,ω,Θ

T∑
t=1

E(t),

s.t. C1 : Γk(t) ≥ Γmin, ∀k ∈ K, t ∈ T ,
C2 : 0 ≤ τ (t) ≤ 1, ∀t ∈ T ,
C3 : 0 ≤ p =

∑
k∈K

∥V k∥2 ≤ pmax,

C4 : 0 ≤ pk ≤ p′max, ∀k ∈ K,
C5 : ωk

i,j ∈ {0, 1},
∀i ∈ [0,M ], j ∈ [0, N ], k ∈ K,

C6 :
∑
k∈K

ωk
i,j ≤ 1, ∀k ∈ K,

C7 : θr
l ∈ [0, 2π], ∀l ∈ [0,L],

C8 : |ejθr
l | = 1, ∀l ∈ [0,L]. (16)

where P = [p1, · · · , pK ] is the transmit power vector for K
UTs, p′max is the upper limitation of the transmit power for
each UT. Θ = [θr

1, · · · , θr
L] is the phase shift vector for all

reflective elements on the RIS. ω is the RIS scheduling matrix
and can be expressed as

ω =

ω
1
1,1 · · · ω1

1,N · · · ω1
M,N

...
. . .

...
. . .

...
ωk

1,1 · · · ωk
1,N · · · ωk

M,N

 . (17)

C1 represents the required minimum throughput constraints
on each UT to guarantee the QoS of wireless networks, and
C2 is the time constraint. C3 and C4 are the maximum power
control constraint of the AP and each UT k, respectively.
C5 and C6 are the constraints for the binary variable ωk

i,j

of the reflective units scheduling. C7 and C8 indicate that
each reflective element l in RIS can only provide a phase
shift θr

l ∈ [0, 2π] without amplifying the input signal.
The optimization problem in (P1) is nonconvex because of

the nonconvex constraints and the coupling of multiple vari-
ables, meaning it is difficult to resolve (P1) effectively using
standard convex optimization methods [10]. Thus, a DRL-
based framework was developed to deal with this issue, as is
described in the following section.

V. UAV TRAJECTORY DESIGN

This study considers human mobility for the dynamic
scenario. Therefore, the UAV–RIS must re-deploy to pro-
vide seamless services for mobile UTs. Following [43], the
UAV–RIS is assumed to be fixed at a given altitude and to
move horizontally of the Cartesian coordinate system. Fur-
thermore, the deployment of UAV–RIS is expected to reduce
the total path loss of this system, which is positively correlated
with the total Euclidean distance between the UAV–RIS and
all UTs. Therefore, this study discusses two state-of-the-art
UAV trajectory designs, the density-aware deployment method
and the Fermat point-based approach, to evaluate the proposed
dual-domain EH model [43], [44].

A. Density-Aware Deployment Method

For the density-aware deployment method, the UAV–RIS is
deployed at the point that minimizes the squared Euclidean
distances and satisfies the following:

min
Ĉr(t)

∑
k∈K

∥Ĉk(t)− Ĉr(t)∥2, (18)

where Ĉr(t) and Ĉk(t) are horizontal positions of UAV–RIS
and UT k, respectively. The value of Ĉr(t) can be obtained
using the standard K-means algorithm and will not be elabo-
rated on in this study [45].
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B. Fermat Point-Based Approach

Following [44], the trajectory of the UAV–RIS can be
obtained by finding the horizontal Fermat point between all
UTs in the Cartesian coordinate system. Unlike the K-means
algorithm that minimizes the squared Euclidean distances, the
Fermat point aims to minimize the sum of the Euclidean
distances from the point to each vertex. Therefore, the deploy-
ment point obtained by the Fermat point-based approach can
be expressed as

arg min
Ĉr(t)

∑
k∈K

∥Ĉk(t)− Ĉr(t)∥2. (19)

VI. DEEP REINFORCEMENT LEARNING
ALGORITHM-BASED FRAMEWORK

Recent research results motivated the use of the DRL-based
resource allocation method to maximize the harvested energy
while guaranteeing the required QoS of communications [7],
[46]. However, conventional DRL algorithms often involve
overestimation and underestimation issues, which reduce the
performance in complex wireless communication environ-
ments [19]. Inspired by the success of the SD3 algorithm,
a robust DRL-based approach that uses a softmax operator
and a clipped action space was proposed to address this issue.
First, the essential principle of the generalized DRL is briefly
reviewed before the proposed architecture is outlined in detail.

A. Generalized Deep Reinforcement Learning

The reinforcement learning derived from the Markov deci-
sion process (MDP) interaction between intelligent agents and
the external environment [47]. The formulated MDP can be
expressed as follows:

G := ⟨S,A,P,R, γ⟩ , (20)

where S and A represent finite sets of states and actions,
respectively.R : S×A×S → R denotes the state reward func-
tion that specifies rewards for particular transitions between
states. The state transition probability, P : S×A×S → [0, 1],
maps the probability distribution from the current environment
state combined with the action’s interaction into the next envi-
ronment state. The discounting factor, γ ∈ [0, 1], determines
the importance of future rewards concerning the current state.
At each coherence time step t, the intelligent agent takes
an action, at = π∗(st), based on the current environment
state, st ∈ S, according to its policy, π∗. Following this, the
agent receives an instantaneous reward rt = R(st, at) and the
evolved state st+1 ∈ S. Typically, the reward function R and
the transition function P comprise the model, π∗ : S → A,
of MDP for maximizing the long-term reward calculated by

max
π∗

J(π∗) := E

[
T∑

t=0

γtrt(st, π∗(st))

]
, (21)

Similarly, the action-value (Q-)function can be defined as

Qπ∗(st, at)=E

[
T∑

t=0

γtrt | s0 = s, a0 = a, at ∼ π∗(· | st)

]
.

(22)

Prior research has demonstrated that exploring continuous
action space in Q-learning can be time consuming [48],
[49]. The DDPG uses a deterministic policy, π(s | δπ),
in which its function approximators are parameterized by δπ ,
to maximize the Q-function in continuous action space [17].
The critic net, Q

(
s, a | δQ

)
, parameterized by δQ, is learned

using the Bellman equation to criticize the performance of
the actor net. A copy of the actor and critic nets, π′

(
s | δπ ′)

and Q′
(
s, a | δQ′

)
, are created as the target nets for fast

convergence. At each step, the DDPG creates an exploration
policy for learning in continuous action spaces by adding a
noise sampled from the stochastic noise process N ,

π′(s) = π (s | δπ) +N , (23)

while N can be chosen to suit the environment. Taken
together, the actor net updates its policy using the following
approximation:

∇δπJ

≈ 1
Nb

∑
i

[
∇aQ

(
s, a | δQ

)
|si,a=π(si) ∇δππ(s | δπ) |si

]
,

(24)

where Nb is the transitions’ quantity for random mini-batch
sampled from the replay buffer D. The critic net updates its
policy to minimize the loss according to the following:

L
(
δQ

)
=

1
Nb

Nb∑
i=1

(
i −Q

(
si, ai | δQ

))2
, (25)

where i is expressed as

i = r(si, ai) + γQ′
(
si+1, π

′(si+1 | δπ′) | δQ′
)
. (26)

Then, the DDPG updates the weights of the target nets as
follows:

δQ′ ← ψδQ + (1− ψ)δQ′,

δπ ′ ← ψδπ + (1− ψ)δπ ′, (27)

where ψ ≪ 1 is the learning rate for the soft updating actor
and critic networks.

B. The Robust Deep Reinforcement Learning-Based Scheme

One critical concern of DDPG is issue of overestima-
tion [50]. Focusing on the overestimation problem, the authors
in [18] recently demonstrated that the TD3 algorithm notably
enhances both the convergence speed and the performance of
DDPG by leveraging clipped double estimators, Q1 and Q2,
for the critics. Similar to the double Q-learning formu-
lation, the pair of critics (Q1, Q2) is parameterized by
(δQ1 , δQ2) [51]. Finally, the TD3 proposed involves taking
the minimum estimation values between the two critics via
the clipped double Q-learning method as follows:

1, 2 = r + γmini=1,2Qi

(
s′, π(s′ | δπ−) | δQi

−)
, (28)

where δQ1
− and δQ2

− are the parameters for the target
critic nets. Consequently, any additional overestimation of
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the value targets can be reduced using the clipped double
Q-learning approach. The proof of the TD3 approach was
clearly described in [18] and will not be repeated herein.
However, the TD3 still suffers from an underestimation bias
that significantly degrades its performance [19].

To resolve this problem, the SD3 uses the softmax operator
in the TD3 to reduce any overestimation and underestimation
bias in continuous control. The softmax operator can be
defined as follows:

softmaxβ (Q(s, ·))

=
∫

a∈A

exp (βQ(s, a))∫
a′∈A

exp (βQ(s, a′)) da′
Q(s, a)da, (29)

where β is the parameter of the softmax operator. By inducing
the softmax operator to express the expected value of the Q-
function, SD3, an unbiased estimation is obtained as follows:

softmaxβ (Q(s, ·))

= Ea′∼p[
exp

(
βQ̂(s′, a′)

)
Q̂(s′, a′)

p(a′)
]

/Ea′∼p[
exp

(
βQ̂(s′, a′)

)
p(a′)

], (30)

where p(a′) represents the probability that follows a Gaussian
distribution. Furthermore, the Q̂i(s′, ·) takes the minimum
estimation value between all critic nets and is given by

Q̂i(s′, a′) = min
(
Qi(s′, a′ | δQi

−
), Qj(s′, a′ | δQj

−
)
)
,

(31)

where Qj represents the indices of all critic nets expect critic
net Qi. The estimation value of target critic Qi is defined by

i = r + γTSD3(s′), (32)

where TSD3(s′) denotes the softmax operator for SD3 in
continuous action space and is expressed as

TSD3(s′) = softmaxβ

(
Q̂i(s′, ·)

)
. (33)

Additionally, the sampled actions are obtained by adding a
noise N to the target action π(s′, | δπ−). Since each sampled
noise is clipped to [−c, c], the sampled action can be expressed
as follows:

a′ = [−c+ π(s′, | δπ−), c+ π(s′, | δπ−)]. (34)

One practical advantage of SD3 is that the limited range of the
action space can guarantee that the taken action is approximate
to the original one. Consequently, the SD3 can obtain accurate
and robust estimation values of the softmax Q-function.

The implementation details for the SD3-based learning
algorithm are provided in Algorithm 1. Here, the commu-
nication environment state was formulated as the input of
the proposed algorithm, whereas a pair of actor networks
(π1(s | δπ1), π2(s | δπ2)) and a pair of critic networks
(Q1(s | δQ1), Q2(s | δQ2)) were initialized with the random
parameter pairs (δπ1 , δπ2) and (δQ1 , δQ2), respectively. Then,
the target networks for all the actor and critic networks were
initialized with the same parameters as their corresponding

networks. An empty replay buffer D with the size of ND was
initialized for the learning process. At each time step, the actor
produces an action, at, according to the current policy pair of
(πi, π2) and the clipped exploration noise N . The algorithm
then obtains the instantaneous reward rt after executing the
corresponding action. The reward in terms of the harvested
RF energy is described in Section VI-C. Following this, the
tuple (s, at, rt, s

′, d) is stored into D where d is the done flag.
A mini-batch of NB transitions is then immediately sampled
from the replay memory D to calculate the target Q-value
following softmax operation according to Eq. (30). Then, the
critic net Qi and the actor net πi are updated according to the
Bellman loss

1
Nb

∑
s

(
i −Qi

(
s, a | δQi

))2
(35)

and the policy gradient

1
Nb

∑
s

[
∇aQi

(
s, a | δQi

)
|a=π(s|δQi ) ∇δπi (π(s | δπi))

]
,

(36)

respectively. Lastly, the target nets are soft updated as follows:

δQi
− ← ψδQi + (1− ψ)δQi

−
,

δπi− ← ψδπ + (1− ψ)δπi−. (37)

The outputs of the algorithm are the optimal action a =
{τ(t),P ,ω,Θ}, and the total energy harvesting efficiency Ē
of the UAV–RIS system.

C. Observation, Action and Reward Design

In this work, the DRL environment relies on the wireless
network assumption, with the RIS interacting as an agent. The
state and observation space, action space, and reward design
are described below.
• State Space: At each time step t, the observation is

constructed by the current environment state st, which
consists of the baseband equivalent channels from the
AP to UAV–RIS G and from the UAV–RIS to the k-th
UT, hr,k ∈ C1×L, for all k ∈ K, the distance between
the each mete-surface element Ri,j and the k-th UTs,
dru

k , for all k ∈ K, the location of each meta-surface
element, Cr

i,j , and the position of the antenna of each
UT Ck. Hence, the observation of the proposed SD3-
based learning algorithm can be expressed as follows:

O(st) =
{

G,hr,k, d
k
i,j , Ck, Cr

i,j

}
. (38)

• Action Space: At the t-th time step, the action at of the
proposed DRL-based framework for the time-domain EH
scheme consists of three main components, the length of
the EH phase τ(t) ∈ [0, 1], the transmit power level
pk ∈ [0, p′max] for each UT k, and the phase shift
θr

l ∈ [0, 2π] for each reflective element l. In addition
to the action space of the time-domain EH scheme, the
reflective element scheduling variable ωk

i,j ∈ {0, 1},∀i ∈
[0,M ], j ∈ [0, N ], k ∈ K is added to the action space for
the dual-domain EH scheme. Furthermore, τ(t), pk, and
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Algorithm 1 The Proposed SD3-Based Scheme

1 Input: G, hr,k,∀k ∈ K, dk
i,j , ∀k, i, j, Ck(t), ∀k ∈ K, Cr

i,j(t), ∀i, j, the size of experience replay ND, the size of
mini-batches Nb;

2 Initial: Actor π1 (s | δπ1) and critic Q1

(
s, a | δQ1

)
networks with random parameters δπ1 and δQ1 , respectively;

3 Initial: Actor π2 (s | δπ2) and critic Q2

(
s, a | δQ2

)
networks with random parameters δπ2 and δQ2 , respectively;

4 Initial: Target networks δπ1− ←− δπ1 , δQ1
− ←− δQ1 , δπ2− ←− δπ2 , δQ2

− ←− δQ2 ;
5 Initial: Experience replay memory D with the capacity of ND;
6 Output: Optimal action a = {τ(t),P ,ω,Θ}, and the total energy harvesting efficiency Ē of the UAV–RIS system.
7 for episode Ne = 1 to Nepoch do
8 Receive the current G;
9 Initialize a stochastic noise process N ;

10 Collect hr,k,∀k ∈ K for Ne-th episode;
11 for t = 1 to T do
12 Select action at with exploration noise N based on policy π1 and π2;
13 Execute action at to observe its corresponding reward rt, the next state s′ and the done flag d;
14 Store the transition tuple (s, at, rt, s

′, d) into D;
15 for i = 1, 2 do
16 Randomly sample a mini-batch of Nb transitions {(s, a, r, s′, d)} from D;
17 Sample K noises ϵ ∼ N (0, σ̄);
18 â′ ← πi(s′ | δπi−) + clip(ϵ,−c, c);
19 Q̂(s′, â′)← minj=1,2

(
Qj(s′, â′ | δQj

−)
)

;

20 softmaxβ

(
Q̂(s′, ·)

)
← Eât

′∼p[
exp(βQ̂(s′,â′))Q̂(s′,â′)

p(â′) ]/Eâ′∼p[
exp(βQ̂(s′,â′))

p(â′) ];

21 i ← r + γ(1− d)softmaxβ

(
Q̂(s′, ·)

)
;

22 Update the critic δQi using Bellman loss: 1
Nb

∑
s

(
i −Qi

(
s, a | δQi

))2
;

23 Update the actor δπi according to policy gradient: 1
Nb

∑
s

[
∇aQi

(
s, a | δQi

)
|a=π(s|δQi ) ∇δπi (π(s | δπi))

]
;

24 Soft update target nets: δQi
− ← ψδQi + (1− ψ)δQi

−
, δπi− ← ψδπ + (1− ψ)δπi−;

25 end
26 end
27 end

θr
l are defined in a continuously feasible region, whereas
ωk

i,j is transformed into a discrete variable.
• Reward Design: The positive reward represents the objec-

tive of the proposed framework, that is, to maximize
the overall energy harvesting efficiency of the UAV–RIS
system. At each time step t, the instantaneous reward
has a positive correlation with the energy harvesting
efficiency E(t), which is defined in Eq. (8). The pro-
posed framework must also account for the users’ mini-
mum capacity requirement defined in the constraints C1.
Hence, reward rt can be described as follows:

rt = E(t)× ρ, (39)

where ρ is the number of UTs that address the required
Γmin and is defined by

ρ =
∏
k∈K

ρk(t), (40)

where ρk(t) is give

ρk(t) =

{
0, Γk(t) < Γmin,∀k ∈ K, t ∈ T .
1, Γk(t) ≥ Γmin,∀k ∈ K, t ∈ T .

(41)

The cumulative reward is given by max J =
∑

t γ
trt.

Fig. 3. Simulation scenario for the multiple-UT case.

VII. SIMULATION RESULTS

In this section, the performance of the proposed SD3-based
SWIPT associated with the dual-domain EH developed in this
work is evaluated in terms of both single-UT and multiple-UT
cases. The number of users was set to K = 1 and K = 3 for
the single-UT and multiple-UT cases, respectively. Table II
lists the partial parameters for the simulation. Here, the UTs
are located in an area of 20m× 20m, whereas the number of
passive reflected elements in the system was set to 16. The
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Fig. 4. EH percentage per testing step for the single-UT case. The EH percentage is the ratio of collected energy to the received energy of the impinging
RF signal.

TABLE II
PARTIAL VALUES OF THE SIMULATION PARAMETERS

AP location and the movement trajectories of the UTs are
shown in Fig. 3. The trajectory positions of the UAV–RIS
in the training phase are obtained using the density-aware
deployment method, while the proposed SD3-based model was
evaluated by both the density-aware and Fermat point-based
UAV trajectory schemes. Furthermore, the UTs’ trajectories in
the evaluation are different from those in the training phase.
Meanwhile, it was assumed that the required QoS constraint
Γmin was 70 megabits/second.

A. Single-User-Terminal Case

Comparison of the performance among different learning
algorithms in the single-UT case are shown in Fig. 4(a) and
Fig. 4(b) in terms of the time-domain and the proposed dual-
domain EH, respectively. In the dual-domain EH, the values
for the DDPG-based SWIPT significantly fluctuated between
zero and a half of the corresponding exhaustive search value
per step. As Fig. 4(b) shows, the SD3-based SWIPT system
were extremely close to the exhaustive search method, which
produces the optimal resource allocation but is expensive.
Moreover, the SD3-based SWIPT system outperformed the
TD3-based system in terms of collecting energy in all the
steps, while the TD3-based method can reach around 58%

Fig. 5. Cumulative rewards per training episode with increasing iterations
for the single-UT case.

of the energy harvesting efficiency per step. However, the
DDPG-based SWIPT system demonstrated a better perfor-
mance than the TD3-based system in terms of the time-
domain EH, as is shown in Fig. 4(a), which was because the
TD3-based system suffers from underestimation problem.

Based on the simulation results for the single-UT case,
the proposed SD3-based approach can harvest, on average,
22.5% and 64.2% of the energy from the received RF sig-
nal in the time-domain and dual-domain EH, respectively.
Meanwhile, the TD3-based method achieved values of 14.9%
and 58.5% in terms of time-domain and dual-domain, respec-
tively, whereas the DDPG harvested 21.5% and 30.4% of the
energy in the corresponding schemes. The upper limit of EH
obtained through searching all the probabilistic actions was
26.4% and 67.6% for the time-domain and the dual-domain
schemes, respectively. Clearly, the proposed dual-domain EH
outperformed the time-domain scheme in terms of different
learning algorithms and the exhaustive search method. Further-
more, the SD3-based SWIPT system achieved the best perfor-
mance among all the learning algorithms in the dual-domain
EH scheme. However, the complexity of the exhaustive
search algorithm due to the nondeterministic polynomial-time
results in a lack of practicality in terms of real-world
application. To summarize, the simulation results demon-
strated the supremacy of the proposed SD3-based method in
the single-UT case in terms of trade-off effectiveness and
practicality.

Meanwhile, Fig. 5 illustrates the convergence behavior of
the proposed SD3-based SWIPT system for the single-UT
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Fig. 6. EH percentage per testing step for the multiple-UT case. The EH percentage is the ratio of collected energy to the received energy of the impinging
RF signal.

case. Here, the rewards had a positive correlation with the EH
objective. As Fig. 5 shows, the cumulative rewards of the dual
domain EH scheme increased significantly from 0 to around
0.52 per episode between 100 and 700 episodes, whereas
from 1,000 to 2,000 episodes, the cumulative rewards per
training episode gradually increased with the continuation of
the training iterations. The learning processing converged from
around approximately 2,000 episodes after certain fluctuations
caused by the exploration, after which point, the rewards
remained stable at around 0.65 and 0.23 for the dual-domain
and time-domain EH schemes, respectively.

B. Multiple-User-Terminal Case

The percentages of the harvested energy to the received
energy per step in the multiple-UT case are shown in Fig. 6(a)
and Fig. 6(b) in terms of the time-domain and dual-domain
schemes, respectively. Here, in each EH scheme, the time
used with the exhaustive search-based method was consistently
higher than that with the other learning-based algorithms,
which was because the exhaustive search explores the optimal
solution in a time consuming way. As Fig. 6(a) shows, the
values for the proposed SD3-based SWIPT and the TD3
system were close to those of the exhaustive search. Moreover,
the difference between the DDPG-based method and the
exhaustive search method was wider than that between the
other learning algorithms in majority of the steps. Meanwhile,
as Fig. 6(b) shows, the line of the proposed SD3-based
method was close to that of the exhaustive search, whereas the
EH-related performance of the DDPG-based SWIPT system
was extremely close to that of the SD3, despite several
deviations in a few of the steps.

Based on the simulation results, 67.2% and 25.5% of the
energy of the impinging RF signals was collected by the
exhaustive search algorithm in the dual-domain and the time-
domain schemes, respectively. In terms of the time-domain
scheme, the percentage collected by the DDPG-based SWIPT
scheme (23.6%) was slightly higher than that collected by
the SD3 scheme (23.2%), whereas the TD3-based method
achieved the lowest value with 18.7%. In the dual-domain
scheme, the proposed SD3-based SWIPT harvested 55% of
the received energy, surpassing the performance of the TD3-
based approach (52.9%), whereas the DDPG-based SWIPT

Fig. 7. Cumulative rewards per training episode with increasing iterations
for the multiple-UT case.

scheme had the worst performance with 29.6%. Clearly, the
SD3-based SWIPT scheme outperformed the other learning
algorithms in terms of the dual-domain scheme, whereas the
DDPG scheme achieved similar performance in terms of the
time-domain scheme. Moreover, much like with the single-UT
case, the dual-domain EH scheme surpassed the time-domain
scheme.

The training behavior of the proposed SD3-based dual-
domain SWIPT system in the multiple-UT case is shown in
Fig. 7. Here, the cumulative rewards per episode underwent
a sharp increase from zero to approximately 0.58 between
around 100 and 600 episodes, after which the training rewards
increased slightly to 0.62 over a period of 1,000 episodes.
Thus, the cumulative rewards converge to around 0.63 and
were expected to continue until the training phase ends.

Figure 8 shows the EH performance of the proposed SD3-
based method in terms of the density-aware design and the
Fermat point-based design for the UAV–RIS trajectory. The
proposed SD3 model was trained using the density-aware
UAV trajectory and tested with both the density-aware and
Fermat point-based UAV trajectory. From Fig. 8, the EH
performance of the K-Means algorithm-based UAV trajectory
was extremely close to that of the Fermat point-based UAV tra-
jectory in both the time-domain and dual-domain EH schemes.
The simulation results demonstrated that the proposed SD3-
based EH method is indeed robust with regard to the different
UAV trajectory design schemes.
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Fig. 8. SD3-based EH performance on different UAV trajectory design
schemes for the multiple-UT case.

Overall, the dual-domain EH scheme outperformed the
time-domain scheme in terms of all the learning and exhaus-
tive search-based methods. The proposed SD3-based robust
SWIPT system achieved the best performance among all
state-of-the-art systems in terms of dual-domain EH since
it achieved a good balance between effectiveness and time
consumption.

VIII. CONCLUSION AND FUTURE WORK

In this work, the limited battery power issue of UAV-assisted
RIS communications, which limits its service capabilities, was
investigated. In the process, a long-lasting scheme based on
the SWIPT scheme was proposed for the UAV–RIS system
by splitting the passive reflected arrays on the geometric
space for transporting information and harvesting energy
simultaneously. For rapid and robust learning, an SD3-based
SWIPT was developed for the proposed dual-domain EH, with
the effectiveness and efficiency of the proposed dual-domain
EH scheme demonstrated using rigorous simulations. The
simulation results showed the supremacy of our SD3-based
SWIPT scheme in terms of trade-off efficiency and practicality.
Furthermore, the proposed dual-domain EH was demonstrated
to reach a near-global optimal for the joint optimization of
transmit power, reflective elements’ phase shifts, transmis-
sion time scheduling, and RIS scheduling under dynamic
communication environments, whereas the performance of
the traditional time-domain EH was limited by the resource
allocation dimension. Furthermore, it is recommended that in
future work an association problem between UAV–RISs and
users is investigated for the multiple UAV–RIS scenario.
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