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Abstract— Networks of Unmanned Aerial Vehicles (UAVs) are
emerging in many application domains, e.g., military surveillance.
To perform collaborative tasks, the involved UAVs exchange
several types of information, e.g., sensor data and commands.
The major question here is how to schedule the tasks under
dynamic traffic flows to provide network services. Existing
solutions use the Round-Robin Strategy (RRS), where the tasks
are scheduled statistically by dividing the time into fixed-length
rounds. However, the RRS wastes significant network and device
resources due to task scheduling in each round. This paper
proposes DROVE – a novel clustering approach that allows
the UAVs for dynamic task scheduling. However, determining
the task scheduling is crucial, as it significantly affects several
network parameters, e.g., throughput. Therefore, we devise the
problem of distributed task scheduling under dynamic traffic
flow scenarios to optimize the throughput. We propose a clus-
tering task scheduling algorithm to serve dynamic traffic flows.
Particularly, we integrate the dynamic traffic flows into the Lya-
punov drift analysis framework, and determine the throughput
optimality of our proposed scheduling algorithm. We perform
extensive simulations to validate the effectiveness of DROVE.
The results show that DROVE outperforms the state-of-the-art
solutions in terms of energy consumption, clustering overhead,
throughput, end-to-end delay, flow success rate and packet drop
rate.

Index Terms— Clustering, data traffic-level dynamics, energy-
efficiency, scheduling design, UAV networks.

I. INTRODUCTION

IN RECENT years, the wireless transmission of video
data captured by Unmanned Aerial Vehicles (UAVs) has

started to receive attention in various cyber-physical systems,
including surveillance, public safety, and traffic monitoring [1].
In a typical UAV network, a flying UAV, also known as drone,
equipped with a camera captures high-quality images and
videos in real-time from the sky for users located at the Ground
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Station (GS). At present, a flying UAV equipped with a camera
is commercially available. For example, DJI Phantom 4 UAV
can rise at 6 m/s, fly at 72 km/h, swerve at 250◦/s and deliver
2K real-time images and videos [2]. The main advantage
of a UAV network is that the deployment of UAVs can be
agile and re-configurable due to flexible mobility and the
ability to perform tasks autonomously and collaboratively [3].
As a matter of fact, in the UAV network, the involved UAVs
cooperate with each other and manage their actions through
the exchange of information, e.g., status information, sensor
data, and commands.

Recently, efficient placement of UAVs has attracted signif-
icant research attention to address challenges like the optimal
deployment considering energy efficiency [4], [5], deploy-
ment [2], [6], and throughput maximization [7], [8]. Besides,
the UAV path planning considering different communication
and network constraints is rigorously examined in [9] and
[10]. Further, recent research has shown the feasibility of
UAV-based small cells [11]. To enhance the network lifes-
pan or even provide consistent service during critical mis-
sions, battery charging approaches have been designed. These
approaches include charging of battery at night through a high
energy laser beam [12] or wireless power transfer [13] and
equipping the UAVs with solar panels [14]. However, to the
best of our knowledge, none of the existing works focus on
the design of distributed task scheduling techniques for the
UAVs in response to the dynamics of real-time tracking appli-
cations, where objects dynamically arrive and move around the
network. To this end, in this work, we focus on an important
problem of efficiently scheduling the data traffic of the UAVs
to track moving objects in real-time across many geographical
areas.

Despite the widespread applications of the UAVs, schedul-
ing data traffic under dynamic scenarios tender many new
challenges. Specifically, the lifespan and performance of the
UAV networks are primarily limited by the on-board energy,
which is limited due to the UAV’s size and weight constraints.
Therefore, energy-efficient task scheduling for maximizing the
information bits per unit energy consumption of the UAV is of
utmost importance. Recently, task scheduling under dynamic
application scenarios in the UAV networks has received con-
siderable attention, as it is significantly different from the
terrestrial networks [15]. In [16], Kong et al. revealed that
the traditional queue-length based MaxWeight task scheduling
has failed to deliver optimal throughput. Subsequently, many
novel scheduling techniques have been designed recently in the
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context of routing protocols by leveraging link duration [17],
adaptive Q-Learning [18] or independent of routing by leverag-
ing ant colony optimization [19], meta learning [20]. However,
none of these works have considered the dynamic traffic
flows while designing their scheduling techniques. Besides,
several throughput optimal scheduling techniques have been
proposed under dynamic traffic scenarios by leveraging game
theory [21] and reinforcement learning [22]. Moreover, in most
of these works, Round-Robin Strategy (RRS) has been pro-
posed for task scheduling, where a schedule at the beginning
of communication is constructed by dividing the time into
fixed-length rounds. By rotating the lead role responsibility
among the UAVs, the RRS balances the energy consumption
in the UAV networks. However, the cost of message exchanges
during the lead role assignment creates a significant over-
head. The policy closest to our work is the distributed task
scheduling policy designed in [23] that addressed the lifespan
enhancement issue for Wireless Sensor Networks (WSNs).
But this work does not fulfill the essential performance of
the UAV networks, e.g., real-time capturing of various KPIs
like throughput, end-to-end delay. This is because irregular
network connectivity due to high movement is more prevalent
in UAV networks than WSNs.

A. Contributions

This paper aims to design a scalable, distributed and
energy-efficient clustering algorithm based on the Dynamic
Super Round Policy (DSRP). Our proposed algorithm achieves
fine-grain task scheduling in the UAV networks. Particularly,
in DSRP, the task scheduling is only accomplished prior to
the initiation of each dynamic super round instead of in each
round. We define a super round as a sufficiently long time span,
within which there are several rounds. Our main objective
of introducing the super round concept is to avoid frequent
rotation of the lead role and conserve the scarcest resources
as much as possible so that the lifespan of the UAV network
is enhanced.

The major contributions of this paper are as follows:

• We first propose a Dynamic supeR rOund uaV clustEring
(DROVE) algorithm, where the DSRP schedules data
traffic according to dynamic traffic flows. This reduces
the unnecessary role updates among the UAVs and hence
computation and message overheads.

• We then devise a problem of distributed clustering task
scheduling in the presence of dynamic traffic flows.

• We propose an optimal clustering task scheduling algo-
rithm to serve dynamic traffic flows. We integrate
dynamic traffic flows into the Lyapunov drift analysis
framework, and determine the throughput optimality. Our
proposed scheduling algorithm not only achieves maxi-
mum throughput, but also minimizes the average system
traffic load under heavy traffic scenarios.

• We performed extensive simulations and show that
DROVE achieves higher energy efficiency, network
throughput, flow success rate than the three benchmarks.
Moreover, DSRP-based task scheduling in the UAV net-
works offers greater efficiency in energy savings, and

reduced end-to-end delay, packet drop rate compared to
the state-of-the-art realizations.

B. Organizations

The rest of this paper is organized as follows. Section II
discusses the related works. In Section III, we present the
system model considered for the present work. In Section IV,
we present DROVE and a clustering task scheduling algorithm.
In Section V, we provide an analysis of the proposed cluster-
ing technique. Section VI presents the experimental results to
confirm our analytical observations. Finally, we conclude our
paper and discuss future work in Section VII.

II. RELATED WORK

Nowadays, the UAV networks have attracted significant
interest in improving network performance. We present here
some works that are more relevant to our context.

A. Task Scheduling

To enhance network performance, task scheduling has been
considered as a critical factor. For example, Hong et al. [17]
first investigated the relationship between the UAV coordi-
nation control and the network topology for task schedul-
ing. The authors then proposed a routing mechanism by
leveraging the link duration. In [18], the authors proposed
a routing strategy based on adaptive Q-learning. Adaptive
Q-learning allows UAVs to take distributed, autonomous and
adaptive routing decisions. In [19], the authors formulated an
optimization problem for task scheduling by considering the
energy budget and cache capacity of UAVs. They solved the
optimization problem using ant colony optimization algorithm.
Mou et al. [20] proposed a graph convolutional neural net-
work for real-time task scheduling under limited communica-
tion connectivity in a UAV network. They further designed
a meta learning scheme to reduce the time complexity of
real-time executions. Recently, Tang et al. [24] designed a
reinforcement learning based task scheduling approach under
the node mobility, dynamic network traffic and link state
settings. To decide the scheduling strategy, the authors used a
double Q-learning algorithm with an improved delay-sensitive
replay memory algorithm. To minimize task scheduling and
computing delay, Zhou et al. [25] proposed a risk-sensitive
reinforcement learning based Delay Orientated dynamic Task
Scheduling (DOTS). They formulate the dynamic scheduling
problem as energy-constrained Markov decision process.

B. Spectrum Sharing

Many spectrum sharing approaches have been proposed
for UAV network. For example, Chen et al. [21] examined
the interference-aware online spectrum access problem for
multi-cluster flying ad-hoc network. They formulate the prob-
lem as data assisted multistage channel access game with the
objective of mitigating the interference of all UAV clusters
and reducing the channel switching cost during each slot.
In [26], the authors proposed a Time Division Multiple Access
(TDMA) based spectrum sharing model to improve the energy
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efficiency. They jointly optimized several parameters, includ-
ing the UAV hovering time and wireless powering duration,
to minimize the energy consumption. Zhong et al. [22] pre-
sented a UAV aided self-organized device-to-device network
model. They formulated the problem of joint optimization of
relay deployment, channel allocation and relay assignment,
with the objective to maximize the total capacity of the relay
network. Kong et al. [16] formulated a spectrum scheduling
problem to maximize the system throughput in the presence
of dynamic traffic. To solve this problem, they proposed a
model that considers a MaxWeight-type scheduling algorithm,
where sharp flow-level dynamics are also taken into account
that efficiently redirects the UAVs over a wide range of places.
Duan et al. [27] addressed a scheduling problem to improve
network capacity under dynamic traffic. They used fuzzy
mapping among UAVs to reduce the complexity of scheduling.
Hanyu et al. [28] designed an adaptive channel sharing tech-
nique to mitigate data loss caused by the buffer overflow. In the
proposed technique, a suitable channel is selected based on the
signal-to-noise ratio and data transfer rate. Although most of
these proposed schemes achieve maximum throughput, they
are unable to avoid unnecessary rescheduling problems. Due
to unnecessary rescheduling, the UAVs are bound to consume
significant energy, resulting in shortening of their lifespan.

C. Clustering Technique

Several clustering approaches have been proposed for UAV
networks to improve network performance. Recently, Arafat
and Moh [29] proposed a swarm-intelligence based clustering
scheme for emergency communications in the UAV networks.
Specifically, the authors used a particle swarm optimization
fitness function to select a cluster head, where the inputs
of the fitness function are inter-UAV distance and residual
energy. In [30], the authors proposed a RRS-based clustering
scheme, where the cluster head is elected based on the residual
energy of the UAVs. Whereas, cluster formation is based
on connectivity with the ground control station along with
the luciferin value. Brust et al. [31] proposed a virtual force
based clustering algorithm for 3D positioning of the UAVs.
Particularly, the authors used a localized virtual force approach
to communicate among the UAVs and to form the topology
in UAV networks. All these works consider RRS to rotate
the cluster head. Although RRS achieves energy efficiency,
it overloads the system. Besides, RRS is only suitable for the
continuous data delivery model, and is incompatible with other
data delivery models, e.g., query- and event-driven. Hence,
there is a need for more flexible task scheduling, which avoids
unnecessary rescheduling and employs a dynamic scheduling.

D. Difference From Existing Works

Our work differs from the existing works in several ways.
First, we design a UAV clustering algorithm DROVE, where
the DSRP schedules data traffic according to dynamic traf-
fic flows. Unlike existing works, DROVE features message
and processing time complexity of O(1) per UAV. Second,
we design an optimal clustering task scheduling algorithm to
cater dynamic traffic flow in the UAV network domain. More

interestingly, by integrating dynamic traffic flows into the
Lyapunov drift analysis framework, DROVE not only achieves
maximum throughput, but also minimizes the average system
traffic load under heavy traffic scenarios. Last but not the least,
we are the first to consider the ray-tracing channel model
while designing a dynamic traffic flow aware UAV clustering
algorithm.

III. SYSTEM MODEL AND DSRP BACKGROUND

In this section, we describe the models used in this
work. Particularly, Section III-A presents the network model.
We present the background information about the DSRP in
Section III-B. Section III-C discusses the channel model.
We then introduce the energy model in Section III-D.
Section III-E presents the intruder mobility model. Finally,
we introduce the use-case scenario to illustrate our concept
and outline the problem in Section III-F.

A. Network Model

We assume collaborative autonomous systems, i.e., net-
works of connected UAVs or the multi-UAV network [19],
[32], which interact with each other via wireless communi-
cation to execute one or more tasks. Generally, no central
entity is required to coordinate the actions of the individual
UAVs in this type of network. Nevertheless, a central entity,
e.g., GS might be used for data collection, processing and
maintenance. For exposition purpose, we consider M homo-
geneous fixed-wing UAVs flying horizontally at a constant
altitude H [24], [25] to monitor and collect data across N
(M > N ) different regions/clusters in the Area of Interest
(AoI), and GS is located at the position xG = (0, 0, 0) of
a 3D Cartesian coordinate system. The UAVs in a particular
cluster are denoted as K = {K1, . . ., Kn}, where Kn is the
set of UAVs located in the n-th cluster, n ∈ N = {1, . . . , N}.
Therefore, we can say: Kn ∩ Kn′ = φ, where n �= n� and
n ∈ N, while Kn = |Kn| represents the number of UAVs
in the n-th cluster. Additionally, we consider the position of
a particular UAV as xD = (x̄D, H), where x̄D ∈ R2 and H
are larger than the maximum height of the obstacle. However,
during experimental evaluation, we relax the constant H by
implementing dynamic H .

We assume that the UAVs follow a mobility model [24],
in which the UAVs fly with a constant speed and randomly
redirect themselves within a certain angle. Since the continu-
ous flying and frequent redirection behavior are significantly
energy consuming, we also assume that the UAV redirection
decisions are taken collaboratively and regularly at predefined
fixed time intervals, called rounds. Furthermore, we assume
that each round begins with a setup phase, which assigns the
roles, e.g., Cluster Head (CH) and Cluster Member (CM),
followed by a steady phase, which captures the video/imagery
data and transmits them to GS. We divided each steady phase
into frames and further each frame is divided into time slots of
duration T , as shown in Figure 1. We consider that the energy
of the UAVs is limited and supplied by off-the-shelf batteries.
Table I provides a list of major notations used in this paper.
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TABLE I

SUMMARY OF IMPORTANT NOTATIONS

Fig. 1. Time line of a round.

B. DSRP Background

In this paper, we define the Super Round (SR) as a col-
lection of rounds in which reclustering occurs only at the
beginning of the first round in the SR. The i-th SR, i.e., SRi,
consists of three rounds, R1, R2 and R3, and re/clustering
is performed before R1, as shown in Figure 2. We con-
sider that the length of an SR is determined dynamically to
reduce the unnecessary reclustering, and hence the compu-
tation and message overheads. To realize our SR concept,
we must determine the length of an SR, consensus among
the UAVs on reclustering time, scheduling intra-cluster data
traffic through TDMA frames, and synchronizing the UAVs
during reclustering. In Section IV-A, we provide details about
each aforesaid step for the realization of the SR. Although
the length of a round is fixed, however, consecutive time
slots allotted to a UAV and the SR length are variable, as in
DROVE reclustering is decided on-demand basis. Particularly,
the number of consecutive time slots allotted to a UAV is
decided online considering the data traffic load at that time.
Whereas, the length of an SR is decided online after satisfying
certain conditions, e.g., threshold residual energy, and distance
between the intruder and the UAV. In DROVE, as the time slots
allotted to a UAV and the length of an SR are determined
online, the clustering overhead remains controlled during the
entire network lifespan. For example, if all UAVs possess
significant remaining energy, the length of an SR is chosen
as long as possible since the CHs are capable of managing
their clusters over a prolonged duration. Nevertheless, once the
remaining energy of a CH reaches a threshold, the SR length

Fig. 2. Illustration of super round.

reduces to relinquish the energy constraint CH in shorter time
intervals.

C. Channel Model

Typically, the channel gain, γ (in dB), for a
transmitter-receiver separation distance � can be expressed
as:

γ = β − 10α log10 � + ξ,

where α is the path loss exponent, β is the channel gain at
the reference distance �0 = 1 m, ξ is a Gaussian random
variable and usually modeled as X (0, σ2

SF ) to capture the
shadowing effect. Additionally, α, β and σ2

SF rely on the
propagation scenario, e.g., Line-of-Sight (LoS) or Non Line-
of-Sight (NLoS) propagation. This work exploits the spatial
structure of ξ, where it might be spatially correlated due to the
presence of obstacles and reflectors in the AoI. As a result, ξ
might exhibit diverse distributions in distinct areas [33]. Moti-
vated by this fact, we consider an N -segment (or, cluster) ray-
tracing channel model [33], which predicts the channel with
high precision. For simplicity and tractability, we consider
that the Doppler effect due to the UAV’s mobility is perfectly
compensated using the technique proposed in [34]. Moreover,
in [35], the researchers have shown through empirical studies
that for a moving UAV with a velocity 10 m/s, the impact of
the Doppler effect is negligible. Accordingly, the channel gain
(in dB), for a transmitter-receiver can be further expressed as:

γ(xR) =
N∑

n=1

(βn − 10αn log10 �(x)+ξn) �{(xR, xT) ∈ Kn},

(1)
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where xR is the position of a receiver, xT is the position of a
transmitter, βn is the average channel gain at �0 = 1 m, αn

is the average path loss exponent, ξn is modeled as X (0, σ2
n)

to capture the shadowing effect, �(x) = �xR − xT� is the
distance between the transmitter and the receiver, and �{A} is
an indicator function, whose value 1 if condition A satisfied,
and 0 otherwise.

Let us assume that the transmission power of the UAV,
P0, is constant. Accordingly, using eq. (1), the instantaneous
channel capacity can be expressed as:

S(t) = B log2

(
1 +

P0γ(xR)
σ2

)

= B log2

(
1 +

X0

H2 + ||q(t)||2
)

, 0 < t < T, (2)

where B is the channel bandwidth, σ2 is the white Gaussian
noise power at the receiver end, X0 = G0P0/σ2 is the refer-
ence received signal-to-noise ratio at the reference distance
�0 = 1m, and q(t) = [x(t), y(t)]T ∈ R2×1 is the UAV
trajectory prediction on the horizontal plane. Therefore, using
eq. (2), the total information bits S received at the receiver
end during the time instance T with a function of the UAV
trajectory, q(t) is given as:

S(q(t)) =
∫ T

0

B log2

(
1 +

X0

H2 + ||q(t)||2
)

dt. (3)

D. Energy Model

We assume that there are two major components in a
UAV for energy consumption [15]. The first component is for
communication, specifically, signal processing and radiation.
Whereas, the second component is the propulsion energy,
which is essential for lifting the UAV and supporting mobility,
if required. In practice, the communication energy is sig-
nificantly less than the propulsion energy, e.g., a few watts
versus hundreds of watts [15]. Motivated by [25] and [36],
we consider here only the energy consumption related to
the communication process, as this work deals with the issue
related to task scheduling. Particularly, the energy consump-
tion in the communication process is composed of two parts:
the transmission energy Etx and the receiving energy Erx.
The transmission energy for sending a message size l at a
distance � is Etx(l, �) = l×(Eelec+Ecom), where Eelec (J/bit)
is the energy consumption per bit by the electronic circuitry
and Ecom (J/bit) is the communication energy consumption
per bit [36]. Let �th be the threshold distance between the
sender and receiver UAVs. Therefore, Ecom is calculated as:
�fs × �

η, where �fs (J/bit/mη) is a constant and η ≥ 2 is the
path loss exponent [36]. In contrast, the receiving energy Erx

for a message size l is Erx(l) = l × Eelec .
In the UAV networks, video/image compression is also

assumed as an integral part, thus the energy consumption for-
mula presented above needs necessary modifications. Consid-
ering the experiments on energy consumption in video/image
compression algorithm [37], a video/image compression
enabled UAV can compress the captured videos/images
and reduce the size of the packet workload forwarded

to the GS. To execute the video/image compression task,
a UAV must spend additional processing energy. If kt is the
video/image compression ratio, the energy model considering
the video/image compression algorithm in this work can be
expressed as:

Etx(l, �) = kt × l × (Eelec + Ecom), (4)

Erx(l) = kt × l × Eelec. (5)

Let Rt and Rc be the data transmission and reception rates,
respectively. Thus, from eqs. (4) and (5), we can determine
the energy consumption rate of a UAV [36] as:

ECR = RtEtx(l, �) + RcErx(l). (6)

E. Intruder Mobility Model

In this work, we model the intruder mobility within the AoI
by a two-dimensional random walk process [24]. Specifically,
we assume that intruders appear uniformly and independently
on the boundary of the AoI and tend to move in roughly a
straight line before changing direction. Let t0 be the starting
time of the intruder at position Z0 = Z(t0). We assume that
the intruder makes a step of constant length ζ in each unit of
time. However, the direction of the step is uniformly chosen
in θ = [−π/2, π/2]. For each further step, an intruder moves
length ζ and the direction angle is chosen uniformly from
[θ − ϕ, θ + ϕ], where ϕ ∈ [0, π] is the free parameter of the
model. Note that if ϕ = π the mobility is a random walk
without any direction, while ϕ = 0 is a straight line. Let
Zs be the intruder position at the s-th step. We estimate the
trajectory of the intruder as follows:

Zs+1 = Zs + ζeθs+1 ,

where eθ represents the unit vector of (cos θ, sin θ). Therefore,
the coordinates of the intruder position at Zs+1 are given as:

xZs+1 = xZs + ζ cos θs+1,

yZs+1 = yZs + ζ sin θs+1.

F. Use-Case Scenario and Problem Description

We first introduce an example of a use-case scenario of the
UAV networks to demonstrate our proposed concept, which
is simplified for the sake of clear illustration. Without loss of
generality, the proposed concept also remains valid for large
and more complex systems.

Let us assume a set of autonomously flying UAVs that
collaborate to perform distributed ground surveillance, e.g.,
as part of a search and rescue mission in a (possibly dense)
urban area. Every UAV has a set of cameras, which allows it
to monitor a particular area at a time. In fact, to cover a wide
ground area in a short time frame, several UAVs fly in forma-
tion. When the UAVs operate, while monitoring the ground
area, in close proximity, they must coordinate with each other
to track the moving intruder. Figure 3 shows a scenario, where
the UAVs must monitor and track a moving intruder in a
densely populated area. In Figure 3, the four UAVs, D1, D2,
D3, and D4 (i.e., |Kn| = 4) are flying to monitor an area,
denoted as n-th cluster. Every UAV is an autonomous unit
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Fig. 3. Example of collaborative monitoring using UAVs.

that can operate on its own. Specifically, every UAV consists
of sensors, which enable it to position itself accurately (e.g.,
GPS), measure its maneuver (e.g., gyroscope, accelerometer),
and sense its environment via various cameras, including
infrared, ultrasonic, Lidar. Nowadays, all these sensors are
common in commercial off-the-shelf systems, and in fact, the
customer grade UAVs are equipped with such cameras [2].

During the UAVs’ mission, the D3 detects an intruder using
a front facing camera. The D3 has two options for reacting
to this situation: (1) it continues to track the intruder, or (2)
it informs the nearby UAVs to track the intruder. The D3 by
itself does not have enough information based on which it
can decide in which direction to move for tracking, as the
intruder could move in any direction. However, by exchanging
information with the nearby UAVs, the D3 can learn that the
intruder is moving towards the D4. As a consequence, the
D3 decides to transfer the tracking task to the D4. In this
way, the D3 not only prevents collision with the D4, but
also ensures more precise tracking. We assume here that the
D3 is aware of the D4’s position through sharing of location
information among the UAVs. Specifically, UAVs follow a
light-weight message passing using the method in [38] to share
location information.

Interestingly, with respect to the above use-case scenario,
RRS is more severe as D4 has no provision for sending
repeated data traffic, although the moving intruder is being
precisely tracked by the D4 due to close proximity. For
sending repeated data traffic, the D4 must wait for several
rounds of data transmission cycles, and by that time, the
intruder may detour its route. Therefore, it is crucial to find
the length of a round and the number of (successive) time
slots assigned to a UAV as the shorter round and time slot
increases intrusion tracking performance and energy efficiency
at the cost of higher overhead.

In this work, we aim to determine the number of time slots
assigned to a UAV for maximizing the tracking performance
(in terms of throughput) and energy efficiency. We denote
Fn[k; t] and C[k] as the set of traffic flow arriving from the n-
th cluster at the t-th time slot of the frame k, and the feasible
schedule in frame k, respectively. If there are a set of C feasible
schedules, finding the number of time slots τ for a CM to

deliver the total traffic load to the CH in cluster n is solving
of the following equation:

argmax
C∈C

�L[k], C[k]� (7)

subject to

Fn[k; t] ≤ Fmax
n , ∀n, t, k (8)

Ln[k] > 0,Fmax
n > 0, (9)

C∗
n[k] = 1, (10)

where L[k] and C[k] are the traffic load vector and feasible
schedule in frame k, respectively. The constraint in eq. (8)
guarantees that the set of traffic flow arriving from the n-th
cluster at the t-th time slot is non-negative. The constraint
in eq. (9) specifies that the traffic load in cluster n at the
beginning of frame k is supposed to be greater than zero. The
constraint in eq. (10) specifies that the flow contribution of the
UAVs hovering over a cluster n is 1.

IV. THE PROPOSED CLUSTERING TECHNIQUE: DROVE

This section discusses the main design of DROVE.
In DROVE, a cluster is formed using a distributed algorithm
at the beginning of a SR with the following objectives:
(i) distribution of all UAVs into various clusters in a distributed
way to satisfy our use-case scenario (see Section III-F),
e.g., scalability, (ii) minimization of inter- and intra-cluster
communication costs to conserve energy, (iii) light-weight
CH selection strategy, and (iv) limiting the time complexity
to O(1). We divided the proposed clustering procedure into
three phases, namely, CH selection, cluster formation and data
collection. The following sections describe these three phases
in detail.

A. CH Selection

In DROVE, CH selection procedure is triggered once an
intruder is detected in the AoI. For brevity, we consider
that detecting UAV only tracks the intruder with the closest
distance if a UAV detects multiple intruders. Since it is
unlikely that more than a pair of UAV and intruder can exist at
the same location, there will be no unattended intruder in the
AoI. In DROVE, detecting UAVs only participate in the CH
selection and cluster building phases. The rest of the UAVs
remain in the surveillance mode for detecting future intruders.
After detecting an intruder, the detecting UAV poses itself
as the temporary CH and broadcast a Hello(ID, Ere, d(t))
message, where ID is the UAV identification number, Ere is
the remaining energy level of the detecting UAV, and d(t) is
the distance from the detecting UAV to the intruder at time
t. In DROVE, we calculate Ere based on the initial energy
budget and energy consumption rate, i.e., eq. (6) of a UAV.
Whereas, similar to [39], we calculated d(t) as follows:

d(t) =
√

H2 + [xu(t) − xin(t)]2 + [yu(t) − yin(t)]2,

where (xu, yu) and (xin, yin) are the coordinates of a UAV
and the intruder, respectively. After receiving the Hello mes-
sage, the neighboring UAVs who have detected the same
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Algorithm 1 CH Selection Phase
1: while detecting an intruder by the j-th UAV do
2: Listen to the channel
3: if not received Hello message then
4: Calculate Ej

re

5: Calculate dj(t)
6: Send Hello(ID, Ej

re, dj(t)) to all neighbors
7: Receive Hello_Ack(ID, Ere, d(t)) from all neighbors
8: Calculate AEre

9: Calculate dav(t)
10: if AEre < . . . < Emax

re & dav(t) > . . . > d(t)max

then
11: Advertise CH Head_Msg
12: Receive CH_Join from all neighbors
13: Send CH_Acpt message to CMs
14: else
15: Receive Head_Msg message from CH
16: Send CH_Join message to CH
17: Receive CH_Acpt message from CH
18: end if
19: end if
20: end while

intruder send Hello_Ack(ID, Ere, d(t)) message to the tem-
porary CH. Based on the received Hello_Ack message, the
temporary CH determines the average residual energy, AEre,
and the average distance, dav , between a detecting UAV and
the intruder. The temporary CH nominates the i-th UAV from
the neighbors as the new CH whose Ere is maximum, i.e.,
AEre < . . . < Emax

re , and d(t) is minimum, i.e., dav(t) >
. . . > d(t)min. We calculate AEre and dav(t) as follows:
AEre =

∑U
j=1 Ej

re/U and dav(t) =
∑U

j=1 dj(t)/U , where
U is the number of UAVs participating in the clustering
procedure. In case, there are more UAVs with the same
(Emax

re , d(t)min), one of them is chosen randomly. Algo-
rithm 1 illustrates the action performed by the UAV during
CH selection.

Although there are several mechanisms to trigger the reclus-
tering procedure, however, we follow a simple procedure to
limit unnecessary reclustering in DROVE, thereby, reducing
the computation and implementation complexities. In particu-
lar, during the idle time, i.e., the time duration between two
successive rounds, all CMs in a cluster estimate the present
residual energy of its CH, ere. Whenever a CM finds that
ere falls below Eth (special condition), signifying possible
exhaustion of the CH’s energy, the CM broadcasts a recluster
scheduling message. After receiving the recluster scheduling
message, the CH broadcast a message to inform its CMs
for invoking the cluster setup procedure at the end of the
upcoming round. In this way, the current SR ends and a
new SR starts executing with the cluster setup procedure.
In contrast, if the CMs find that ere > Eth, the same cluster
operates in successive rounds until ere ≤ Eth. In DROVE,
a CM estimates ere as follows:

ere = Einit − GSR × ECR,

where Einit is the initial energy of a UAV, GSR is the number
of rounds in a SR and ECR is calculated using eq. (6).
Whereas, similar to [23], a CM calculates Eth as follows:

Eth = Rf × ECM
re , (11)

where Rf (0 ≤ Rf ≤ 1) is the reclustering factor and ECM
re

is the CM’s residual energy. In DROVE, for a particular
network, Rf is constant and decided based on the application’s
requirement.

In DROVE, as mentioned earlier, reclustering is triggered
under a special condition instead of in periodic time intervals.
This property of DROVE not only reduces the significant
communication overhead, but also reduces the considerable
computation overhead through a decrease in the number of
reclustering rounds. Note that the worst case scenario occurs
in DROVE when a SR consists of a single round. After the
CH selection, determining dynamically the length of an SR
and number of (successive) time slots assigned to a CM within
a round are crucial, these two significantly affect the intrusion
tracking efficacy (see Section III-F). To determine these two
parameters, we first investigate the variation in SR length
in Section IV-A.1. In Section IV-A.2, we then present the
analysis of consecutive time slot allotment.

1) SR Length Analysis: In this section, we investigate the
length of an SR, GSR. Let ECH

re,i and ECM
re,i be the residual

energy of CH and CM at the start of the steady state phase
in SRi, respectively. Alternatively, ECH

re,i and ECM
re,i are the

residual energy of a CH and CM after the setup phase, respec-
tively. Also, let eCH and eCM be the energy consumption of
a CH and CM at the steady state phase, respectively. It is
worth mentioning that the values of eCH and eCM depend on
the size of the cluster. Let us assume that r and (r + 1) are
two consecutive rounds of the SRi, and a UAV has residual
energy Ere,i(r) and Ere,i(r+1) during the steady state phase
of rounds r and (r+1), respectively. Therefore, we can express
Ere,i(r + 1) as:

Ere,i(r + 1)

=

{
Ere,i(r) − eCH , if UAV acted as CH in (r + 1)
Ere,i(r) − eCM , if UAV acted as CM in (r + 1)

.

In DROVE, a UAV is chosen as a CH, based on the
maximum residual energy and minimum distance from the
intruder. Hence, if a UAV is chosen as a CH at the start of
r-th round, then:

ECH
re,i (r) = Ere,i(r) + eCH .

As mentioned earlier, the reclustering procedure is triggered
once the residual energy of a CH crosses a threshold. If GSR

is the number of rounds in a SR without any cluster setup
phase, we can express Eth as:

Eth ≥ ECH
re,i (rf ), (12)

where ECH
re,i (rf ) is the residual energy of a CH at the final

round, rf , of the SRi. Considering eq. (11), we can write
eq. (12) as:

Rf × ECM
re,i ≥ ECH

re,i (rf ). (13)
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Since SRi consists of GSR rounds, we can express ECH
re,i (rf )

as:

ECH
re,i (rf ) = ECH

re,i − GSR × eCH . (14)

Using eq. (14), we can express eq. (13) as:

Rf × ECM
re,i ≥ ECH

re,i − GSR × eCH .

After basic transformation, we can write the above equation
as:

GSR ≥ ECH
re,i − Rf × ECM

re,i

eCH
.

Hence, the length of an SR can be determined dynamically by
finding the lowest integer of the above equation, i.e.,

GSR =

⌈
ECH

re,i − Rf × ECM
re,i

eCH

⌉
. (15)

From eq. (15), it is clear that GSR is decided by ECH
re,i ,

ECM
re,i , eCH and Rf . Among these parameters, eCH and Rf

are fixed. Thus, ECH
re,i and ECM

re,i are the parameters that
directly influence the value of GSR. It is worth noting that
as the surveillance operation progresses, UAV’s energy level
will decrease gradually, resulting in the shortening of the SR
length, i.e., GSR. Eventually, the shortening of SR length will
increase the number of reclustering procedures. However, such
an increase in reclustering procedure is essential to distribute
the work load evenly among the UAVs, leading to subsequent
enhancement in network lifespan.

2) Time Slot Allotment Analysis: This section provides a
theoretical analysis to determine the number of consecutive
time slots to be assigned to a CM in a cluster. Let Fn[k; t] be
the set of traffic flows arriving from the n-th cluster at the t-th
time slot of the frame k. The cardinality of the set Fn[k; t] is
represented by Fn[k; t], i.e., Fn[k; t] = |Fn[k; t]|. We consider
that {Fn[k; t], t = 1, . . . , T, k ≥ 0} are independently and
identically distributed (i.i.d.) over time with mean μn > 0,
and Fn[k; t] ≤ Fmax

n , ∀n, t, k for some Fmax
n > 0.

Without loss of generality, we consider that each cluster
is served by at most one data flow in each time slot. Fur-
ther, we consider that at least one UAV is hovering over a
cluster in each frame. Furthermore, we consider that all M
UAVs hovering over various clusters do not interfere with
each other and hence, data traffic can flow simultaneously.
To avoid interference, UAVs employ an inter-UAV interference
coordination technique, e.g., orthogonal resource block alloca-
tion [28]. Finally, we assume that a set of clusters monitored
by the UAVs simultaneously in frame k is a feasible schedule
and designated by: C[k] � (Cn[k])N

n=1, where exact flow
contribution of the UAVs hovering over a cluster n is 1. Let
C be the set of all feasible schedules. We assume that all
M UAVs are directly connected with the GS via point-to-
multipoint micro/millimeter wave backhauling with adequate
bandwidth [16].

Since we use a limited number of coding and modulation
techniques while sending data traffic, each data traffic flow has
a finite transmission rate. Let Sn,f [k; t] be the channel rate
(i.e., packets per time slot) of the traffic flow f in cluster n in

the t-th time slot of frame k, which is i.i.d. with the minimum
and maximum channel rates as 0 and smax

n , respectively. It is
worth reminding that we can derive Sn,f [k; t] using eqs. (2)
and (3). We further consider that both probabilities of each
traffic flow with the minimum and maximum channel rates
are positive, particularly, pmin

n � Pr{Sn,f [k; t] = 0} > 0 and
pmax

n � Pr{Sn,f [k; t] = smax
n } > 0. Without loss of

generality, we assume that the data traffic characteristic is
cluster dependent.

To characterize the traffic flow under a dynamic application
scenario, we use traffic load to determine the minimum
number of time slots (see Figure 1) required to deliver the
newly generated (or, existing) traffic flows. Precisely, we des-
ignate: Ln[k; t] �

∑
f∈Nn[k;t]�Dn,f [k; t]/smax

n � and L[k; t] �∑
f∈Fn[k;t]�Fn,f [k; t]/smax

n � as the total traffic load and the
newly generating traffic load in cluster n in the t-th time slot
of frame k, respectively, where Dn,f [k; t] is the number of
residual data packets of traffic flow f and Nn[k; t] is the set
of traffic flows in the cluster n in the t-th time slot of the
frame k. It is worth mentioning that upon the transmission of
data traffic by the CH from any cluster, the amount of traffic
load will decrease gradually. Let λn[k; t] be the amount of
traffic load decrease in the cluster n in the t-th time slot of
the time frame k. Therefore, λn[k; t] depends on the number
of UAVs hovering over the cluster n to deliver the traffic load,
the amount of remaining traffic load and the associated channel
rate. We assume that there is at least one UAV hovering over a
cluster and collectively serve one flow, i.e., 0 ≤ λn[k; t] ≤ 1.
Accordingly, during the monitoring in cluster n in the t-th
time slot of time frame k, we can write the total traffic load
as:

Ln[k] � Ln[k; 1].

Likewise, we can express the total newly generated traffic
loads as:

Ln[k] �
∑T

t=1
Ln[k; t],

and the amount of remaining traffic load in the time frame k
as:

λn[k] �
∑T

t=1
λn[k; t].

In summary, we can describe the progress of the traffic load
as:

Ln[k + 1] = Ln[k] + Ln[k] − Cn[k]λn[k],

for n = {1, . . . , N}.
In this work, our target is to determine the number of

successive time slots required by a CM in each cluster to
serve its data traffic with the following aims: (1) maximizing
the throughput, and (2) minimizing the end-to-end latency.
We assume that, in each time slot, the traffic load can be
reduced by at most 1 in each cluster and hence the data traffic
of the newly arriving flows in each cluster can be at most
1. Considering our target and earlier analysis, we develop an
optimal time slot assignment algorithm for CM, as given in
Algorithm 2. In our optimal time slots allotment algorithm,
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Algorithm 2 Optimal Time Slots Allotment
For each time frame k, under the present traffic load vector
L[k] � (Ln[k])N

n=1,
(1) Determine and assign τ consecutive time slots to a CM
for delivering the total traffic load to the CH in cluster n, i.e.,
select C∗[k; τ ] � (C∗

n[k])N
n=1 such that

C
∗[k; τ ] ∈ arg max

C∈C
�L[k], C�.

(2) In a time frame k, a CM reserves τ consecutive time slots
for delivering the traffic load, i.e., C∗

n[k] = 1, to the CH with
the maximum channel rate.

the CH of a cluster initially collects the traffic load infor-
mation from all CMs in every time frame and accordingly
assigns time slots to the CMs for delivering the traffic load.
Here, it is worth mentioning that our proposed Algorithm 2
is significantly different from the traditional queue length
based MaxWeight algorithm. Particularly, in the MaxWeight
algorithm, the system uses a first-come-first-server queuing
mechanism. In contrast, DROVE uses a flow-level dynamic
mechanism, while delivering the traffic load.

B. Cluster Formation

In DROVE, the cluster building procedure initiates after
the CH selection. During the cluster building procedure, the
newly elected CH broadcasts a Head_Msg message within
the communication range. The Head_Msg message consists
of the UAV ID and the remaining energy level information.
Upon receiving the Head_Msg message, a UAV replies to
the newly elected CH by sending the CH_Join message.
In case a UAV receives several Head_Msg messages from
its neighboring CHs, it selects the closest CH by sending the
CH_Join message as the smallest power level is required
to reach [38]. In this work, similar to [40], we consider
that a UAV determines the inter-UAV distance using on-
board ultra-wideband ranging measurement. After receiving
the CH_Join messages, the CH acknowledges the joined
UAVs by sending the CH_Acpt messages and designates them
as the CMs.

C. Data Collection

In DROVE, after the cluster setup phase using Algorithm 1,
each CH generates a TDMA schedule for its CMs. Due to the
application’s requirement, the CH dynamically schedules the
time slot(s) among the CMs using Algorithm 2. We vividly
discussed the dynamic time slots assignment problem in
Section IV-A.2. Upon receiving the schedule, each CM trans-
mits its captured data to its CH. As the data packets collected
at the CH’s end are vastly correlated, therefore, each CH
aggregates the received data packets into a single data packet.
Finally, the CH sends the aggregated data packets to the GS
at the end of the frame.

V. THEORETICAL ANALYSIS OF DROVE

In this section, we analyze the message and time com-
plexities of DROVE in Section V-A. We then show that our

time slot allotment algorithm, i.e., Algorithm 2 is optimal in
Section V-B.

A. Message and Time Complexities

In this section, we first analyze the worst-case message
complexity of our proposed algorithm in Lemma 1. We then
analyze the worst-case time complexity of our proposed algo-
rithm in Lemma 2.

Lemma 1: In DROVE, the cluster setup phase has a
worst-case message complexity of O(M) in the network, i.e.,
O(1) per UAV.

Proof: In our work, we assume that M UAVs are flying
in the AoI and N clusters are formed. It is trivial to determine
the number of messages exchanged during the cluster set in
Section IV-A. Particularly, the maximum number of messages
exchanged in the network is given by:

3N + 2(M − N) = 2M + N.

Therefore, the worst-case message complexity in the network
is O(M). Alternatively, in DROVE, the order of message
exchange complexity is O(1) per UAV, and O(M) in the
network. Note that the complexity of the message passing
method used in DROVE for sharing location information is
O(1) per UAV [38]. �

Lemma 2: The proposed clustering algorithm has a
worst-case time complexity of O(M) in the network, i.e., O(1)
per UAV.

Proof: We present the proposed clustering algorithm in
Algorithm 1. It is trivial to calculate the time complexity of
various parameters in Algorithm 1. Specifically, as M UAVs
are participating in the CH selection phase and all operations
within the algorithm take O(1) time, the total time complexity
is obtained as O(M) or O(1) per UAV. �

B. Optimality

In this section, we first show that the CH selection policy in
DROVE is optimal. Second, we show that DROVE can achieve
optimal throughput. Our optimal throughput analysis is based
on the Lyapunov drift function [16], [25], as it is one of the
most promising approaches for delay-aware resource control
problem in wireless systems.

Theorem 1: In DROVE, the CH selection policy P is the
optimal selection policy to maximize the network lifespan.

Proof: Since the proof is similar to that of
[Ghosal et al. [41], Theorem 3], we do not repeat it here. �

Theorem 2: The time slot allotment algorithm is throughput
optimal, i.e., it stabilizes the system for any arrival traffic load
strictly within the AoI.

Proof: To prove the stability of the system, we modeled
the time slot allotment as the Lyapunov function V (k) �
�L[k]� and its conditional expected Lyapunov drift as:

E[ΔV (L)|L[k] = L]
� E[�L[k + 1]� − �L[k]�|L[k] = L[k]]

= E[
√
�L[k + 1]�2 −

√
�L[k]�2|L[k] = L[k]]

≤ 1
2�L[k]�E[�L[k + 1]�2 − �L[k]�2|L[k] = L[k]], (16)
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where we derive the last step from the fact that f(x2) −
f(x1) ≤ (x2 − x1)f �(x1) = (x2 − x1)/2

√
x1 due to the

concavity of the function f(x) � √
x for x > 0 [16]. For

the sake of conciseness, we omit the frame index [k] in the
rest of the proof. Accordingly, the expected Lyapunov drift
can be derived as:

E[ΔU(L)|L]
� E[�L[k + 1]�2 − �L[k]�2|L[k] = L]

= E

[
N∑

n=1

(Ln + Ln − C∗
nλn)2 −

N∑
n=1

L2
n|L
]

= E

[
N∑

n=1

(
2Ln(Ln − C∗

nλn) + (Ln − C∗
nλn)2

) |L
]

(i)= E

[
N∑

n=1

(
2Ln

T∑
t=1

(Ln[k; t] − C∗
nλn[k; t])

+(Ln − C∗
nλn)2

)
|L
]

(ii)
≤ 2T

N∑
n=1

Lnρn − 2
N∑

n=1

T∑
t=1

E[LnC∗
nλn[k; t]|L] + B1,

(17)

where ρn is the average traffic load of all newly arrived flows
in the cluster n per time slot. In eq. (17), we derive step
(i) from the definitions of L and λn (see Section IV-A.2). Since
the newly arrived traffic load is independent of the present
system state, step (ii) is true for B1 � N(L2

max + T 2) and
Lmax � T max

n Fmax
n �Fmax

n /smax
n � in eq. (17).

We now analyze the first term on the right hand side of step
(ii) in eq. (17). Based on our Algorithm 1 and the fact that
the data traffic of the newly arrived flows in each cluster can
be at most 1, we have:

2T

N∑
n=1

Lnρn

(a)
≤ −2�

N∑
n=1

Ln + 2T

N∑
n=1

LnC∗
n, (18)

where � is the heavy traffic load parameter [16]. Similarly, the
second term on the right hand side of step (ii) in eq. (17) can
be expressed as:

2
N∑

n=1

T∑
t=1

E[LnC∗
nλn[k; t]|L]

≥ 2
(

1 − 1
2T

�

) N∑
n=1

LnC∗
nT − B2

≥ �
N∑

n=1

Ln + 2T
N∑

n=1

LnC∗
n − B2, (19)

where B2 � 2T �Fmax
n /smax

n �∑N
n=1 (Nmax

n + TFmax
n ).

By substituting eq. (18) and eq. (19) into eq. (17), the expected
Lyapunov drift can be derived as:

E[ΔU(L)|L] ≤ −�
N∑

n=1

Ln + B1 + B2

≤ −��L� + B1 + B2. (20)

The above eq. (20) is true as �L�1 ≥ �L�. By substituting
eq. (20) into eq. (16), the expected Lyapunov drift can be
expressed as:

E[ΔV (L)|L ≤ − �

2
+

B1 + B2

2�L� . (21)

Here, eq. (21) implies that if the value of Lyapunov function
V (L) = �L� is sufficiently large, its conditional expected drift
is strictly negative. This indicates that our proposed time slot
allotment algorithm is throughput optimal. Theorem 2 is thus
proved. �

VI. PERFORMANCE EVALUATION

In this section, we present our evaluation results for DROVE
under realistic application scenarios. We compare DROVE
with the thee benchmarks, namely, DOTS [25], SIL [29] and
SOCS [30]. Additionally, we implement a dynamic version
of DROVE, called D-DROVE, where UAVs fly horizontally
at different altitudes and use a light-weight message pass-
ing method [38] to share location information. Section VI-
A discusses the experimental setup. We then present the
experimental results in Section VI-B.

A. Experimental Setup

We evaluate all schemes on realistic network settings using
an integrated UAV network simulator–FlyNetSim [42]. The
core components of FlyNetSim are NS-3 and Ardupilot. Par-
ticularly, we use NS-3 to emulate various realistic models, e.g.,
ray-tracing channel, traffic generation and mobility. In con-
trast, we use Ardupilot to model various characteristics of
UAV, e.g., navigation, control and mission planning, and Micro
Air Vehicle Link protocol [43] stack as a communication
protocol. To implement a real-world scenario, the position
and velocity of an intruder and UAV are derived following
the method in [24]. The amount of traffic flows arriving at
any cluster in each time slot follows the Bernoulli distribution
with mean 0.05. We assume that once an event of interest is
captured by a UAV, it generates packets at the rate of 250 kbps
(constant bit rate) and transmits over bandwidth 1 MHz to
the GS. We also assume that the coordinates of the UAVs
follow a 2D Gaussian distribution with standard deviation
in both x-axis and y-axis as 3, and mean as 0. The energy
model parameters are used as Eelec = 50 nJ/bit, Rf = 0.8,
kt = 55% and �fs = 0.1 nJ/bit/m2 [36]. We consider two
propagation segments for exposition: LoS and NLoS. The
model parameters used in the simulation are α1 = 2.27,
β1 = −40, α2 = 3.64, β2 = −30, σ2

1 = 1 and σ2
2 =

3 [33]. The initial battery energy of the UAV is 14000 mAh.
The altitude of UAV in D-DROVE changes from 50 m to
100 m. We consider a UAV with similar specifications as DJI
Phantom 4 Pro [44]. Unless specified otherwise, we listed all
the parameters and their corresponding values used during the
experiment in Table II. We perform extensive simulation with
a 95% confidence level and each data point in the figures is
computed by averaging the results of 100 independent runs.
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TABLE II

KEY PARAMETER VALUES USED IN THE SIMULATION

Fig. 4. Super round length versus number of rounds.

B. Performance Comparison

In this section, we discuss the performance of DROVE
and the comparative results with D-DROVE, DOTS, SIL and
SOCS. We consider to use the SR length, energy consump-
tion, clustering overhead, throughput, end-to-end delay, flow
success rate and packet drop rate as the appropriate evaluation
metrics.

1) Clustering Task Scheduling: We plot the dynamic
changes of the SR length with the number of rounds in
Figure 4. For both DROVE and D-DROVE, the plot shows
that the SR length is long at the beginning of the simulation
time. Particularly, the first SR length is 62 and 57 rounds in
DROVE and D-DROVE, respectively. It signifies that the UAV
selected as CH in the first round can perform the CH role for
62 rounds in DROVE. Interestingly, we observe that varying
altitude in D-DROVE has an effect on the SR length. The plot
also reveals that the SR length is more stable in both DROVE
and D-DROVE than DOTS because the reclustering triggering
factors in DOTS is not prudent. We further notice that the SR
length gradually decreases with the increase in the number
of rounds. It is because, as the simulation time increases,
the UAV’s residual energy decreases, resulting in reduction
of reclustering interval to evenly distribute the traffic load.
Additionally, we measure the average number of reclustering
up to 6000 rounds for both SIL and SOCS. As expected, the
plot shows that the DSRP considerably reduces DROVE’s and
D-DROVE’s reclustering number to 69 and 95, respectively
resulting in the reduction of the clustering overhead. However,
this value is 2703 in DOTS. Moreover, for SIL and SOCS, this
value is significantly high, i.e., 6000, since both SIL and SOCS
recluster the network in every round.

2) Energy Conservation: We present the experimental
results in terms of energy conservation in Figure 5. Precisely,
Figure 5(a) illustrates the amount of energy consumed by
the UAVs only during the clustering process. Note that the

energy consumed for executing Algorithm 2 is included in
both DROVE and D-DROVE while plotting. The plot exhibits
that the best performance is achieved by DROVE, followed
by D-DROVE, DOTS, SIL and SOCS. The primary reason for
this significant reduction of energy consumption in DROVE’s
plot is that the number of reclusterings triggered by DSRP and
the number of messages exchanged in the clustering operation
are considerably reduced. However, the differences in energy
consumption between DROVE and D-DROVE is due to the
differences in SR length for varying altitude in D-DROVE.
Whereas both SIL and SOCS consume significant energy
because the network-wide broadcasting of control messages
during the clustering process.

Figure 5(b) illustrates the total energy consumed per
increasing number of rounds. As Figure 5(b) shows, as the
number of round increases, the total energy consumption
increases linearly since more number of UAVs participate to
serve higher traffic flow. However, the performance of DROVE
is superior than DOTS, SIL and SOCS. This is because,
the cluster formation mechanism, time slot allotment, and
reclustering at suitable times with DSRP are the main energy
conservation attributes of DROVE. We observe that DROVE
reduces the total energy consumption by 16.47%, 36.32%,
41.80% and 54.48% compared to D-DROVE, DOTS, SIL and
SOCS, respectively.

Lastly we verify the clustering overhead of the five schemes
in Figure 5(c). We can see that, as the number of round
increases, the clustering overhead remains stable in all the
schemes. However, the differences in clustering overhead
among the schemes are because each of the scheme follow
different principle for CH selection, cluster building and data
collection. It can be seen from Figure 5(c) that DROVE
outperforms the three benchmarks because the UAVs have
more freedom to dynamically adjust the traffic schedule,
resulting lesser reclustering. Moreover, D-DROVE exhibits
more clustering overhead than DROVE because additional
message passing overhead for frequent sharing of location
information. We observe that DROVE reduces the clustering
overhead by 49.93%, 64.70% and 66.95% compared to DOTS,
SIL and SOCS, respectively. In summary, DSRP is suitable for
reducing the clustering overhead by managing the reclustering
procedure judiciously.

3) Throughput: In this section, we first measure the impact
of the deployed number of UAVs on the throughput. Fig-
ure 6(a) shows that throughput increases rapidly with the
number of UAVs. We observe that the growth rate of the
throughput slows down after the number of UAVs reach
30 as the interference becomes significant with the increase
of number of UAVs. Figure 6(a) further shows the superi-
ority of DROVE against the three benchmarks as the traffic
intensity is suitably handled to reduce the possibility of
congestion and packet collision. We notice that both DROVE
and DOTS outperform D-DROVE as the varying altitude in
D-DROVE increases interference among UAVs. The overall
throughput performance of DROVE outperforms D-DROVE,
DOTS, SIL and SOCS on average by 12.37%, 10.52%, 23.44%
and 34.02%, respectively. Meanwhile, we also measure the
throughput under varying traffic arrival rate. As shown in
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Fig. 5. Energy consumption and clustering overhead performance: (a) Energy consumption during clustering process; (b) Total energy consumption;
(c) Clustering overhead.

Fig. 6. Throughput performance: (a) Under varying number of UAVs; (b) Under varying traffic arrival rate.

Figure 6(b), DROVE can stabilize the system for any traffic
arrival rate. This verifies that the proposed DROVE indeed
achieves the maximum system throughout (cf. Theorem 2).
Similar to Figure 6(a), DROVE achieves the best performance
followed by DOTS, D-DROVE, SIL and SOCS due to the
efficient consecutive time slots allotment to the UAVs. The
inferior performance of D-DROVE compared to DROVE and
DOTS is mainly because of the effect of varying altitude
results in imperfect UAV’s positions for delivering traffic.
Moreover, it can be seen that the throughput of SOCS increases
when the traffic arrival rate is low. Once the traffic arrival rate
is sufficiently large, the throughput decreases slightly. This is
mainly because SOCS uses RRS to assign time slots for a
UAV, which might have no data to transmit, resulting in a
reduction in throughput.

4) End-to-End Delay: We plot the end-to-end delay of
our scheme along with the competing schemes in Fig-
ure 7. The plot confirms the performance improvement by
using DROVE and D-DROVE. Particularly, both DROVE
and D-DROVE can consistently maintain the average end-
to-end delay increase to near linear increase, whereas the
three benchmarks expand exponentially. We observe that
the end-to-end delay in D-DROVE is slightly higher than
DROVE as UAV may take a longer time to find a for-
wardee UAV due to altitude variation for delivering the data
to the GS. Moreover, the variations in end-to-end delays
among the schemes are due to traffic scheduling and routing,
causing different magnitudes of congestion and resulting in

Fig. 7. Average end-to-end delay performance under varying number of
UAVs.

different end-to-end delays. We finally observe that the end-
to-end delay of DROVE is 17.69%, 38.27%, 49.27% and
61.13% less than that of D-DROVE, DOTS, SIL and SOCS,
respectively.

5) Flow Success Rate: Figure 8(a) illustrates the flow
success rate under different numbers of UAVs. We notice
that the flow success rate of benchmarks, DOTS, SIL and
SOCS are decreasing with the increasing number of UAVs
as the overhead of the proposed methods prevents them from
successful delivering their data traffic, in highly dynamic
scenario. As Figure 8(a) shows, the flow success rate of
DROVE is on average 17%, 19%, 57% and 79% higher
than that of D-DROVE, DOTS, SIL and SOCS, respectively.
Besides, we measure the flow success rate under different
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Fig. 8. Performance of flow success rate: (a) Under varying number of UAVs; (b) Under varying traffic arrival rate.

Fig. 9. Performance of packet drop rate: (a) Under varying speed of UAVs; (b) Under varying traffic arrival rate.

traffic arrival rate. As Figure 8(b) shows, as the traffic arrival
rate increases, the flow success rate of the five schemes
shows a downward trend. However, the flow success rate
of DROVE is still highest. Unlike the three benchmarks,
as the traffic arrival rate increases, the UAV can efficiently
schedule the traffic via DSRP, so the overall flow success rate
improves.

6) Packet Drop Rate: Figure 9 shows the evaluation result
of the packet drop rate. As Figure 9(a) shows, the average
packet drop rate significantly improves by utilizing DROVE,
followed by DOTS, D-DROVE, SIL and SOCS due to the
efficient consecutive time slots allotment to the UAVs. Specif-
ically, using DROVE, we can keep a more steady packet
drop rate increase rate than the three benchmarks. We also
notice that D-DROVE exhibits a higher packet drop rate than
DROVE as the unfair link-state more dominant in D-ROVE
due to varying altitude. Similar to Figure 9(a), Figure 9(b)
further shows the superiority of DROVE against the three
benchmarks as the traffic intensity is judiciously managed to
reduce the packet drop rate. We notice that an increase in
the traffic arrival rate seems to burst both SIL and SOCS
such that they can not prevent congestion and packet collision.
Although, DOTS exhibits better performance than D-DROVE
due to improved link-state, fails to beat the performance of
DROVE. In summary, we understand the overall efficiency and
superiority when applying DROVE to solve task scheduling in
UAV networks.

VII. CONCLUSION

In this paper, we propose DROVE – a dynamic clustering
technique for the UAV networks. To conserve energy, DROVE
follows a novel dynamic super round policy, where recluster-
ing is triggered only at the required time, i.e., this policy avoids
the unnecessary reclustering as performed in RRS. We then
analyzed the distributed traffic scheduling problem to optimize
throughput in the presence of dynamic traffic flows. Based
on our analysis, we developed a scheduling algorithm, where
time slots are assigned dynamically to the CMs for achiev-
ing optimal throughput. The use of dynamic time allotment
not only reduces the clustering overhead, but also conserves
energy significantly. Finally, we provide extensive simulation
results to validate both the energy conservation and throughput
optimality of our proposed algorithm.

In the future, it would be interesting to apply different
machine learning and bio-inspired algorithms to minimize
clustering problems, like CH selection, cluster formation.
We further seek to investigate the trade-off between the max-
imum residual energy and minimum distance for nominating
a CH.

REFERENCES

[1] C. W. Chen, “Internet of video things: Next-generation IoT with
visual sensors,” IEEE Internet Things J., vol. 7, no. 8, pp. 6676–6685,
Aug. 2020.



HALDER et al.: DYNAMIC SUPER ROUND-BASED DISTRIBUTED TASK SCHEDULING FOR UAV NETWORKS 1027

[2] W. Wang et al., “Placement of unmanned aerial vehicles for direc-
tional coverage in 3D space,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 888–901, Apr. 2020.

[3] A. Baltaci, E. Dinc, M. Ozger, A. Alabbasi, C. Cavdar, and D. Schupke,
“A survey of wireless networks for future aerial communications
(FACOM),” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2833–2884,
4th Quart., 2021.

[4] W. Wang, H. Dai, C. Dong, F. Xiao, X. Cheng, and G. Chen, “VISIT:
Placement of unmanned aerial vehicles for anisotropic monitoring tasks,”
in Proc. 16th Annu. IEEE Int. Conf. Sens., Commun., Netw. (SECON),
Jun. 2019, pp. 1–9.

[5] A. Rahmati et al., “Dynamic interference management for UAV-assisted
wireless networks,” IEEE Trans. Wireless Commun., vol. 21, no. 4,
pp. 2637–2653, Apr. 2022, doi: 10.1109/TWC.2021.3114234.

[6] Z. Wang and L. Duan, “Chase or wait: Dynamic UAV deployment
to learn and catch time-varying user activities,” IEEE Trans. Mobile
Comput., early access, Aug. 24, 2021, doi: 10.1109/TMC.2021.3107027.

[7] S.-F. Chou, A.-C. Pang, and Y.-J. Yu, “Energy-aware 3D unmanned
aerial vehicle deployment for network throughput optimization,” IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 563–578, Jan. 2020.

[8] B. Hu, L. Wang, S. Chen, J. Cui, and L. Chen, “An uplink throughput
optimization scheme for UAV-enabled urban emergency communica-
tions,” IEEE Internet Things J., vol. 9, no. 6, pp. 4291–4302, Mar. 2022.

[9] N. Bartolini, A. Coletta, and G. Maselli, “SIDE: Self drIving DronEs
embrace uncertainty,” IEEE Trans. Mobile Comput., early access,
Dec. 16, 2021, doi: 10.1109/TMC.2021.3135894.

[10] J. Yoon, A.-H. Lee, and H. Lee, “Rendezvous: Opportunistic data
delivery to mobile users by UAVs through target trajectory prediction,”
IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2230–2245, Feb. 2020.

[11] S. T. Muntaha, S. A. Hassan, H. Jung, and M. S. Hossain, “Energy
efficiency and hover time optimization in UAV-based HetNets,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5103–5111, Aug. 2021.

[12] D. He, H. Liu, S. Chan, and M. Guizani, “How to govern the non-
cooperative amateur drones?” IEEE Netw., vol. 33, no. 3, pp. 184–189,
May 2019.

[13] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power transfer:
Trajectory design and energy optimization,” IEEE Trans. Wireless Com-
mun., vol. 17, no. 8, pp. 5092–5106, Aug. 2018.

[14] P. Oettershagen et al., “Perpetual flight with a small solar-powered UAV:
Flight results, performance analysis and model validation,” in Proc.
IEEE Aerosp. Conf., Mar. 2016, pp. 1–8.

[15] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[16] X. Kong, N. Lu, and B. Li, “Optimal scheduling for unmanned aerial
vehicle networks with flow-level dynamics,” IEEE Trans. Mobile Com-
put., vol. 20, no. 3, pp. 1186–1197, Mar. 2021.

[17] L. Hong, H. Guo, J. Liu, and Y. Zhang, “Toward swarm coordination:
Topology-aware inter-UAV routing optimization,” IEEE Trans. Veh.
Technol., vol. 69, no. 9, pp. 10177–10187, Sep. 2020.

[18] Y. Cui, Q. Zhang, Z. Feng, Z. Wei, C. Shi, and H. Yang, “Topology-
aware resilient routing protocol for FANETs: An adaptive Q-learning
approach,” IEEE Internet Things J., early access, Mar. 29, 2022, doi:
10.1109/JIOT.2022.3162849.

[19] S. Shen, K. Yang, K. Wang, G. Zhang, and H. Mei, “Number and
operation time minimization for multi-UAV enabled data collection
system with time windows,” IEEE Internet Things J., vol. 19, no. 2,
pp. 10149–10161, Jun. 2022, doi: 10.1109/JIOT.2021.3121511.

[20] Z. Mou, F. Gao, J. Liu, and Q. Wu, “Resilient UAV swarm communi-
cations with graph convolutional neural network,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 393–411, Jan. 2022.

[21] J. Chen, Y. Xu, Q. Wu, Y. Zhang, X. Chen, and N. Qi, “Interference-
aware online distributed channel selection for multicluster FANET: A
potential game approach,” IEEE Trans. Veh. Technol., vol. 68, no. 4,
pp. 3792–3804, Apr. 2019.

[22] X. Zhong, Y. Guo, N. Li, and Y. Chen, “Joint optimization of relay
deployment, channel allocation, and relay assignment for UAVs-aided
D2D networks,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 804–817,
Apr. 2020.

[23] P. Neamatollahi, M. Naghibzadeh, M.-H. Yaghmaee, and S. Abrishami,
“Distributed clustering-task scheduling for wireless sensor networks
using dynamic hyper round policy,” IEEE Trans. Mobile Comput.,
vol. 17, no. 2, pp. 334–347, Feb. 2018.

[24] F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai,
“A deep reinforcement learning-based dynamic traffic offloading in
space-air-ground integrated networks (SAGIN),” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 276–289, Jan. 2022.

[25] C. Zhou et al., “Deep reinforcement learning for delay-oriented IoT task
scheduling in SAGIN,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 911–925, Feb. 2021.

[26] Y. Du, K. Yang, K. Wang, G. Zhang, Y. Zhao, and D. Chen, “Joint
resources and workflow scheduling in UAV-enabled wirelessly-powered
MEC for IoT systems,” IEEE Trans. Veh. Technol., vol. 68, no. 10,
pp. 10187–10200, Dec. 2019.

[27] T. Duan, W. Wang, T. Wang, X. Chen, and X. Li, “Dynamic tasks
scheduling model of UAV cluster based on flexible network architec-
ture,” IEEE Access, vol. 8, pp. 115448–115460, 2020.

[28] A. Hanyu, Y. Kawamoto, and N. Kato, “Adaptive channel selection and
transmission timing control for simultaneous receiving and sending in
relay-based UAV network,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4,
pp. 2840–2849, Oct. 2020.

[29] M. Y. Arafat and S. Moh, “Localization and clustering based on swarm
intelligence in UAV networks for emergency communications,” IEEE
Internet Things J., vol. 6, no. 5, pp. 8958–8976, Oct. 2019.

[30] A. Khan, F. Aftab, and Z. Zhang, “Self-organization based clustering
scheme for FANETs using glowworm swarm optimization,” Phys. Com-
mun., vol. 36, Oct. 2019, Art. no. 100769.

[31] M. R. Brust, M. I. Akbaç, and D. Turgut, “VBCA: A virtual forces
clustering algorithm for autonomous aerial drone systems,” in Proc.
Annu. IEEE Syst. Conf. (SysCon), Apr. 2016, pp. 1–6.

[32] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient
multi-UAV navigation for long-term communication coverage by deep
reinforcement learning,” IEEE Trans. Mobile Comput., vol. 19, no. 6,
pp. 1274–1285, Jun. 2020.

[33] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-
aided wireless networks: A segmented regression approach,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[34] R. Essaadali and A. Kouki, “A new simple unmanned aerial vehicle
Doppler effect RF reducing technique,” in Proc. IEEE Mil. Commun.
Conf. (MILCOM), Nov. 2016, pp. 1179–1183.

[35] P. Zhou, X. Fang, Y. Fang, R. He, Y. Long, and G. Huang, “Beam
management and self-healing for mmWave UAV mesh networks,” IEEE
Trans. Veh. Technol., vol. 68, no. 2, pp. 1718–1732, Feb. 2019.

[36] M. Thammawichai, S. P. Baliyarasimhuni, E. C. Kerrigan, and
J. B. Sousa, “Optimizing communication and computation for multi-
UAV information gathering applications,” IEEE Trans. Aerosp. Electron.
Syst., vol. 54, no. 2, pp. 601–615, Apr. 2018.

[37] A. Ghosal, S. Halder, and M. Conti, “DISC: A novel distributed
on-demand clustering protocol for internet of multimedia things,” in
Proc. 28th Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2019,
pp. 1–9.

[38] S. Hosseinalipour, A. Rahmati, and H. Dai, “Interference avoidance
position planning in dual-hop and multi-hop UAV relay networks,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7033–7048,
Nov. 2020.

[39] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-UAV assisted wireless networks: A machine learning
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7957–7969,
Aug. 2019.

[40] K. Guo, X. Li, and L. Xie, “Ultra-wideband and odometry-based
cooperative relative localization with application to multi-UAV forma-
tion control,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2590–2603,
Jun. 2020.

[41] A. Ghosal, S. Halder, and S. K. Das, “Distributed on-demand
clustering algorithm for lifetime optimization in wireless sensor
networks,” J. Parallel Distrib. Comput., vol. 141, pp. 129–142,
Jul. 2020.

[42] S. Baidya, Z. Shaikh, and M. Levorato, “Flynetsim: An open source
synchronized uav network simulator based on ns-3 and ardupilot,” in
Proc. 21st ACM Int. Conf. Model., Anal. Simul. Wireless Mobile Syst.
(MSWiM), Oct. 2018, pp. 37–45.

[43] L. Meier et al. Mavlink: Micro Air Vehicle Communication Protocol.
Accessed: Jul. 20, 2020. [Online]. Available: http://qgroundcontrol.
org/mavlink/start

[44] PHANTOM 4 PRO Data Sheet. Accessed: Jul. 15, 2020. [Online].
Available: https://www.dji.com/it/phantom-4-pro/info

http://dx.doi.org/10.1109/TWC.2021.3114234
http://dx.doi.org/10.1109/TMC.2021.3107027
http://dx.doi.org/10.1109/TMC.2021.3135894
http://dx.doi.org/10.1109/JIOT.2022.3162849
http://dx.doi.org/10.1109/JIOT.2021.3121511


1028 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2023

Subir Halder received the Ph.D. degree in computer
science and technology from the Indian Institute of
Engineering Science and Technology, India, in 2015.
He has worked as an Assistant Professor with the
Department of CSE, Dr. B. C. Roy Engineering
College, India, from 2007 to 2017. He is currently
a Marie Skłodowska Curie Fellow with the Uni-
versity of Limerick, Ireland. Prior to that, he was
a Post-Doctoral Researcher with the University of
Padua, Italy. His research interests include security
and privacy in cyber physical systems, the IoT,

autonomous vehicle, controller area network, and industry 4.0. He has coau-
thored more than 40 papers in reputed international peer-reviewed conferences
and journals in these fields.

Amrita Ghosal received the Ph.D. degree in com-
puter science and engineering from the Indian
Institute of Engineering Science and Technology,
India, in 2015. After her Ph.D. degree, she was
a Post-Doctoral Researcher with the Department
of Mathematics, University of Padua, Italy. She is
currently a Marie Skodowska-Curie Fellow with
the Department of Computer Science and Informa-
tion Systems, University of Limerick, Ireland. Her
research interests include security and privacy for
mobile and wireless networks. Particularly, she is

interested in detection, prevention, and mitigation of different DoS style
attacks for smart grid, V2X, connected vehicle, cyber-physical systems, and
the IoT. In these areas, she has published more than 40 papers in high quality
journals and refereed conference proceedings. She also has coauthored a
number of book chapters.

Mauro Conti (Fellow, IEEE) received the Ph.D.
degree from the Sapienza University of Rome,
Italy, in 2009. After his Ph.D. degree, he was
a Post-Doctoral Researcher with Vrije Universiteit
Amsterdam, The Netherlands. In 2011, he joined as
an Assistant Professor with the University of Padua,
Italy, where he became an Associate Professor in
2015 and a Full Professor in 2018. He has been a
Visiting Researcher with GMU in 2008 and 2016;
UCLA in 2010; UCI in 2012–2014 and 2017; TU
Darmstadt in 2013; UF in 2015; and FIU in 2015,

2016, and 2018. He is currently a Full Professor with the University of
Padua and an Affiliate Professor with the University of Washington, Seattle,
USA. His main research interests include security and privacy. In this area,
he has published more than 250 papers in topmost international peer-reviewed
journals and conferences. He is a Senior Member of ACM. He has been
awarded with a Marie Curie Fellowship by the European Commission in
2012 and a Fellowship by the German DAAD in 2013. His research is
also funded by companies, including Cisco, Intel, and Huawei. He is an
Area Editor-in-Chief for IEEE COMST and an Associate Editor for sev-
eral journals, including IEEE COMMUNICATIONS SURVEYS AND TUTORI-
ALS (COMST), IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY (TIFS), IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING (TDSC), and IEEE TRANSACTIONS ON NETWORK AND SER-
VICE MANAGEMENT (TNSM). He was the Program Chair of TRUST 2015,
ICISS 2016, and WiSec 2017. He was the General Chair of SecureComm
2012 and ACM SACMAT 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


