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Abstract— Reversible data hiding in encrypted images
(RDHEI) is an effective technique of data security. Most state-
of-the-art RDHEI methods do not achieve desirable payload yet.
To address this problem, we propose a new RDHEI method with
hierarchical embedding. Our contributions are twofold. (1) A
novel technique of hierarchical label map generation is proposed
for the bit-planes of plaintext image. The hierarchical label map
is calculated by using prediction technique, and it is compressed
and embedded into the encrypted image. (2) Hierarchical embed-
ding is designed to achieve a high embedding payload. This
embedding technique hierarchically divides prediction errors into
three kinds: small-magnitude, medium-magnitude, and large-
magnitude, which are marked by different labels. Different from
the conventional techniques, pixels with small-magnitude/large-
magnitude prediction errors are both used to accommodate secret
bits in the hierarchical embedding technique, and therefore con-
tribute a high embedding payload. Experiments on two standard
datasets are discussed to validate the proposed RDHEI method.
The results demonstrate that the proposed RDHEI method
outperforms some state-of-the-art RDHEI methods in payload.
The average payloads of the proposed RDHEI method are
3.4568 bpp and 3.6823 bpp for BOWS-2 dataset and BOSSbase
dataset, respectively.

Index Terms— Reversible data hiding, encrypted images, loss-
less compression, hierarchical embedding, high payload.

I. INTRODUCTION

W ITH the rapid development of cloud computing and
cloud storage, the amount of multimedia data uploaded

to cloud server has increased rapidly. Meanwhile, multimedia
data is confronted with security issues, such as confidentiality,
authentication and integrity. Therefore, protection of multi-
media data has become an important task [1]–[5]. Currently,
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data hiding and data encryption are two effective techniques
adopted to address the protection of multimedia data. This
work mainly focuses on data hiding technique.

Data hiding system consists of two entities, namely cover
image and secret data. The conventional data hiding aims to
embed secret data into cover image with small distortion.
It focuses on correct extraction of secret data, but ignores
recovery of original cover image. However, in some applica-
tions, such as medical image processing and law enforcement,
the original cover image is required to be recovered without
error. For this demand, reversible data hiding (RDH) is pro-
posed to recover both secret data and cover image losslessly.
Most existing RDH algorithms are mainly based on lossless
compression [6], [7], difference expansion (DE) [8], [9], his-
togram shifting (HS) [10]–[12] and prediction error expansion
(PEE) [13]–[19]. These RDH algorithms usually exploit spatial
correlation among local pixels to embed secret data, such as
the statistical or prediction errors of pixel pairs. These algo-
rithms can be used in plaintext images, but they are not suitable
for encrypted images because pixels of encrypted image are
uncorrelated.

In recent years, researchers proposed RDH algorithms for
the application of encrypted images. Generally, RDH in
encrypted image (RDHEI) aims to protect both the original
images and secret data simultaneously. There are three users
in RDHEI: content-owner, data-hider and receiver. A content
owner encrypts original image according to encryption key
and uploads it to the server. The data-hider embeds secret
data into the encrypted image by using data-hiding key and
he/she cannot access original image content without encryp-
tion key. The receiver is able to access original image, secret
data, or both under specific authority. There are mainly two
RDHEI frameworks, namely reserving room before encryption
(RRBE) [20]–[27], vacating room after encryption (VRAE)
[28]–[42]. A good RDHEI is expected to make a trade-off
among three performances, i.e., payload, error rate of the
extracted bits, and visual quality of the reconstructed image.
However, most previous methods have limitations in these
performances, such as low payload, errors in data extrac-
tion or image reconstruction, unsatisfied image quality under
high embedding payload.

To address the above problems, we propose a new RDHEI
method based on hierarchical embedding. The proposed
RDHEI method is error-free and can reach a high payload.
The main contributions of our work are summarized as
follows.
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(1) A novel technique of hierarchical label map generation is
proposed for the bit-planes of plaintext image. The hierarchical
label map is calculated before image encryption by using
prediction technique. During data embedding, it is firstly
compressed and then embedded into the encrypted image.
In addition, it is also used to assist exact data extraction and
image recovery.

(2) Hierarchical embedding is designed to achieve a high
embedding payload meanwhile full reversibility is guaranteed.
The presented embedding technique hierarchically divides
prediction errors into three kinds: small-magnitude, medium-
magnitude, and large-magnitude, which are marked by dif-
ferent labels. Conventional methods usually exploit those
pixels with small-magnitude prediction errors to conduct data
hiding and discard the pixels with medium-magnitude or large-
magnitude prediction errors. Different from the previous tech-
niques, the pixels with small-magnitude prediction errors and
the pixels with large-magnitude prediction errors are both used
to accommodate secret bits in our hierarchical embedding
technique, and therefore contribute a high embedding payload.

(3) Many experiments on two standard datasets are dis-
cussed to validate the proposed RDHEI method. The results
demonstrate that the proposed RDHEI method outperforms
some state-of-the-art RDHEI methods in payload. The average
payloads of the proposed RDHEI method are 3.4568 bpp and
3.6823 bpp for BOWS-2 dataset and BOSSbase dataset,
respectively.

The rest of this paper is organized as follows. Section II
reviews the related work of current popular RDHEI methods.
Section III explains the proposed RDHEI method in detail.
Section IV discusses the experimental results and performance
comparisons. Section V concludes this paper.

II. RELATED WORK

State-of-the-art RDHEI methods can be divided into two
categories. They are RRBE (Reserving Room Before Encryp-
tion) and VRAE (Vacating Room After Encryption). RRBE
based methods take advantage of redundant information in
plaintext domain to obtain embedding room before image
encryption. Prior to encryption, the original image is pre-
processed by the content owner to release some room to
accommodate data. For example, a pioneer RRBE method is
proposed by Ma et al. [20]. In their method, the image is
first divided into two parts and then the LSB-planes of one
part is embedded into the other part by using a standard RDH
method to achieve image self-embedding before encryption.
The released room of LSB-planes can accommodate secret
data. Zhang et al. [21] used an estimation technique to
reserve room before encryption. A small portion of the pixels
is estimated via a large portion of pixels in the original
image. Then secret data can be embedded by modifying
the estimation errors. Cao et al. [22] adopted patch-level
representation to reserve room for embedding data. They used
sparse coefficients to represent the original image according to
an over-complete dictionary. In addition, the generated residual
errors are encoded and then self-embedded into the cover
image. The dictionary is required to be embedded into the

encrypted image. Due to the powerful ability of sparse coding
representation, a large amount of embedding room can be
reserved. Zhang et al. [23] took advantage of a public-key
cryptosystem with probabilistic and homomorphic properties
to design a lossless data hiding method and an RDH method.
In the reversible method, the histogram of the original image
is firstly shrunk before encryption and then the original image
is encrypted with an additive homomorphic cryptosystem. The
encrypted image is marked with the bits of the secret message
and error-correction codes. In the lossless method, the data
embedding is then performed using multilayer wet paper
coding. In [24], a pair of adjacent original pixels is transformed
into a pair of odd or even pixels using DE technique [8],
and then the transformed pixel pair is encrypted by Paillier
encryption with additive homomorphism. One secret bit is
added on one encrypted pixel of pair. During extraction, if the
pair of pixels are both even or odd, a bit “0” can be extracted.
Otherwise, a bit “1” can be obtained. Their payload is closed
to 0.5 bpp. However, the use of Paillier encryption suffers
from data expansion and brings about large storage cost.
In [25], the original image is pre-processed by prediction
technique before encryption. Secret data is embedded into the
encrypted image with additive homomorphism. Data extraction
and image recovery can be performed according to additive
homomorphism. To further improve embedding capacity, some
researchers introduced compression technique into RDHEI.
For example, Yi and Zhou [26] proposed a binary-block
embedding (BBE) method for binary image data hiding which
efficiently encodes sparse blocks to reserve room. And they
applied BBE to image with 8 bit-planes. The low bit-planes
are embedded into the high bit-planes so that the room of low
bit-planes is released to accommodate secret data. In [27],
a block-based MSB plane rearrangement (BMPR) scheme is
designed to transform the MSB planes of the original image
into high compressible bit streams before encryption, and
then an extended run-length coding is used to compress the
transformed bit streams with high compression ratio so as to
vacate a large amount of room. The RRBE-based methods
can achieve good embedding performance, but they require
extra pre-processing before image encryption, which increases
computational cost for the content owner.

VARE based methods use the standard image encryption
algorithm, such as AES, RC4 encryption or specific encryption
algorithms, to directly encrypt the original image and do not
require extra pre-processing before image encryption. After
encryption, data hider modifies the encrypted pixels to embed
secret data. Early VARE based methods directly encrypt the
original image with stream cipher. For example, in [28], [29],
the original image is firstly encrypted by using the stream
cipher according to the encryption key and then the encrypted
image is divided into several blocks. Three least significant
bits (LSB) of a half of pixels of each block are flipped to
embed one secret bit. The receiver can extract secret data
and recover image by using a fluctuation function. These
algorithms may suffer from incorrect data extraction and image
recovery, especially for non-smoothness blocks when the block
size is relatively small. To reduce extraction error rate, Liao
and Shu [30] exploited the locations of different pixels of
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a block to design a new measure of block complexity for
data extraction and image restoration. Qin and Zhang [31]
flipped the LSBs of fewer pixels by an elaborate selection
mechanism so as to improve visual quality of decrypted image.
In the above methods, encryption key and data-hiding key must
be both known during data extraction and image recovery.
In order to separate data extraction and image recovery, Zhang
[32] first introduced a separable RDHEI method. An original
image is encrypted by using the stream cipher. The LSBs
of the encrypted image are compressed to vacate room for
data embedding. Image decryption and data extraction can be
performed independently. To increase the size of embedding
room, distributed source coding is employed to obtain com-
pression room of encrypted image for data embedding [33].
Wu and Sun [34] embedded secret bits into the encrypted
image with most significant bit (MSB) replacement technique.
At the receivers side, prediction technique is utilized to extract
data and recover original image.

Although stream cipher is able to provide confidential-
ity for original image, it disorganizes spatial pixel correla-
tion and there is almost no redundant information in the
encrypted image. Consequently, it is quite difficult to vacate
room from the encrypted image created by stream cipher.
To make high embedding capacity, some researchers are
inclined to design specific encryption which can both provide
confidentiality for original image and remain the redundancy
within the encrypted image. Since spatial redundancy exists
in the encrypted image, specific encryption based method
can achieve better embedding performance than the stream
cipher based VARE method. For example, Huang et al. [35]
proposed a new framework for RDHEI. The encryption in this
framework consists of specific stream encryption and block
permutation. The original image is divided into several blocks
and the blocks are scrambled to change pixel position. Then
all pixels of block are encrypted by stream encryption using
the same key to change pixel values so that the redundancy
within each block is available. By this encryption, difference
histogram or prediction error histogram can be generated for
data hiding. Di et al. [36] adopted the encryption framework
[35] to encrypt original image. Bit-planes of encrypted pixels
are divided into two components and the HS is adopted for
data hiding in these two components according to the bit-
plane parameter. In [37], the original image is divided into
blocks sized 2 × 2 and all pixels of block are encrypted by
mod 256 with the same key. The pixel value ordering (PVO)
strategy is exploited for data hiding in each block. Tang et al.
[38] adopt block-based encryption to transfer spatial correla-
tion between neighboring pixels of plaintext image into the
encrypted image. The differences among encrypted pixels are
compressed to vacate room for data hiding. In [39], block per-
mutation and encryption with stream cipher are used to encrypt
original image by content owner. With redundant information
of MSB bit-planes, adaptive block encoding is then conducted
to vacate room according to occurrence frequency of MSB and
Huffman coding. In [40], [41], redundant space of the original
image is transferred to the encrypted image by disordering bit-
planes while pixel values are changed for confidentiality. Then
block permutation is utilized to enhance security further. Due

to redundant space within the encrypted image, image blocks
can be compressed by efficient sparse code to vacate room for
data hiding. Yi and Zhou [42] introduced a data embedding
method by using parametric binary tree labeling scheme
(PBTL-DE) and applied the PBTL-DE to the encrypted image
generated by block permutation and block encryption with
same key for achieving high payload.

Recently, researchers pay much attention to RDHEI meth-
ods with high payload [43]–[47]. These methods aim to
achieve perfect reversibility and a lossless message extrac-
tion when embedding data with high payload. For example,
Puteaux and Puech [43] used MSB instead of LSB to embed
a secret message. The MSB of original pixel is flipped to
generate its inverse value. The absolute difference between
prediction value and original pixel value is calculated. And the
absolute difference between prediction value and its inverse
value is also calculated. If the former is less than the later,
there is no prediction error and the MSB can accommodate
one secret bit. Otherwise, the prediction is wrong and the
pixel needs to be marked by location map. Since only MSB
is available, their payload is only close to 1 bpp. Yin et al.
[44] compared MSBs between prediction value and original
pixel value, and determined the number of the consecutive
MSBs with the same value. This number is regarded as the
label of the current pixel. Huffman coding is then used to
compress label map, and secret bits can be embedded into
the MSBs with specific label for encrypted pixel. In fact,
for some scenarios, the prediction value and original pixel
value are very closed, but the number of consecutive same
MSBs between is limited. Although their EC can reach
3.361 bpp on the BOSSBase dataset, they do not make use
of those pixels close to their prediction values. Wu et al.
[45] extended the block based PBTL-DE method [42] to the
entire image to achieve high payload. Puteaux and Puech [46]
recursively processed each bit-plane of an image from MSB
to LSB by combining error prediction, reversible adaptation,
encryption and embedding. Correspondingly, each bit-plane
must be recursively reconstructed from the LSB-plane to
the MSB-plane. Mohammadi et al. [47] proposed a smart
RDHEI method with high payload. They divided the original
image into blocks and calculated prediction errors between the
reference pixel and the other pixels in each block. According
to the range of prediction error, the payload of each pixel
can be determined. The minimum payload of each block is
regarded as it label. With the assistance of block labels, data
extraction and image recovery can be conducted perfectly.

Table I summarizes payload performance of some typical
RDHEI methods. It can be seen that the methods [42], [44]–
[47] can achieve high payload. But their bit-plane utilizations
are still not good enough. To better take advantage of bit-
planes, this paper elaborates hierarchical label map generation
for bit-planes so as to increase payload and ensure perfect
reversibility.

III. PROPOSED METHOD

In this paper, we propose a new RDHEI method with a
high payload based on hierarchical embedding which is able to
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Fig. 1. Block diagram of the proposed method.

TABLE I

PAYLOAD PERFORMANCE

perform data extraction and image recovery without any error.
As shown in Fig.1, the proposed method contains three stages:
1) The content-owner conducts image encryption with encryp-
tion key; 2) The data-hider performs data hiding according to
data-hiding key; 3) Data extraction and image decryption are
done by the receiver. Previous to image encryption, a label
map for each bit-plane of the original image is calculated from
8th bit-plane to 2th bit-plane hierarchically and this label map
is also called bit-plane label map. After encryption, each bit-
plane label map is compressed by using arithmetic coding to
reduce its size and then the compressed version is embedded
into its corresponding bit-plane of the encrypted image. In the
embedding stage, secret bits are hierarchically embedded into
bit-planes of the encrypted image from 8th bit-plane to 2th

bit-plane by bit replacement technique according to bit-plane
label maps. Finally, data extraction and image recovery can
be performed separately according to the knowledge of data-
hiding key and encryption key, and the extracted data and the
restored image are both error-free.

A. Hierarchical Bit-Plane Label Map Generation

In this section, we first elaborate a hierarchical prediction
error magnitude division strategy. In each layer of prediction
error division, the corresponding bit-plane is marked by a label
according to magnitude of prediction error. With the proposed
division strategy, we design a hierarchical bit-plane label map
mechanism for multiple bit-plane modification. According to
hierarchical bit-plane label maps, the multiple modified bit-
planes of the original image can be recovered so as to recover
image losslessly.

Let I be an 8-bit grayscale uncompressed image with H×W
size and pi, j denote its pixel located at the coordinates (i, j),

where 0 ≤ pi, j ≤ 255, 1 ≤ i ≤ H , and 1 ≤ i ≤ W . It is clear
that a pixel consists of 8 bit-planes. Suppose that 8 bit-planes
of pi, j are denoted by bi, j,1, bi, j,2, . . . , bi, j,8, where bi, j,8 is
the most significant bit and bi, j,1 is the least significant bit.
These bit values can be derived as follows.

bi, j,k = � pi, j

2k−1 �mod 2, k = 1, 2, . . . , 8 (1)

where mod and �.� denote the modulo operation and the
rounding down operation, respectively. Correspondingly, pi, j

can be calculated as

pi, j =
8∑

k=1

bi, j,k × 2k−1 (2)

Since there is high correlation in local pixels of the original
image, pixels can be predicted by their context pixels. Here,
we exploit Median Edge Detection (MED) predictor [48] to
conduct prediction due to the reasons that the MED predictor
has been successfully used in the well-known compression
standard of JPEG-LS and it can make a good balance between
predictor performance and computational cost. We take pi, j to
illustrate pixel prediction. As shown in Fig. 2, the prediction
value of pi, j is derived as

p̂i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(

pi−1, j , pi, j−1
)
,

pi−1, j−1 ≤ min
(

pi−1, j , pi, j−1
)

min
(

pi−1, j , pi, j−1
)
,

pi−1, j−1 ≥ max
(

pi−1, j , pi, j−1
)

pi−1, j + pi, j−1 − pi−1, j−1,

Otherwise

(3)

where 2 ≤ i ≤ H and 2 ≤ j ≤ W . Next, the absolute value
of prediction error is calculated by the below equation.

|ei, j | = |pi, j − p̂i, j | (4)

After obtaining |ei, j |, we divide |ei, j | with coarse-
magnitude 0 ≤ |ei, j | ≤ 2r − 1 into fine-magnitudes, where
7 ≥ r ≥ 1. According to the fine-magnitudes, we mark
the (r + 1)th bit-plane of pi, j with the corresponding label
and determine whether or not it can accommodate secret bit.
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Fig. 2. The pixel pi, j and its context pixels.

Specifically, |ei, j | is divided finely into three magnitudes as
follows.

Case 1: A small magnitude, i.e., 0 ≤ |ei, j | ≤ 2r−1 − 1.
In this case, a label si, j,r = 0 is used to mark the (r + 1)th

bit-plane of pi, j and this bit-plane can accommodate secret
bit.

Case 2: A medium magnitude, i.e., |ei, j | = 2r−1. In this
case, a label si, j,r = 2 is used to mark the (r + 1)th bit-plane
of pi, j and this bit-plane cannot accommodate secret bit due
to error recovery.

Case 3: A large magnitude, i.e., 2r−1+ 1 ≤ |ei, j | ≤ 2r − 1.
In this case, a label si, j,r = 1 is used to mark the (r + 1)th

bit-plane of pi, j and this bit-plane can accommodate secret
bit.

Note that the range expression of prediction error in [47]
is similar with our expression. In [47], the range expression
of prediction error is exploited to determine the payload
of a pixel, and only one label is used to mark a pixel.
Different from [47], we further divide the prediction error into
three cases: small magnitude, medium magnitude and large
magnitude, and use several labels to mark a pixel according to
its specific case. Compared with [47], our strategy of several
labels for a pixel can provide a large embedding rate. For
example, [47] reported that its average embedding rate on
BOWS-2 database is 2.9 bpp when the block size is 3 × 3.
But the average embedding rate of the proposed method on
BOWS-2 database reaches 3.4568 bpp (See Fig. 9 (b)).

Next we explain why the (r + 1)th bit-plane of pi, j with
label “0” or “1” can be used for data hiding while the one with
label “2” cannot be used. Without loss of generality, bit-plane
replacement technique is adopted to embed secret bits which
will modify bit-planes of the pixel. Suppose that the 8th ∼
(r + 1)th bit-planes of pi, j are replaced by 8 − r secret bits
and r th ∼ 1st bit-planes keep unchanged. Clearly, there are
28−r modification combinations for 8th ∼ (r+1)th bit-planes.
Suppose that the modified 8th ∼ (r + 1)th bit-planes and the
pixel after modification are denoted as b′i, j,k (r + 1 ≤ k ≤ 8)

and p′i, j , respectively. We have

p′i, j =
r∑

k=1

(
bi, j,k × 2k−1

)
+

8∑
k=r+1

(
b′i, j,k × 2k−1

)

= pi, j +
8∑

k=r+1

(
ai, j,k × 2k−1

)
(5)

where ai, j,k indicates whether or not the bit-plane bi, j,k is
modified. If b′i, j,k = bi, j,k , it means that this bit-plane remains

unchanged and let ai, j,k = 0. If

{
bi, j,k = 1

b′i, j,k = 0
, bi, j,k × 2k−1

is subtracted from pi, j and let ai, j,k = −1. If

{
bi, j,k = 0

b′i, j,k = 1
,

b′i, j,k ×2k−1 is added to pi, j and let ai, j,k = 1. For clarity, let

m = p′i, j − pi, j =∑8
k=r+1

(
ai, j,k × 2k−1

)
. After dealing with

the 8th ∼ (r + 1)th bit-planes, p′i, j is generated according to
the Eq. (5). The absolute value of prediction error after bit-
plane modification is derived as∣∣∣e′i, j

∣∣∣ = ∣∣∣p′i, j − p̂i, j

∣∣∣
=

∣∣∣∣∣pi, j +
8∑

k=r+1

(
ai, j,k × 2k−1

)
− p̂i, j

∣∣∣∣∣
= ∣∣ei, j + m

∣∣ (6)

If
∑8

k=r+1

∣∣ai, j,k
∣∣ = 0, it means that all bit-planes are not

modified. Otherwise, there is at least one modified bit-plane
and the original pixel value is changed. Next, we only analyze∣∣∣e′i, j

∣∣∣ with
∑8

k=r+1

∣∣ai, j,k
∣∣ > 0. Namely, at least one bit-

plane among 8th ∼ (r + 1)th bit-planes of pi, j is modified.
Clearly, there are two kinds of m values, i.e., positive value
and negative value. For the positive m value, its maximum
value is m = ∑8

k=r+1 2k−1 when all bit-planes are changed
from 0 to 1 and its minimum value is m = 2r when the
(r + 1)th bit-plane is changed from 0 to 1. Therefore, for
positive value, the range of m is [2r ,

∑8
k=r+1 2k−1]. Similarly,

for the negative m value, its maximum value is m = −2r

when the (r + 1)th bit-plane is changed from 1 to 0 and its
minimum value is m = −∑8

k=r+1 2k−1 when all bit-planes
are changed from 1 to 0. Therefore, the range of the negative
m is [−∑8

k=r+1 2k−1,−2r ]. Consequently, |m| ≥ 2r >
∣∣ei, j

∣∣
due to 0 ≤ ∣∣ei, j

∣∣ ≤ 2r − 1. Thus, the Eq. (6) can be revised
as

e′i, j =
∣∣ei, j + m

∣∣

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|m| + ∣∣ei, j

∣∣ , if ei, j ≥ 0 and m ≥ 2r

|m| + ∣∣ei, j
∣∣ , if ei, j <0 and m ≤ −2r

|m| − ∣∣ei, j
∣∣ , if ei, j ≥ 0 and m ≤ −2r

|m| − ∣∣ei, j
∣∣ , if ei, j <0 and m ≥ −2r

(7)

According to the above equation, we have two possible values
of e′i, j , namely, e′i, j = |m|+

∣∣ei, j
∣∣ or e′i, j = |m|−

∣∣ei, j
∣∣. Next,

we discuss label generation of (r +1)th bit-plane for different
cases.

Case 1: 0 ≤ ∣∣ei, j
∣∣ ≤ 2r−1 − 1

If e′i, j = |m| +
∣∣ei, j

∣∣, we have∣∣∣e′i, j

∣∣∣ = ∣∣ei, j
∣∣+ |m|

≥ ∣∣ei, j
∣∣+ 2r

≥ 2r

> 2r−1 − 1 (8)

If e′i, j = |m| −
∣∣ei, j

∣∣, we have∣∣∣e′i, j

∣∣∣ = |m| − ∣∣ei, j
∣∣

≥ 2r − ∣∣ei, j
∣∣

≥ 2r − (2r−1 − 1)
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≥ 2r−1 + 1

> 2r−1 − 1 (9)

Clearly, when e′i, j = |m| +
∣∣ei, j

∣∣ or e′i, j = |m| −
∣∣ei, j

∣∣,
we both have |e′i, j | > 2r−1 − 1. As long as one bit-plane is
modified at least, the absolute value of the prediction error
generated by Eq. (6), namely |e′i, j |, will be not within the
range

[
0, 2r−1 − 1

]
. Consequently, the original pixel can be

recovered by searching a unique combination for 8th ∼ (r +
1)th bit-planes such that the prediction error is within the range[
0, 2r−1 − 1

]
. Consequently, the (r+1)th bit-plane of pi, j with

0 ≤ |ei, j | ≤ 2r−1−1 can be modified for data hiding and this
bit-plane is marked with the label si, j,r = 0.

Case 2:
∣∣ei, j

∣∣ = 2r−1

If e′i, j = |m| +
∣∣ei, j

∣∣, we have∣∣∣e′i, j

∣∣∣ = ∣∣ei, j
∣∣+ |m|

≥ ∣∣ei, j
∣∣+ 2r

≥ 2r−1 + 2r

> 2r−1 (10)

However, if e′i, j = |m| −
∣∣ei, j

∣∣, we have∣∣∣e′i, j

∣∣∣ = |m| − ∣∣ei, j
∣∣

≥ 2r − 2r−1

≥ 2r−1 (11)

Clearly, when ei, j = 2r−1 and e′i, j = 2r−1, the (r + 1)th

bit-plane cannot be recovered losslessly if it is modified.
Consequently, the (r + 1)th bit-plane of pi, j with ei, j = 2r−1

cannot accommodate secret bit and this bit-plane is marked
with the label si, j,r = 2.

Case 3: 2r−1 + 1 ≤ ∣∣ei, j
∣∣ ≤ 2r − 1

If e′i, j = |m| +
∣∣ei, j

∣∣, we have∣∣∣e′i, j

∣∣∣ = |m| + ∣∣ei, j
∣∣

≥ 2r + ∣∣ei, j
∣∣

≥ 2r + 2r−1 + 1

> 2r − 1 (12)

If e′i, j = |m| −
∣∣ei, j

∣∣, we classify |m| into two types, namely,
|m| = 2r and |m| ≥ 2r+1. When |m| = 2r , we have∣∣∣e′i, j

∣∣∣ = |m| − ∣∣ei, j
∣∣

≤ 2r − (2r−1 + 1)

≤ 2r−1 − 1

< 2r−1 + 1 (13)

When |m| ≥ 2r+1, we have∣∣∣e′i, j

∣∣∣ = |m| − ∣∣ei, j
∣∣

≥ 2r+1 − ∣∣ei, j
∣∣

≥ 2r+1 − (
2r − 1

)
≥ 2r + 1

> 2r − 1 (14)

According to the Eqs. (12-14), we always have e′i, j > 2r − 1
or e′i, j < 2r−1 + 1 when e′i, j = |m| +

∣∣ei, j
∣∣ or e′i, j = |m| −∣∣ei, j

∣∣. To sum up, as long as one bit-plane is modified at least,
the absolute value of the prediction error generated by Eq. (6),
namely e′i, j , will be not within the range

[
2r−1 + 1, 2r − 1

]
.

Consequently, the original pixel can be recovered by finding a
unique combination for 8th ∼ (r + 1)th bit-planes so that the
prediction error is within the range

[
2r−1 + 1, 2r − 1

]
. Thus,

the (r+1)th bit-plane of pi, j with large-magnitude 2r−1+1 ≤∣∣ei, j
∣∣ ≤ 2r − 1 can be modified for data hiding and this bit-

plane is marked with the label si, j,r = 1. More bit-planes
used in the proposed method contribute to a high embedding
capacity.

Note that if the (r+1)th bit-plane is marked with “1” or “2”,
we do not deal with the remaining r th ∼ 1st bit-planes and
the labels of these bit-planes are “void”. And these bit-planes
cannot accommodate secret bits. As soon as these bit-planes
are modified, they cannot be recovered losslessly. Next, we use
the proof by contradiction to explain why the remaining r th ∼
1th bit-planes cannot be used for data hiding when the (r+1)th

bit-plane is marked with “1” or “2”.
As previous analysis, if the (r+1)th bit-plane is marked with

the label si, j,r = 1, namely, Case 3, it means that 2r−1 + 1 ≤∣∣ei, j
∣∣ ≤ 2r − 1 and the 8th ∼ (r + 1)th bit-planes can be

replaced by secret bits. Assume that the r th bit-plane can be
also modified for data hiding, we have |e′i, j | = |ei, j + m′|
according to the Eqs. (5-6), where m′ =∑8

k=r

(
ai, j,k × 2k−1

)
.

We only consider that at least one bit-plane among these 8th ∼
r th bit-planes is modified. Thus, we have∣∣∣e′i, j

∣∣∣ = ∣∣ei, j + m′
∣∣

=

⎧⎪⎨
⎪⎩

∣∣m′∣∣+ ∣∣ei, j
∣∣ , if ei, j × m′ > 0∣∣m′∣∣− ∣∣ei, j
∣∣ , if ei, j × m′ < 0 and

∣∣m′∣∣ ≥ ∣∣ei, j
∣∣∣∣ei, j

∣∣− ∣∣m′∣∣ , if ei, j × m′ < 0 and
∣∣m′∣∣ <

∣∣ei, j
∣∣

(15)

Bit-plane replace technique will generate different bit-plane
modification combinations. Suppose that one of bit-plane
modification combinations of pi, j is ai, j,r = −1, ai, j,r+1 =
−1, ai, j,r+2 = 0, . . . , ai, j,8 = 0, it is clear that m′ = −(2r−1+
2r ). If ei, j = 2r−1 + 1, according to the Eq. (15), we have

|e′i, j | = |m′| − |ei, j |
= 2r−1 + 2r − (2r−1 + 1)

= 2r − 1 (16)

Clearly, the values of |e′i, j | and |ei, j | are both within the
range [2r−1 + 1, 2r − 1]. Different from the modification
combination of the 8th ∼ (r + 1)th bit-planes, there may
be multiple modification combinations for the 8th ∼ r th bit-
planes so that the generated prediction errors are within the
range [2r−1+1, 2r−1]. This bit-plane modification will result
in error recovery. Consequently, the r th bit-plane cannot be
used for data hiding. Similarly, the other (r − 1)th ∼ 1st bit-
planes are not used.

If the (r+1)th bit-plane is marked with the label si, j,r = 2,
namely, Case 2, it means that |ei, j | = 2r −1 and the (r +1)th
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bit-plane cannot accommodate secret bits. Assume that the
remainder r th ∼ 1st bit-planes are the same with the secret bits
for replacing them. According to the analysis of Case 2, it will
result in error recovery. Thus, the remaining (r − 1)th ∼ 1st

bit-planes cannot accommodate secret bits.
Based on the above analysis, we design a hierarchical bit-

plane label map generation mechanism for multiple bit-planes.
Starting from r = 7 to r = 1, namely, starting from the 8th bit-
plane to the 2nd bit-plane hierarchically, we divide the coarse-
magnitude 0 ≤ |ei, j | ≤ 2r − 1 into three fine-magnitudes,
namely, 0 ≤ |ei, j | ≤ 2r−1 − 1, |ei, j | = 2r−1 and 2r−1 + 1 ≤
|ei, j | ≤ 2r − 1. If 0 ≤ |ei, j | ≤ 2r−1 − 1, a label si, j,r = 0 is
used to mark the (r + 1)th bit-plane of pi, j and this bit-plane
can be used for data hiding by bit replacement. If |ei, j | = 2r−1,
a label si, j,r = 2 is used to mark the (r+1)th bit-plane of pi, j

and this bit-plane remains unchanged. If 2r−1 + 1 ≤ |ei, j | ≤
2r−1, a label si, j,r = 1 is used to mark the (r+1)th bit-plane
of pi, j and this bit-plane can be also used for data hiding by bit
replacement. After marking the (r + 1)th bit-plane, we update
r ← r − 1 and repeat the above processing until r = 1. Note
that if the (r + 1)th bit-plane is marked by “1” or “2”, we do
not deal with the remaining r th ∼ 1st bit-planes.

For the image with 8 bit-planes, it is clear that 0 ≤ |ei, j | ≤
255. We first divide 0 ≤ |ei, j | ≤ 255 into 0 ≤ |ei, j | ≤ 127 and
128 ≤ |ei, j | ≤ 255. For a natural image, the prediction errors
with relatively large magnitudes 128 ≤ |ei, j | ≤ 255 occupy
a small proportion and all bit-planes of these corresponding
pixels cannot accommodate secret bits. The 8th bit-planes of
these pixels with 128 ≤ |ei, j | ≤ 255 are marked with labels
“3” and the labels of the other bit-planes of these pixels are
“void”. Next, we only illustrate the label generation for the
prediction errors with relatively small magnitude 0 ≤ |ei, j | ≤
127. Starting from r = 7, we divide 0 ≤ |ei, j | ≤ 127 into
0 ≤ |ei, j | ≤ 63, |ei, j | = 64 and 65 ≤ |ei, j | ≤ 127. According
to the above three cases, the 8th bit-plane of pi, j with 0 ≤
|ei, j | ≤ 63 or 65 ≤ |ei, j | ≤ 127 is marked with “0” or “1”
and it can be replaced by a secret bit. The 8th bit-plane of pi, j

with |ei, j | = 64 is marked with “2” and cannot accommodate
secret bit. Then, r = 6. We divide 0 ≤ |ei, j | ≤ 63 into 0 ≤
|ei, j | ≤ 31, |ei, j | = 32 and 33 ≤ |ei, j | ≤ 63. The 7th bit-plane
of pi, j with 0 ≤ |ei, j | ≤ 31 or 33 ≤ |ei, j | ≤ 63 is marked
with “0” or “1” and it can be replaced by a secret bit. The
7th bit-plane of pi, j with |ei, j | = 32 is marked with “2” and
cannot accommodate secret bit. Repeat the above processing
until r = 1. Note that when r = 1, we have 0 ≤ |ei, j | ≤ 1,
which can be divided into |ei, j |=0 and |ei, j | = 1. Finally,
the 2nd bit-plane of pi, j is marked with “1” or “2” when
|ei, j | = 0 or |ei, j | = 1. After all pixels are processed, we can
get 7 bit-plane label maps.

To better illustrate hierarchical label map generation for
8th ∼ 2nd bit-planes, we design an incomplete ternary tree as
shown in the Fig. 3 according to prediction error magnitude
division. The root node is 0 ≤ |ei, j | ≤ 255. Except for the
node 128 ≤ |ei, j | ≤ 255, the other nodes are labeled by ternary
codes. Only the predictor error of the left node in the current
layer can be further divided. In the next layer, the left, middle,
and right nodes are marked with the labels “0”, “2” and “1”,
respectively. Table II illustrates the labels of the bit-planes

TABLE II

MAGNITUDE OF PREDICTION ERROR AND THE BIT-PLANE LABEL

of pi, j according to different magnitude divisions, where “-”
denotes that the label is “void”.

Next we take an example to illustrate pixel recovery
with bit-plane labels. Suppose that pi, j = 183
and its prediction value is p̂i, j = 169. The binary
sequence of pi, j is (10110111)2. It is clear that
|ei, j | = |pi, j − p̂i, j | = 14 ∈ [9, 15]. According to
Fig. 3 and Table II, the labels of the 8th ∼ 5th bit-planes are
“0001” and the four bit-planes can be replaced by secret bits
to generate the marked pixel. For recovering pi, j , we need
to find a combination for the 8th ∼ 5th bit-planes such that
the absolute value of the generated prediction error is within
the range [9, 15]. Since the 1st ∼ 4th bit-planes remain
unchanged, the binary sequences of pi, j with all modification
combinations for the 8th ∼ 5th bit-planes are (00000111)2,
(00010111)2, (00100111)2, (00110111)2, (01000111)2,
(01010111)2, (01100111)2, (01110111)2, (10000111)2,
(10010111)2, (10100111)2, (10110111)2, (11000111)2,
(11010111)2, (11100111)2, (11110111)2, respectively. And
their corresponding decimal values are 7, 23, 39, 55, 71, 87,
103, 119, 135, 151, 167, 183, 199, 215, 231 and 247. The
absolute values of prediction errors are 162, 146, 130, 114,
98, 82, 66, 50, 34, 18, 2, 14, 30, 46, 62 and 78. Among these
values, only 14 generated by 183 is within the range [9, 15].
Consequently, pi, j can be recovered as 183.

Overall, these 7 bit-plane label maps indicate which bit-
planes of original image can be replaced by secret bits. And
with the assistance of bit-plane label maps, the original image
can be recovered perfectly.

B. Image Encryption

The stream cipher (e.g., AES-CTR) is one of the most
popular and reliable encryption tools due to its provable
security and easy implementation in software and hardware.
In addition, large amounts of data have already been encrypted
by using stream cipher in a standard way. Consequently,
in the proposed method, the original image is encrypted by
stream cipher using an encryption key Ke. First, we generate
a pseudo-random matrix R of size H×W through the key Ke.
Next, the pixel pi, j and its corresponding Ri, j are transformed
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Fig. 3. Hierarchical label generation for prediction errors using incomplete ternary tree.

into the 8-bit binary sequence using the Eq. (1), denoted
as bi, j,1, bi, j,2, . . . , bi, j,8 and Ri, j,1, Ri, j,2, . . . , Ri, j,8. Then,
each bit-plane of original pixel is encrypted as following.

Ei, j,k = bi, j,k ⊕ Ri, j,k , k = 1, 2, . . . , 8 (17)

where ⊕ denotes the exclusive-or operation. The correspond-
ing encrypted pixel p(e)

i, j can be obtained by using the Eq. (2).
Finally, an encrypted image Ie is generated by encrypting all
pixels.

C. Label Map Embedding

In order to generate room for embedding in the encrypted
image as well as perform lossless recovery, hierarchical bit-
plane label maps are required to be embedded into the
encrypted image before data embedding operation. Firstly,
hierarchical bit-plane label maps for multiple bit-planes are
generated according to Section A. Note that the label for the
8th bit-plane has four states, namely, “0”, “1”, “2” and “3” and
the labels for the other bit-planes have four states, namely, “0”,
“1”, “2” and “void” according to Fig. 3 and Table II.

Then we transform each bit-plane and its bit-plane label
map into a one-dimensional sequence in raster-scanning order,
respectively. Specifically, the 8th bit-planes of all pixels are
transformed to a sequence, the 7th bit-planes of all pixels
are transformed to a sequence, and so on. Note that when
the labels are “void”, they are skipped. Let the 7 bit-plane
label map sequences be m7, m6, . . . , m1, which corresponds
to the 8th, 7th, . . . , 2nd bit-planes, respectively. And suppose
that the sizes of these label map sequences are l7, l6, . . . , l1,
respectively. Clearly, l7 = (H−1)×(W−1) because the pixels
in the first row and in the first column remain unchanged.
We count the numbers of “0”, “1”, “2” and “3” in these
7 bit-plane label maps, which are denoted by l(0)

7 , l(0)
6 , . . . , l(0)

1 ,
l(1)
7 , l(1)

6 , . . . , l(1)
1 , l(2)

7 , l(2)
6 , . . . , l(2)

1 and l(3)
7 , respectively. Here,

the label “3” is generated in the 8th bit-plane. So only l(3)
7 is

exhibited for the label “3”. Clearly, lr = l(0)
r +l(1)

r +l(2)
r +l(3)

r if
r = 7. Otherwise, lr = l(0)

r +l(1)
r +l(2)

r for r ∈ {6, 5, 4, 3, 2, 1}.
According to Section A, the size of label map of the r th bit-
plane is equal with the number of “0” of its upper bit-plane,
namely, the (r + 1)th bit-plane, and then we have⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l6 = l(0)
7

l5 = l(0)
6

l4 = l(0)
5

. . .

l1 = l(0)
2

(18)

To reduce the size of bit-plane label map, we use arithmetic
coding to compress the bit-plane label maps m7, m6, . . . , m1
to generate corresponding binary sequences s7, s6, . . . , s1,
whose sizes are cl7, cl6, . . . , cl1, respectively. It is known
that local pixels are highly correlated. The distribution of
the histogram of the predictor errors concentrates on the
bin 0. Since the label “3” only occurs in the 8th bit-plane
and occupies a small proportion, it is not mentioned in the
following sections for simplicity. According to the Section A,
for the (r + 1)th bit-plane, we have 0 ≤ |ei, j | ≤ 2r−1 − 1,
|ei, j | = 2r−1 and 2r−1 + 1 ≤ |ei, j | ≤ 2r − 1, which are
marked with “0”, “2” and “1”, respectively. It is clear that
the prediction errors with 0 ≤ |ei, j | ≤ 2r−1 − 1 occupy
a large proportion. And the number of the prediction errors
with 2r−1 + 1 ≤ |ei, j | ≤ 2r − 1 is bigger than that of
the prediction errors with |ei, j | = 2r−1. Correspondingly,
in the (r + 1)th bit-plane label map, the “0” occupies a large
proportion and the proportion of “1” is bigger than that of
“2”. In addition, for MSB bit-planes, the proportion of “0”
is significantly larger than the sum of proportions of “1” and
“2”. Consequently, we can obtain considerable compression
ratios for MSB bit-plane label maps using arithmetic coding.
However, as r decreases, the proportion of the prediction errors
with 2r−1+1 ≤ |ei, j | ≤ 2r−1 and |ei, j | = 2r−1 increases and
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the compression ratio also decreases. For the (r+1)th bit-plane
of encrypted image, �log2lr� bits are sufficient to encode the
size of the compressed bit-plane label map, namely, clr . Then,
the compressed bit-plane label map and its size are concate-
nated to generate the auxiliary information sized �log2lr�+clr .
Since the auxiliary information must be embedded into the first
�log2lr� + clr bits of the (r + 1)th bit-plane by replacement
technique for reversibility, we count the number of “0” and
“1” from the (�log2lr� + clr + 1)th index to the end of the
(r+1)th bit-plane label map, denoted by l ′r . The first replaced
�log2lr� + clr bits with labels “2” and “void” are required
to be embedded into the remaining bits with labels “0” and
“1” of the current bit-plane by bit replacement technique since
the bits with labels “2” and “void” are irrecoverable. Suppose
that the number of the first replaced �log2lr� + clr bits with
labels ”2” and “void” is lur in the (r + 1)th bit-plane of the
encrypted image. If l ′r > lur , there is embedding room for
secret bits. Otherwise, this bit-plane cannot accommodate its
corresponding label map and secret bits cannot be embedded.

Based on the above analysis, the compressed bit-plane label
maps are embedded into the corresponding bit-planes from
the MSB bit-plane to the LSB bit-plane hierarchically. The
generated auxiliary information is embedded starting from
r = 7. If l ′r > lur , we update r ← r − 1 and repeat the
embedding. Otherwise, the embedding operation is finished
and let u = r + 1. After auxiliary information embedding,
we get the final encrypted image containing the label maps.
Note that the 8th ∼ uth bit-planes have room for secret bits
after embedding label maps.

D. Hierarchical Embedding

In this section, secret bits are encrypted by the data hiding
key K D to enhance security. Before data hiding in encrypted
image, the auxiliary information of the 8th ∼ uth bit-planes is
hierarchically picked out from the obtained encrypted image.
For the 8th bit-plane of the encrypted image containing the
label map, we first extract its first �log2l7� bits and decode
these bits of data to obtain the size of compressed label map,
namely, cl7, where l7 = (H−1)×(W−1). Then the following
(�log2l7�+ 1)th ∼ (�log2l7�+ cl7)

th bits of data are extracted
to obtain the compressed label map and the corresponding
uncompressed version can be obtained by decompression.
According to the bit-plane label map, we calculate the number
of the labels “void” and “2” in the first (�log2l7� + cl7) bits
of the bit-plane label map, namely lu7. Beginning with the
(�log2l7� + cl7 + 1)th bit, we count the number of “0” and
“1” until the number is equal to lu7 and record the current bit
index as ld7. Obviously, the (�log2l7� + cl7 + 1)th ∼ (ld7)

th

bits of data store the first �log2l7� + cl7 bits of the original
bit-plane with the labels “void” or “2” . The remaining bits
of the bit-plane can be replaced by secret bits. Starting from
the (ld7 + 1)th bit to the end of the bit-plane, if the label of
the current bit is “0” or “1”, a secret bit is embedded into this
bit by replacement technique. If the label of the current bit is
“2” or “void”, the current bit is skipped. Then, we can get the
marked 8th bit-plane. For the 7th ∼ uth bit-planes, according
to the Eq. (18), we can obtain the size of the current bit-plane

Fig. 4. Constitution of the marked bit-plane.

label map, namely, lr (r = 6, 5, . . . , u − 1). Then, the first
�log2lr� bits of data are extracted from the (r + 1)th bit-plane
and decoded to obtain the size of compressed bit-plane label
map, clr . The following clr bits of data are decompressed to
generate the uncompressed bit-plane label map. For each bit
of the r th bit-plane, if the label of the (r+1)th bit-plane is “0”,
we can get its label according to the extracted r th bit-plane
label map. Otherwise, its label is “void”. Similarly, secret bits
can be embedded into the 7th ∼ uth bit-planes by the above
calculations. Note that the remaining (u−1)th ∼ 1st bit-planes
are kept unchanged. Finally, a marked encrypted image Im is
generated.

Fig. 4 illustrates constitution of the marked bit-plane. The
first �log2lr� bits represent the size of compressed label map
and the following clr bits are the compressed label map. The
(�log2lr�+clr+1)th ∼ (ldr )

th bits store the first �log2lr�+clr
bits with labels “2” or “void” of the original bit-plane, where
the definition of ldr can be referred to ld7. The remaining
part is used to store secret bits, where the bits with labels
“0” or “1” are replaced by secret bits.

E. Data Extraction and Image Recovery

On the receiver side, three scenarios are considered due
to the separation characteristic of the proposed method. The
first scenario is that the receiver only has the data-hiding
key K D , he/she can accurately extract secret bits from the
marked encrypted image according to the bit-plane label maps.
Another scenario is that the receiver only has the encryption
key KE , he/she can perfectly reconstruct the original image
according to pixel prediction and bit-plane label maps. For
the third scenario, the receiver has both keys. So he/she can
perfectly extract secret bits and recover the original image.

Clearly, the receiver can hierarchically extract the 8th ∼ uth

bit-plane label maps from the marked encrypted image. Then,
data extraction and image recovery can be performed based on
the label maps. Although the label map extraction can be done
without keys, the next process will conduct different operations
according to the receiver’s keys.

If the receiver only has the data-hiding key K D , he/she
extracts the encrypted secret bits from the (ldr + 1)th bit to
the end of each of the 8th ∼ uth bit-planes hierarchically
according to bit-plane label maps, where r = 7, 6, . . . , u − 1.
If the current bit label is “0” or “1”, he/she can extract the
current bit as one secret bit. Otherwise, the current bit is
skipped. After data extraction, the receiver has to concatenate
the extracted bits from each marked bit-plane from the 8th bit-
plane to the uth bit-plane. Finally, the encrypted secret bits are
obtained and further decrypted by using the data-hiding key
K D . Note that there is no error in the whole process.
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If the receiver only has the encryption key KE , the original
image can be constructed without loss. This is because the
bit-plane label maps indicate that which bit-planes can be
modified to accommodate secret bits and the modified bit-
planes can be recovered with assistance of these label maps
according to the Section A. First, the receiver extracts bit-plane
label maps from the 8th bit-plane to the uth bit-plane. Then the
first �log2lr�+clr bits with labels “2” or “void” in the (r+1)th

bit-plane are extracted from the (�log2lr�+clr+1)th bit to the
(ldr )

th bit of the bit-plane, where r = 7, 6, . . . , u − 1. In this
way, the first �log2lr�+clr bits with labels “2” or “void” of the
current encrypted bit-plane are recovered. According to KE ,
all pixels can be directly decrypted by exclusive-or operation.
Note that the pixels in the first row and the first column
are recovered losslessly after decryption and these pixels can
be used for predicting and recovering the other pixels. The
prediction and recovery of other pixels are conducted in the
raster scanning order. For a current to-be-recovered pixel
p′i, j , suppose that its decrypted 8 bit-planes are denoted as
b′i, j,8, b′i, j,7, . . . , b′i, j,1. According to the Sections C and D,
b′i, j,u−1, b′i, j,7, . . . , b′i, j,1 are kept unchanged. Thus, we can
recover the (u − 1)th ∼ 1st bit-planes as

bi, j,k = b′i, j,k , k = u − 1, . . . , 1 (19)

Since the 8th ∼ uth bit-planes of the current pixel are
modified, we calculate its prediction value p̂i, j according to
the Eq. (3) and then recover them by combining the prediction
value with bit-plane label maps. The labels of the 8th ∼ uth

bit-planes of p′i, j are denoted by si, j,7, si, j,6, . . . , si, j,u−1.
According the generation of the label map in Section A,
we have the following cases.

(1) If

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si, j,7 = 0

si, j,6 = 0

. . .

si, j,u−1 = 0

, we have that the original prediction

error ei, j is subject to 0 ≤ |ei, j | ≤ 2u−1−1−1 according to the
hierarchical label in the Fig. 3. Since every bit-plane has two
possibilities, namely, “0” and “1”, the 8th ∼ uth bit-planes
can be recovered by finding a unique bit-plane combination
as follows. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bi, j,8 = b∗i, j,8

bi, j,7 = b∗i, j,7

. . .

bi, j,u = b∗i, j,u

s.t . 0 ≤ |
8∑

k=u

(
b∗i, j,k × 2k−1

)
+

u−1∑
k=1

(
bi, j,k × 2k−1

)
− p̂i, j |

≤ 2u−1−1 − 1 (20)

where b∗i, j,k ∈ {0, 1}.
(2) Otherwise, we search the label si, j,v = 1 or si, j,v = 2,

starting from si, j,7 to si, j,u−1. According to the Section A,
the remaining labels si, j,v−1, si, j,v−2, . . . , si, j,u−1 are “void”
and the corresponding bit-planes remain unchanged. So,
we have

bi, j,k = b′i, j,k, k = u, . . . , v and v ≥ u (21)

Then we recover the 8th ∼ (v + 1)th bit-planes in terms of
si, j,v . If si, j,v = 1, the original prediction error ei, j is subject
to 2v−1 + 1 ≤ |ei, j | ≤ 2v − 1 according to the hierarchical
label in the Fig. 3. Thus, the 8th ∼ (v + 1)th bit-planes can
be recovered by finding a unique bit-plane combination as
follows. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bi, j,8 = b∗i, j,8

bi, j,7 = b∗i, j,7

. . .

bi, j,v+1 = b∗i, j,v+1

s.t . 2v−1 + 1

≤ |
8∑

k=v+1

(
b∗i, j,k × 2k−1

)
+

v∑
k=1

(
bi, j,k × 2k−1

)
− p̂i, j |

≤ 2v − 1 (22)

If si, j,v = 2, the (v + 1)th bit-plane also remains unchanged
since it is skipped. So it can be recovered as bi, j,v+1 =
b′i, j,v+1. According to the Fig. 3, we have that the original
prediction error ei, j is subject to |ei, j | = 2v−1. Consequently,
8th ∼ (v+2)th bit-planes can be recovered by finding a unique
bit-plane combination as follows.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bi, j,8 = b∗i, j,8

bi, j,7 = b∗i, j,7

. . .

bi, j,v+2 = b∗i, j,v+2

s.t . |
8∑

k=v+2

(
b∗i, j,k × 2k−1

)
+

v+1∑
k=1

(
bi, j,k × 2k−1

)
− p̂i, j |

= 2v−1 (23)

Finally, all the bit-planes bi, j,1, bi, j,2, . . . ., bi, j,8 of the
original pixel pi, j can be recovered losslessly. According to
the Eq. (2), the original pixel pi, j can be recovered without
loss so that the original image can be recovered losslessly.

IV. EXPERIMENTAL RESULTS

In this section, we first analyze security of the proposed
method, then show the experimental results and make com-
parison with some state-of-the-art methods. Six commonly
used test images are exploited in the experiments, as shown
in Fig.5. We also test performance of different methods with
two entire image datasets: BOSSBase [49], and BOWS-2 [50].
The embedding rate (ER) represented by bpp (bits per pixel)
is used as the metric of embedding capacity (EC), and the
below-mentioned ER or EC is the pure ER or EC. In addition,
other commonly-used metrics, i.e., PSNR (Peak signal-to-
noise ratio) and SSIM (structural similarity), are also adopted
to analyze performance.

A. Security Analysis

As an encryption domain based RDH method, the proposed
method is able to provide the security for both the original
image and secret data. In the proposed method, the security of
secret data is provided by data encryption with K D . It is worth
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Fig. 5. Six test images. (a) Lena; (b) Baboon; (c) Jetplane; (d) Man;
(e) Airplane; (f) Tiffany.

Fig. 6. Results of the proposed method on Lena image. (a) Original
image; (b) Encrypted image; (c) Marked encrypted image (ER = 3.019 bpp);
(d) Reconstructed image (PNSR →+∞ and SSIM = 1).

noting that secret data can be encrypted by any secure data
encryption algorithm. Hence, it is almost impossible to leak the
secret data without K D . Therefore, we mainly pay attention to
the perceptual security and statistical analysis of the encrypted
images generated by using stream cipher. We select Lena
image to illustrate security analysis. Fig. 6 exhibits visual
results generated by the proposed method. It can be seen from
Fig. 6 that both the encrypted image and the marked encrypted
image are noise-like and completely incomprehensible. The
subjective features of original image cannot be revealed from
them, illustrating a high perceptual security level.

It is well-known that resisting statistical analysis on cipher-
text is of crucial importance for a cryptosystem. In order
to illustrate security of the encryption scheme used in the
proposed method, five statistical indicators, namely, histogram,
correlation coefficient, entropy, PSNR and SSIM, are calcu-
lated. Fig. 7 shows the histograms of the original image,
the encrypted image and the marked encrypted image. It can
be seen that the original image has rich histogram features,
while the histograms of the encrypted image and the marked
encrypted image are almost distributed uniformly. It is difficult
to find the matched features between the histogram of original
image and the histogram of encrypted image or the marked
one. Therefore, the original image cannot be retrieved from
the encrypted image or marked encrypted image by statistical
analysis. This validates a good statistical property.

Our statistical results of correlation coefficient, entropy,
PSNR and SSIM are given in the Table III. Generally, for
most natural images, any two adjacent pixels are always highly
correlated in three directions, namely horizontal direction,
vertical direction and diagonal direction. Therefore, encryption

Fig. 7. Histograms of different images. (a) Original image (b) Encrypted
image (c) Marked encrypted image (d) Reconstructed image.

scheme should disorganize the correlation among adjacent
pixels so as to withstand statistical attack. The 2nd ∼ 4th

columns of the Table III present the correlation coefficients of
two adjacent pixels in three directions of the original image,
the encrypted image and the marked encrypted image. It can
be seen that the correlation coefficients of the encrypted image
and the marked encrypted image are all close to 0. This
illustrates that our encryption scheme can efficiently destroy
pixel correlation in three directions.

Information entropy is a useful metric for evaluating the ran-
domness of the encrypted images. If the information entropy
of an encrypted image is close to the theoretical value,
the encrypted image has good randomness. For a grayscale
image with 8 bit-planes, the theoretical value of information
entropy is 8. As shown in Table III, the entropies of the
encrypted image and the marked encrypted image are both
close to the theoretical value 8. In addition, PSNR and SSIM
between the original image and the encrypted/marked image
are also calculated. It is found that the PSNR and SSIM results
are very small values, meaning that the evaluated images are
dissimilar. Therefore, it can be concluded that our encryption
scheme is secure in terms of correlation coefficient, entropy,
PSNR and SSIM.

B. Embedding Performance

In this section, the mentioned ER or EC (Embedding Capac-
ity) is the pure ER or EC. Here we also select Lena image
to illustrate the embedding performance in details. Bit-plane
label maps are generated from MSB bit-plane to LSB bit-plane
hierarchically according to Section III A. And the character-
istic of each bit-plane label map is closely related with the
numbers of prediction errors with different magnitudes. Since
the number of the prediction errors with 128 ≤ |ei, j | ≤ 255
is 0 for image Lena, we only count the numbers of “0”, “1”
and “2” for each bit-plane label map according to prediction
errors. As shown in Table IV, the sizes of the 8th ∼ 2th bit-
plane label maps are l7 = 511 × 511, l6 = l(0)

7 = 260998,
l5 = l(0)

6 = 259273, l4 = l(0)
5 = 249935, l3 = l(0)

4 = 221338,
l2 = l(0)

3 = 153911, l1 = l(0)
2 = 78169. For the 8th bit-

plane, the number of prediction errors with 0 ≤ |ei, j | ≤ 63 is
260998. Thus, the number of the corresponding labels with “0”
is also 260998. Similarly, the numbers of corresponding labels
with “1” and “2” are 116 and 7, respectively. It is clear that
the labels with “1” and “2” occupy a small proportion, while
the labels with “0” occupy a large proportion. Consequently,
a considerable compression ratio of the 8th bit-plane label
map is obtained by arithmetic coding. And the size of its
compressed version is only 1600 bits which can be encoded
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TABLE III

STATISTICAL ANALYSIS ON LENA IMAGE

TABLE IV

PERFORMANCE ANALYSIS ON LENA IMAGE

by l7 bits. The auxiliary information size of the 8th bit-
plane is �log2l7� + 1600 = 1618 bits. Similarly, those of
the 7th ∼ 2nd bit-planes are �log2l6� + 15616 = 15634 bits,
�log2l5� + 62688 = 62706 bits, �log2l4� + 151056 = 151074
bits, �log2l3� + 260408 = 260426 bits, �log2l2� + 228896 =
228913 bits, �log2l1�+74336 = 74352 bits, respectively. As to
entropy, it can be seen from Table IV that the entropy of the
8th bit-plane label map is minimum. In addition, the entropy of
the label map will increase when its bit-plane index decreases.
After encryption, the auxiliary information of each bit-plane
is embedded into the corresponding encrypted bit-plane from
MSB to LSB hierarchically. First, for the 8th bit-plane, its
first 1618 bits of data is extracted and then the auxiliary
information is embedded into its first 1618 bits by replacement
technique. We count the number of “0” and “1” from the
1619th bit to the end of the 8th bit-plane label map. Obviously,
this number is the EC of the current bit-plane. The EC of
the 8th bit-plane is 259496 bits in the experiment. Since the
bits with labels “2” or “void” in the first 1618 bits cannot
be recovered, they are also required to be embedded into the
bit-plane. For Lena, there is no bit with label “2” or “void”
in the first 1618 bits. Consequently, the pure EC of the 8th

bit-plane is 259496 bits. By the same way, the pure EC of
the following bit-planes can be obtained. As shown in the
Table IV, the pure ECs of the 7th ∼ 5th bit-planes are 245164,
195275 and 91479 bits, respectively. The remaining bit-planes
are not used as their vacated room cannot accommodate

auxiliary information and secret data. Thus, the total pure EC
is 259496+ 245164+ 195275+ 91479= 791414 bits and the
corresponding ER is 3.019 bpp.

We also calculate the ECs for other test images, and the
results are shown in the Table V. It can be observed from
the Table V that the EC of an image is closely related with its
content. In these test images, Baboon image contains more tex-
tures, while Airplane image has more smooth regions. Table V
shows that only three bit-planes of Baboon can accommodate
secret bits and the ER of Baboon is only 1.4596 bpp, which is
the smallest ER. In addition, the EC of its every bit-plane
is also smaller than those of other images. The Airplane
image has the maximum EC among the test images, which is
3.9872 bpp. Compared with Baboon image, Airplane has more
bit-planes for data hiding. it can be seen that five bit-planes
of Airplane, namely, the 8th ∼ 4th bit-planes can be used for
data hiding. Since there are rich textures in Baboon, the pixels
are not easy to be accurately predicted. Therefore, more
prediction errors with large magnitudes will be generated.
Consequently, a few bit-planes of the corresponding pixels
can accommodate secret bits. On the contrary, more prediction
errors with small magnitudes can be generated from the images
with few textures. Overall, the smooth images have bigger ECs
than the texture images.

Furthermore, we apply the proposed method to the entire
image datasets, namely, BOSSBase and BOWS-2. The two
databases both have 10000 gray-scale images sized 512×512.
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TABLE V

OUR PURE EMBEDDING CAPACITIES OF DIFFERENT TEST IMAGES

TABLE VI

RESULTS ON TWO DATABASES

Experimental results on two entire image datasets are shown in
the Table VI. It can be seen that, for the BOSSbase database,
the ERs of the best case and the worst case are 6.2354 bpp and
0.9734 bpp, respectively. The average ER of the BOSSbase
database is 3.6823 bpp. For the BOWS-2 database, the ERs
of the best case and the worst case are 5.9833 bpp and
0.9252 bpp, respectively. The average ER of the BOWS-
2 database is 3.4568 bpp. Since the original images can be
recovered losslessly, we have PNSR → +∞ and SSIM=1.
From the above analysis, it can be concluded that the proposed
method has good performance in terms of EC. This means that
the proposed method can be applied to some applications with
demands of large ECs.

C. Performance Comparisons

To demonstrate superiority of the proposed method,
we compare the proposed method with six state-of-the-art
methods, including Yi and Zhou’s method [26], Chen et al.’s
method [27], Yi and Zhou’s method [42], Puteaux and Puech ’s
method [43], Yin et al.’s method [44], and Wu et al.’s method
[45]. As the EC of Yi and Zhou’s method [42] is affected by
the parameters of α, β and block size, we select the maximum
EC of each image by choosing the optimum parameters in the
following experiments. Here, we do not compare the quality of
the recovered image since the original image can be losslessly
recovered during the recovery phase (PSNR → +∞ and
SSIM = 1 for all evaluated methods). Therefore, comparison
is only evaluated with ER in this section. To compare ER
performance, we first apply the proposed method and six
existing RDHEI methods to several standard images, as shown
in Fig. 5. The comparison results are illustrated in the Fig. 8.
It can be seen that the proposed method outperforms the
compared methods [26], [27], [42]–[45] for all images.

Our maximal ER among these test images is
3.9872 bpp contributed by Airplane. For Airplane,
the maximal ER among the compared methods is
3.725 bpp obtained by Yin et al.’s method [44]. Compared
with [44], the proposed method gains 0.2622 bpp. Our
minimum ER among these test images is 1.4596 bpp generated

by Baboon, while the maximal ER of Baboon among the
compared methods is 1.066 bpp also obtained by Yin et al.’s
method [44]. The proposed method gains 0.3936 bpp for
Baboon compared with Yin et al.’s method [44]. In [43],
to guarantee reversibility, the unpredicted pixels must
be detected and their locations are embedded by MSB
substitution. Since only those predictable pixels conceal
secret bits by MSB replacement technique, the ER of [43] is
determined by the number of the predictable pixels and does
not exceed 1.0 bpp. Yi and Zhou [26] designed a binary-block
embedding (BEE) scheme which divides binary-blocks into
good and bad blocks. They applied this scheme to bit-planes
of image. The LSB planes of the original image are embedded
into its MSB planes by using BBE in order to reserve the
LSB planes for embedding secret data. As to Yi and Zhou’s
method [26], for Lena, the ECs of the 8th ∼ 5th bit-planes
are 182952 bits, 133516 bits, 90019 bits and 3138 bits,
respectively. It can be seen from Table V that their ECs of
bit-planes are all smaller than those of the proposed method.
In addition, for Baboon, their ER is only 0.4838 bpp due to
many bad blocks in textural image. Yi and Zhou’s method
[42] and Wu et al.’s method [45] are both parametric
binary tree labeling (PBTL) based on RDHEI methods and
Chen et al. [27] compressed MSB bit-planes to generate
room for data embedding. It can be seen that, the ERs of the
three methods don not exceed 3.0 bpp for Lena, Jetplane,
Airplane, Tiffany, while the ERs of the proposed method
are all larger than 3.0 bpp. For Baboon, the ERs of these
methods do not exceed 1.0 bpp, while the proposed method
can reach 1.459 bpp. For Man, the ERs of three methods are
all smaller than 2.5 bpp, while the proposed method can reach
2.6511 bpp. Yin et al. [44] only considered the same MSB
bit-planes between pixel value and its prediction value for
data hiding. In fact, pixel value and its prediction value are
very closed in some cases. But their same MSB bit-planes are
few such that the ER of [44] is limited. For example, the pixel
value and prediction value are 160 and 159, which can be
encoded by binary sequences “10100000” and “10011111”.
Clearly, only two MSB bit-planes are same. Therefore, only
two MSB bit-planes can be used for data hiding in [44].
However, the difference between 160 and 159 is 1 and the
redundancy generated by prediction is not fully exploited. For
the proposed method, by using hierarchical bit-plane label
maps, more than two MSBs of the pixel value 160 and the
prediction value 159 are likely to be used to accommodate
secret bits. For Lena and Jetplane, their 8th ∼ 5th and
8th ∼ 4th bit-planes can be used for data hiding as illustrated
in the Table V. It is clear that the proposed method can take
full advantage of redundancy information. This validates that
the proposed method outperforms the method [44].

To further demonstrate the superiority of the proposed
method, BOSSBase [49] and BOWS-2 [50] datasets are used
for comparison. The average ERs of different methods are
compared and the results are shown in the Fig. 9. It can be
seen that the ER results on the two databases also illustrate that
the ER of the proposed method reaches the best performance.
The average ERs of Puteaux and Puech’s method [43] do
not exceed 1.0 bpp for both BOSSbase and BOWS-2. The
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Fig. 8. ER comparison on standard images (a) Lena; (b) Baboon; (c) Jetplane;
(d) Man; (e) Airplane; (f) Tiffany.

average ERs of the methods [26], [27], [42], [45] do not exceed
3.0 bpp for BOSSbase and BOWS-2. Although the ERs of the
method [44] can reach 3.361 bpp and 3.246 bpp for BOSSbase
and BOWS-2, they do not take full advantage of redundancy
information. From the above analysis, it can be found that the
proposed method has better ER performance and the compared
methods.

Moreover, computational time is evaluated. The assessed
methods are implemented with MATLAB language and run
on a computer with configuration that the processors are two
dual-core CPUs with 2.10 GHz, the RAM capacity is 64 GB,
and the used operating system is Windows 10. We exploit our
method and the compared methods [26], [27], [42]–[45] to
embed secret bits with respective full capacity into six images
as shown in Fig. 5 and then calculate their average time of
embedding one bit. Table VII presents computational time
comparison of data embedding, where the first column lists the
assessed methods, the second column is the total time of six
images, the third column is the total EC of six images, and the
final column is the average time of embedding one bit. It can
be seen that all methods run very fast. For example, the slowest
method is [45] which just needs 0.2571 × 10−4 seconds to
embed one bit, meaning that its total time of embedding 105

bits is only 2.571 seconds. The proposed method is faster than
[45], but it is slower than other compared methods [26], [27],
[42]–[44]. In general, an effective programming language (e.g.,
C language or C++ language) is used in practice and will
provide a much faster speed than the MATLAB language.

Fig. 9. Average ER comparison on two open datasets (a) BOSSbase;
(b) BOWS-2.

TABLE VII

TIME COMPARISON AMONG DIFFERENT METHODS

V. CONCLUSION

In this paper, we have proposed a new RDHEI method
based on hierarchical embedding, which is error-free and
achieves a very high payload. An important contribution is
the new technique of hierarchical label map generation. The
label map is determined by prediction technique and it is com-
pressed and embedded into the encrypted image. In addition,
the hierarchical embedding is proposed to divide prediction
errors into small-magnitude errors, medium-magnitude errors
and large-magnitude errors, and those pixels with small-
magnitude/large-magnitude prediction errors are both used to
accommodate secret bits. Many experiments have been done.
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The results have shown that the proposed RDHEI method
outperforms some state-of-the-art RDHEI methods in payload.
Our average payloads on the BOWS-2 and BOSSbase datasets
reach 3.4568 bpp and 3.6823 bpp, respectively.
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