
4756 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 7, JULY 2023

Bayesian Receiver Design via Bilinear Inference for
Cell-Free Massive MIMO With

Low-Resolution ADCs
Takumi Takahashi , Member, IEEE, Hiroki Iimori , Member, IEEE,

Kengo Ando , Graduate Student Member, IEEE, Koji Ishibashi , Senior Member, IEEE,

Shinsuke Ibi , Member, IEEE, and Giuseppe Thadeu Freitas de Abreu , Senior Member, IEEE

Abstract— We propose a novel joint channel and data estima-
tion (JCDE) scheme to combat the rate limitation in fronthaul
links of cell-free massive MIMO (CF-mMIMO) systems intro-
duced by the use of analog-to-digital converters (ADCs) at access
points (APs), which makes channel estimation and multi-user
detection at the central AP (CAP) challenging. The latter problem
is solved here via the new JCDE scheme which differs from state-
of-the-art (SotA) alternatives due to two contributions. The first is
the design and incorporation of de-quantization (DQ) step which
relies only on scalar Gaussian approximation (SGA) assumptions
in conformity with mild central limit theorem (CLT), in contrast
to the much harder asymptotic conditions required by the classic
bilinear generalized approximate message passing (BiGAMP)
algorithm. The second is a modification of bilinear Gaussian
belief propagation (BiGaBP), whereby quantized outputs are
linearized via the Bussgang decomposition enabling tractable
signal processing. The resulting DQ-aided JCDE method achieves
both low-complexity and high-accuracy by exploiting both the
spatial degrees of freedom (DoF) obtained from, and the observa-
tions at the CAP to compensate for the low-resolution distortion
introduced by, the distributed APs. The efficacy of the proposed
method over the SotA is confirmed via computer simulations.

Index Terms— Cell-free massive MIMO, receiver design, lim-
ited feedback, Bayesian bilinear inference, low-resolution ADC.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (mMIMO) has
been adopted as a key technology to address the
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increasing demand in data rates at initial standardization stages
of fifth-generation (5G) systems, which aim to to achieve best-
effort services focusing on faster downlink speeds. In beyond
5G and future sixth-generation (6G) networks, however, mas-
sive multiple-input multiple-output (mMIMO) is also expected
to be exploited in the realization of user-centric communi-
cation systems, which seek to always satisfy wireless link
quality both in the downlink (service) and the uplink (access)
connectivities.

Cell-free massive MIMO (CF-mMIMO) has been recently
proposed [1] as a promising new concept of mMIMO archi-
tectures that enables achieving this goal. The CF-mMIMO
architecture virtually configures a mMIMO system using a
large number of single- or multiple-antenna APs that are geo-
graphically distributed and connected through wired fronthaul
links to a common high-performance central processing unit
(CPU), while simultaneously serving multiple user equipment
(UE). This renders the benefits of lower average path-loss,
smaller spatial correlation, and larger degrees of freedom
(DoFs) simultaneously possible. In addition, the centralized
processing at the CPU of signals collected from local APs
enables the alleviation of the cell boundary problem typical
of cellular architectures by effective interference suppression,
resulting in a more user-centric system, whereby the system
can dynamically adjust to serve the needs of users, whether
than users having to conditions of the system.

Early CF-mMIMO systems proposed in seminal works such
as [1], [2], and [3] are, however, not scalable in practice
due to the assumption that all APs are ideally connected to
one CPU, responsible for coordinating and processing the
signals of all UEs. In order to address this issue, a user-
centric decentralized approach was proposed in [4], [5], and
[6], which suggested the formation of local clusters [7], [8]
consisting of a local CPU – also referred to as CAP – and
associated APs, such that each UE is not served by all APs
simultaneously, but by a subset of the latter that provides the
best channel conditions. In particular, in [5] and [6], the
dynamic cooperation clustering (DCC) method of [9] was
applied to dynamically change the CAP-AP connections so
as to achieve a scalable CF-mMIMO system, considering the
time variability of the network structure due to the mobility
of UEs.

Next to scalability, the energy consumption and deployment
cost of the network are further challenges of the CF-mMIMO
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architecture, as these parameters increase rapidly with the
number of APs in the system. These challenges are mitigated
by the use of low-cost hardware components, which in turn
translates to the requirement of robustness against hardware
impairments [10], [11], [12], [13]. In particular, rate limitations
in wired fronthaul links and the constrained computational
capabilities of APs are two factors now considered unavoidable
in practical CF-mMIMO system [14], [15], which require
appropriate data compression and demodulation techniques at
the CAPs and APs to be circumvented.

In light of the above, we contribute in this article with
an appropriate receiver design to address the aforementioned
inherent problems of scalable CF-mMIMO system, including
channel estimation (CE) and multi-user detection (MUD) in
the uplink. We highlight that while preceding work such
as [10], [11], [12], [13], [14], and [15] focused on met-
rics such as achievable data rate, spectral efficiency, and/or
energy efficiency in their system performance evaluation,
our contribution is fundamentally algorithmic, such that our
numerical results are presented in terms of normalized mean
square error (NMSE) of estimated quantities and bit error rate
(BER), computed from actual constellation points. Besides the
contribution of the newly proposed receiver, the performance
evaluation here presented is therefore complementary to the
aforementioned work in demonstrating the practical feasibility
and the relevance of robust receiver designs for CF-mMIMO
systems.

When considering the SotA literature on techniques to
combat the rate-limited fronthaul link problem, one finds that a
common approach is to perform data compression at the APs,
which amounts to quantizing the signals using a small number
of bits in order to reduce the load on the fronthaul links [10],
[11], [12], [13], [14], [15]. A practical solution to that end is
to employ low-resolution ADCs with 1–3 bits instead of the
typical 10+ bits at APs, which has the further advantages of
enabling low power consumption and reduced hardware cost.
Other possible solutions are compute-and-forward schemes
based on the cardinality reduction of symbols [16], [17], and
singular value decomposition (SVD)-based latent semantic
analysis (LSA) techniques [18], [19], which can efficiently
reduce the fronthaul load, but require higher performance of
the APs.

We highlight that among the many low-resolution ADC
solutions to the rate-limited fronthaul problem are also clever
estimate-compress-forward (ECF) methods such as those pro-
posed e.g. in [14] and [15], in which the APs performs,
besides data compression, other signal processing operations
such as channel estimation and data filtering. Indeed, such
an approach has been shown via numerical results to out-
perform the simpler “compress-only” counterparts, but their
performance and implementation cost are in a trade-off rela-
tionship, which ultimately compromises the scalability of the
system.

Keeping our aim sharply at the objective of reducing
deployment costs in order to add feasible scalability to
CF-mMIMO systems, we therefore focus our contribution
on the previously mentioned paradigm, whereby APs only
compress their received signals using low-resolution ADCs,

before forwarding the resulting quantized signals to the CAP.
Under such a premise, it is the CAP that is required to
employ sophisticated (and low-complexity) signal demodu-
lation techniques in order to mitigate the severe distortion
in the signals forwarded by the APs as a consequence of
the nonlinear quantization noise induced by low-bit ADCs
at fronthaul links. In summary, we assume that only down-
conversion and quantization are performed at the APs, while
baseband CE and MUD are performed at the CAP.

Having clarified our basic assumption, we also note that sev-
eral methods have been proposed for recovering and estimating
signals from quantized observations, including the optimal
maximum likelihood (ML) estimation, as well as sub-optimal
variation of the latter based on sphere decoding (SD) [20],
whose exponential complexities are too high to be feasible
for scaled CF-mMIMO systems. In comparison, the near-
ML estimator based on convex optimization [21] and spatial
filtering based on Bussgang’s theorem [22], [23], [23], [24],
[25], can be leveraged as the basis of effective low-complexity
estimation alternatives, which can achieve high estimation
performance by exploiting the abundant DoF provided by
CF-mMIMO systems.

The challenge in the latter approach is, however, the
high communication overhead implied by the underlying
requirement that channel state information (CSI) acquisition
is performed via conventional coherent two-stage estima-
tion, where CE is based on predefined pilot sequences, fol-
lowed by MUD based on the estimated CSI. Indeed, very
long orthogonal pilot sequences must be used in order to
obtain accurate CSI knowledge from quantized observations,
because the use of coarse quantization not only breaks the
orthogonality of pilot sequences, but also greatly reduces
the number of effective measurements available for CSI
estimation [26], [27], [28], [29].

A solution to the latter challenge is JCDE via Bayesian
bilinear inference, which exploits estimated data symbols as
a soft pilot sequence, thus enabling a significant reduction in
the length of pilot sequences without sacrificing estimation
performance. Taking into account the inherent large-system
setting of the CF-mMIMO architecture, whereby the number
of APs is assumed to be larger than that of UEs, the BiGAMP
algorithm proposed in [30] emerges as a particularly attractive
framework for the design of JCDE schemes for CF-mMIMO
systems, as it enables low-complexity bilinear inference by
exploiting the law of large numbers.

Indeed, the BiGAMP methodology has been extended to
bilinear inference based on quantized observations by means of
a unified generalized approximate message passing (GAMP)
framework [31], [32], [33], and it has been empirically
shown [27], [28] that Bayesian JCDE schemes outperform
the conventional two-step estimation and can asymptotically
approach the Genie-aided ideal performance provided a mas-
sive number of observation dimensions and sufficient time
resources can be assumed. The working premise of BiGAMP
is, however, heavily dependent on the large-system limit
approximation based on zero-mean independent and identi-
cally distributed (i.i.d.) random observations [34], [35], which
renders the approach vulnerable to the lack of DoF caused
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by spatial correlation among fading coefficients for instance.
In addition, the convergence behavior of iterative estimation
based on BiGAMP is not stable, which may result in serious
performance degradation, especially in the presence of non-
orthogonal pilot sequences [36].

A recently-proposed approach to tackle the latter issue is the
BiGaBP algorithm [37], which aims to generalize BiGAMP by
relaxing its dependence on the large-system limit approxima-
tion and leveraging the belief propagation (BP) concept [38],
which ultimately allows JCDE to be performed robustly even
with non-orthogonal pilot sequences. Subsequently to [37], the
BiGaBP inference framework was recently employed [39] in
the receiver design of grant-free (GF) access schemes, where
the approach was shown to outperform earlier linear Bayesian
counterparts. In light of all the above, higher-complexity
alternatives based on vector AMP (VAMP) [40], [41], [42],
[43] and the expectation propagation (EP) algorithm [44] will
not be considered in this article, as they do not offer the same
scalability potential of the technique proposed here.

The contributions of the article are summarized as follows:
• New Scalable CF-mMIMO Receiver: A novel JCDE

algorithm, dubbed DQ-aided BiGaBP, is presented,
wherein message passing DQ (MPDQ) is performed via
bilinear inference based on a spatial-temporal representa-
tion of the received signal given through a linearization
using the Bussgang decomposition. A major challenge
overcome by the proposed receiver design is extending
BiGaBP to multi-dimensional observations with differ-
ent quantization resolutions under consistent statistical
assumptions and approximation accuracy.1 To the best
of our knowledge, such an extension of the BiGaBP
algorithm to incorporate arbitrary distributions on the
output has not yet been reported in the literature. The
proposed extension is accomplished by integrating a
novel DQ step here-derived, and a new purpose-designed
JCDE step here obtained via a modification of BiGaBP
which incorporates a linearization of quantized outputs
by means of the Bussgang decomposition. We further
emphasize that in addition to these contributions, both
of which are novelties compared to the scheme proposed
in [37], our proposed design is suitable for low-resolution
CF-mMIMO system, as it is easily applicable to complex
inference problems in which signals with different reso-
lutions are observed at different intensities.

• New Insight on DoF-ADCs Resolution Trade-off: Our
receiver design takes maximum advantage of spatial
DoF via a Bayesian framework that enables performance
improvement in terms of both CE and MUD when
processing signals quantized by low-resolution ADCs at
APs and forwarded to a CAP. Thanks to the feature, the
simulation results here presented reveal an original trade-
off relationship between increased DoF due to spatially
distributed APs and reduced signal resolution due to
low-resolution ADCs, which contributes new insight on

1To this end, we take advantage of the fact that the BiGaBP framework
relies on the SGA in conformity with CLT, whose underlying assumptions
are much softer than the large-system limit assumption on which the BiGAMP
algorithm heavily relies.

the design of scalable CF-mMIMO system, by indicating
that the ratio of the number of antennas concentrated
in the CAP to the number of antennas distributed at
the APs should be designed depending on ADC qual-
ity, in order for system performance to be optimized.
Counter-intuitively, it is also shown that the performance
of spatial filtering may actually be severely degraded
by equipping APs with multiple antennas, although the
proposed DQ-aided BiGaBP method proves somewhat
robust to the up-scaling of AP antennas, thanks to the
JCDE mechanism.

In addition to the aforementioned contributions, we high-
light that, to the best of our knowledge, there is no previous
work in the literature offering a systematic bilinear Bayesian
receiver design for scalable CF-mMIMO systems for highly
correlated channels and considering realistic constraints such
as limited-capacity fronthaul links to the CAP and quantized
signal distortion induced by the use of low-resolution ADCs.

Notation: Throughout the article, the following notation
is used unless otherwise specified. Vectors and matrices are
denoted by lower- and upper-case bold-face letters, respec-
tively. The conjugate, transpose, and conjugate transpose
operators are denoted by (·)∗, (·)T, and (·)H, respectively.
The probability density function (PDF) of the outcome a of a
random variable a given the occurrence b of a random variable
b is denoted by pa|b(a|b). The expectation of a given random
variable is denoted by E[·], while Ea|b[·|b] denotes the condi-
tional expectation of the variable a, given the outcome b of the
variable b. The real and imaginary parts of a complex quantity
are respectively denoted by �{·} and �{·}. The imaginary
unit is denoted by j �

√
−1. The a× a square identity matrix

is denoted by Ia, while the (i, j)-th element of a matrix A
is denoted by aij . The diagonal matrix constructed by placing
the elements of the vector a on its main diagonal is denoted by
diag [a], while diag [A] denotes a diagonal matrix obtained by
replacing the off-diagonal elements of A with 0’s. The block
diagonal matrix created by aligning the matrices A1, . . . ,AD

along the main diagonal is denoted by blkdiag [A1 · · ·AD].
The real and complex Gaussian distributions with mean a and
variance b are respectively denoted by N (a, b) and CN (a, b),
while the PDF and the cumulative distribution function (CDF)
of the standard normal distribution are denoted by φ(x) =

1√
2π

exp
[
−x2/2

]
and Φ(x) =

∫ x
−∞ φ(υ)dυ, respectively. The

notation a ∼ pa(a) indicates that a variable a obeys pa(a).
Finally, the symbol ∝ is used to denote proportionality.

II. SYSTEM MODEL

Consider an uplink CE and MUD problem in a scalable
CF-mMIMO system that adopts user-centric DCC [5], where
the CPU uses the knowledge of the large-scale fading coeffi-
cients of all UEs to cluster a group of APs in order to achieve
scalability and mitigate inter-cluster interference. As a conse-
quence of such an architecture, each local cluster consisting
of a CAP, its surrounding APs, and the corresponding UEs,
as illustrated in Fig. 1, can be considered individually for the
purpose of system design, without loss of generality, as it is
free of interference from other clusters.
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Fig. 1. Illustration of a cluster of a scalable CF-mMIMO system, where
a CAP and its surrounding APs serve multiple UEs within a given service
area. Each of the APs possesses only the minimum functionality required to
perform down-conversion to baseband signals followed by quantization with
low-resolution ADCs, before forwarding their signals to the CAP.

In what follows, it shall be assumed that the cluster contains
U spatially distributed single- or multiple-antenna APs con-
nected by wired fronthaul links to a common CAP, serving M
synchronized single-antenna UEs. We shall also assume that
the signal received at the APs is individually quantized using
low-resolution ADCs and subsequently forwarded to the CAP
through fronthaul links. In contrast, the signal received at the
CAP is completely forwarded to the CPU free of distortion.

For future convenience, let U � {0, 1, . . . , U} be a set of
receiver indices, reserving the index u = 0 to the CAP, such
that the other indices u ∈ U with u ≥ 1 correspond to the
remaining APs. Each u-th AP is assumed to have Nu receive
antennas, while the M UEs served by the system, with m ∈
M � {1, . . . ,M}, are assumed to be single-antenna devices,
distributed randomly following a Poisson point process (PPP)
with intensity μUE within the coverage area of the cluster.

Following [5], [19], the mean power of channels between
every UE and a receiver (i.e., CAP or AP) will be determined
according to the urban micro cell path-loss model of [45],
namely

δ(dm(u))=22.7+36.7 log10 (dm(u))+26 log10 (fc), (1)

where fc [GHz] denotes the carrier frequency, and dm(u) [m]
is the distance between the u-th receiver and the m-th UE,
with u ∈ U and m ∈ M.

Using equation (1), and considering that spatial correlation
exists among the Nu receive (RX) antennas of the u-th AP,
the associated channel vector can be expressed as [46]

hm(u) � √
ρ
√
γm(u)Θm(u)1/2h, (2)

where ρ is the transmit (TX) power assumed identical to all
UEs, γm(u) = 10−δ(dm(u))/10 is the path-loss of the channel
between the m-th UE and the u-th AP, h ∼ CN (0, INu) is a
complex standard normal vector corresponding to Nu uncor-
related small-scale channels, and the RX fading correlation
matrix Θm(u) is expressed as

Θm(u) � a(ωm(u))a(ωm(u))H

= Θm(u)1/2Θm(u)1/2 ∈ C
Nu×Nu , (3)

with a(ωm(u)) �
[
1, ejπ cos(ωm(u)), . . . , ejπ cos(ωm(u))(Nu−1)

]
denoting the antenna steering vector at the u-th AP, pointing
to the angle of arrival ωm(u) corresponding to the m-th UE.

At the k-th discrete time instance, with k ∈ K �
{1, . . . ,K}, the complex baseband signal yk(u) ∈ CNu×1

at the u-th receiver can be written as the following linear
regression model [5]

yk(u) � [y1k(u), . . . , ynuk(u), . . . , yNuk(u)]T

= H(u)xk + zk(u), (4)

where H(u) � [h1(u), . . . ,hM (u)] ∈ CNu×M is a matrix
concatenating the channel vectors of all M single-antenna
UEs, xk � [x1k, . . . , xMk]

T ∈ CM×1 is a TX symbol
vector stacking the scalar symbols from all UEs, and z(u) �
[z1, . . . , zNu ]

T ∼ CN (0, σ2INu) is an additive white Gaussian
noise (AWGN) vector at the u-th receiver.

Assuming that the channel matrix H(u) is constant during
K successive transmissions, and concatenating K successive
RX vectors as given by equation (4) yields the following
compact spatial-temporal RX signal representation

Y (u) = H(u)X + Z(u), (5)

where X � [x1, . . . ,xk, . . . ,xK ] ∈ CM×K , Y (u) �
[y1(u), . . . ,yk(u), . . . ,yK(u)] ∈ CNu×K , and Z(u) �
[z1(u), . . . , zk(u), . . . , zK(u)] ∈ CNu×K .

We highlight that each row of the TX symbol matrix X
corresponds to a given UE, carrying Kp pilot symbols with
indices k ∈ Kp � {1, . . . ,Kp} followed by Kd data symbols
with indices k ∈ Kd � {Kp + 1, . . . ,K}, with K = Kp+Kd

and where we assume Kp 	 Kd < K . Consequently, the
spatial-temporal matrices can be sub-divided into pilot and
data parts as follows: X � [Xp,Xd], with Xp ∈ CM×Kp

and Xd ∈ CM×Kd ; Y (u) � [Y p(u),Y d(u)], with Y p(u) ∈
CNu×Kp and Y d(u) ∈ CNu×Kd ; and Z(u) � [Zp(u),Zd(u)]
with Zp(u) ∈ C

Nu×Kp and Zd(u) ∈ C
Nu×Kd .

A. Quantization With Low-Resolution ADCs at APs

Let the in-phase and quadrature components of the
signal received at each antenna of each AP be quan-
tized separately using an ADC with b-bit resolution
according to the sets of 2b + 1 quantization thresholds
Tb(u) � {τ0(u), τ1(u), . . . , τ2b(u)}, with −∞ = τ0(u) <
τ1(u) < · · · < τ2b(u) = ∞, coupled with the sets of
2b quantization labels Lb(u) � {l0(u), l1(u), . . . , l2b−1(u)}
where li(u) ∈ (τi(u), τi+1(u)]. The joint operation of the 2Nu
b-bit ADCs at the u-th receiver can be represented by the
quantization function QNuu,b (·) : RNu → LNub (u) that maps the
RX vector yk(u) ∈ CNu×1 onto the corresponding quantized
output vector rk(u), defined by

rk(u) � QNuu,b (�{yk(u)}) + jQNuu,b (�{yk(u)})
= [r1k(u), . . . , rnuk(u), . . . , rNuk(u)]T , (6)

where the nu-th output is obtained from the corresponding
quantization label as [25]

�{rnuk(u)} = Q1
u,b (�{ynuk(u)}) = li(u)

if �{ynuk(u)} ∈ (τi(u), τi+1(u)] , (7a)

�{rnuk(u)} = Q1
u,b (�{ynuk(u)}) = lj(u)

if �{ynuk(u)} ∈ (τj(u), τj+1(u)] . (7b)
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It will be assumed hereafter that the optimal quantization
labels are determined via the Lloyd-Max algorithm [47].
To that end, let the RX symbols from all users at the u-th
AP be modeled as a complex Gaussian random variable with
mean 0 and variance ψy(u) approximated by

ψy(u) � E
[
|ynuk(u)|2

]
= ρ

M∑
m=1

γm(u) + σ2, (8)

where σ2 is the noise variance and γm(u) are path-losses
already defined after equation (2).

Then, the labels employed by the u-th AP are given by [25]

Lb(u) = α(u)L̃b(u), (9)

where L̃b(u) =
{
l̃0(u), l̃1(u), . . . , l̃2b−1(u)

}
is a set of labels

that minimize the mean square error (MSE) between yk(u)
and rk(u), while and the coefficients α(u) are computed so
as to ensure that E

[
|rnuk(u)|2

]
= ψy(u), namely

α(u)

=

√√√√ ψy(u)

2
∑2b−1
i=0 l̃i(u)2

(
Φ
(√

2τi+1(u)2

ψy(u)

)
− Φ

(√
2τi(u)2

ψy(u)

)) ,
(10)

with Φ(x) denoting the standard normal CDF, as defined at
the end of Section I.

B. Linearization Based on Bussgang’s Theorem

The correlated distortion introduced by the finite-resolution
ADC process makes subsequent stochastic signal processing of
quantized signals very challenging. Under the assumption that
the quantizer input follows a Gaussian distribution, however,
the Bussgang’s theorem [22] can be leveraged to circumvent
this issue. To that end, let the quantized output rk(u) be
modeled [22] by the following linear relationship with the
received signal yk(u),

rk(u) = G(u)yk(u) + dk(u), ∀u ∈ U \ {0} , (11)

where G(u) ∈ CNu×Nu is the Bussgang’s gain, and dk(u) ∈
CNu×1 is a distortion that is uncorrelated with yk(u), such
that E

[
yk(u)dk(u)H

]
= E [yk(u)] E

[
dk(u)H

]
.

The uncorrelated nature of dk(u) with respect to yk(u)
enables to address the quantization distortion of the ADC
output, and the input signal itself, separately. Consequently,
the generation of spatial filters and the statistical processing
described in Section III can be significantly simplified. For
further details, we refer the reader to [23] and [25].

Regarding the RX vector yk(u) ∼ CN (0Nu×1,Cyy(u)),
it follows from equation (11) that

Cry(u) � E
[
rk(u)yk(u)H

]
= G(u)Cyy(u), (12)

with

G(u) � diag [g1(u), . . . , gNu(u)] , (13a)

Cyy(u) � E
[
yk(u)yk(u)H

]
, (13b)

where the nu-th diagonal element of G(u) is given by
diag [Cyy(u)] = ψy(u)INu , yielding [25]

gnu(u) =
E

[
Q1
u,b(ynuk(u))ynuk(u)∗

]
E

[∣∣ynuk(u)
∣∣2]

=
2b−1∑
i=0

li(u)√
πψy(u)

(
e−

τi(u)2

ψy(u) − e
τi+1(u)2

ψy(u)

)
� g(u), ∀nu, (14)

such that we have G(u) = g(u)INu .
Notice that in the ideal case of ADCs with infinite resolution

(b = ∞), equation (14) yields g(u) = 1, and consequently
G(u) = INu , which in turn if substituted into equation (11)
results in rk(u) = yk(u), indicating the consistency of the
Bussgang’s decomposition.

C. Effective Signal Model at a CAP

Thanks to the Bussgang’s linearization described by
equation (11) and detailed above, the uncompressed signals
received directly by the CAP and the low-resolution com-
pressed signals gathered from the surrounding APs can be
combined into a single effective RX vector, which can be
compactly expressed as (15), shown at the bottom of the next
page, where N =

∑U
u=0Nu, and we have implicitly defined

the vectors rk, yk, dk and zk, and matrices G and H .
In view of equation (15), it will prove convenient to define

a set of indices related directly to the entries of the vector
rk, namely, N � {1, . . . , N}, with N =

⋃U
u=0 Nu, NAP �

N \ N0,

Nu �
{
n ∈ N

∣∣∣ u−1∑
i=0

Ni + 1 ≤ n ≤
u∑
i=0

Ni

}
, (16)

where |Nu| = Nu.
Finally, a complete spatial-temporal effective receive signal

model concatenating K consecutive instances of rk can be
built by extending equation (15) in similarity to equation (5),
yielding

R �
[
r1 · · · rK

]
= GHX + G

[
z1 · · · zK

]︸ ︷︷ ︸
�Z∈CN×K

+
[
d1 · · · dK

]︸ ︷︷ ︸
�D∈CN×K

= GHX + GZ + D. (17)

The goal of the article can now be stated concisely: design a
novel JCDE algorithm that enables the CAP to simultaneously
detect the intended symbol matrix Xd and accurately estimate
the effective channel matrix H , out of the spatial-temporal
effective receive signal matrix R given in equation (17), which
thanks to the Bussgang linearization approach utilized contains
both its own undistorted RX signal matrix Y d(0) and the
signals obtained from the APs, that are subjected to distortion
due to the coarse quantization performed by low-resolution
ADCs.
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Fig. 2. Schematic of the belief propagation process employed in the proposed
DQ-aided BiGaBP algorithm.

III. JOINT CHANNEL AND DATA ESTIMATION VIA

DQ-AIDED BIGABP

In this section, a MPDQ process based on a DQ-aided
BiGaBP mechanism to design Bayesian JCDE receivers for
scalable CF-mMIMO architectures is described. As illustrated
in Fig. 2, the estimation procedure of the proposed method
is divided into two steps: the DQ process and the JCDE
procedure. By iterating between these steps alternately, the
estimation accuracy of the unknown data matrix Xd and
effective channel matrix H can be gradually improved, given
the knowledge of the effective signal matrix R and pilot
symbols Xp.

To elaborate, in the DQ step, the RX signal Y �[
Y (0)T, . . . ,Y (U)T

]T
is first recovered and, subsequently,

estimates of the signal distortion D are obtained using the
knowledge of R, Xp, and of the tentative estimates of Xd

and H obtained in the JCDE step. In turn, in the JCDE step,
estimates Xd and H are computed employing the BiGaBP
approach, using the knowledge of R, Xp, and of the tentative
estimates of D obtained in the DQ step. We highlight that
the bilinear inference in the JCDE step is performed by
exchanging beliefs (i.e., likelihood information reflecting esti-
mation reliability) and soft replicas (i.e., tentative estimates)
on the tripartite factor graph (FG) consisting of factor nodes
(FNs) and two variable nodes (VNs), which correspond to the
channel coefficients and TX symbols, respectively.

In what follows, we provide detailed descriptions of the DQ
and JCDE steps of the proposed technique briefly explained
above, leaving tedious derivations of certain equations to
Appendices A and B for the sake of readability. To that end,

and for future convenience, let us define the soft replicas of
xmk and hnm as x̂n,mk, ∀n, and ĥk,nm, ∀k, respectively, such
that their MSEs can be respectively expressed as

ψ̂x
n,mk � E

[∣∣x̃n,mk∣∣2] and ψ̂h
k,nm � E

[∣∣h̃k,nm∣∣2] ,
(18)

where the quantities x̃n,mk, ∀n and h̃k,nm, ∀k, denote the
estimation errors corresponding to x̃n,mk � xmk− x̂n,mk, ∀n,
and h̃k,nm � hnm − ĥk,nm, ∀k, respectively.

For simplicity, in what follows we assume that quadra-
ture phase-shift keying (QPSK) modulation with unit power
is employed, where the constellation set is expressed as

X =
{
± 1√

2
± j 1√

2

}
.

A. DQ Step

Let us start with the DQ step, which processes the RX
symbols with indices ∀n ∈ NAP, forwarded from the u-th
AP via the fronthaul link at the k-th discrete time, outputting
therefore rnk, ∀n ∈ NAP. In the sequel, we refrain from
explicitly including the qualifier “∀n ∈ NAP” after each
equation, in order to avoid being repetitive. In addition, in this
subsection the real and imaginary parts of a complex number
c will be abbreviated as c(0) = �{c} and c(1) = �{c},
respectively, i.e., c = c(0) + jc(1).

With that clarified, since soft replicas are not available at
the first iteration (t = 1), the initial conditional expectation of
ynk, given rnk , is calculated as

ŷm,nk

∫
ynkpynk|rnk (ynk|rnk) dynk

=
∫
y
(0)
nk py

(0)
nk |r(0)nk

(
y
(0)
nk |r

(0)
nk

)
dy

(0)
nk

+ j
∫
y
(1)
nk py

(1)
nk |r

(1)
nk

(
y
(1)
nk |r

(1)
nk

)
dy

(1)
nk

=
∑

θ∈{0,1}
jθ
∫
y
(θ)
nk py

(θ)
nk |r(θ)nk

(
y
(θ)
nk |r

(θ)
nk

)
dy

(θ)
nk , ∀m,

(19)

where θ ∈ {0, 1} indicates a binary index that distinguishes
between real and imaginary parts, and we highlight that y(0)

nk

and y(1)
nk are independent of each other.

Owing to the CLT, valid for the large-system regime
(M � 1), and making use of the variance approximation given
in equation (8), it follows that y(θ)

nk obeys N
(
0, ψ

y(u)
2

)
, such

⎡
⎢⎢⎢⎣

yk(0)
rk(1)

...
rk(U)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�rk∈CN×1

= blkdiag
[
IN0 g(1)IN1 · · · g(U)INU

]︸ ︷︷ ︸
�G∈CN×N

·

⎡
⎢⎢⎢⎣

yk(0)
yk(1)

...
yk(U)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�yk∈CN×1

+

⎡
⎢⎢⎢⎣
0N0×1

dk(1)
...

dk(U)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�dk∈CN×1

= G ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

H(0)
H(1)

...
H(U)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�H∈CN×M

xk +

⎡
⎢⎢⎢⎣

zk(0)
zk(1)

...
zk(U)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�zk∈CN×1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ dk

= G (Hxk + zk) + dk, (15)
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that the conditional PDF of y(θ)
nk , given r(θ)nk , appearing in the

integral on the last line of equation (19) can be expressed via
a truncated Gaussian distribution as

p
y
(θ)
nk |r

(θ)
nk

(
y
(θ)
nk |li(u)

)
=

p
y
(θ)
nk

(
y
(θ)
nk

)
∫ τi+1(u)

τi(u) p
y
(θ)
nk

(
y
(θ)
nk

)
dy

(θ)
nk

, (20)

where the denominator is introduced to normalize the integral
of the conditional PDF to 1.

The relationship between p
y
(θ)
nk

(
y
(θ)
nk

)
= N

(
0, ψ

y(u)
2

)
and

p
y
(θ)
nk |r

(θ)
nk

(
y
(θ)
nk |li(u)

)
is illustrated in Fig. 3a, where we high-

light that the prior information of r(θ)nk = li(u) is confined to
the interval (τi(u), τi+1(u)], of the domain of y(θ)

nk such that
the gray area under the normal distribution corresponds to the
probability mass of r(θ)nk , which after normalization yields the
truncated Gaussian model given in equation (20) and shown
with a dotted line in Fig. 3a.

Utilizing the mean and variance obtained from equation (20)
for θ = {0, 1}, the soft replica of ynk and its corresponding
MSE can be obtained as

ŷm,nk

=
∑

θ∈{0,1}
jθη

(
y
(θ)
nk ; 0,

√
ψy(u)

2 , τi(u), τi+1(u)
)
, ∀m,

(21a)

ψ̂y
m,nk

=
∑

θ∈{0,1}
ζ

(
y
(θ)
nk ; 0,

√
ψy(u)

2 , τi(u), τi+1(u)
)
, ∀m,

(21b)

where η (s) and ζ (s) are functions yielding, respectively,
the mean and variance of a random variable s obeying the
truncated Gaussian distribution, which are respectively defined
as [48]

η (s;μs, σs, a, b)

� μs + σs
φ(α) − φ(β)
Φ(β) − Φ(α)

, (22a)

ζ (s;μs, σs, a, b)

� σ2
s

[
1 +

αφ(α) − βφ(β)
Φ(β) − Φ(α)

−
(
φ(α) − φ(β)
Φ(β) − Φ(α)

)2
]
,

(22b)

with α � a−μs
σs

and β � b−μs
σs

.
Owing to the availability of the soft replicas as

prior information at the second and subsequent iterations
(t �= 1), the conditional PDF of ynk can be expressed
as

p
y
(θ)
nk |E ĥ,̂x�=m ,r(θ)nk

(
y
(θ)
nk |E

ĥ,x̂
�=m, li(u)

)

∝
p

y
(θ)
nk |E ĥ,̂x�=m

(
y
(θ)
nk |E

ĥ,x̂
�=m

)
τi+1(u)∫
τi(u)

p
y
(θ)
nk |E ĥ,̂x

�=m

(
y
(θ)
nk |E

ĥ,x̂
�=m

)
dy

(θ)
nk

, (23)

Fig. 3. Illustration of the conditional expectation and its corresponding PDF
approximated by a truncated and normalized Gaussian distribution.

where for simplicity we have denoted E ĥ,x̂
�=m �{

ĥk,ni, x̂n,ik
}M
i�=m

and E ĥ,x̂�=m �
{
ĥk,ni, x̂n,ik

}M
i�=m

and

in which we assume that E ĥ,x̂
�=m and r

(θ)
nk are independent of

each other.
For the sake of readability, the detailed derivation of

equation (23) is given in Appendix A. Here, suffice it to
emphasize that the expression on the right-hand side of
equation (23) is simply the truncated Gaussian distribution.
In order to determine the original distribution to be truncated
in (23), we use the knowledge of the soft replicas to express
the RX symbol as equation (24), shown at the bottom of the
next page. Under an SGA of the effective noise κy

m,nk, we
obtain

p
y
(θ)
nk |E ĥ,̂x

�=m

(
y
(θ)
nk |E

ĥ,x̂
�=m

)
= N

(
y
(θ)
m,nk,

ψ
y
m,nk

2

)
, (25)

with

ym,nk =
M∑
i�=m

ĥk,nix̂n,ik, (26a)

ψ
y

m,nk =
M∑
i�=m

[∣∣ĥk,ni∣∣2ψ̂x
n,ik +

(∣∣x̂n,ik∣∣2 + ψ̂x
n,ik

)
ψ̂h
k,ni

]
+ ργm(u) + σ2. (26b)

Fig. 3b shows the relationship between the conditional PDFs
in equations (23) and (25). As illustrated thereby, knowledge
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of the soft replicas and their MSEs obtained in the JCDE
step enables the correction of the mean and the variance of
the conditional PDF of (25), allowing for more accurate DQ
processing. In particular, using equations (23) and (25), the
soft replica of ynk and its MSE are expressed as

ŷm,nk =
∑

θ∈{0,1}
jθη
(
yθnk; y

(θ)
m,nk,

√
ψ

y
m,nk

2 , τi(u), τi+1(u)
)
,

(27a)

ψ̂y
m,nk =

∑
θ∈{0,1}

ζ
(
yθnk; y

(θ)
m,nk,

√
ψ

y
m,nk

2 , τi(u), τi+1(u)
)
.

(27b)

Utilizing the estimates given by the equations (21)
and (27), and thanks to the relationship obtained from
the Bussgang decomposition given in equation (11), the
soft replica of the signal distortion and its MSE can be
calculated as

d̂m,nk = rnk − g(u)ŷm,nk, (28a)

ψ̂d
m,nk = E

[∣∣d̃m,nk∣∣2] = g(u)2ψ̂y
m,nk. (28b)

with d̃m,nk = dnk − d̂m,nk.
One DQ step is completed when the process described

above is carried out for all u ∈ U \ {0}, that is, for all signals
except the RX signals that are received by the CAP directly
from users, namely, rnk, ∀n ∈ N0. In light of that, we set both
d̂m,nk = 0 and ψ̂d

m,nk = 0, ∀n ∈ N0.

B. JCDE Step

Next, let us describe the JCDE step for estimating
xmk, ∀m, k ∈ Kd, and hnm, ∀n,m. For starters, we empha-
size that in the JCDE step, all belief distributions propagated

from FNs to VNs are approximated by a scalar Gaussian
distribution based on the CLT, so that only information on
the mean and variance of the estimated belief distribution is
actually required [38], [49].

The iterative process, which is carried out for all RX
indices in parallel, starts at the FNs with soft interference
cancellation (soft IC) performed on ynk with utilizing all
the soft replicas obtained in the previous JCDE iteration,
which for future convenience will be compactly denoted by
E ĥ,x̂∀m �

{
ĥk,nm, x̂n,mk

}
∀m

. At the first iteration (t = 1),
the soft replicas are appropriately initialized, e.g., Xd = 0.
Subsequently, in the detection of an arbitrary TX symbol xmk,
the cancellation process is expressed as equation (29), shown
at the bottom of the page, where gn is the n-th diagonal
element of G.

Here it is worth emphasizing that, in contrast to [37], the
cancellation process performed according to equation (29)
does not resume to the subtraction of inter-UE interference,
but instead incorporates the removal of signal distortion as
well. Then, under the SGA of the effective noise κr

m,nk whose
variance is given by equation (30), shown at the bottom of
the page, the conditional PDF of r̃m,nk, given xmk , can be
expressed as

pr̃m,nk|xmk (r̃m,nk|xmk)∝exp

[
−
∣∣r̃m,nk − gnĥk,nmxmk

∣∣2
νx
m,nk

]
,

(31)

where the simplicity of equation (30) owes to the uncorrelated
nature of the quantization distortion following the Bussgang
model of equation (11).

The estimation of channel coefficients hnm can be obtained
similarly, such that under the SGA, the conditional PDF of

ynk = hnmxmk +
M∑
i�=m

hnixik + zn =
M∑
i�=m

ĥk,nix̂n,ik +
M∑
i�=m

[
h̃k,ni (x̂n,ik + x̃n,ik) + ĥk,nix̃n,ik

]
+ hnmxmk + zn

︸ ︷︷ ︸
�κy

m,nk

. (24)

r̃m,nk = rnk−gn
M∑
i�=m

ĥk,nix̂n,ik

︸ ︷︷ ︸
Inter-UE interference cancellation

Signal distortion cancellation︷ ︸︸ ︷
−d̂m,nk = gnhnmxmk + gn

( M∑
i�=m

[
h̃k,ni (x̂n,ik + x̃n,ik) + ĥk,nix̃n,ik

]
+ zn

)
︸ ︷︷ ︸

�κr
m,nk

+d̃m,nk.

(29)

νx
m,nk = Er̃m,nk|xmk

{∣∣gn (h̃k,nmxmk + κr
m,nk

)
+ d̃m,nk

∣∣2∣∣∣∣∣xmk
}

= g2
n

(
ψ̂h
k,nm +

M∑
i�=m

{∣∣ĥk,ni∣∣2ψ̂x
n,ik +

(∣∣x̂n,ik∣∣2 + ψ̂x
n,ik

)
ψ̂h
k,ni

}
+ σ2

︸ ︷︷ ︸
�ψ̂m,nk

)
+ ψ̂d

m,nk. (30)
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r̃m,nk, given hnm, can be expressed as

pr̃m,nk|hnm (r̃m,nk|hnm)∝exp

[
−
∣∣r̃m,nk − gnhnmx̂n,mk

∣∣2
νh
m,nk

]
,

(32)

with

νh
m,nk

= Er̃m,nk|hnm
{∣∣gn (hnmx̃n,mk + κr

m,nk

)
+ d̃m,nk

∣∣2∣∣∣hnm}
= g2

n

(
ξnmψ̂

x
n,mk + ψ̂m,nk

)
+ ψ̂d

m,nk, (33)

where ξnm � ργm(u) s.t. n ∈ Nu.
The subsequent VN process can be performed in a manner

similar to the JCDE algorithm described in [37], such that
further details are omitted and offered only in a summarized
form in the pseudo-code given in the next subsection.

C. Algorithm Description

The pseudo-code of the DQ-aided BiGaBP scheme
described above is given in Algorithm 1. Besides the effective
RX signal matrix R and the pilot matrix Xp, the algo-
rithm requires only system parameters such as the quanti-
zation thresholds and labels {Tb(u)}Uu=1 and {Lb(u)}Uu=1,
respectively, the path-losses {γm(u), ∀(u,m)}, the Buss-
gang’s gain G, and the maximum number of iterations tmax,
outputting the hard-decision estimates of the TX matrix{
x̌mk, ∀(k ∈ Kd,m)

}
and the estimates of the channel coeffi-

cients
{
ȟnm, ∀(m,n)

}
. To describe the main blocks, in lines

1 to 4, the soft replicas and their MSE are initialized; lines
6 to 8 correspond to the DQ step; and lines 9 to 15 to the
JCDE step. Further, following the repetition of these steps
tmax times alternately, in lines 17 to 20 Xd and H are
estimated.

Notice that although the large-system approximation
assumption is relaxed in BiGaBP schemes compared to the
conventional BiGAMP, the operating principle of BiGaBP still
depends on an accurate SGA of residual components, as can
be inferred from Subsections III-A and III-B. In CF-mMIMO
systems, adopting single-antenna APs can provide indepen-
dent fading between distributed antennas; however, the spatial
correlation between co-located antennas, mounted on the CAP
and multiple-antenna APs, may affect the performance of the
proposed algorithm.

In particular, mismatches between the SGA and the sto-
chastic behavior of actual effective noise may result in belief
outliers, degrading the accuracy of soft replicas and caus-
ing performance deterioration due to error propagation [49],
especially during earlier iterations of the algorithms and/or
in systems with short pilot sequences [37]. In order to mit-
igate such potential issues, belief damping [37], [50], which
prevents the algorithm from converging to local minima and
belief scaling [39], [49], which controls convergence speed,
are introduced into Algorithm 1. Specifically, belief scaling is
applied in line 15 through the parameter γs(t) = ( t

tmax
)2 [49],

which is designed to be a function of the number of iterations,
while belief damping is introduced in lines 11, 12, 14, and 15,
as described in [50] and summarized as follows.

Algorithm 1 - DQ-Aided BiGaBP

Input: {Tb(u)}Uu=1, {Lb(u)}Uu=1, {γm(u), ∀(u,m)}, ρ, R, Xp, G, tmax

Output: {x̌mk,∀(k ∈ Kd,m)},
�
ȟnm,∀(m, n)

�

1: ∀(k ∈ Kp,m, n): x̂n,mk =
�
Xp

�
mk

and ψxn,mk = 0
2: ∀(k ∈ Kd,m, n): x̂n,mk = 0 and ψxn,mk = 1

3: ∀(k,m, n): ĥk,nm = 0 and
ψ̂h
k,nm = ξnm = ργm(u) s.t. n ∈ Nu

4: ∀(k,m, n ∈ N0): ŷm,nk = rnk, d̂m,nk = 0, and
ψ̂y
m,nk = ψ̂d

m,nk = 0
5: for t = 1, . . . , tmax

∀(k,m, n ∈ NAP): /* DQ step */
6: Obtain using eq. (26a) and eq. (26b) ym,nk and ψ

y
m,nk

7: Obtain using eq. (27a) and eq. (27b) ŷm,nk and ψ̂y
m,nk

8: Obtain using eq. (28a) and eq. (28b) d̂m,nk and ψ̂d
m,nk

/* ———— Begin of JCDE Step: ∀(m,n) ———— */
9: Obtain using eq. (29) {r̃m,nk, ∀k} after soft IC

10: Obtain using eq. (33)
�
νh
m,nk, ∀k

�
under the SGA

11: ∀k: hk,nm = ψ
h
k,nm

�
K
i�=k

gnx̂
∗
n,miỹm,ni

νh
m,ni

and

ψ
h
k,nm =

��
K
i�=k

g2n

��x̂n,mi��2
νh
m,ni

�−1

12: ∀k: ĥk,nm =
ξnmhk,nm

ψh
k,nm+ξnm

and ψ̂h
k,nm =

ξnmψ
h
k,nm

ψh
k,nm+ξnm

13: Obtain using eq. (30)
�
νx
m,nk, ∀k ∈ Kd

�
under the SGA

14: ∀k ∈ Kd: xn,mk = ψ
x
n,mk

�N
i�=n

giĥ
∗
k,imr̃m,ik

νx
m,ik

and

ψ
x
n,mk =

��N
i�=n

g2i

��ĥk,im��2
νx
m,ik

�−1

15: ∀k ∈ Kd: x̂n,mk =
1√
2

	
tanh

�
( t

tmax
)2

√
2�{xn,mk}
ψx
n,mk

�
+j tanh

�
( t

tmax
)2

√
2�{xn,mk}
ψx
n,mk

�


and ψ̂x
n,mk = 1 −

��x̂n,mk��2
/* ——————- End of JCDE Step ——————- */

16: end for
17: ∀(m, n): hnm = ψ

h
nm

�
K
k=1

gnx̂
∗
n,mk

ỹm,nk

νh
m,nk

and

ψ
h
nm =

��
K
k=1

g2n

��x̂n,mk��2
νh
m,nk

�−1

18: ∀(m, n): ȟnm = ξnmhnm

ψh
nm+ξnm

19: ∀(k,m): ψ
x
mk =

��
N
n=1

g2i

��ĥk,nm��2
νx
m,nk

�−1

20: ∀(k,m): x̌mk = argmin
χq∈X

���χq − ψ
x
mk

�N
n=1

gnĥ
∗
k,nm

r̃m,nk

νx
m,nk

���

Let a quantity z be calculated by a function fz. Then the t-th
damped value of z, here denoted z(t), is computed as the
weighted average of z(t−1) and fz , with weights set by the
damping factor ηd ∈ [0, 1], i.e.

z = fz
damping−−−−−→ z(t) = ηdz

(t−1) + (1 − ηd)fz . (34)

D. Introduction of Local MMSE Filters

Before we move forward to assessing the performance of
the proposed DQ-aided BiGaBP algorithm, let us introduce
a further modification of the latter aimed at suppressing the
harmful effect of spatial correlation between the antennas
mounted on the CAP, which can be achieved by introducing a
local minimum mean square error (MMSE) filter to whiten the
signals yk(0) received by the CAP and exploited in the data
estimation process described in Section III-B. In particular,
to that end, the following processing is performed by the FNs
for the signals with indices ∀n ∈ N0.
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Algorithm 2 - Improved JCDE Step via Local MMSE Filter:
∀(m,n)

1: Obtain using eq. (29) {r̃m,nk,∀(k, n ∈ NAP)} after soft IC
2: Obtain using eq. (35)

�
ỹm,k(0), ∀k

�
after soft IC

3: Obtain using eq. (33)
�
νh
m,nk,∀k

�
under SGA

4: ∀k: hk,nm = ψ
h
k,nm

�
K
i�=k

gnx̂
∗
n,miỹm,ni

νh
m,ni

and

ψ
h
k,nm =

��
K
i�=k

g2n

��x̂n,mi��2
νh
m,ni

�−1

5: ∀k: ĥk,nm =
ξnmhk,nm

ψh
k,nm+ξnm

and ψ̂h
k,nm =

ξnmψ
h
k,nm

ψh
k,nm+ξnm

6: Obtain using eq. (30)
�
νx
m,nk,∀(k ∈ Kd, n ∈ NAP)

�
under SGA

7: Obtain using eq. (37) {Ωk, ∀k ∈ Kd} under VGA

8: Obtain using eq. (41a) and eq. (41b){xmk, ∀k ∈ Kd} and
�
ψ

x
mk, ∀k ∈ Kd

�
9: ∀(k ∈ Kd, n ∈ N0): xn,mk = xmk and ψn,mk = ψmk
10: Obtain using eq. (41c) and eq. (41d) {xn,mk, ∀(k ∈ Kd, n ∈ NAP)} and�

ψ
x
n,mk,∀(k ∈ Kd, n ∈ NAP)

�
11: ∀k ∈ Kd: x̂n,mk =

1√
2

	
tanh

�
( t

tmax
)2

√
2�{xn,mk}
ψx
n,mk

�
+j tanh

�
( t

tmax
)2

√
2�{xn,mk}
ψx
n,mk

�


and ψ̂x
n,mk = 1 −

��x̂n,mk��2

First, the soft IC of the RX signal received at the CAP is
expressed as

ỹm,k(0)

= yk(0) −
M∑
i�=m

ĥk,i(0)x̂ik

= hm(0)xmk

+
M∑
i�=m

{
h̃k,i(0) (x̂ik + x̃ik) + ĥk,i(0)x̃ik

}
+ zk(0)

︸ ︷︷ ︸
�κy

k,m

,

(35)

where hm(0) = ĥk,m(0) + h̃k,m(0) with ĥk,m(0) =[
ĥk,1m, . . . , ĥk,N0m

]T
.

Then, under a vector Gaussian approximation (VGA) of
κy
k,m, the conditional PDF of (35), given xmk , becomes

pỹm,k(0)|xmk(ỹm,k(0)|xmk)

∝ exp
[
−
(
ỹm,k(0) − ĥk,m(0)xmk

)H
Ω−1
m,k

×
(
ỹm,k(0) − ĥk,m(0)xmk

)]
, (36)

with the covariance matrix given by

Ωm,k � Eỹm,k(0)|xmk
[∣∣h̃k,m(0)xmk + κy

m,k

∣∣2∣∣∣xmk]
=

M∑
m=1

(
Ψ̂

h

i,k + ĥk,i(0)Hĥk,i(0)ψ̂x
ik

)
+ σ2IN0︸ ︷︷ ︸

�Ωk

− ĥk,m(0)Hĥk,m(0)ψ̂x
mk, (37)

where Ψ̂
h

m,k � E
[
h̃k,m(0)h̃k,m(0)H

]
=

diag
[
ψ̂h
k,1m, . . . , ψ̂

h
k,N0m

]
.

The subsequent VN process is similar to that of the JCDE
algorithm of [37], modified by considering (36) under the
VGA, such that only the calculations actually required are

summarized in Algorithm 2, with details on the derivation of
the message update rule offered in Appendix B. By replacing
the JCDE step of Algorithm 1, i.e., lines 9 to 15, with
Algorithm 2, the pseudo-code of the DQ-aided BiGaBP with
local MMSE filters is obtained.

IV. PERFORMANCE ASSESSMENT

Computer simulations were conducted to validate the perfor-
mance of the proposed Bayesian JCDE receiver under various
system conditions. The coverage area was set to a square
of side 400 [m], with the CAP located at the center and
the U APs distributed over an evenly spaced square mesh,
while, at each realization, a random number M of UEs were
randomly distributed inside the area following a PPP with
intensity μUE = 10.

Simulated results are offered both in terms of BER and
NMSE, averaged over 1000 different random UEs positions
and channel realizations. The frame format (i.e., pilot and
payload symbol sequences) was set to follow [51], with
Kp = 14 and Kd = 126 such that K = 140. Gray-coded
QPSK-modulated signals were used for Xd, but since the
number of UEs is random at each realization, with μUE = 10,
both over- and under-loaded conditions arise. Therefore,
in realizations where Kp ≥M , orthogonal pilot sequences are
used, while in cases when Kp < M , the codebook of pilot
sequences is given by the rows of a matrix constructed from
Kp random columns of an M ×M discrete Fourier transform
(DFT) matrix.

The propagation model follows the urban macro cell sce-
nario [52], with the height of the CAP and the APs set
to hAP = 10 [m]; carrier frequency, bandwidth, and noise
variance at the CAP and APs assumed to be fc = 2 [GHz],
B = 20 [MHz], σ2 = −96 [dBm] [53], respectively; and TX
power of UEs ρ in the range of −10 [dBm] to 30 [dBm].
In addition, we defined the antenna decentralized ratio (ADR)
as the ratio between the total number of antennas allocated to
the APs |NAP| = N−N0 and the number of RX antennas N ;
thus, ηr � (N − N0)/N = 1 − N0/N . As for algorithmic
parameters, the damping factor ηd was set to 0.5 and the
number of iterations was set constant to tmax = 32, although
other criteria, based on convergence could also be employed.

A. Remarks on Complexity

Before proceeding to the presentation of simulation results
on the proposed DQ-aided JCDE method, let us offer a
brief analysis of the computational complexities of the algo-
rithms introduced in Section III. Starting with the MPDQ
mechanism embedded in Algorithm 1, notice that the corre-
sponding DQ step is performed only over the |NAP|K RX
symbols collected from APs. The associated complexity is
therefore governed by equations (26) and (28), which consist
of only scalar-by-scalar calculations, whose number of multi-
plications, divisions, additions, and subtractions is of order
O(|NAP|MK). Similarly, the complexity associated with
evaluating the mean and variance of the truncated Gaussian
distribution in equation (27) is of order O(|NAP|MK), since
such an operation can be handled through a look-up table.
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Fig. 4. BER performance of CF-mMIMO systems adopting single-antenna APs with respect to signal-to-noise ratio (SNR) (N = {50, 100}).

Consequently, the complexity of the DQ step is in order of
O(|NAP|MK) per iteration.

Next, in the BiGaBP-based JCDE step, calculations are con-
ducted on NK RX symbols, such that the number of floating-
point operations is proportional to O(NMK), as shown
in [39]. Finally, the post-processing operations in lines 17,
18, 19, and 20 have complexity orders O(NMK), O(NM),
O(MK), and O(MK), respectively.

It follows from the above that the complexity of Algorithm 1
is dominated by the JCDE step, which is of order O(NMK)
per iteration and therefore similar to those of existing lin-
ear/bilinear Bayesian inference schemes found in literature,
e.g. [28], [29], [31], [32], [33], [34], and [39].

In turn, the complexity of Algorithm 2 is dominated by the
inverse operation of the N0×N0 matrix Ωk in equation (37),
which is of order O(N2

0MK + N3
0K + |NAP|MK) per

iteration. Given the much higher complexity compared to
Algorithm 1, we emphasize that Algorithm 2 is offered for the
sake of completeness and as an possible (but not mandatory)
add-on to Algorithm 1, at the choice of the system designer,
to improve performance. It shall be shown in the sequel,

however, that Algorithm 1 already outperforms the SotA
without the inclusion of Algorithm 22.

B. BER Performance

Our first set of results is given in Fig. 4, where the
performances in terms of BER as a function of the SNR, with

SNR � E{‖HX‖2}
KNN0

, of the following CF-mMIMO systems
adopting single-antenna APs (i.e., Nu = 1, ∀u ∈ U \ {0}, and
thus U = |NAP| = N −N0) are compared:

• Cent. MMSE: Baseline linear MMSE receiver with a
fully centralized setup; i.e., all N RX antennas are
concentrated at the CAP (ηr = 0), where MUD and CE
are sequentially performed using the linear MMSE filters.

• Cent. BiGaBP: SotA BiGaBP-based JCDE receiver [37]
with a fully centralized set up; i.e., ηr = 0, providing

2This robust Bussgang minimum mean square error (BMMSE)-based linear
receiver [19], [23], [25], exploits the heteroscedastic covariance matrix that
captures non-uniformity across the received signal vector, which is caused by
different statistical properties of the effective noise at each receiver chain in
equation (15).
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Fig. 5. NMSE performance of CF-mMIMO systems adopting single-antenna APs with respect to SNR (N = {50, 100}).

a reference performance to verify the gain achieved by
distributed antenna placement with APs.

• BMMSE: SotA linear receiver based on BMMSE [23],
[25], where MUD and CE are sequentially per-
formed. Provides a performance reference to two-step
CF-mMIMO estimation schemes, due to the near-optimal
MUD performance for a given CE accuracy level,
achieved due to the large spatial DoF.

• DQ-BiGaBP (Alg. 1): Proposed DQ-aided JCDE receiver
presented in Algorithm 1.

• DQ-BiGaBP (Alg. 2): Proposed DQ-aided JCDE receiver
integrating the local MMSE filters of in Algorithm 2.
Provides a performance reference highlighting the effect
of spatial correlation between the RX antennas at the
CAP.

• Genie-aided JCDE: Idealized scheme in which perfect
knowledge of Xd is provided as prior information at
each iteration of the bilinear Bayesian JCDE step. Pro-
vides an absolute lower bound in terms of the NMSE
performance of CE, since perfect knowledge of Xd

can only be obtained when the JCDE algorithm works
ideally.

The results in Fig. 4 clearly demonstrate the efficacy of the
antenna dispersion strategy of CF-mMIMO systems compared
to centralized architectures, even with coarse quantization at
the APs. It is also confirmed, furthermore, that the proposed
methods, i.e., DQ-BiGaBP (Alg. 1) and DQ-BiGaBP (Alg. 2),
significantly improve over all SotA methods, which suffer
from much higher error floors as a result of their poorer
CE performance in presence of non-orthogonal pilots caused
either by system overloading or quantization errors. In fact,
as shown in Figs. 4a and 4b even in the scenario with N = 50,
the systems running DQ-BiGaBP (Alg. 1) exhibit error floors
due to the lack of spatial DoF. However, it is found that the
latter issue is mitigated by the improved DQ-BiGaBP (Alg. 2)
scheme, owing to the local MMSE filter which suppresses the
harmful effects of strong spatial correlation between antenna
elements mounted on the CAP, at the expense of a small
performance degradation in the low SNR region caused by
noise enhancement when the determinant of the RX covariance
matrix is small.

For the results above, it is fair to infer that a simple but
effective way to remedy the issue of spatial correlation in
CF-mMIMO systems is to boost effective DoF by increasing



4768 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 7, JULY 2023

Fig. 6. BER performances of CF-mMIMO systems adopting single-antenna
APs with respect to ADR ηr .

the numbers of RX antennas and/or the APs. In order to verify
that hypothesis, we study in Figs. 4c and 4d the performance
of CF-mMIMO systems with N = 100. In that case, it is
found that indeed, the lower-complexity DQ-BiGaBP (Alg. 1)
scheme not only already exhibits an error floor-free water-fall
BER curve, approaching that of the ideal Genie-aided JCDE
reference, but also outperforms DQ-BiGaBP (Alg. 2) in the
low SNR region, which is affected by the noise enhancement.
From these results, one can conclude that: a) systems with a
large number of power-saving and low-cost APs running the
low-complexity DQ-BiGaBP (Alg. 1) is generally the setup of
choice; but b) if large-scale systems are not feasible due e.g.
to deployment limitations, then the DQ-BiGaBP (Alg. 2) with
a local MMSE filter can be used to compensate for the lack of
spatial DoF. Similar discussion can be made for other system
configurations except for extremely small or large ηr. The
impact of ηr on system performance, including the extreme
cases where ηr is close to either 0 or 1, will be studied in
Subsection IV-D.

C. MSE Performance

Next, we evaluate the CE performance of the proposed low-
complexity method, DQ-BiGaBP (Alg. 1), in terms of the

NMSE of the channel estimates. In view of Fig. 4, results
for the Cent. MMSE and Cent. BiGaBP methods are omitted
as these SotA alternatives have shown to perform poorly, while
results for DQ-BiGaBP (Alg. 2) are omitted since the Genie-
aided JCDE method has already provided a lower-bounding
reference. With that clarified, the NMSE performances of the
remaining three algorithms with the same settings as in Fig. 4
are compared in Fig. 5. To gain deeper insight, the NMSE
performance of the estimated channels between APs and UEs,
“(APs-UEs),” and between CAPs and UEs, “(CAP-UEs),”
were evaluated separately and plotted for each of the methods
considered.

As expected, the performances of “(APs-UEs)” are found to
be much worse than those of “(CAP-UEs)” owing to the coarse
quantization at the APs. In particular, in the high SNR regime,
error floors due to uncertainty caused by quantization noise are
unavoidable, and their levels can only be reduced by increasing
the number of quantization bits. In contrast, the proposed
JCDE mechanism improves SNR, achieving lower NMSEs
by exploiting the quasi-orthogonality of the data structure,3

thus significantly outperforming the BMMSE-based scheme
and approaching the Genie-aided JCDE method.

In particular, it is found that the gain in SNR achieved by the
proposed method increases with the number b of quantization
bits, reaching approximately 10 dB for NMSE = 10−2 in
the case of “(CAP-UEs)”, i.e., b → ∞. In addition, since in
the Genie-aided JCDE scheme CE is performed under perfect
knowledge of the TX symbols X � [Xp,Xd], the asymptotic
proximity of the proposed method to that reference indicates
that no performance improvement over the proposed DQ-
BiGaBP scheme is to be expected from an increase of the pilot
sequence length beyond Kp = 14 (≤ K = 140). In addition,
the importance of having a sufficient number of antennas at
the CAP is evidenced by the large gap in the performance of
“(APs-UEs).”

D. Insights on Optimal Configuration of CF-mMIMO
Systems

To gain insight on the optimal setup of CF-mMIMO systems
in terms of antenna allocation among the CAP and APs,
we compare in Fig. 6 the BER performances of systems with
a total number of RX antennas set to N ∈ {50, 100}, a TX
power of 20 [dBm], and different numbers of quantization bits
b ∈ {1, 2, 3}, as a function of the ADR ηr, which indicates
a more centralized (cellular-like) system for ηr → 0, or a
more distributed system for larger ηr, respectively. Again, and
as expected, the performance of the proposed DQ-BiGaBP
method is found to with growing ηr and N , approaching the
Genie-aided performance as ηr and N increases, due to the
reduction of correlation between RX antennas and increase of
the DoF that follows from larger b and N .

3In this article, the data symbols are generated with an i.i.d. process and
transmitted at discrete time slots, implying that the transmitted sequence
tends to be orthogonal when Kd is large from a statistical perspective.
Mathematically speaking, the mutual coherence between randomly generated
data sequences with sufficiently large Kd becomes asymptotically close to
zero, i.e., 1

Kd
XdXH

d ≈ IM ; this is referred to as “quasi-orthogonality of
the data structure.”
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Fig. 7. BER performance of CF-mMIMO systems adopting multiple-antenna
APs with respect to SNR (N = 100).

In turn, the performance of all methods, including the ideal
Genie-aided, degrades with decreasing b, which emphasizes
the crucial role of the double-precision observations at the
CAP in mitigating the distortion of the severe information
compression carried out at the low-cost APs, in enabling
effective information recovery via JCDE. This is also indicated
by the poor NMSE performance of “(APs-UEs)” shown in
Fig. 5. In other words, it is found that the CF-mMIMO
systems should not have all the antennas distributed, and
that incorporating both sufficient spatial DoF obtained by
the distributed APs, and resolution compensation by double-
precision observations at the CAP, is what enables the scaling
CF-mMIMO systems, by allowing both low-complexity and
high-accuracy estimation performance to be achieved simulta-
neously.

E. Multiple-Antenna APs

Finally, we study the effect of increasing the number of
antennas at APs. In particular, we compare in Fig. 7 the
BER performances of CF-mMIMO systems adopting multiple-
antenna APs against those of systems with single-antenna
APs having the same (or approximately the same) ADR.

Quite counter-intuitively, it is found that the systems with
single-antenna APs outperform those with four-antenna
(Fig. 7a) and five-antenna (Fig. 7b) APs, respectively. These
results can be understood based on those of the preceding
Figs. 4 and 5, which indicate that the spatial correlation that
occurs at each multiple-antenna AP contributes to reducing
effective spatial DoF that causes the observed BER deteriora-
tion compared to single-antenna AP systems.

It is also found that the BMMSE-based method suffers from
higher error floors in the multiple-antenna case, which can be
credited to noise enhancements induced by the required inver-
sion of ill-conditioned (i.e., nearly underdetermined) channel
matrices, due to spatial correlation among fading coefficients.
In contrast, the proposed method approaches the Genie-aided
JCDE performance and achieves BER = 10−5, because it
exploits the spatial fading independence between the APs in
the iterative process to enhance the reliability of the soft IC,
thereby enabling the transformation of the problem into an
overdetermined condition by digging out the hidden DoF
(which is the very aim of the JCDE mechanism). All in all,
this result suggests that the Bayesian JCDE receiver is robust
to changes in the configuration of the CF-mMIMO system,
which is always assumed to enjoy macro-diversity.

V. CONCLUSION

We proposed a novel JCDE receiver based on Bayesian
bilinear inference for uplink scalable CF-mMIMO systems
adopting power-saving and low-cost APs with low-resolution
ADCs. To consider the CE and MUD at a CAP, first,
the effective RX signal model observed at the CAP in the
form of tractable spatial-temporal linear representation was
reformulated using a linearization based on the Bussgang’s
theorem. Based on the above signal model, a novel MPDQ
algorithm was then proposed considering the BiGaBP frame-
work under consistent assumptions and approximation accu-
racy. The proposed algorithm possesses linear computational
complexity with respect to the number of RX antennas, the
number of UEs, and the frame length of transmitted signal,
respectively. Finally, computer simulations were conducted to
demonstrate the validity of our proposed method in terms of
BER and NMSE performances in various CF-mMIMO system
configurations. The results revealed the effectiveness of the
CF-mMIMO system over the conventional centralized system.
Furthermore, comparative study with the SotA alternatives and
the case studies covering various scenarios provided an insight
into the optimal system design and the robustness to changes
in the system configuration.

APPENDIX A
DERIVATION OF EQUATION (23)

Straightforwardly, using Bayes’ rule and the product rule,
equation (23) can be rewritten as

p
y
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nk |E ĥ,̂x
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(θ)
nk
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with the proportionality constant given by
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APPENDIX B
DERIVATION OF THE VN PROCESS IN ALGORITHM 2

Under high-precision SGA and VGA, the beliefs corre-
sponding to xmk are combined over the RX indices, which
results in the PDF of an extrinsic belief lxmk given xmk. This
is expressed as

plxmk|xmk (lxmk|xmk)
= pỹm,k(0)|xmk

(
ỹm,k(0)|xmk

)
×

∏
n∈NAP

pr̃m,nk|xmk (r̃m,nk|xmk)

∝ exp
[
−
∣∣xmk−xmk∣∣2

ψ
x
mk

]
∝ CN

(
xmk, ψ

x

mk

)
, (40a)

plx
n,mk

|xmk
(
lxn,mk|xmk

)
= pỹm,k(0)|xmk

(
ỹm,k(0)|xmk

)
×

∏
i∈NAP\{n}

pr̃m,ik|xmk (r̃m,ik|xmk)
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[
−
∣∣xn,mk−xmk∣∣2

ψ
x
n,mk

]
∝ CN

(
xn,mk, ψ

x

n,mk

)
, n ∈ NAP. (40b)

with

xmk =
Bmkamk +Amkbmk

Amk +Bmk
, (41a)

ψ
x

mk =
AmkBmk

Amk +Bmk
, (41b)

xn,mk =
Cn,mkamk +Amkcn,mk

Amk + Cn,mk
, (41c)

ψ
x

n,mk =
AmkCn,mk

Amk + Cn,mk
, n ∈ NAP, (41d)

where

amk = Amk
ĥk,m(0)HΩ−1

k ỹm,k(0)

1 − λmkψ̂x
mk

, (42a)

Amk =
1 − λmkψ̂

x
mk

λmk
, (42b)

bmk = Bmk
∑

n∈NAP

gnĥ
∗
k,nmr̃m,nk
νx
m,nk

, (42c)

Bmk =
( ∑
n∈NAP

g2n

∣∣ĥk,nm∣∣2
νx
m,nk

)−1

, (42d)

cn,mk = Cn,mk
∑

i∈NAP\{n}

giĥ
∗
k,imr̃m,ik
νx
m,ik

, (42e)

Cn,mk =
( ∑
i∈NAP\{n}

g2i

∣∣ĥk,im∣∣2
νx
m,ik

)−1

, (42f)

with λmk = ĥk,m(0)HΩ−1
k ĥk,m(0), and where equation (42b)

is derived by applying the matrix inversion lemma to eliminate
the dependency of Ωm,k in equation (37) to the indexm ∈ M,
enabling us to share the same inverse matrix Ω−1

k for ∀m [54].

REFERENCES

[1] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[2] E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO
competitive with MMSE processing and centralized implementation,”
IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, Jan. 2020.

[3] A. Papazafeiropoulos, P. Kourtessis, M. D. Renzo, S. Chatzinotas,
and J. M. Senior, “Performance analysis of cell-free massive MIMO
systems: A stochastic geometry approach,” IEEE Trans. Veh. Technol.,
vol. 69, no. 4, pp. 3523–3537, Apr. 2020.

[4] S. Buzzi and C. D’Andrea, “Cell-free massive MIMO: User-centric
approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,
Dec. 2017.

[5] E. Bjornson and L. Sanguinetti, “Scalable cell-free massive MIMO sys-
tems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.

[6] A. K. Papazafeiropoulos, E. Bjornson, P. Kourtessis, S. Chatzinotas, and
J. M. Senior, “Scalable cell-free massive MIMO systems with hardware
impairments,” in Proc. IEEE 31st Annu. Int. Symp. Pers., Indoor Mobile
Radio Commun., Aug. 2020, pp. 1–7.

[7] D. Wang, J. Wang, X. You, Y. Wang, M. Chen, and X. Hou, “Spectral
efficiency of distributed MIMO systems,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 10, pp. 2112–2127, Oct. 2013.

[8] A. Yang, Y. Jing, C. Xing, Z. Fei, and J. Kuang, “Performance analysis
and location optimization for massive MIMO systems with circularly
distributed antennas,” IEEE Trans. Wireless Commun., vol. 14, no. 10,
pp. 5659–5671, Oct. 2015.

[9] E. Bjornson, N. Jalden, M. Bengtsson, and B. Ottersten, “Optimality
properties, distributed strategies, and measurement-based evaluation
of coordinated multicell OFDMA transmission,” IEEE Trans. Signal
Process., vol. 59, no. 12, pp. 6086–6101, Dec. 2011.

[10] M. Bashar et al., “Exploiting deep learning in limited-fronthaul cell-free
massive MIMO uplink,” IEEE J. Sel. Areas Commun., vol. 38, no. 8,
pp. 1678–1697, Aug. 2020.

[11] X. Hu, C. Zhong, X. Chen, W. Xu, H. Lin, and Z. Zhang, “Cell-
free massive MIMO systems with low resolution ADCs,” IEEE Trans.
Commun., vol. 67, no. 10, pp. 6844–6857, Oct. 2019.

[12] X. Ma, X. Lei, P. T. Mathiopoulos, K. Yu, and X. Tang, “Scalable cell-
free massive MIMO systems with finite resolution ADCs/DACs over
spatially correlated Rician fading channels,” 2021, arXiv:2109.07061.

[13] M. Bashar et al., “Uplink spectral and energy efficiency of cell-
free massive MIMO with optimal uniform quantization,” IEEE Trans.
Commun., vol. 69, no. 1, pp. 223–245, Jan. 2021.

[14] H. Masoumi and M. J. Emadi, “Performance analysis of cell-free mas-
sive MIMO system with limited fronthaul capacity and hardware impair-
ments,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1038–1053,
Feb. 2019.

[15] G. Femenias and F. Riera-Palou, “Fronthaul-constrained cell-free
massive MIMO with low resolution ADCs,” IEEE Access, vol. 8,
pp. 116195–116215, 2020.

[16] B. Nazer, V. R. Cadambe, V. Ntranos, and G. Caire, “Expanding the
compute-and-forward framework: Unequal powers, signal levels, and
multiple linear combinations,” IEEE Trans. Inf. Theory, vol. 62, no. 9,
pp. 4879–4909, Sep. 2016.

[17] Q. Huang and A. Burr, “Compute-and-forward in cell-free massive
MIMO: Great performance with low backhaul load,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), May 2017, pp. 601–606.



TAKAHASHI et al.: BAYESIAN RECEIVER DESIGN via BILINEAR INFERENCE FOR CF-mMIMO WITH LOW-RESOLUTION ADCs 4771

[18] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[19] K. Ando, H. Iimori, T. Takahashi, K. Ishibashi, and G. T. F. De Abreu,
“Uplink signal detection for scalable cell-free massive MIMO sys-
tems with robustness to rate-limited fronthaul,” IEEE Access, vol. 9,
pp. 102770–102782, 2021.

[20] Y.-S. Jeon, N. Lee, S.-N. Hong, and R. W. Heath, Jr., “One-bit sphere
decoding for uplink massive MIMO systems with one-bit ADCs,” IEEE
Trans. Wireless Commun., vol. 17, no. 7, pp. 4509–4521, Jul. 2018.

[21] J. Choi, J. Mo, and R. W. Heath, Jr., “Near maximum-likelihood detector
and channel estimator for uplink multiuser massive MIMO systems with
one-bit ADCs,” IEEE Trans. Commun., vol. 64, no. 5, pp. 2005–2018,
Mar. 2016.

[22] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted
Gaussian signals,” Research Laboratory of Electronics, Cambridge, MA,
USA, Tech. Rep., 216, 1952.

[23] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst,
and L. Liu, “Channel estimation and performance analysis of one-bit
massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 15,
pp. 4075–4089, Apr. 2017.

[24] J. Mo and R. W. Heath, Jr., “Capacity analysis of one-bit quantized
MIMO systems with transmitter channel state information,” IEEE Trans.
Signal Process., vol. 63, no. 20, pp. 5498–5512, Oct. 2015.

[25] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“Throughput analysis of massive MIMO uplink with low-resolution
ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 4038–4051,
Jun. 2017.

[26] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO with 1-bit
ADC,” 2014, arXiv:1404.7736.

[27] C. K. Wen, C. J. Wang, S. Jin, K. K. Wong, and P. Ting, “Bayes-optimal
joint channel-and-data estimation for massive MIMO with low-precision
ADCs,” IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2541–2556,
May 2016.

[28] Z. Zhang, X. Cai, C. Li, C. Zhong, and H. Dai, “One-bit quantized
massive MIMO detection based on variational approximate message
passing,” IEEE Trans. Signal Process., vol. 66, no. 9, pp. 2358–2373,
May 2018.

[29] I. Atzeni and A. Tolli, “Channel estimation and data detection analysis
of massive MIMO with 1-bit ADCs,” IEEE Trans. Wireless Commun.,
vol. 21, no. 6, pp. 3850–3867, Jun. 2022.

[30] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized approxi-
mate message passing—Part I: Derivation,” IEEE Trans. Signal Process.,
vol. 62, no. 22, pp. 5839–5853, Nov. 2014.

[31] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2011, pp. 2168–2172.

[32] U. S. Kamilov, V. K. Goyal, and S. Rangan, “Message-passing de-
quantization with applications to compressed sensing,” IEEE Trans.
Signal Process., vol. 60, no. 12, pp. 6270–6281, Dec. 2012.

[33] T. C. Zhang, C. K. Wen, S. Jin, and T. Jiang, “Mixed-ADC massive
MIMO detectors: Performance analysis and design optimization,” IEEE
Trans. Wireless Commun., vol. 15, no. 11, pp. 7738–7752, Sep. 2016.

[34] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18914–18919, 2009.

[35] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.

[36] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova, “Adaptive
damping and mean removal for the generalized approximate message
passing algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Brisbane, QLD, Australia, Apr. 2015, pp. 1–6.

[37] K. Ito, T. Takahashi, S. Ibi, and S. Sampei, “Bilinear Gaussian belief
propagation for large MIMO channel and data estimation,” in Proc. IEEE
GLOBECOM, Taipei, Taiwan, Dec. 2020, pp. 1–6.

[38] Y. Kabashima, “A CDMA multiuser detection algorithm on the basis
of belief propagation,” J. Phys. A, Math. General, vol. 36, no. 43,
pp. 11111–11121, 2003.

[39] H. Iimori, T. Takahashi, K. Ishibashi, G. T. F. de Abreu, and W. Yu,
“Grant-free access via bilinear inference for cell-free MIMO with low-
coherence pilots,” IEEE Trans. Wireless Commun., vol. 20, no. 11,
pp. 7694–7710, Nov. 2021.

[40] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message
passing,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 6664–6684,
Oct. 2019.

[41] X. Meng and J. Zhu, “Bilinear adaptive generalized vector approximate
message passing,” IEEE Access, vol. 7, pp. 4807–4815, 2019.

[42] S. Sarkar, A. K. Fletcher, S. Rangan, and P. Schniter, “Bilinear recovery
using adaptive vector-AMP,” IEEE Trans. Signal Process., vol. 67,
no. 13, pp. 3383–3396, Jul. 2019.

[43] M. Akrout, A. Housseini, F. Bellili, and A. Mezghani, “Bilinear gener-
alized vector approximate message passing,” 2020, arXiv:2009.06854.

[44] K. Takeuchi, “Rigorous dynamics of expectation-propagation-based sig-
nal recovery from unitarily invariant measurements,” IEEE Trans. Inf.
Theory, vol. 66, no. 1, pp. 368–386, Jan. 2020.

[45] Further Advancements for E-UTRA Physical Layer Aspects (Release 9),
document TS 36.814, 3GPP, Mar. 2017.

[46] H. Bolcskei, M. Borgmann, and A. J. Paulraj, “Impact of the propagation
environment on the performance of space-frequency coded MIMO-
OFDM,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 427–439,
Apr. 2003.

[47] J. Max, “Quantizing for minimum distortion,” IRE Trans. Inf. Theory,
vol. 6, no. 1, pp. 7–12, Mar. 1960.

[48] N. L. Johnson and S. Kotz, Continuous Univariate Distributions, vol. 1.
Hoboken, NJ, USA: Wiley, 1970.

[49] T. Takahashi, S. Ibi, and S. Sampei, “Design of adaptively scaled belief
in multi-dimensional signal detection for higher-order modulation,”
IEEE Trans. Commun., vol. 67, no. 3, pp. 1986–2001, Mar. 2019.

[50] A. Chockalingam and B. S. Rajan, Large MIMO Systems. Cambridge,
U.K.: Cambridge Univ. Press, 2014.

[51] NR; User Equipment (UE) Radio Transmission and Reception, 3GPP,
document TS 38.101–1, Sep. 2018.

[52] Guidelines for Evaluation of Radio Interface Technologies for IMT-
Advanced, document ITU-R M.2135-1, M Series Mobile, Radiodeter-
mination, Amateur and Related Satellites Services Report, 2009.

[53] R.-A. Stoica, H. Iimori, and G. T. F. de Abreu, “Multiuser detection for
large massively concurrent NOMA systems via fractional programming,”
in Proc. CAMSAP, Guadeloupe, France West Indies, 2019, pp. 1–5.

[54] L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee, and S. X. Ng, Turbo
Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided
Near-Capacity Designs for Wireless Channels. Hoboken, NJ, USA:
Wiley, Mar. 2011.

Takumi Takahashi (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in communica-
tion engineering from Osaka University, Osaka,
Japan, in 2016, 2017, and 2019, respectively.
From 2018 to 2019, he was a Visiting Researcher at
the Centre for Wireless Communications, University
of Oulu, Finland. In 2019, he joined the Graduate
School of Engineering, Osaka University, as an
Assistant Professor. His current research interests
include belief propagation, compressed sensing, sig-
nal processing, and wireless communications.

Hiroki Iimori (Member, IEEE) received the B.Eng.
and M.Eng. degrees (Hons.) in electrical and elec-
tronic engineering from Ritsumeikan University,
Kyoto, Japan, in 2017 and 2019, respectively, and
the Ph.D. degree (Hons.) in electrical engineering
from Jacobs University Bremen, Germany, in 2022.
He was a Visiting Scholar at the University of
Toronto, Canada, in 2020. In 2021, he was a
Research Intern with the Ericsson Radio S&R
Research Laboratory, Yokohama, Japan. Since 2022,
he has been with Ericsson Research. His research

interests include optimization theory, wireless communications, and signal
processing. He was awarded the YKK Doctoral Fellowship by Yoshida
Scholarship Foundation and the IEICE Young Researcher of the Year Award
by the IEICE Smart Radio Committee in 2020.



4772 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 7, JULY 2023

Kengo Ando (Graduate Student Member, IEEE)
received the B.E. and M.E. degrees in engineering
from The University of Electro-Communications,
Tokyo, Japan, in 2020 and 2022, respectively. He is
currently pursuing the Ph.D. degree in electrical
and computer engineering with Jacobs University
Bremen, Germany. His current research interests
are wireless communications and signal processing.
He was a recipient of the YKK Graduate Fellowship
for master’s students from the Yoshida Scholarship
Foundation, Japan, from 2020 to 2022, and the

Fellowship for overseas study in 2022 from the KDDI Foundation, Japan.

Koji Ishibashi (Senior Member, IEEE) received the
B.E. and M.E. degrees in engineering from The Uni-
versity of Electro-Communications, Tokyo, Japan, in
2002 and 2004, respectively, and the Ph.D. degree
in engineering from Yokohama National University,
Yokohama, Japan, in 2007. From 2007 to 2012,
he was an Assistant Professor with the Depart-
ment of Electrical and Electronic Engineering,
Shizuoka University, Hamamatsu, Japan. Since April
2012, he has been with the Advanced Wireless
and Communication Research Center, The Uni-

versity of Electro-Communications, where he is currently a Professor.
From 2010 to 2012, he was a Visiting Scholar with the School of Engineering
and Applied Sciences, Harvard University, Cambridge, MA, USA. His current
research interests are grant-free access, cell-free architecture, millimeter-wave
communications, energy harvesting communications, wireless power transfer,
channel codes, signal processing, and information theory.

Shinsuke Ibi (Member, IEEE) received the B.E.
degree in advanced engineering from the Suzuka
College of Technology, Japan, in 2002, and the M.E.
and Ph.D. degrees in communication engineering
from Osaka University, Japan, in 2004 and 2006,
respectively. From 2005 to 2006, he was a Vis-
iting Researcher at the Centre for Wireless Com-
munications, University of Oulu, Finland. In 2006,
he joined the Graduate School of Engineering, Osaka
University. From 2010 to 2011, he was a Visiting
Researcher at the University of Southampton, U.K.

He moved to Doshisha University in 2019. He is currently a Professor with
the Faculty of Science and Engineering. His research interests include EXIT-
based coding theory, iterative detection, digital signal processing, cognitive
radio, and communication theory. He received the 64th and 71st best paper
awards from IEICE and the 24th Telecom System Technology Award from
the Telecommunication Advancement Foundation.

Giuseppe Thadeu Freitas de Abreu (Senior Mem-
ber, IEEE) received the B.Eng. degree in electrical
engineering and the Latu Sensu degree in telecom-
munications engineering from the Universidade Fed-
eral da Bahia (UFBa), Salvador, Bahia, Brazil, in
1996 and 1997, respectively, and the M.Eng. and
D.Eng. degrees in physics, electrical and computer
engineering from Yokohama National University,
Japan, in March 2001 and March 2004, respec-
tively. He was a Post-Doctoral Fellow and later an
Adjunct Professor (a Docent) in statistical signal

processing and communications theory at the Department of Electrical and
Information Engineering, University of Oulu, Finland, from 2004 to 2006 and
from 2006 to 2011, respectively. Since 2011, he has been a Professor in
electrical engineering at Jacobs University Bremen, Germany. From April
2015 to August 2018, he was a Full Professor at the Department of Computer
and Electrical Engineering, Ritsumeikan University, Japan. His research inter-
ests include communications and signal processing, including communications
theory, estimation theory, statistical modeling, wireless localization, cognitive
radio, wireless security, MIMO systems, ultrawideband and millimeter wave
communications, full-duplex and cognitive radio, compressive sensing, energy
harvesting networks, random networks, connected vehicles networks, and
joint communications and sensing. He was a recipient of the Uenohara
Award by Tokyo University in 2000 for his master’s thesis work. He was
a co-recipient of best paper awards at several international conferences and
was awarded the JSPS, Heiwa Nakajima, and NICT Fellowships (twice)
in 2010, 2013, 2015, and 2018, respectively. He served as an Associate
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

from 2009 to 2014 and the IEEE TRANSACTIONS ON COMMUNICATIONS

from 2014 to 2017, and as an Executive Editor for the IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS from 2018 to 2021.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


