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Mengzhu Yu , Zhenjun Tang , Member, IEEE, Xianquan Zhang , Bineng Zhong ,

and Xinpeng Zhang , Member, IEEE

Abstract— Image quality assessment (IQA) is an important
task of image processing and has diverse applications, such as
image super-resolution reconstruction, image transmission and
monitoring systems. This paper proposes a perceptual hashing
algorithm with complementary color wavelet transform (CCWT)
and compressed sensing (CS) for reduced-reference (RR) IQA.
The CCWT is exploited to decompose input color image into
different sub-bands. Since the calculation of CCWT uses all color
channels without discarding any information, the distortions
introduced by digital operations on color channels are preserved
in the CCWT sub-bands. The block-based CS is used to extract
features from the CCWT sub-bands. As the Euclidean distance
between the block-based CS features is slightly influenced by
content-preserving operations, perceptual features constructed
by Euclidean distances are robust, discriminative and compact.
Hash sequence is finally determined by quantifying the perceptual
features. Effectiveness of the proposed hashing is verified by
various experiments on four open image databases. Experimental
results demonstrate that the proposed hashing is superior to some
state-of-the-art algorithms in terms of classification and RR IQA
application.

Index Terms— Image quality assessment, image hashing,
complementary color wavelet transform (CCWT), compressed
sensing (CS), Sobel operator.

I. INTRODUCTION

W ITH the advent of the big data era, the number of
images is rapidly increasing and the demands for image
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Fig. 1. A natural image and its three distorted versions.

quality assessment (IQA) have soared in many applications,
such as image super-resolution reconstruction, image trans-
mission and monitoring systems. For example, many image
acquisition systems require a useful IQA scheme to adjust
system parameters for obtaining good image quality. There-
fore, it is highly desired to grade image quality in real-time
for maintaining the required quality of service. Consequently,
it is an important task to develop efficient IQA schemes
for diverse image applications [1]–[3]. Figure 1 illustrates a
practical example of three types of image distortion, where
(a) a natural image, (b) is a compressed version after JPEG
compression, (c) is a noise version attacked by white noise,
and (d) is a blurred version after Gaussian blurring. Efficient
IQA schemes are expected to perceive distortion levels of
these images. In general, the existing schemes of objective
IQA can be classified into three kinds as follows. (i) Full-
reference (FR) IQA: The inputs are the reference image and its
distorted image. (ii) Reduced-reference (RR) IQA: The inputs
are representative information of the reference image and its
distorted image. (iii) No-reference (NR) IQA: The input is
only the distorted image. In recent years, some researchers
have proposed to solve RR IQA problem via perceptual image
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hashing [4], [5]. This paper investigates a novel perceptual
hashing algorithm for RR IQA.

Image hashing [6], [7] is a useful technology of image
processing. It can effectively extract a visual content-based
compact hash sequence from input image, which can be
used to represent the input image itself. Since compact hash
sequence has the advantages of low storage and fast calculation
of similarity, image hashing has been widely applied to image
copy detection, image retrieval, image tampering detection
and image content authentication [8]–[10]. Robustness and
discrimination are two major properties of image hashing.
Specifically, robustness requires that the hash sequence of the
original image and that of its distorted version are similar. Dis-
crimination requires that hash sequences of different images
are entirely distinct. The two properties are interrelated and
mutually constrained. An effective algorithm of image hashing
should make a desirable balance between them. In addition,
for the application of RR IQA, perceptual image hashing
must satisfy distortion sensitivity, which means that hashing
algorithm needs to perceive the level of distortion on sim-
ilar images. Note that there is a mutual constraint between
robustness and distortion sensitivity. Strong robustness will
lead to insensitivity of measuring distortion of similar image,
while high distortion sensitivity will decrease the robustness.
Therefore, it is a challenging task to develop novel perceptual
hashing algorithms with a good trade-off between robustness
and distortion sensitivity for the application of RR IQA.

Currently, most image hashing algorithms only consider suf-
ficient robustness. They often ignore distortion sensitivity, and
thus do not reach a desirable performance in the application
of RR IQA. To tackle this problem, the paper proposes a
novel perceptual hashing algorithm with complementary color
wavelet transform (CCWT) and compressed sensing (CS).
Compared with the existing hashing algorithms, there are three
contributions as follows:

(1) The CCWT is exploited to decompose input color
image into different sub-bands for extracting perceptual fea-
tures. Since the calculation of CCWT uses all color channels
without discarding any information, the distortions introduced
by digital operations on color channels are preserved in the
CCWT sub-bands. Since the low-frequency sub-bands contain
basic image information, the features extracted from these
sub-bands can distinguish images with different contents.
As the high-frequency sub-bands reflect multi-directional color
information, the color features extracted from these sub-bands
can describe image distortion on different color channels.

(2) Perceptual features are extracted from the CCWT
sub-bands via block-based CS. Since CS can directly
achieve compression coding during the sampling process, the
block-based CS features retain original feature distortion and
provide good distortion sensitivity of our hashing algorithm.
As the Euclidean distance between the block-based CS fea-
tures is slightly influenced by content-preserving operations,
perceptual features constructed by Euclidean distances are
robust, discriminative and compact.

(3) Numerous experiments with 140990 images (100350 for
robustness analysis and 40640 for discrimination evaluation)
are done to evaluate the performances of the proposed hashing

algorithm. The results demonstrate that our hashing algorithm
not only has good robustness and strong discrimination, but
also keeps a good balance between them. In addition, the LIVE
and TID2013 databases are used to validate our application
in RR IQA. The experimental results show that the proposed
algorithm outperforms some well-known IQA schemes.

The rest of this paper is organized as follows. Section II
gives a review of the related work. Section III provides
a specific description of the proposed hashing algorithm.
Section IV describes the experimental results and performance
comparisons. Our application in RR IQA is demonstrated in
Section V. Finally, Section VI gives the conclusions.

II. RELATED WORK

Various image hashing algorithms have been developed by
researchers. According to their feature extraction techniques,
the existing hashing algorithms can be categorized into the
following four types.

A. Transform Domain Based Hashing Algorithms

Robust features of these hashing algorithms are extracted
from transform domain via transform techniques. The discrete
wavelet transform (DWT), discrete cosine transform (DCT),
Fourier-Mellin transform (FMT), Log-Polar transform (LPT)
and Radon transform (RT) are popular transform techniques.
For example, Venkatesan et al. [11] first utilized a wavelet
representation of DWT to derive hash. This algorithm is
robust against normal operations, but it is insensitive to
malicious tampering. Wang et al. [12] jointly used DWT
and DCT to extract features and compressed features by
Karhunen–Loeve transformation. This algorithm is robust to
normal digital operations, except rotation. Ahmed et al. [13]
used DWT coefficients to generate the intermediate hash and
compressed it via the SHA-1 function. This algorithm can
find local tampering areas, but it is fragile to contrast and
brightness adjustment. Qin et al. [14] used non-uniform sam-
pling to extract frequency features in discrete Fourier domain.
This algorithm only make use of the luminance component
of images. Swaminathan et al. [15] encrypted features by a
key and thus designed the FMT-based hashing algorithm
for improving hash security. In [16], image features with
rotation invariance were extracted by LPT. The two algorithms
[15], [16] are both robust against rotation within 10◦.
Liu et al. [17] exploited RT and invariant features to design
a hashing algorithm. Since this algorithm contains mul-
tiple transformations, its computational complexity is not
satisfactory.

B. Visual Saliency Detection Based Hashing Algorithms

Many visual saliency detection methods have been incor-
porated into the image hashing research for improving the
performance of robustness. For instance, Monga et al. [18]
developed a hashing algorithm with visual salient feature
points. This algorithm can resist JPEG compression, but
it is not resilient to geometric distortions. Wang et al. [19]
extracted Gabor features for constructing visual system-based
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hashing. This hashing has a good classification performance,
but it is insensitive to malicious changes in small blocks.
In [20], a global Zernike moment and visual attention detection
were utilized to design a hashing algorithm for content authen-
tication. Wang et al. [21] detected visually important features
by Watson’s attention model and combined features with key
points for image content authentication. This algorithm has
good robustness, but it does not consider contrast adjustment
and watermark embedding. In [22], the Phase spectrum of
Fourier Transform (PFT) model of saliency detection and
the ring partition were both utilized to develop a hashing
algorithm. This hashing is resilient against large-angle rotation.

C. Matrix Factorization Based Hashing Algorithms

Some commonly-used dimension reduction techniques are
introduced to the research of image hashing. For exam-
ple, Kozat et al. [23] employed singular value decomposi-
tion (SVD) to derive hash for ensuring robustness. But the
robustness improvement tends to increase misclassification.
Motivated by the SVD-based hashing [23], non-negative
matrix factorization (NMF) was applied to the design of
image hashing [24]. This hashing algorithm can resist JPEG
compression and rotation. But its robustness against water-
mark embedding must be increased. The hashing algorithm
with CS and visual information fidelity was designed by
Kang et al. [25]. This algorithm demonstrates good robustness
against some operations. However, its discrimination perfor-
mance is not good. In [4], Lv and Wang extracted features
via fast Johnson-Lindenstrauss transform to generate hash
for RR IQA. This algorithm only considers the compression
distortions of JPEG and JPEG2000. In another work, tensor
decomposition is first used for designing image hashing by
Tang et al. [8]. Their hashing uses image blocks to construct
a tensor and exploits Tucker decomposition to generate hash.
However, the hashing only resists rotation with a small angle.

D. Statistical Features Based Hashing Algorithms

Different statistical approaches are adopted to extract fea-
tures in image hashing. For example, Tang et al. [26] selected
statistical features of an image ring as a feature vector and
calculated invariant distance between feature vectors for hash
generation. The ring-based algorithm can be robust to any-
angle rotation. Qin et al. [27] used three techniques to extract
features with structural information, including SVD, Canny
operator and color vector angle. This algorithm is resistant
to filtering and compression. Tang et al. [5] combined Canny
operator with Weighted DWT (WDWT) statistical features for
hash construction. This hashing provides a good measure of
perceptual image distortion. But the dataset used for validat-
ing IQA performance is small. Huang et al. [1] developed a
hashing algorithm for RR IQA of screen content images. This
algorithm utilized local features of the gradient magnitude
map and the normalized histogram for hash construction.
Recently, Singh et al. [28] combined KAZE features and
statistical features from the reference image to derive hash.
This algorithm reaches good robustness and discriminative
capabilities.

TABLE I

SUMMARY OF NOTATIONS

In addition to the algorithms mentioned above, other tech-
niques are also applied to image hashing. For instance, random
Gabor filtering (GF) and dithered lattice vector quantiza-
tion (LVQ) were jointly exploited to develop an algorithm [29].
This hashing algorithm is robust against JPEG compression
and rotation, but its discrimination is unsatisfactory. The
random walk (RW) hashing [30] was designed by adopting
zigzag blocks with RW. This hashing enhances security via
RW, but it is sensitive to rotation and translation. In [31],
sparse coding was used to find features for hash construction.
A fast discrete collaborative multimodal hashing algorithm
was developed for image retrieval [32]. This hashing preserves
high-level semantics while keeping low-level data features.

The above review shows that the current hashing algorithms
have made a considerable progress. However, most hashing
algorithms only consider sufficient robustness. They often
ignore distortion sensitivity, and thus do not reach a desirable
performance in the application of RR IQA. To tackle this prob-
lem, we design a perceptual image hashing algorithm which
can reach good classification performance and is effective in
RR IQA.

III. PROPOSED HASHING ALGORITHM

The block diagram of the proposed hashing algorithm is
depicted in Figure 2. Our hashing algorithm is composed of the
following six steps: (i) Pre-processing operations are applied to
input image, where bi-cubic interpolation is exploited to con-
vert the size of input image to U ×U , and Gaussian low-pass
filtering is used to eliminate noise. (ii) Two-level 2D CCWT
is applied to the preprocessed image, and a low-frequency
sub-band and four complementary color sub-bands are then
generated for feature extraction. (iii) Low-frequency features
are extracted from the low-frequency sub-band via block-based
CS. (iv) Multi-directional edge detection is utilized to extract
image edges from complementary color sub-bands. (v) Color
features are extracted from maximum edge gradient maps via
block-based CS. (vi) The hash sequence is constructed by
concatenating the quantized low-frequency features and color
features. Details of our hashing algorithm are described in the
below subsections. Besides, Table I summarizes the relevant
notations used in the paper.

A. 2D CCWT

The classical wavelet transform has been widely applied
to many applications, such as IQA [5], image fusion [33]
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Fig. 2. Block diagram of the proposed hashing algorithm.

and image watermarking [34]. To improve the effective-
ness of color image processing with wavelet transform,
Chen et al. [35] firstly introduced color relations based on
complementary visual theory into wavelet transform, and
thus developed an innovative tool called CCWT. When the
CCWT is used to process color image, it can focus on the
advantages of traditional wavelets without discarding color-
related information.

Complementary colors play key roles in human vision.
Generally, they are represented as a pair of colors whose
mixture is a white color. For example, white and black, red
and cyan, green and magenta, and blue and yellow are four
important pairs of complementary colors. It is known that
complementary colors can be represented in the RGB hue
ring [35], where the R, G and B axes are positioned at angles
of 0, 2π

3 and 4π
3 along the hue ring, respectively. In order to

extend R, G and B axes to wavelet domain, the 1D CCWT with
relative phase differences of 2π

3 is designed, i.e., φ(0), φ(2π/3)

and φ(4π/3). Then, referring to classical DWT, the 2D single-
channel CCWT is extended from the 1D CCWT. Specifically,
2D single-channel CCWT can be seen as the calculations
of 1D CCWT along with horizontal and vertical directions.
Since 1D CCWT has three different low-pass and/or high-
pass filters, 2D single-channel CCWT is achieved by 9 DWT
decompositions with varying phase combinations.

After decomposition, high-frequency components are avail-
able and then two-dimensional components are further cre-
ated by calculating permutation and combination. Then
the non-zero components are filtered out to obtain the
two-dimensional wavelet groups, which have approximately
eight directions n = mπ

8 (m = 1, 2, . . . , 8) and three relative
phase differences, i.e., 0, 2π

3 and 4π
3 . Therefore, the 2D single-

channel CCWT inherits the directional filtering characteristics
from the traditional wavelet and has richer directional selec-
tivity. More details of the 2D single-channel CCWT can be
referred to [35].

When the 2D single-channel CCWT is applied to color
images, the R, G and B channels are mapped to the corre-
sponding 0, 2π

3 and 4π
3 wavelet bases, respectively. To do this,

the relative phase difference wavelets φ
(0)
l,n , φ

(2π/3)
l,n and φ

(4π/3)
l,n

of the CCWT with level l and direction n are represented as
φ

(R)
l,n , φ

(G)
l,n and φ

(B)
l,n . Next, wavelet decomposition of RGB

channels is performed by them, and the obtained wavelet
coefficient vectors can be expressed as c(R)

l,n = r ∗ φ
(R)
l,n ,

c(G)
l,n = g ∗ φ

(G)
l,n and c(B)

l,n = b ∗ φ
(B)
l,n , respectively, in which r,

g and b represent the R, G and B channel vectors and ∗ is the

convolution operation. The complementary color operators are
determined by the equations (1)-(4) as follows:

1) White-Black Operator:

P(W-B)
l,n = c(R)

l,n + c(G)
l,n + c(B)

l,n (1)

2) Red-Cyan Operator:

P(R-C)
l,n = c(R)

l,n − c(G)
l,n − c(B)

l,n (2)

3) Green-Magenta Operator:

P(G-M)
l,n = c(G)

l,n − c(R)
l,n − c(B)

l,n (3)

4) Blue-Yellow Operator:

P(B-Y)
l,n = c(B)

l,n − c(R)
l,n − c(G)

l,n (4)

Note that the P(W-B)
l,n can be considered as the chroma operator

and it will be changed correspondingly when the chroma value

changes. The P(R-C)
l,n , P(G-M)

l,n and P(B-Y)
l,n reflect the changes

in three complementary colors. These four operators can be
represented uniformly in the matrix form as shown in the
equation (5).⎡

⎢⎢⎢⎣
P(W-B)

l,n

P(R-C)
l,n

P(G-M)
l,n

P(B-Y)
l,n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎣

c(R)
l,n

c(G)
l,n

c(B)
l,n

⎤
⎥⎦ (5)

In this paper, two-level 2D CCWT is applied to the pre-
processed image. Here, we take the mean of low-frequency
components as the low-frequency sub-band P(L) and the sum
of complementary color operators with l = 2 as the final
complementary color sub-bands, i.e., White-Black comple-
mentary color sub-band P(W-B)

total = ∑8
m=1

∣∣∣P(W-B)
2,mπ/8

∣∣∣, Red-Cyan

complementary color sub-band P(R-C)
total = ∑8

m=1

∣∣∣P(R-C)
2,mπ/8

∣∣∣,
Green-Magenta complementary color sub-band P(G-M)

total =∑8
m=1

∣∣∣P(G-M)
2,mπ/8

∣∣∣ and Blue-Yellow complementary color sub-

band P(B-Y)
total = ∑8

m=1

∣∣∣P(B-Y)
2,mπ/8

∣∣∣. The sizes of these sub-bands

are all Ul × Ul , in which Ul = U/2l . The CCWT coef-
ficients in the low-frequency sub-band contain approxima-
tion information of image, while the CCWT coefficients in
complementary color sub-bands contain multi-direction color
information of image. Therefore, image features extracted
from these sub-bands can not only distinguish different images
but also indicate image distortion. A visual example of two-
level 2D CCWT is presented in Figure 3, where (a) is a color
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Fig. 3. A visual example of two-level 2D CCWT. (a) is a color image,
(b) is the low-frequency sub-band of (a), and (c)-(f) are the White-Black,
Red-Cyan, Green-Magenta and Blue-Yellow complementary color sub-bands
of (a), respectively.

image, (b) is the low-frequency sub-band of (a), and (c)-(f) are
the White-Black, Red-Cyan, Green-Magenta and Blue-Yellow
complementary color sub-bands of (a), respectively.

B. Low-Frequency Feature Extraction Via Block-Based CS

The block-based CS is utilized to extract low-frequency
feature from the low-frequency sub-band. The CS theory was
proposed by Donoho [36]. The CS makes a breakthrough
from the limitations of the Nyquist sampling theorem and
enables compression coding during sampling. It has been
successfully used in various fields, such as audio, holography
and MRI [37]–[39]. Specifically, CS theory shows that as
long as the signal is sparse in the transform domain, it can
be measured by an observation matrix unrelated to transform
bases and the original signal can be reconstructed from a small
amount of sampling data. Let X ∈ R

N×N be the test image
and w be a wavelet orthogonal transform matrix sized N × N .
Thus, the sparse representation X′ of X is calculated by the
below formula [40].

X′ = wXw� (6)

where � is the transposition-conjugate operator. Next, X′ is
measured by an observation matrix � ∈ R

M×N (M < N).
Then, a measurement matrix Y with size M × N can be
represented as follows:

Y = �X′ (7)

Here, we utilize DWT to generate sparse representation X′
and use Gaussian matrix as the observation matrix. More-
over, the compression rate M/N is selected as 0.5. This is
based on the consideration that the high compression rate
cannot show the advantages of the low sampling rate of CS,
while the low compression rate increases the possibility of
losing important information.

To extract low-frequency feature via block-based
CS, we divide the low-frequency sub-band P(L) into
non-overlapping blocks with size b ×b. Let Ul be the integral
multiple of b. Thus, there are a total of F = (Ul/b)2 blocks.

Suppose that Bi (1 ≤ i ≤ F) is the i -th block. To further
calculate the relevance of information in the block, we divide
every block into two parts sized b × b/2, i.e., a left sub-block
and a right sub-block. To conduct CS, the two sub-blocks
are then converted to a squared size b × b by bi-cubic
interpolation. Let the resized left part and right part of Bi be
B(1)

i and B(2)
i , respectively. We apply CS to the two parts,

and then obtain two measurement matrices Y(1)
i and Y(2)

i as
follows:

Y(1)
i = � ′B(1)′

i (8)

Y(2)
i = � ′B(2)′

i (9)

where B(1)′
i and B(2)′

i are the sparse representations of B(1)
i

and B(2)
i obtained by DWT, � ′ is the observation matrix sized

b/2 × b, and the sizes of Y(1)
i and Y(2)

i are both b/2 × b.
To make the extracted features reflect the fluctuation of

measurement matrix elements, we select variance as the CS
feature. The variances of the two measurement matrices can
be computed by the following formulas.

e(1)
i =

∑b
u=1

∑b/2
v=1

[
Y (1)

i (u, v) − μ
Y (1)

i

]2

S − 1
(10)

e(2)
i =

∑b
u=1

∑b/2
v=1

[
Y (2)

i (u, v) − μ
Y (2)

i

]2

S − 1
(11)

where S = b2/2 is the element numbers of the Y(1)
i and Y(2)

i ,
Y (1)

i (u, v) and Y (2)
i (u, v) are the elements in the u-th row and

the v-th column of Y(1)
i and Y(2)

i , μ
Y (1)

i
and μ

Y (2)
i

are the means

of Y(1)
i and Y(2)

i , respectively. They are defined as follows:

μ
Y (1)

i
=

∑b
u=1

∑b/2
v=1 Y (1)

i (u, v)

S
(12)

μ
Y (2)

i
=

∑b
u=1

∑b/2
v=1 Y (2)

i (u, v)

S
(13)

Next, we concatenate the CS features of all left and right
sub-blocks, respectively. The block-based CS feature vectors
are available by the below formulas.

e(1) =
[
e(1)

1 , e(1)
2 , . . . , e(1)

F

]
(14)

e(2) =
[
e(2)

1 , e(2)
2 , . . . , e(2)

F

]
(15)

Considering that two CS features are extracted from every
block, we take them as a point, i.e.,

(
e(1)

i , e(2)
i

)
, and compress

features by computing the Euclidean distance from the point
to a reference point. To do so, a reference point

(
μe(1) , μe(2)

)
is constructed, where μe(1) and μe(2) are the means of e(1) and
e(2), respectively. Thus, the reference point is computed by the
below equations:

μe(1) = 1

F

F∑
i=1

e(1)
i (16)

μe(2) = 1

F

F∑
i=1

e(2)
i (17)
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The Euclidean distance from the point
(

e(1)
i , e(2)

i

)
to the

reference point
(
μe(1) , μe(2)

)
is calculated as follows:

di =
√(

e(1)
i − μe(1)

)2 +
(

e(2)
i − μe(2)

)2
(18)

Finally, the low-frequency feature sequence D1 are available
by concatenating di as follows:

D1 = [d1, d2, . . . , dF ] (19)

The low-frequency feature sequence D1 has F floating-point
numbers.

C. Multi-Directional Edge Detection

As an important visual feature, image edge is the boundary
of the area with significant local variations in brightness. It has
been widely used in many applications of computer vision
and image processing [41]–[43]. Since image edge can repre-
sent textures of image, numerous studies use edge detection
methods to improve sensitivity to image distortion. Generally,
image edge detection methods can find edge information
via gradient algorithm and thus the extracted edges contain
clear image contours and rich textures. As the complementary
color sub-bands reflect multi-directional color information, the
color features extracted from the edge of these sub-bands
can describe image distortion on different color channels.
Here, we use the multi-directional Sobel operator [44] to
extract image edge from complementary color sub-bands. Our
considerations of choosing the multi-directional Sobel operator
for edge detection are as follows. The multi-directional Sobel
operator is an improved technique of the well-known Sobel
operator by using eight directions. The edge detection with
the multi-directional Sobel operator is more accurate than the
edge detection with the classic Sobel operator. In fact, the
multi-directional Sobel operator can reach a good balance
between computational cost and accuracy of edge detection.
Moreover, the eight directions of the multi-directional Sobel
operator, i.e., n = mπ

8 (m = 1, 2, . . . , 8), coincide with
the directions of our complementary color sub-bands, which
contributes to detecting rich edge information. Specifically,
through eight 5 × 5 convolution templates, the gradients in
eight directions of each complementary color sub-band can
be calculated by the equations (20)-(27):

G π
8

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 −2 −4 −2 0

−1 −4 0 4 1
0 2 4 2 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (20)

G π
4

=

⎡
⎢⎢⎢⎢⎣

0 0 0 −1 0
0 −2 −4 0 1
0 −4 0 4 0

−1 0 4 2 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (21)

G 3π
8

=

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 −2 −4 2 0
0 −4 0 4 0
0 −2 4 2 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (22)

Fig. 4. Visual examples of the maximum gradient maps corresponding
to different complementary color sub-bands. (a)-(d) are the corresponding
maximum gradient maps of Figure 3 (c)-(f).

G π
2

=

⎡
⎢⎢⎢⎢⎣

0 −1 0 1 0
0 −2 0 2 0
0 −4 0 4 0
0 −2 0 2 0
0 −1 0 1 0

⎤
⎥⎥⎥⎥⎦ ∗ f (23)

G 5π
8

=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 −2 4 2 0
0 −4 0 4 0
0 −2 −4 2 0
0 0 −1 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (24)

G 3π
4

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 0 4 2 0
0 −4 0 4 0
0 −2 −4 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ ∗ f (25)

G 7π
8

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 2 4 2 0

−1 −4 0 4 1
0 −2 −4 −2 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (26)

Gπ =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
−1 −2 −4 −2 −1
0 0 0 0 0
1 2 4 2 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ f (27)

in which ∗ is the convolution operation, and f represents
the complementary color sub-band. For every complementary
color sub-band, we compare the absolute values of the gra-
dients in the eight convolution results, and then output the
maximum value to generate the maximum gradient map G.
Let G(p, q) be the element of G at the position (p, q). It can
be denoted as follows:

G(p, q)

= max
{∣∣∣G π

8
(p, q)

∣∣∣ ,
∣∣∣G π

4
(p, q)

∣∣∣ ,
∣∣∣G 3π

8
(p, q)

∣∣∣ ,
∣∣∣G π

2
(p, q)

∣∣∣ ,∣∣∣G 5π
8

(p, q)
∣∣∣ ,

∣∣∣G 3π
4

(p, q)
∣∣∣ ,

∣∣∣G 7π
8

(p, q)
∣∣∣ , |Gπ(p, q)|

}
(28)

Thus, the maximum gradient maps of P(W-B)
total , P(R-C)

total ,
P(G-M)

total and P(B-Y)
total can be generated by similar calculations.

Figure 4 demonstrates visual examples of the maximum gra-
dient maps corresponding to different complementary color
sub-bands.
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D. Color Feature Extraction Via Block-Based CS

To extract color features from the maximum gradient maps,
the block-based CS described in Section III-B is adopted
again. The four complementary color features are extracted
from the corresponding maximum gradient maps via the block-
based CS, and then they are concatenated to generate the final
color features. Here, take the White-Black feature extraction
for example. Firstly, we divide the maximum gradient map

of P(W-B)
total into non-overlapping blocks with k × k size. Let

Ul be the integral multiple of k. Thus, there are a total of
E = (Ul/k)2 blocks. Suppose that K j (1 ≤ j ≤ E) is
the j -th block. Then, every block is divided into two sub-
blocks, the two sub-blocks are resized, and CS is applied
to them. Next, the block-based CS features are taken as a
point and the Euclidean distance from the point to a reference
point is computed. Finally, the White-Black feature sequence
D(W-B) is available by concatenating all distances. Likewise,
the Red-Cyan feature sequence D(R-C), the Green-Magenta
feature sequence D(G-M) and the Blue-Yellow feature sequence
D(B-Y) can be extracted from the corresponding maximum gra-
dient maps, respectively. Therefore, the final color features are
available by concatenating four complementary color feature
sequences as follows:

D2 =
[
D(W-B), D(R-C), D(G-M), D(B-Y)

]
(29)

The color features D2 consist of 4E floating-point numbers.

E. Hash Construction

The extracted perceptual features from the CCWT sub-
bands, i.e., the low-frequency feature sequence D1 and the
color feature sequence D2, are combined to construct the initial
hash sequence as follows:

D = [αD1, βD2] (30)

where the parameters α and β are used to adjust the influence
of D1 and D2. Clearly, the length of D is Z = F + 4E . Let
d(t) be the t-th element of the sequence D (1 ≤ t ≤ Z). Since
d(t) is a floating-point number, d(t) is quantized to an integer
for reducing storage by the below equation.

h(t) = round[d(t) + 0.5] (31)

where round [.] is the rounding operation. The final hash is
obtained as follows:

h = [h(1), h(2), . . . , h(Z)] (32)

Consequently, the final hash h is a sequence of Z integers.

F. Hash Similarity Evaluation

We take the L2 norm to measure similarity of two image
hashes. Suppose that h1 = [h1(1), h1(2), . . . , h1(Z)] and h2 =
[h2(1), h2(2), . . . , h2(Z)] are hash sequences of two images.
The L2 norm of the two hash sequences is defined by the
following equation:

dnorm (h1, h2) =
√√√√ Z∑

t=1

[h1(t) − h2(t)]2 (33)

Fig. 5. Sample images from the used databases.

where h1(t) and h2(t) are the t-th elements of h1 and h2,
respectively. Generally, a smaller dnorm means more similar
images of the input hash sequences. Therefore, for different
images, their corresponding dnorm should be a big value.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

The parameters of the proposed hashing algorithm are set
as follows. Pre-processing operations are exploited to convert
the size of input image to 512 × 512, the low-frequency
sub-band is divided into blocks with the size 32 × 32, the
complementary color sub-bands are divided into blocks with
the size 32×32, and the weight parameters are 0.5 and 2.5, i.e.,
U = 512, b = 32, k = 32, α = 0.5 and β = 2.5. Therefore,
Z = 80. Section IV-E and Section IV-F discuss the effect
of block size selection and the effect of weight parameter
selection, respectively. Besides, two databases are selected
for comprehensive experiments. Experiments are carried out
on a computer with a 2.90 GHz Intel Core i5-10400 CPU
and 16.0 GB RAM. The coding platform is the MATLAB
R2019b and the adopted OS is Windows 10. Each of the used
databases is detailed below, where some sample images from
the databases are shown in Figure 5.

1) UCID-Based Database: It consists of 100350 color
images for robustness analysis, in which image sizes are 512×
384 or 384 × 512. Specifically, the open database UCID [45]
comprises 1338 color images. Ten types of content-preserving
operations are applied to 1338 color images by MATLAB and
StirMark [46] for generating similar images. These operations
include contrast adjustment (CA), brightness adjustment (BA),
gamma correction (GC), speckle noise (SN), 3 × 3 Gaussian
low-pass filtering (GLF) and salt and pepper noise (SPN)
which are all implemented by MATLAB, and watermark
embedding (WE), image scaling (IS), JPEG compression (JC)
and the combinational operation (CO) of rotation, cropping
and rescaling which are achieved by StirMark. Furthermore,
the detailed parameter values of these specific operations
are as follows. The used magnitudes of CA and BA are
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±20 and ±10. The selected parameter values of GC are 1.25,
1.1, 0.9 and 0.75. The used variance range of SN is from
0.001 to 0.01 in the step of 0.001. The used standard deviation
range of GLF is from 0.3 to 1.0 in the step of 0.1. The used
density range of SPN is from 0.001 to 0.01 in the step of
0.001. The used strength range of WE is from 10 to 100 in
the step of 10. The selected ratios of IS are 2.0, 1.5, 1.1, 0.9,
0.75 and 0.5. The used quality factor range of JC is from 30 to
100 in the step of 10. The used rotation angles of CO are
±5◦, ±4◦, ±3◦, ±2◦ and ±1◦. As there are 74 operations in
total, 74 similar versions generated from each color image are
obtained. Consequently, there are 74 × 1338 = 99012 pairs of
similar images and a total of 99012 + 1338 = 100350 images
for robustness analysis.

2) Test Set of COCO 2017 Database: This dataset [47]
comprises 40640 color images for discrimination evaluation.
It can be observed that the color images in this database
contain a variety of contents, such as human beings, animals,
buildings, sports, natural scenes, and man-made objects. This
database can generate 40640 hash sequences of different
images. Thus, hash similarity is computed and then C2

40640 =
40640 × (40640 − 1)/2 = 825784480 L2 norms in total are
obtained.

3) Evaluation Criterion: To effectively evaluate the clas-
sification performance of our hashing algorithm in terms of
robustness and discrimination, we adopt the famed tool called
ROC graph [48] as the evaluation criterion. In the ROC
graph, false positive rate and true positive rate are viewed
as a set of points with coordinates for plotting the ROC
curve. For hashing algorithms, the false positive rate indicates
discrimination and the true positive rate represents robustness.
The equations of the true positive rate Rt and the false positive
rate R f are given as follows:

Rt = ncorrect

Nsimilar
(34)

R f = nwrong

Ndifferent
(35)

in which ncorrect is the number of correctly identified sim-
ilar images, nwrong is the number of wrongly distinguished
different images, Nsimilar and Ndifferent are the number of
similar images and different images, respectively. Clearly,
good performance of a hashing algorithm means a high Rt and
a low R f . This implies that in the ROC graph, the curve closer
to the top-left corner has better performance. For the Area
Under the Curve (AUC), its value range is [0, 1]. Therefore,
the larger the AUC, the higher the classification accuracy.

B. Robustness Analysis

To analyse the robustness of our hashing algorithm, the
experiment is carried out on the UCID-based database.
In detail, we evaluate hash similarity between 99012 pairs of
similar images with L2 norm. Generally, small L2 norms of
similar image pairs demonstrate that the hashing algorithm
can correctly identify similar images. The mean L2 norms
under different parameters of content-preserving operations are
displayed in Figure 6. The x-axis of the figure represents the
used parameter of the specific operations, and the y-axis of the

TABLE II

STATISTICAL RESULTS OF L2 NORM UNDER DIFFERENT OPERATIONS

figure indicates the mean L2 norm. It can be noticed that the
mean L2 norms under different operations are smaller than 60,
except the CO as shown in Figure 6 (j). In addition, it is
found that the mean L2 norms are small and change slightly
in Figures 6 (c), (d), (g) and (i). These results demonstrate
that our hashing algorithm is robust enough against SN,
SPN, JC and IS. The mean L2 norm of CO is larger than
those of other operations because the CO introduces multiple
distortions. All averages of the mean L2 norms are smaller
than 60, indicating that our hashing algorithm can resist
content-preserving operations.

Furthermore, we tabulate the maximum, minimum, mean
and standard deviation of L2 norm under all operations in
Table II. It is clearly seen that the means of all operations are
smaller than 40, except the CO. In addition, most statistical
results of L2 norm are small, implying that the proposed
hashing algorithm can effectively identify similar images.
To further understand the identification accuracy, we calculate
the correct detection rate of similar images under different
thresholds. Specifically, when the threshold T = 50, 91.37%
similar images are accurately identified. And our hashing
algorithm can successfully identify 98.77% or 99.96% similar
images when T = 90 or T = 150, respectively. These
results illustrate that our hashing algorithm can maintain a high
correct detection rate which satisfies the need for excellent
robustness.

C. Discrimination Evaluation

The test set of COCO 2017 database is adopted to evaluate
discrimination performance of our hashing algorithm. Simi-
larly, we evaluate hash similarity between 825784480 pairs
of different images with L2 norm. The distribution of all
L2 norms is depicted in Figure 7, where the x-axis of this
figure is the L2 norm and the y-axis of this figure is the
corresponding frequency. The statistical results show that the
minimum and maximum of all L2 norms are 22.83 and 879.83,
respectively. The standard deviation and mean of all L2 norms
are 50.68 and 214.37, respectively. It can be seen that there
is a great difference between the mean L2 norm of different
images and the mean L2 norm of similar images, which
demonstrates that our hashing algorithm has good discrimina-
tion. However, the minimum L2 norm of different images is
smaller than the maximum L2 norm of similar images. This
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Fig. 6. L2 norm results under content-preserving operations.

TABLE III

DETECTION PERFORMANCES UNDER DIFFERENT THRESHOLDS

Fig. 7. Distribution of 825784480 results of L2 norm.

indicates that there is a certain classification error between
different images and similar images. The correct detection
rate (CDR) and false detection rate (FDR) of our hashing
algorithm under different thresholds are tabulated in Table III,
where CDR is the indicator of robustness, and FDR is the
indicator of discrimination. Obviously, FDR decreases with
the decrease of the threshold. A small threshold means a low
probability of classifying different images into similar ones,
indicating good discrimination. However, since robustness and
discrimination are mutually constrained, CDR also decreases.

Therefore, a proper threshold should be selected to balance
the discrimination and robustness according to the practical
application.

D. Hash Storage

To calculate the cost of storing a hash sequence, we use
the test set of COCO 2017 database in the discrimination
experiment as the data source. As our hash sequence consists
of 80 integers, the total number of 80×40640 = 3251200 ele-
ments is generated from 40640 color images by our hashing
algorithm. Statistical results of 3251200 hash elements are
as follows. The minimum and maximum element values are
1 and 481, respectively. Obviously, 9 bits can represent an
integer in the range of 0 to 29 − 1 = 511. Consequently, one
hash element storage requires 9 bits, and the storage cost of
our hash is 80 × 9 = 720 bits in binary form.

E. Block Size Selection

Considering the importance of the block-based CS in our
hashing algorithm, we discuss the effect of different block
sizes on classification performances. Note that b represents
block size on the low-frequency sub-band and k represents
block size on the maximum gradient maps. Here, we only
change b and k and keep other parameters constant. The
used block sizes are selected from b ∈ {16, 32, 64} and
k ∈ {32, 64}. We do not select k = 16 because the hash
length is too long under this parameter value. Therefore, there
are six combinations of the block sizes as follows: (1) b = 16,
k = 32; (2) b = 16, k = 64; (3) b = 32, k = 32;
(4) b = 32, k = 64; (5) b = 64, k = 32; (6) b = 64,
k = 64. The hash lengths of these six combinations are
128, 80, 80, 32, 68 and 20, respectively. The UCID-based
database and the test set of COCO 2017 database are taken to
generate ROC curves, i.e., the calculation of Rt and R f under
a set of thresholds by using 99012 pairs of similar images
and 825784480 pairs of different images. Figure 8 illustrates
ROC curves under different combinations of block sizes. It is
observed that the first two curves close to the top-left corner
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Fig. 8. ROC curves under different combinations of block sizes.

are almost overlapping, i.e., b = 16, k = 32 and b = 32,
k = 32, meaning that they have similar good classification
performance. Nevertheless, for the storage cost, the hash
length of b = 32 and k = 32 is shorter than that of b = 16 and
k = 32. Taken together, when b = 32 and k = 32, the best
performance of the proposed algorithm can be achieved in
terms of classification and hash storage.

F. Selection of Weight Parameters

Apart from the block size, the weight parameters are another
important factors influencing the performance of our hashing
algorithm. Note that the final hash sequence consists of two
main components, where D1 represents low-frequency fea-
tures and D2 indicates color features. The weight parameters
α and β are used to adjust the contributions of D1 and D2 in
classification performance. We still only change α and β and
keep other parameters constant.

Considering that the influences of content-preserving oper-
ations mainly concentrate on high-frequency sub-bands and
the changes of low-frequency sub-bands are slight, we reduce
the importance of D1 and enhance the importance of D2 for
balancing their contributions. Specifically, the values adopted
for α are 0, 0.3, 0.5, 0.7 and 1, and the values adopted for β
are 1, 1.5, 2, 2.5 and 3. The AUCs of our hashing algorithm
with different values of α and β are calculated for evaluat-
ing classification performance. The results are displayed in
Table IV. To make easy comparison, the AUC results under
different weight parameters are visually plotted in the Figure 9.
Notice that the parameter selection of α = 0 and β = 1 means
that the final hash is only composed of color features. For
α = 1, as the β value increases, the AUC also increases
and reaches the maximum value when β = 2.0 or β = 2.5.
This indicates that color features have a positive effect on
classification performance. Overall, all AUCs are bigger than
0.99900. Therefore, we can select suitable weight parameters
according to the specific performance requirement of the
application. In this paper, the target application of our hashing
algorithm is RR IQA. Since D2 helps to improve perceptual
sensitivity, the best result is generated with α = 0.5 and
β = 2.5 for the application of RR IQA.

TABLE IV

AUC COMPARISONS UNDER DIFFERENT WEIGHT PARAMETERS

Fig. 9. Visual results of AUC under different weight parameters.

Fig. 10. ROC performance comparison among different algorithms.

G. Performance Comparison Among Different Algorithms
The superior performance of our hashing algorithm is

demonstrated by making comparisons with some advanced
hashing algorithms, such as PFT-RP algorithm [22], WDWT
algorithm [5], SVD-CVA algorithm [27], RW algorithm [30]
and GF-LVQ algorithm [29]. The UCID-based database and
the test set of COCO 2017 database are deployed to validate
performances. All images are converted to 512 × 512 before
they are input to the compared hashing algorithms. Here the
parameter settings and similarity metrics of these compared
algorithms are consistent with those of their original papers.
More specifically, for the similarity metric, PFT-RP algo-
rithm adopts the L1 norm, WDWT algorithm and SVD-CVA
algorithm adopt the L2 norm, RW algorithm and GF-LVQ
algorithm adopt the normalized Hamming distance. The exper-
imental results of our hashing algorithm with b = 32, k = 32,
α = 0.5 and β = 2.5 are chosen for comparison.

Classification performances of different hashing algorithms
are demonstrated in an ROC graph. Specifically, the ROC
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TABLE V

ALGORITHM PERFORMANCE COMPARISON

curves of the proposed hashing algorithm and the compared
algorithms are all displayed in Figure 10. According to this
figure, we can observe that the curves of all algorithms are near
the top-left corner of the ROC graph, and our curve is closer
than those of other algorithms. Table V lists the AUC values
of different algorithms. The AUC values of the proposed
algorithm, PFT-RP algorithm, WDWT algorithm, SVD-CVA
algorithm, RW algorithm and GF-LVQ algorithm are 0.99986,
0.99623, 0.99920, 0.99697, 0.97500 and 0.97048, respectively.
Obviously, the AUC value of the proposed algorithm is the
largest one, demonstrating that our hashing algorithm has bet-
ter classification performance than other algorithms. Our hash-
ing algorithm can achieve better classification performance.
This is mainly contributed by the uses of CCWT and CS. The
calculation of CCWT exploits all color channels without dis-
carding any information. Since the low-frequency sub-bands of
CCWT contain basic image information, the features extracted
from these sub-bands can distinguish images with different
contents. In addition, CS can directly achieve compression
coding during the sampling process. As the Euclidean distance
between the block-based CS features is slightly influenced by
content-preserving operations, perceptual features constructed
by Euclidean distances are robust, discriminative and compact.

Moreover, the computational time and hash length of these
hashing algorithm are reported in Table V, where the com-
putational time is measured by the mean time of producing
a hash sequence. The computational time of the proposed
algorithm, PFT-RP algorithm, WDWT algorithm, SVD-CVA
algorithm, RW algorithm and GF-LVQ algorithm are 0.22,
0.07, 0.35, 8.70, 0.05 and 0.58 seconds, respectively. The
proposed algorithm is faster than WDWT algorithm, SVD-
CVA algorithm and GF-LVQ algorithm. The hash lengths of
the proposed algorithm, PFT-RP algorithm, WDWT algorithm,
SVD-CVA algorithm, RW algorithm and GF-LVQ algorithm
are 720, 459, 640, 3328, 144 and 120 bits. Our length is much
shorter than that of SVD-CVA algorithm, but it is longer than
those of other algorithms.

V. APPLICATION IN REDUCED-REFERENCE IMAGE

QUALITY ASSESSMENT

In many practical applications, when similar versions of
the original image are correctly identified, the assessment of
perceptual image quality is then needed. IQA is an increas-
ingly significant issue [49], [50]. RR IQA is a branch of IQA
and it assesses the distortion level of an image by extracting
its content representation. Therefore, RR IQA requires three
conditions as follows: (i) Provide a content-based image

representation; (ii) Perceive the level of distortion on similar
images; (iii) Predict score relevant to the visual quality of
image. Coincidentally, perceptual image hashing satisfies these
conditions. It can produce a visual content-based sequence
from image and has the ability of sensitivity for measuring
various image distortions. Thus, perceptual image hashing can
be used for RR IQA. When our hashing algorithm is applied
to the RR IQA, the specific process is as follows. At the
sender’s side, the hash of the reference image is generated by
our hashing algorithm and then it is sent to the receiver via
auxiliary channel. Meanwhile, the reference image is also sent
to the receiver through transmission channel. At the receiver’s
side, the distorted version of the reference image and the hash
of the reference image are both received. Next, the hash of
the distorted image is extracted by our hashing algorithm.
Finally, objective score is obtained by calculating the L2 norm
between the received hash and the extracted hash. To validate
the effectiveness of our hashing algorithm in RR IQA, two
databases are adopted to compare the IQA performance with
different schemes in terms of some well-known evaluation
criteria.

A. Experimental Databases and Evaluation Criteria

1) Experimental Databases: Two image databases are used
to verify our application in RR IQA. The first database called
LIVE [51] consists of 779 distorted versions of 29 reference
images with 5 distortion types. These distorted versions con-
tain 145 white noisy images, 175 JPEG compressed images,
169 JPEG2000 compressed images, 145 Gaussian blurred
images and 145 fast-fading Rayleigh channel noisy images.
The LIVE database provides the differential mean opinion
score (DMOS) of subjective score. The second database
called TID2013 [52] consists of 25 reference images and its
3000 distorted versions with 24 distortion types. The TID2013
database provides the mean opinion score (MOS) of subjective
score.

2) Evaluation Criteria: Four objective performance evalu-
ation criteria are adopted to evaluate the correlation between
objective predicted scores and subjective scores, i.e., Spearman
Rank-order Correlation Coefficient (SRCC), Pearson Linear
Correlation Coefficient (PLCC), Kendalls Rank-order Corre-
lation Coefficient (KRCC) and Root Mean Squared Error
(RMSE), where PLCC and RMSE indicate accuracy and
consistency of predictions, respectively, and SRCC and KRCC
reflect monotonicity. Let W be the number of distorted images,
xi be the converted objective predicted score of the i -th image
after nonlinear regression, and yi be the subjective score of
the i -th image. Then, these performance criteria are defined
as follows:

SRCC = 1 − 6
∑W

i=1 s2
i

W
(
W 2 − 1

) (36)

PLCC =
∑W

i=1 (xi − μx)
(
yi − μy

)
√∑W

i=1 (xi − μx )
2 (

yi − μy
)2

(37)

KRCC = 2 (Wcon − Wdis)

W (W − 1)
(38)
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TABLE VI

IQA PERFORMANCE COMPARISONS ON DIFFERENT DATABASES

RMSE =
√√√√ 1

W

W∑
i=1

(xi − yi )
2 (39)

where si presents the difference between the ranks of the
i -th image in subjective and objective predicted evaluations,
μx and μy are the means of all xi and yi , respectively, Wcon
and Wdis are the numbers of concordant and discordant pairs
in the database, respectively. Clearly, good performance of an
IQA scheme means the values near 1 for SRCC, PLCC and
KRCC, and the RMSE value close to 0. Moreover, two average
measures, i.e., the directed average and the weighted average,
can be both determined by the equation (40).

AVE =
∑O

j=1 v jω j∑O
j=1 ω j

(40)

where O represents the number of databases, and v j indicates
one of SRCC and PLCC values in the j -th database. As for
the directed average, ω j = 1. As for the weighted average,
ω j represents the number of images in the j -th database, i.e.,
ω1 = 779 and ω2 = 3000.

B. RR IQA Performance Analysis

1) Whole Performance Comparison: In order to illustrate
the advantage of the proposed hashing algorithm in RR IQA,
we compare it with some popular IQA schemes, including
two FR IQA schemes, i.e., PSNR [49] and SSIM [53], and
four RR IQA schemes, i.e., WDWT [5], FSI [50], OSVP [54]
and WNISM [55]. We summarize whole performance among
different IQA schemes on the LIVE and TID2013 databases.
Table VI displays the calculated IQA results, where the best
performance results of FR IQA schemes and RR IQA schemes
are highlighted in bold, respectively. It can be observed that the
SSIM has the best results in FR IQA and our hashing algorithm
has the best results in RR IQA. For the compared RR IQA
schemes, our hashing algorithm achieves the biggest SRCC,
PLCC, KRCC and the smallest RMSE on the LIVE database.
Clearly, our hashing algorithm achieves better RR IQA per-
formance than other RR IQA schemes on the LIVE database.

Specifically, the SRCC, PLCC, KRCC and RMSE values of
the proposed hashing algorithm on the LIVE database are
0.9006, 0.8998, 0.7231 and 11.9180, respectively. The results
demonstrate that the proposed hashing algorithm is superior
to the compared RR IQA schemes and it is also better than
the well-known FR IQA scheme called PSNR. Similarly, for
the TID2013 database, the SRCC, PLCC, KRCC and RMSE
values of our hashing algorithm are 0.6906, 0.6955, 0.5152 and
0.8907, respectively. It can be found that the SRCC and KRCC
values of our hashing algorithm achieve the best performance
among all RR IQA schemes and they are larger than those of
PSNR. Note that WDWT is a useful image hashing designed
for RR IQA, which exploits traditional 2D DWT to extract
features from the luminance component of color image (some
channels are discarded). The proposed hashing algorithm is
better than WDWT on the LIVE database for all criteria. As to
the TID2013 database, the PLCC and RMSE values of the
proposed hashing algorithm is slightly worse than those of
WDWT. But they are better than those of FSI and WNISM,
illustrating good IQA performance. Therefore, the whole IQA
performance of the proposed hashing algorithm is better than
that of WDWT. This is due to the fact that the proposed
hashing algorithm uses CCWT to exploit all information
for perceptual feature extraction, but WDWT discards some
channels during feature extraction. The SSIM has better IQA
performance than our hashing algorithm on all databases. This
is because SSIM is a FR IQA scheme which can exploit all
information of the reference image to assess image quality.
But our hashing algorithm is an RR IQA scheme which
can only access partial information of the reference image.
In some applications, full information of the reference image
is unavailable. In this case, an RR IQA scheme instead of a
FR IQA scheme can be used for assessing image quality.

To further examine the whole performance of the proposed
hashing algorithm, the directed average and weighted average
of SRCC and PLCC are illustrated in Table VI. It is obvious
that the proposed hashing algorithm has bigger SRCC values
in both directed average and weighted average than other RR
IQA schemes. For PLCC, our weighted average is bigger



YU et al.: PERCEPTUAL HASHING WITH COMPLEMENTARY COLOR WAVELET TRANSFORM AND CS FOR RR IQA 7571

TABLE VII

SRCC VALUES UNDER INDIVIDUAL DISTORTION TYPE ON THE LIVE AND TID2013 DATABASES

than those of all compared RR IQA schemes, except that of
WDWT, and it is also bigger than that of PSNR. In summary,
our hashing algorithm achieves promising results in terms
of the directed average and weighted average over the two
databases.

2) Scatter Plots: The scatter plots of subjective scores
versus objective prediction scores for different IQA schemes
on the LIVE database are displayed in Figure 11, where a blue
“+” indicates one test image, and red curves are the fitted
curves estimated by the logistic regression analysis [56]. The
LIVE database provides subjective scores (i.e., DMOS) and
the IQA schemes generate objective prediction scores. The
representative IQA schemes include PSNR [49], WDWT [5],
FSI [50], OSVP [54], WNISM [55] and the proposed hashing
algorithm. As can be seen from the Figure 11, the points
of the proposed hashing algorithm concentrate around the
fitted curve, indicating that the objective prediction scores of
our hashing algorithm have better consistency with subjective
scores than those of the compared IQA schemes.

3) Individual Distortion Comparison: To further compre-
hensively verify RR IQA performance, the predicted ability of
the proposed hashing algorithm for individual distortion types

is demonstrated. Here, we give the SRCC among all evaluation
criteria. This is because the SRCC indicates the convergency
and monotonicity between subjective and objective predicted
evaluations. Table VII lists SRCC values under individual
distortion types on two databases. For simplicity, the best
results in FR IQA and RR IQA schemes are highlighted in
bold, respectively. It can be found that SSIM and PSNR in
FR IQA scheme are marked 14 and 15 times, respectively.
The proposed algorithm is marked 17 times, ranked first in
RR IQA schemes. More concretely, there are 11 kinds of
noise distortions on the two databases. Compared with other
RR IQA schemes, our hashing algorithm reaches the best
results in these noise distortions, except for three kinds of
noises, i.e., fast-fading noise, impulse noise and masked noise.
Furthermore, our hashing algorithm outperforms the classical
FR-IQA schemes, i.e., PSNR and SSIM, in many distortion
types, such as lossy compression of noisy images, quanti-
zation noise, comfort noise and change of color saturation.
Consequently, it is further confirmed that the proposed hashing
algorithm reaches the advanced performance for individual
distortion types. The proposed hashing algorithm achieves
a better IQA performance of individual distortions than the
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Fig. 11. Comparison of scatter plots on the LIVE database.

compared schemes. This can be understood as follows. The
calculation of CCWT uses all color channels without discard-
ing any information and thus the distortions on color channels
are well preserved in the CCWT sub-bands. Therefore, our
color features extracted from these sub-bands can effectively
describe image distortion on color channels.

VI. CONCLUSION

An effective image hashing algorithm with CCWT and
CS has been presented in this paper, which reaches good
performances of classification and RR IQA application. A key
contribution is the use of CCWT to decompose input color
image into different sub-bands. Since the calculation of CCWT
uses all color channels without discarding any information, the
distortions of color channels are preserved in the CCWT sub-
bands. Another major contribution is the perceptual feature
extraction from the CCWT sub-bands by the block-based CS.
As the Euclidean distance between the block-based CS fea-
tures is slightly influenced by content-preserving operations,
feature construction by Euclidean distances can guarantee
robust, discriminative and compact. Numerous experiments
have been done for verifying the efficiency of our hashing
algorithm. The results have demonstrated that our hashing
algorithm can achieve a desirable classification performance.
Besides, the results of experiments on two open databases have
validated the superiority of our hashing algorithm in RR IQA
application.
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