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Abstract— Efficient representation and coding of fine-granular
motion information is one of the key research areas for exploiting
inter-frame correlation in video coding. Representative tech-
niques towards this direction are affine motion compensation
(AMC), decoder-side motion vector refinement (DMVR), and
subblock-based temporal motion vector prediction (SbTMVP).
Fine-granular motion information is derived at subblock level
for all the three coding tools. In addition, the obtained inter
prediction can be further refined by two optical flow-based coding
tools, the bi-directional optical flow (BDOF) for bi-directional
inter prediction and the prediction refinement with optical flow
(PROF) exclusively used in combination with AMC. The afore-
mentioned five coding tools have been extensively studied and
finally adopted in the Versatile Video Coding (VVC) standard.
This paper presents technical details of each tool and highlights
the design elements with the consideration of typical hardware
implementations. Following the common test conditions defined
by Joint Video Experts Team (JVET) for the development of
VVC, 5.7 % bitrate reduction on average is achieved by the five
tools. For test sequences characterized by large and complex
motion, up to 13.4 % bitrate reduction is observed. Additionally,
visual quality improvement is demonstrated and analyzed.

Index Terms— Versatile video coding (VVC), inter prediction,
affine motion compensation (AMC), decoder-side motion vector
refinement (DMVR), subblock-based temporal motion vector pre-
diction (SbTMVP), bi-directional optical flow (BDOF), prediction
refinement with optical flow (PROF).

I. INTRODUCTION

V IDEO coding standards play an increasingly important
role in diversified video applications and services rang-

ing from the conventional television broadcasting, internet
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protocol television (IPTV), digital cinema and surveillance,
to the internet-based ones including over-the-top (OTT) video,
social media with short video sharing, and video conferenc-
ing with screen sharing. The Versatile Video Coding (VVC)
standard [1] was developed by the Joint Video Experts Team
(JVET) to face the technical challenge of higher compression
ratio for the exponentially increasing traffic of video content
and to meet the requirements from emerging markets including
the products and services with featured content such as high
dynamic range (HDR), augmented reality (AR) and virtual
reality (VR), etc. With the classical block-based hybrid video
coding architecture, VVC boosts the rate-distortion (RD)
performance of each module significantly and achieves an
overall bit rate reduction of more than 40 % with the same
reproduction quality measured by peak signal-to-noise ratio
(PSNR) for ultra-high definition (UHD) content.

Exploiting the inter-frame correlation, inter predictive cod-
ing is one of the main sources of coding gain and evolves
in several aspects through the generations of video coding
standards. For inter coding in the High Efficiency Video Cod-
ing (HEVC) standard [2], the predecessor of VVC standard,
the prediction of samples in a prediction unit (PU) are derived
from one or two reference pictures. Two lists of pictures in
the decoded picture buffer are constructed, denoted as list
0 and list 1, and are used for the management of the reference
pictures. For a PU in P slices, only uni-prediction can be
applied, where the motion-compensated prediction is derived
from one reference picture in list 0. For a PU in B slices, uni-
prediction may be applied using a reference picture in either
list 0 or list 1. Furthermore, bi-prediction can be optionally
applied to derive the motion-compensated prediction from two
reference pictures, one in list 0 and the other in list 1. Motion
information of a PU is used to perform motion compensation
(MC) to derive the prediction for the samples of the PU.
Motion information typically consists of an indication of
prediction direction, one or two motion vectors, and one or two
reference indices associated with each motion vector (MV).
The prediction direction indicates whether uni-prediction or
bi-prediction is used. And in case of uni-prediction, whether
list 0 or list 1 is used. Only one MV is required for uni-
prediction, along with the associated reference index indicating
the exact reference picture in the list. Two MVs and associated
reference indices are required for bi-prediction. It should be
noted that the indication of the prediction direction is not
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required for PUs in P slices where only uni-prediction is
possible. Similarly, the reference index is not required if there
is only one reference picture in the list.

The block merging technique was incorporated in HEVC
as the merge mode for coding the motion information in a
more efficient way [3]. In the merge mode, a merge list with
several motion information candidates is constructed for a PU.
Candidates are primarily derived from spatial and temporal
neighboring blocks. An index to the selected candidate instead
of the candidate motion information itself is transmitted so the
transmitting overhead can be significantly reduced. The MV
can also be explicitly coded in case the merge mode cannot
provide an accurate motion information. Similar to the merge
mode, in HEVC MV coding [4], the encoder firstly derives two
MV candidates and then transmits the index of the selected
one. With the competition of two MV predictors, the cost of
transmitting the MV difference can be greatly reduced. The
MV predictor is scaled according to the temporal distance
between the current picture and the reference picture of the
current PU, if necessary, to guarantee that it originates from
the current picture and points to the reference picture.

VVC inherits the same basic concepts and mechanisms of
the block merging and the MV coding techniques from HEVC,
and improves them in many aspects to achieve significant
compression efficiency enhancement [5]. Variable block size
for MC is another key element of inter prediction to match
the boundary of moving objects and therefore can reduce
the prediction residual around the boundary. The structure of
quad-tree with nested multi-type tree using binary and ternary
splits is introduced in VVC for partitioning a coding tree
unit (CTU) into multiple coding units (CUs) [6], where a
CU comprises one luma coding block (CB) and ordinarily
two chroma CBs with associated syntax elements. It is worth
noting that there is no PU in VVC, since the syntax for
prediction operations is specified at CU level. For more
efficiently coding video content with a large spatial resolution
such as 4K and 8K, the size of CUs can vary from 128 × 128
down to 4 × 8 or 8 × 4 for inter coding in VVC. One reason
of not having a smaller CU size, e.g., 4 × 4 CUs for inter
coding, is the dissatisfactory compression performance due
to the expensive transmitting overhead of fine-granular MVs.
Furthermore, relatively large block sizes will be decided by
a typical rate-distortion optimized encoder for the trade-off
of the transmitting overhead and the distortion, and there-
fore stronger blocking artifacts along block boundaries can
be observed. Various inter coding technologies have been
proposed during the VVC standardization process to improve
the overall rate-distortion performance and the visual quality
especially at low bitrate coding.

Leveraging high-order deformation models for represent-
ing fine-granular motion between the current picture and
its reference picture is expected to achieve a high-quality
prediction with few side information of model parameters.
As a representative high-order model, the affine model is
extensively studied in combination with existing video coding
standards [7]–[10]. In [11], [12] the classic 6-parameter affine
model is simplified to a 4-parameter one for less overhead in
signaling model parameters. It is shown that the combination

of translation, zooming, and rotation, which can be represented
by the 4-parameter model, is already a good approximation of
complex inter-frame motion. The affine motion compensation
(AMC) solution based on the 4-parameter model demonstrated
significant coding gain [11], and was adopted in the first
version of the Joint Exploration Model (JEM) [13] in 2015.
It was later refined in many aspects including alternative 6-
parameter model [14], model inheritance, model construc-
tion [15], control point motion vector coding [16], complexity
reduction [17]–[22], and evolved to the design in VVC [23].
It is worth noting that both luma and chroma CBs of a CU
are split into 4 × 4 subblocks for motion vector derivation
and motion compensation [19] in VVC AMC. In contrast
to the sample-wise processing in traditional affine schemes,
the introduction of subblocks not only makes a good trade-off
of coding efficiency and computational complexity, but also
reduces the implementation cost by reusing existing hardware
or software modules for block-based motion compensation.

Another way of reducing the overhead of transmitting
motion parameters is to derive motion parameters at the
decoder side [24]–[28]. Based on the assumption of constant
motion, bilateral matching (BM) [24], [25] estimates the dis-
placement between two reference pictures and derives the
motion vectors for the current picture that is in between the
two reference pictures. Template matching (TM) obtains an
L-shaped template around the current block from the recon-
structed picture region and performs template matching in the
reference picture to derive the motion vector for the current
block [26]–[28]. The frame rate up-conversion (FRUC) [29]
in JEM incorporates both BM and TM as alternative merge
modes, where the luma block of a CU is partitioned into
subblocks and the motion vectors are derived for each one.
The concepts of BM and TM are combined in [30], where the
template is constructed by averaging two temporal neighboring
blocks and is used to perform a search in the two reference pic-
tures. This decoder-side motion refinement (DMVR) extends
the existing merge mode [3] with a low-complexity motion
refinement and does not need to transmit additional side infor-
mation. With delicate design for harnessing the computational
complexity in several aspects, the DMVR scheme in [31]
was adopted to VVC. The subblock partition, among various
modifications on top of JEM DMVR [13], is considered to be
an important feature to tackle practical difficulties in typical
hardware implementations.

The subblock concept can also be applied to extend the CU
level temporal motion vector prediction (TMVP) in the merge
mode [3]. The Subblock-based TMVP (SbTVMP) was initially
proposed in the exploration stage for the new video coding
standard after HEVC [32] and was adopted in JEM. It allows
inheriting the motion information at subblock level from the
collocated reference picture. With this design, each subblock
of a large size CU can have its own motion information
without explicitly transmitting the block partition structure or
motion information, enabling diverged motion compensation
at no cost.

During the development of HEVC standard [2], one tech-
nique called bi-directional optical flow (BDOF) was pro-
posed [33]–[35] to compensate the sample-wise fine motion
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that is missed by the block-based motion compensation.
Specifically, the motion refinements are derived implicitly
from the samples of two prediction blocks based on the optical
flow differential equation. This method shows substantial
coding performance improvement and was adopted into JEM.
It was further simplified in several aspects including early
termination strategy [36], internal bit depth decrease [37], low-
complexity gradient calculation and motion refinement [38],
and was adopted into VVC at the 12th JVET meeting.

Optical flow can also be applied to the subblock-based
AMC to achieve the effect of sample-wise MC [39]. As an
input to the optical flow equation, the motion refinement
for each sample is obtained by subtracting the MV at the
subblock center from the MV at the sample location where
both MVs are derived from the same affine model. This
design is referred to as prediction refinement with optical flow
(PROF) in VVC [40].

This paper aims to provide a brief yet comprehensive
introduction of the abovementioned five subblock-based inter
coding tools in VVC standard, and is organized as follows.
Section II presents the details of AMC, DMVR and SbTMVP,
especially the mechanism of subblock-based motion deriva-
tion. Section III describes BDOF and PROF that target at qual-
ity enhancement of the prediction in a post-refinement stage.
Section IV highlights design elements to handle potential
difficulties in practical implementations. Section V presents
simulation results and provides an analysis thereof. Section VI
concludes the paper.

II. SUBBLOCK-BASED MOTION DERIVATION

One commonality among subblock-based motion derivation
mechanisms in AMC, DMVR, and SbTMVP is to derive luma
MV with 1/16 fractional-sample accuracy for subblock MC,
instead of explicit coding subblock MVs. This feature enables
subblock level MC at the cost of CU level signaling of motion
information, which can theoretically reduce the number of bits
for motion information coding for the same quality of inter
prediction.

A. Affine Motion Compensation

There are two variants of AMC in VVC, the affine inter
mode and the affine merge mode. The difference is that the
affine motion model is explicitly transmitted for the former
one but derived at the decoder side for the latter one.

1) Control Point Representation for Affine Motion Model:
Affine motion model of two types, a 4-parameter one and a 6-
parameter one, are introduced for describing complex motion
typically characterized by zooming and rotation in addition to
translation. The classic 6-paramater affine model is

mvx = a ∗ i + c ∗ j + e

mv y = b ∗ i + d ∗ j + f, (1)

where mv = (mv x , mv y) is the MV at coordinate (i, j); a, b,
c, d , e, and f are the model parameters.

Representing the affine model by control point motion vec-
tors (CPMVs) instead of the conventional model parameters
was adopted in VVC AMC to take the advantage of the

Fig. 1. Control point based affine motion model.

existing prediction and the block merging techniques for MV
coding. As shown in Fig. 1(a), the CPMVs representing a
6-parameter affine model for a CU are defined as the MVs
at the top-left, top-right and bottom-left corner luma sample
positions of the CU, namely the control points of the CU. And
the MV at coordinate (i, j) of the luma CB is described as

mv x (i, j) = mv1,x − mv0,x

W
i + mv2,x − mv0,x

H
j + mv0,x

mv y(i, j) = mv1,y − mv0,y

W
i + mv2,y − mv0,y

H
j + mv0,y,

(2)

where mvk = (mvk,x , mvk,y), 0 � k � 2 are the MVs of top-
left, top-right, and bottom-left corner control points. W and
H are the width and height of the CU.

Applying the constraints of a = d and b = −c in (1),
the 6-paramater affine model is simplified to a 4-paramater
one,

mvx = a ∗ i−b ∗ j + e

mv y = b ∗ i + a ∗ j + f. (3)

Similarly, as shown in Fig. 1(b), the 4-parameter model is
represented by two CPMVs at the top-left and top-right control
points of the CU.

The luma CB of a CU is split into 4×4 subblocks. The MV
at the central sample position of a subblock, with coordinates
as (2, 2) specifically, is calculated according to the affine
motion model and set as the subblock MV, as illustrated
in Fig. 2. The calculated subblock MV is rounded to 1/16
fractional-sample accuracy as the output. With the derived
subblock MV, a set of 6-tap interpolation filters is applied to
generate the prediction of each subblock [22]. The subblock
size of chroma components is set to be 4 × 4, and the MV of
a 4 × 4 chroma subblock is calculated as the average of the
MVs of the top-left and bottom-right luma subblocks in the
collocated 8 × 8 luma region for video contents in 4 : 2 : 0
color format [19].

2) Affine Inter Mode: Affine inter mode is restricted to CUs
with both width and height larger than or equal to 16 luma
samples, because the cost of transmitting CPMVs for smaller
size CUs is too high to achieve a reasonable trade-off in rate-
distortion performance. The usage of the mode is controlled
by an indication flag. Another flag is signaled to indicate
the motion model type, i.e., whether the 4-parameter model
or the 6-parameter model is used. Depending on the motion
model type, two or three motion vector differences (MVDs)
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Fig. 2. Subblock motion field for affine.

between the CPMVs and the predictors of them are signaled.
Without loss of generality, the 6-parameter model is used for
explanation hereinafter in this section. The advanced motion
vector prediction mechanism for MV coding in VVC [5] is
adapted to the affine inter prediction where an affine motion
vector predictor (MVP) comprises three MVPs at the three
control points of the CU. For the derivation of the affine MVP
in the prediction direction of the current CU, an affine MVP
list with two candidates is constructed and an index is signaled
to indicate the one selected at the encoder side. Note that this
affine MVP derivation process is applied twice, separately for
list 0 prediction and list 1 prediction, when bi-prediction is
applied to the current CU.

The affine MVP list is constructed by firstly inserting the left
neighbor candidate and the above neighbor candidate if avail-
able. The model inheritance mechanism is introduced to derive
the affine model of the current CU from a spatial neighboring
CU coded with affine mode. Specifically, the affine model of
a neighbor CU coded in affine mode, represented by three
CPMVs of (mv N 0, mv N 1, mv N 2), is applied to derive the
MVPs at the three control points of the current CU, as shown
in Fig. 3. The affine MVP candidate derived in this way is
called an inherited affine MVP candidate. The neighboring
CUs in position A0 and A1 are checked in order and the
model inheritance mechanism is applied to the first available
affine-coded CU to derive the left neighbor candidate. Note
that the left neighbor candidate may not exist if the CUs at
A0 and A1 are not affine-coded or the reference picture of the
neighbor affine-coded CU is not the same as that of the current
CU. The same process of checking availability and candidate
derivation is applied to obtain the above neighbor candidate
from CUs at B0, B1, B2 positions.

Secondly, the model construction mechanism is employed
to derive one constructed affine merge candidate and put it in
the affine MVP list if the list is not yet full. As illustrated
in Fig. 4, the spatial neighbors around each control point are
checked one by one, to identify if there exists an MV that

Fig. 3. Affine motion model inheritance.

points to the same reference picture as the current CU, and
the first available MV is assigned as the CPMV predictor of the
control point. The checking order is B2→B3→A2 for CP1,
B1→B0 for CP2 and A1→A0 for CP3. The CPMV predictors
at CP1, CP2 and CP3 are denoted as mvp0, mvp1, and mvp2,
respectively. A constructed affine candidate is obtained if all
the three CPMV predictors are available.

If the affine MVP list is still not full, stuffing affine
candidates are inserted to the list. A stuffing affine candidate is
derived by setting all three CPMV predictors to one of the MV
in a pre-defined set of stuffing candidates. The pre-defined set
of stuffing candidates comprises mvp2, mvp1, mvp0, TMVP,
and zero MV. Each candidate in the set can only be used once.

The CPMVs (mv0, mv1, mv2) of the 6-parameter model are
derived at the decoder side as

mv0 = mvp0 + mvd0

mv1 = mvp1 + mvd1 + mvd0

mv2 = mvp2 + mvd2 + mvd0, (4)

where (mvp0, mvp1, mvp2) is the affine MVP candidate
selected at the encoder side, mvd0, mvd1, and mvd2 are the
received MVDs for the three MVPs accordingly. As illustrated
in (4), both mvd1 and mvd2 are predicted by mvd0. This
MVD prediction mechanism is designed specifically for cod-
ing affine MVDs and can exploit the similarities in the MVDs
at affine control points.

3) Subblock Merge Mode: Similar to the regular merge
mode in VVC where a list of motion candidates is derived
for inter prediction at CU level [5], the subblock merge
mode in VVC constructs a separate merge list with only
subblock-based motion candidates. The candidate selected by
the encoder is indicated by a merge index which is trans-
mitted to the decoder. Subblock merge mode is applied to
CUs with both width and height larger than or equal to 8
luma samples [41]. The SbTMVP candidate (introduced in
Section II-B) is put in the first place of the list, followed
by inherited affine merge candidates and constructed affine
merge candidates. Maximum 5 candidates can be put in the
subblock merge list. Since most of the candidates in the list
are affine merge candidates, the subblock merge mode may
also be referred to as the affine merge mode.
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Fig. 4. Positions for the derivation of constructed affine MVP candidates
and constructed affine merge candidates.

Similar to the derivation of the inherited affine MVP candi-
date, the availability of the left and the top neighbor candidates
are checked to derive the inherited affine merge candidates.
The only difference is that the spatial neighboring CU in affine
mode is not required to have the same reference picture as
the current CU. The reference index of the current CU is
set to be the same as that of the neighboring affine-coded
CU, in the derivation of the inherited affine merge candidates.
In addition, the motion model type and the prediction direction
of the neighboring affine-coded CU are reused as well.

For the derivation of the constructed affine merge candi-
dates, the motion information of all four control points is firstly
derived from the spatial and temporal neighbors, as shown
in Fig. 4. Using the same checking order as in the derivation of
the constructed affine MVP candidate, the motion information
at CP1, CP2 and CP3 is obtained. The temporal motion
information in the collocated position T is obtained and set
to be the motion information at CP4. The motion information
at a control point may not exist if no valid motion information
is found, e.g., in case the neighboring CU is coded in intra
mode. A set of control point combinations is constructed as
{CP1, CP2, CP3}, {CP1, CP2, CP4}, {CP1, CP3, CP4}, {CP2,
CP3, CP4}, {CP1, CP2}, {CP1, CP3}, and is checked one
after another. The availability of all CPMVs of a control
point combination in bi-prediction, list 0 prediction, and list
1 prediction are checked in order, and a valid affine merge
candidate is constructed if all CPMVs in a specified prediction
direction exist and share the same reference index. Note that
only the first valid candidate constructed from control point
combination is selected. It is obvious that a 6-parameter affine
motion model will be constructed from the combinations with
three control points, and a 4-parameter model will be derived
from the combinations with two control points.

If the subblock merge list is still not full after adding
all subblock merge candidates abovementioned, one or more
stuffing candidates of the 4-parameter affine model with zero
CPMVs are inserted into the list.

B. Subblock-Based Temporal Motion Vector Prediction

SbTMVP obtains motion information for each subblock of
a CU in three steps: a) derive the displacement vector (DV)

for the current CU, b) check availability of the SbTMVP
candidate and derive the central motion, and c) derive the
subblock motion information from the corresponding subblock
identified by the DV. The derived subblock level motion
information is used for the MC of both luma and chroma CBs
of the CU. The collocated picture is the reference picture that
is used as the source picture for temporal motion information
derivation. Unlike TMVP candidate derivation in HEVC merge
mode [3], which always derives the temporal motion vectors
from the collocated block in the collocated picture, SbTMVP
applies a DV to find the correspondence of the positions
or the partitioned blocks in the current picture and those in
the collocated picture. As shown in Fig. 5, the MV of the
left neighboring CU of the current CU is selected to be the
DV if the left neighboring CU uses the collocated picture as
its reference picture. In case the left neighboring CU is not
coded in inter prediction mode or the MV does not point
to the collocated picture, the DV is set to (0, 0). The DV
is then applied to the central position of the current CU to
locate the displaced central position in the collocated picture,
as illustrated in Fig. 5. If the block containing the displaced
central position is not inter-coded, the SbTMVP candidate is
considered not available. Otherwise, the motion information
of the central position of the current CU, named as central
motion, is derived from the motion information of the block
containing the displaced central position in the collocated
picture, marked as MV3 in Fig. 5. The central motion is
derived in a similar way as the temporal motion candidate
derivation where the temporal motion scaling is applied to
align the reference pictures of the temporal motion vectors to
those of the current CU [4]. Up to two motion vectors, one per
list, can be derived. When the SbTMVP candidate is available,
the DV is applied to find the corresponding subblock in the
collocated picture for each subblock of the current CU. And
the motion information of the corresponding subblock is used
to derive the motion information of the subblock in the current
CU in the same way as deriving the central motion. In case
the corresponding subblock is not inter-coded, the motion
information of the current subblock is set to be the central
motion.

SbTMVP is applicable to CUs with both width and height
larger than or equal to 8 luma samples. The subblock size for
SbTMVP is set to 8 × 8 in VVC [42] in order to restrict the
memory bandwidth consumption not exceeding the worst-case
situation in 8 × 8 bi-prediction. To avoid additional memory
access burden of loading motion information from random
locations in the collocated picture, the location is restricted
to be within the collocated area of the current CTU plus one
column of 4 × 4 blocks at the right boundary. The location
of the corresponding subblock is clipped to be within the
constrained area if it goes outside after applying the DV.

C. Decoder-Side Motion Vector Refinement

This section presents the design of DMVR in VVC. Readers
can refer to [43]–[45] for the details of the technical discussion
and the alternative versions of DMVR considered along its
evolution.
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Fig. 5. Derivation of the SbTMVP candidate.

1) General Description of DMVR Process: DMVR is
applied to CUs in the regular merge mode in VVC [5]. The
pair of MVs obtained from the regular merge mode is the
input to the DMVR process. As shown in Fig. 6, DMVR
applies bilateral matching to refine the accuracy of the input
MV pair

{
mv00,0, mv10,0

}
and uses the refined MV pair for

the motion-compensated prediction of both luma and chroma
CBs of a CU. The input and the output of the DMVR process,
namely the initial and refined MV pairs, obey the following
equation:

mv0refined = mv00,0 + �mv,

mv1refined = mv10,0 − �mv. (5)

The motion vector difference �mv is added to mv00,0
and subtracted from mv10,0 to obtain the refined MV pair{
mv0re f ined , mv1re f ined

}
, which is known as the MVD mir-

roring property of DMVR. MVD mirroring property is applied
to reduce the number of candidate MV pairs, and is frequently
used in VVC for MVD coding, for instance, in the merge
mode with MVD and the symmetric MVD coding mode [5].
To ensure the equal distance MVD mirroring property, DMVR
is allowed only if the initial MV pair point to two different
reference pictures that have equal distance in picture order
count (POC) to the current picture, wherein POC is an integer
value used to uniquely identify each picture in a coded
sequence. In addition to the equal POC distance restriction
as described above, DMVR is restricted to CUs with width
and height larger than or equal to 8 luma samples and the
number of luma samples greater than or equal to 128, to avoid
DMVR process on smaller CUs for complexity reduction.
Other restrictions on the usage of DMVR can be found in [23].

A luma CB is divided into 16 × 16 subblocks for the MV
refinement process if both the width and height of the CB
are greater than or equal to 16 luma samples. If the width or
the height of a luma CB is equal to 8 samples, the subblock
size is set to be 8 × 16 or 16 × 8, respectively. The �mv
is obtained independently for each subblock in two steps,
an integer-sample search step followed by a fractional-sample
search step. And finally the subblock MC is applied using
{mv0refined, mv1refined}.

2) Integer-Sample Search: A search space consisting of 25
candidate MV pairs is constructed as follows:

mv0i, j = mv00,0 + 16�i, j�,
mv1i, j = mv10,0 − 16�i, j�. (6)

Fig. 6. Bilateral matching-based DMVR and �MV mirroring property
(adapted from [45], © 2020 IEEE).

where �i, j� represents the coordinate of a search point around
the initial MV pair, and i and j are integer numbers between
−2 and 2 inclusive. Since the internal MV precision is in
1/16 fractional-sample in VVC, the difference vector �i, j� is
multiplied by 16. The difference between the candidate MVs
are multiple of an integer-sample interval, hence the first step
of DMVR is called the integer-sample search.

The candidate MV pairs are used to obtain pairs of
motion-compensated luma prediction blocks (denoted P0i, j

and P1i, j ). A bilinear interpolation filter, which has a lower
memory bandwidth requirement and computational complexity
than the 8-tap DCT-based interpolation filter (DCT-IF) [46],
is applied at this stage. Test results in [47] and [48] had shown
a negligible RD performance degradation when using bilinear
interpolation instead of DCT-IF. It should be noted that the
bilinear interpolation can be performed at CU level, as all
subblocks in a CU have the same search space.

Afterwards, row subsampled sum of absolute differences
(SAD) cost is calculated for prediction blocks of each candi-
date pair according to

S AD(i, j) = K

H
2∑

n=0

W∑
m=0

diff m,n, (7)

diff m,n = abs(P0i, j [m + i, 2n + j ]
− P1i, j [m − i, 2n − j ]), (8)

where

K =
{

3/4 i = 0, j = 0

1 otherwise.
(9)

Here, W and H are the width and height of the current
subblock. The row subsampling reduces the operations for
SAD computation by a factor of 2, while still being friendly to
Single Instruction Multiple Data (SIMD) operations. The SAD
corresponding to the initial MV pair is scaled with a factor of
3/4 to favor the center point in the search window, in order
to stabilize the refinement process. The search coordinates
resulting in the minimum SAD cost, denoted as �imin , jmin�,
is selected as the output of the integer-sample search step.

The SAD cost with the initial MV pair, indicating the center
position in the search space, is first computed. Only if this cost
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is greater than or equal to a threshold value that is equal to the
number of samples in the subblock, the remaining SAD costs
are evaluated. This early termination results in complexity
reduction and power savings in both hardware and software
implementations with negligible impact on coding gains.

3) Fractional-Sample Search: The candidate MV pair
selected in the integer-sample search step is further refined by
leveraging the SAD costs already calculated. A quadratic error
surface function with the following form, which is depicted
in Fig. 7, is used to model the SAD costs at fractional-sample
search coordinates:

S AD(x, y) = α(x − xmin)2 + β(y − ymin)2 + γ. (10)

Equation (10) is fitted to 5 of the 25 SAD costs calculated in
the first step in order to determine the 5 unknowns parameters,
i.e., α, β, γ , xmin , and ymin . The 5 SAD costs are selected as
the costs corresponding to the coordinates �imin , jmin�, �imin −
1, jmin�, �imin , jmin − 1�, �imin + 1, jmin� and �imin , jmin + 1�.
The unknown parameters α, β, xmin , and ymin are therefore
determined as

α = S ADx − 2S AD(imin , jmin), (11)

β = S ADy − 2S AD(imin , jmin), (12)

xmin =
{

16imin + �8 S ADα
α � α �= 0

16imin α = 0,
(13)

and

ymin =
{

16 jmin + �8
S ADβ

β � β �= 0

16 jmin β = 0
(14)

with

S ADx = S AD(imin − 1, jmin) + S AD(imin + 1, jmin), (15)

S ADy = S AD(imin , jmin − 1) + S AD(imin , jmin + 1), (16)

S ADα = S AD(imin − 1, jmin)−S AD(imin + 1, jmin), (17)

and

S ADβ = S AD(imin , jmin − 1)−S AD(imin , jmin + 1). (18)

The motion vector difference in fractional-sample accuracy
is determined by the coordinates �x, y� that minimizes the
SAD cost S AD(x, y), which is equal to �xmin , ymin�. The
�mv in (5) is set equal to �xmin , ymin�, which is then used
to obtain the refined motion vector pairs, i.e., mv0re f ined

and mv1re f ined . It is worth noting that this fractional-sample
search step will be skipped if any of the absolute values of
imin and jmin is equal to 2, indicating that �imin , jmin� is at
the boundary in the search space of the integer-sample search
step. Because in this case not all of the 5 SAD costs required
for the fractional-sample search would be available.

This parametric error surface function based
fractional-sample search eliminates the need for any sample
processing in this stage. Against an alternative method that
performs one iteration of half-sample refinement, this method
offers a decoder complexity reduction (measured by running
time) of 7 % without compression efficiency penalty [49].

Fig. 7. Quadratic error function based SAD cost surface model (adapted
from [45], © 2020 IEEE).

III. PREDICTION REFINEMENT WITH OPTICAL FLOW

Compared to traditional block MC, optical flow is expected
to achieve the effect of sample-wise inter prediction. It is
embodied in VVC as BDOF to refine the prediction of the CU-
based bi-directional inter prediction, and as PROF to refine the
subblock prediction of AMC.

A. Bi-Directional Optical Flow for CU-Based Inter
Prediction

Conventional bi-prediction is a weighted combination of
two prediction blocks from previously coded pictures. Two
MVs are used to obtain the two prediction blocks from a list
0 reference picture and a list 1 reference picture, respectively.
However, due to the limitation of block-based MC, there are
usually remaining displacements between the samples inside
the two prediction blocks. The BDOF aims at compensating
such fine displacement for each prediction sample on top of
the original block-level MVs. In opposite to the block-based
motion compensation, the refinement values of MVs are not
signaled in BDOF. The BDOF is applied to the luma CB
of a CU in regular merge mode or in the inter mode where
symmetric MVD is not applied. And the BDOF is restricted
to CUs with width and height larger than or equal to 8 luma
samples and the number of luma samples greater than or equal
to 128. Other restrictions on the usage of BDOF can be found
in [23].

The BDOF is built upon the optical flow concept [33], [34].
Let I (i, j, t) be the luminance value of a sample at position
(i, j) and time t . Assuming the luminance of each sample is
constant during the movement of the object, the optical flow
differential equation, in this case, can be expressed as follows

0 = ∂ I

∂ t
+ vx

∂ I

∂x
+ vy

∂ I

∂y
. (19)

As shown in Fig. 8, at each sample position the motion
(vx , vy) describing the remaining small displacement from Ic

to I0 is symmetrical to its motion from Ic to I1. Here Ic, I0
and I1 are arrays of luminance values in the current block and
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the two prediction blocks from the list 0 and list 1 reference
pictures, respectively. For the simplicity, remaining motions
relative to both reference pictures are assumed to be the same
in magnitude and opposite in directions. This assumption is
reflected by the constraint that BDOF is applied only if the
two different reference pictures have equal distance in POC to
the current picture. It is worth noting that the same constraint
is applied to DMVR as well.

Based on the symmetric motion model, (19) can be used to
approximate the value of each sample in Ic from two direc-
tions, one from its correspondence A in I0 and the other from
its correspondence B in I1. The value of (vx , vy) is calculated
by minimizing the difference between two predictions with
refined motion:

(vx , vy) : min
∑

(i, j )∈�

�2(i, j); (20)

�(i, j) = I0(i, j) − I1(i, j)

+ vx(
∂ I0(i, j)

∂x
+ ∂ I1(i, j)

∂x
)

+ vy(
∂ I0(i, j)

∂y
+ ∂ I1(i, j)

∂y
). (21)

Here (i, j) is the spatial coordinate of a sample inside
the predicted block, � is surrounding of this sample. Spatial
derivatives are approximated for the discrete sample arrays
I0(i, j) and I1(i, j):

∂ I0,1(i, j)

∂x
= (I0,1(i + 1, j) − I0,1(i − 1, j)) 
 1, (22)

∂ I0,1(i, j)

∂y
= (I0,1(i, j + 1) − I0,1(i, j − 1)) 
 1. (23)

To reduce the computational complexity of the derivation
of local remaining motions, the vector (vx , vy) is assumed
constant inside each 4 × 4 subblock. It is calculated once and
shared by all the samples in the subblock [50]. Additionally,
to make the derived motion field more stable, (vx , vy) of each
4 × 4 subblock is calculated from the extended 6 × 6 region
(noted as � in (20)) containing a 4×4 subblock in the center.

The optimization problem in (20) can be resolved by setting
both partial derivatives to zero and the resulting linear equation
system is approximately solved by

vx = − S4

S1
, vy = − S5 + vx S3

S2
, (24)

where

S1 =
∑

(i, j )∈�

ϑx (i, j) · ϑx(i, j), (25)

S2 =
∑

(i, j )∈�

ϑy(i, j) · ϑy(i, j), (26)

S3 =
∑

(i, j )∈�

ϑx (i, j) · ϑy(i, j), (27)

S4 =
∑

(i, j )∈�

ϑt (i, j) · ϑx (i, j), (28)

and

S5 =
∑

(i, j )∈�

ϑt (i, j) · ϑy(i, j) (29)

Fig. 8. Illustration of the symmetric motion model used by the BDOF
(adapted from [34], © 2010 IEEE).

are the auto- and cross-correlation parameters, and ϑx (i, j) and
ϑy(i, j) are the horizontal and vertical gradients and ϑt (i, j)
is the temporal gradient of the sample at position (i, j), which
are calculated as

ϑx (i, j) = ∂ I0(i, j)

∂x
+ ∂ I1(i, j)

∂x
, (30)

ϑy(i, j) = ∂ I0(i, j)

∂y
+ ∂ I1(i, j)

∂y
, (31)

and

ϑt (i, j) = I0(i, j) − I1(i, j). (32)

After (vx , vy) is derived, the final bi-prediction signal
I �

c(i, j) in the current position (i, j) of the block is calculated
by interpolating list 0 and list 1 prediction samples along the
motion trajectory (as shown in Fig. 8) based on the Hermite
interpolation, i.e.,

I �
c(i, j) = 1

2
(I0(i, j) + I1(i, j) + σBDOF), (33)

σBDOF = vx (
∂ I0(i, j)

∂x
− ∂ I1(i, j)

∂x
)

+ vy(
∂ I0(i, j)

∂y
− ∂ I1(i, j)

∂y
). (34)

B. Affine Prediction Refinement With Optical Flow

At a later stage of VVC standardization, PROF was adopted
to compensate for the prediction error of subblock-based AMC
by applying the optical flow-based sample-wise refinement to
the prediction.

Let P be the affine subblock prediction. Assume P(i, j),
the prediction at position (i, j) in the current subblock is
predicted from sample I (x, y) at position (x, y) in the ref-
erence picture with the subblock MV. Let (ui j , vi j ) be the
displacement between the sample MV and the subblock MV,
I (x + ui j , y + vi j ) would be the prediction if sample MV
is used for motion compensation. The subblock-based and
sample-based AMC are illustrated in Fig. 9.
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Assuming (ui j , vi j ) is small, I (x + ui j , y + vi j ) can be
approximated by Taylor expansion:

I (x + ui j , y + vi j ) ≈ I (x, y) + ∂ I

∂x
ui j + ∂ I

∂y
vi j . (35)

The prediction refinement is obtained by

�I = gx(i, j)ui j + gy(i, j)vi j , (36)

where gx(i, j) and gy(i, j) are the spatial gradients of the
subblock prediction in the horizontal and vertical directions.

The gradient calculation is performed for each 4 × 4 sub-
block in an affine-coded CU in the following steps. At first,
the 4 × 4 subblock prediction is extended by one sample
on each side. The extended samples are copied from the
nearest integer positions in the reference picture to avoid
additional memory bandwidth consumption. Then, for each
position (i, j) in the 4 × 4 subblock, the spatial gradient is
calculated as follow:

gx(i, j) = (P(i + 1, j) 
 6) − (P(i − 1, j) 
 6), (37)

gy(i, j) = (P(i, j + 1) 
 6) − (P(i, j − 1) 
 6). (38)

This is equivalent to applying a 2-tap filter on prediction
samples for gradient calculation.

The displacement (ui j , vi j ) associated to each sample in the
a subblock of an affine-coded CU can be derived based on the
affine matrix A of the CU and the sample position relative to
the center of a subblock with the following equation:

(ui j , vi j ) = (i − 1.5, j − 1.5) × A, (39)

where (1.5, 1.5) is the center position relative to the top-left
sample in a subblock. A is the affine matrix of the CU:

A =
[

a b
c d

]
(40)

where a, b, c, and d are the affine model parameters as in (1).
Since the sample positions relative to the subblock center are
independent of the subblock position in a CU, (ui j , vi j ) can
be derived for one subblock and reused in all subblocks in the
same CU in an optimized implementation.

The intermediate precision of the calculation is carefully
designed to reduce the rounding error. The precision of the
spatial gradient in (37)–(38) is designed to be the same as
that in the BDOF process (see Section IV-C.3), such that the
gradient computation component can be reused. ui j and vi j

are rounded to 1/32 fractional-sample accuracy and further
clipped within the range of [−31/32, 31/32] to avoid large
MV difference.

The prediction refinement �I (i, j) is then clipped accord-
ing to the internal bit-depth and added to the affine sub-
block prediction to form the final affine prediction. PROF
is always applied to CUs in affine mode, but bypassed in
case of identical CPMVs of an affine model, reference picture
resampling [1], [51] being used, or the affine fallback mode
(see Section IV-A.3) being triggered. The affine fallback mode
will be triggered when subblocks of an affine-coded CU spread
far apart from each other which poses a challenge to the
memory bandwidth consumption during MC.

Fig. 9. Subblock-based AMC and sample-based AMC.

Fig. 10. Affine model inheritance from above CTU.

IV. IMPLEMENTATION CONSIDERATIONS

The preliminary designs of AMVC, DMVR and BDOF
have been proposed and studied inside the JVET for a long
time, but have not been considered mature until they were
simplified in several important aspects for feasible hardware
implementations with an affordable cost. Therefore, important
simplifications of the three tools are elaborated in this section.

A. Affine Motion Compensation

1) Motion Information Storage of Affine-Coded CUs: After
processing an affine-coded CU, the motion information of all
4 × 4 subblocks of the luma CB is stored and will be used
in subsequent processes such as the MV prediction of fol-
lowing CUs and the deblocking filtering on block boundaries.
Due to the introduction of the model inheritance mechanism
which refers to the affine model of a previous CU coded
in affine mode, the CPMVs of an affine-coded CU need to
be additionally stored in a separate buffer [17]. Specifically,
the stored CPMVs of neighboring CUs are used to derive the
inherited affine MVP candidates and the inherited affine merge
candidates for the current CU.

2) Affine Model Inheritance From the Above CTU Line: In
a typical hardware design, a line buffer is used to store the
motion information of the above CTU line and then the CUs
in the current CTU line can refer to the stored motion infor-
mation for MV prediction and deblocking filtering. Similarly,
the CPMVs of the affine-coded CUs located at the bottom of
the above CTU line need to be additionally stored and then
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can be used by the affine-coded CUs located at the top of the
current CTU line, according to the model inheritance mech-
anism. To avoid adding additional line buffer for CPMVs in
the above CTU line, a modified model inheritance mechanism
was adopted in VVC to handle the situation. Specifically, when
an affine-coded CU at the bottom of the above CTU line is
referred to, the bottom-left and bottom-right subblock MVs of
the CU are fetched and treated as the MVs at the bottom-left
and bottom-right corner points, and a 4-parameter affine model
represented by the two corner point MVs is assumed for the
CU. The model is then applied to derive the inherited affine
MVP candidates and the inherited affine merge candidates for
the current CU [18], as shown in Fig. 10. With such a design,
the subblock MVs already stored in the line buffer is reused
for affine model inheritance.

3) Bounding Box Constraint for Low Complexity MC: The
reference blocks for the MC of all 4 × 4 subblocks of an
affine-coded CU may spread to a large region in the reference
picture and have zero overlapping with each other, which may
lead to non-affordable peak memory bandwidth consumption
when fetching reference samples for MC [21]. To constrain
the complexity of MC in such a case, the MV at the center
position (W/2, H/2) of the CU is calculated according to
the affine model and is set to be the MVs of all subblocks.
This is called affine fallback mode and is triggered if the
size of the bounding box calculated for an affined-coded CU
exceeds a pre-defined threshold. The bounding box is defined
as the rectangular region covering all reference blocks of a
pre-defined cluster of subblocks in the current CU. A reference
block contains all reference luma samples required for the MC
of the corresponding subblock.

For an affine-coded CU with bi-prediction, the bounding
box covers all four reference blocks of a 2 × 2 cluster of
subblocks, as shown in Fig. 11. The size of the bounding box
is Wbox × Hbox . Wbox and Hbox are calculated as,

Wbox = max(0, 4(1 + a), 4c, 4(1 + a) + 4c)

− min(0, 4(1 + a), 4c, 4(1 + a) + 4c) + 9, (41)

Hbox = max(0, 4b, 4(1 + d), 4b + 4(1 + d))

− min(0, 4b, 4(1 + d), 4b + 4(1 + d)) + 9. (42)

where a, b, c, and d are the affine parameters. The pre-defined
threshold is set to 225 = (8 + 7) × (8 + 7), which is the
number of luma reference samples required for 8 × 8 block
MC with 8-tap DCT-IF. By this design, the memory bandwidth
consumption does not exceed that for the bi-prediction of inter-
coded 8 × 8 CU in VVC.

Similarly, for an affine-coded CU with uni-prediction,
the bounding box covers the two reference blocks of the
2 × 1 or 1 × 2 cluster of subblocks. The threshold is set to
165 = (8 + 7) × (4 + 7) for both bounding boxes, where 165
is the number of luma reference samples required for the MC
of an 8 × 4 or a 4 × 8 block. And the memory bandwidth
consumption does not exceed that for the uni-prediction of
inter-coded 8 × 4 or 4 × 8 CU in VVC by this design.

Fig. 11. Bounding box for a 2 × 2 cluster of subblocks.

B. Decoder-Side Motion Vector Refinement

The predecessors of DMVR such as FRUC with BM and
TM in JEM have significantly high decoding complexity.
A series of simplifications were proposed for DMVR to arrive
at the sweet spot between compression gains and decod-
ing/encoding complexity. The usage of bilinear interpolation
during refinement, row subsampled SAD during the integer-
sample search, and parametric error surface-based fractional-
sample search are such simplifications already covered in
Section II-C. Additional important simplifications are pre-
sented here.

1) DMVR Search Range and Integer-Sample Search Preci-
sion: The main source of the computational complexity of
DMVR is SAD cost calculations in the integer-sample search
step, which is proportional to the number of candidate MV
pairs. The candidate MVs, either list 0 or list 1 MVs of the
candidate MV pairs, point to search points that form a grid
with a displacement of one luma sample in horizontal and
vertical directions. The selection of the integer-sample interval
as the displacement is a deliberate design choice, since the
generation of predictions P0i, j and P1i, j by interpolation
filtering is greatly simplified due to the following relationships:

P0i, j [m − i, n − j ] = P00,0[m, n], (43)

P1i, j [m − i, n − j ] = P10,0[m, n]. (44)

According to the above relationships the 25 prediction pairs
of size W and H can be computed as a single prediction pair
with size W + 2R and H + 2R, where R is the search range.

The search range, which determines the number of equally
spaced candidate MVs in the integer-sample search step,
is set equal to 2 luma samples for the best trade-off of
computational complexity and coding efficiency. This results
in the aforementioned 25 candidate MV pairs and 25 necessary
SAD computations.

2) Forced Subblock Partition: The motion refinement is
performed for the entire luma CB in an early-phase design
of DMVR. Performing refinement at luma block sizes of
128 × 128 requires two internal buffers of size up to (128 +
4) × (128 + 4), which is quite prohibitive. Also, handling the
granularity of the different luma CB sizes while performing
the refinement poses additional complexity. For these reasons,
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the luma CB is partitioned into subblocks with luma width and
height not exceeding 16. The refinement is performed inde-
pendently for each subblock. Different subblock maximum
sizes were experimented in [31]. The subblock partition design
lowers the internal memory requirement in hardware to as low
as 2 × (16 + 7)× (16 + 7) samples. Also, the refinement logic
needs to handle only three possible subblock sizes, namely,
16 × 8, 8 × 16, and 16 × 16. It is noted that this forced
subblock partition increases the overall number of operations
required for MC in the final stage, compared to luma CB-based
refinement. Since hardware decoders are designed to handle
the theoretical worst-case number of partitions, this aspect is
more of a concern only for software implementations.

3) Restriction on Using Refined MV: In typical hard-
ware architectures of the MC module, reference samples are
pre-fetched at a granularity higher than that of a CU through
direct memory access (DMA). In a preliminary design of
DMVR, the refined MVs are used as spatial MV predictors
for subsequent CUs. This complicates the existing pre-fetching
mechanism since the refined MVs inside a region are not
available at the time when pre-fetching is working on the
region. On the other hand, the derivation of the MVs of
the subsequent CUs may need to wait for the refined MV of the
current CU, which potentially adds additional latency for typi-
cal hardware pipelines. To eliminate potential implementation
difficulties mentioned above, the use of refined MVs for merge
MV derivation and spatial MV prediction was disabled [52].
Later, in [31], the use of refined MVs in boundary strength
(BS) derivation for deblocking filtering was also disabled.
Hence in VVC the refined MVs are used only for the motion
compensation for the current CU and are stored in temporal
MV buffer for coding of subsequent pictures. It is worth noting
that the same restriction is applied to the BDOF process, where
the refined motions of all 4×4 subblocks are used exclusively
for the prediction refinement of the current CU.

4) Sample Padding for MC in the Final Stage: The con-
ventional MC for a W × H block requires fetching up to
(W + 7) × (H + 7) luma reference samples and (W/2 + 3) ×
(H/2 + 3) chroma reference samples per reference picture.
With the ±2 search window around the starting point for
DMVR, (W +11)×(H +11) luma and (W/2+5)×(H/2+5)
chroma reference samples would need pre-fetching. Consider-
ing the worst-case situation where each block would need to
access the memory independently for its reference samples,
the memory bandwidth consumption would be increased by
DMVR. To maintain the same worst-case memory bandwidth,
the block of reference samples is constrained to be the same as
that for the conventional MC. In case samples outside of the
reference area are required for MC in DMVR, padded samples
are used instead. The padded sample values are obtained
from the closest sample positions falling within the block of
reference samples for conventional MC [53].

C. Bi-Directional Optical Flow

1) Forced Subblock Partition and Subblock-Based Opera-
tions: Following the same logic of subblock partitioning in the
DMVR process, when the width and/or height of a luma CB

TABLE I

BIT-WIDTHS OF INTERNAL BDOF PARAMETERS WHEN INTERNAL
BIT-DEPTH RANGING FROM 8 TO 16 BIT. TOP: RANGE, BOTTOM: BIT-

WIDTH

are larger than 16 luma samples, it will be split into subblocks
with width and height not exceeding 16. With such a design,
the internal buffer size required by BDOF implementations is
reduced, and the unit size for BDOF processing is perfectly
aligned with that for DMVR processing in hardware codec
design. Meanwhile, as will be discussed later, such a design
also allows the initial SAD of the DMVR refinement to be
used for bypassing partial BDOF operations. Without loss of
generality, 16×16 size subblock is assumed for the explanation
hereinafter in this section.

The gradient calculations specified in (22)–(23) are con-
ducted at the 16 × 16 subblock level. Each 16 × 16 sub-
block is extended by one sample on each side. Instead of
performing motion-compensated interpolation to obtain the
extended samples, these samples are copied from the nearest
integer sample positions in the reference picture to avoid
additional memory bandwidth and additional MC operations.
The obtained gradients are then used for the calculation of vx ,
vy , and I �

c(i, j) as specified in (24)–(34), which is conducted
for each 4 × 4 subblock inside a 16 × 16 subblock. As each
4×4 subblock is extended to a 6×6 region for the calculations,
prediction samples and gradients outside of the current 16×16
subblock boundaries are requested for 4×4 subblocks located
at the boundaries of the 16 × 16 subblock. These prediction
samples and gradients are directly copied from their nearest
neighbors on the 16 × 16 subblock boundaries [37].

An early termination for BDOF operations is applied at the
16 × 16 subblock level [36]. Specifically, the BDOF process
may be skipped for a subblock when the DMVR is applied to
the subblock as well. In this case, the SAD cost with the initial
MV pair from the DMVR process is checked. If the SAD cost
is smaller than a threshold, the prediction is considered to be
of high quality, and therefore the BDOF process is skipped.
The threshold is set equal to (2 × W × H ), where W and H
indicate the width and height of the subblock.

2) Simplified BDOF Parameter Derivation: As shown
in (25)–(29), large numbers of multiplications are needed
to calculate the auto- and cross-correlation parameters
S1, S2, . . . , S5 in a straightforward design. This results in
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TABLE II

CODING PERFORMANCE AND RELATIVE RUN TIMES OVER ALL PRESENTED CODING TOOLS

5 × 6 × 6 multiplications for each 4 × 4 subblock, as the
motion refinements are derived in the extended 6 × 6 region.
Based on the assumption that gradients are nearly constant
inside a subblock, the multiplications can be replaced by sign
operations and (25)–(29) are approximated by:

S1 =
∑

(i, j )∈�

abs(ϑx(i, j)), (45)

S2 =
∑

(i, j )∈�

abs(ϑy(i, j)), (46)

S3 =
∑

(i, j )∈�

ϑx (i, j) · sign(ϑy(i, j)), (47)

S4 =
∑

(i, j )∈�

ϑt (i, j) · sign(ϑx (i, j)), (48)

and

S5 =
∑

(i, j )∈�

ϑt (i, j) · sign(ϑy(i, j)). (49)

This approximation removes all multiplications and reduces
the overall number of multiplications of BDOF by more than
80 % [38].

3) Bit-Width Control of BDOF Intermediate Parameters:
To reduce the dynamic range of intermediate parameters used
for the BDOF process, different bitwise right shifts are intro-
duced [37] to lower the precisions of the BDOF parameters
ϑx(i, j), ϑy(i, j) and ϑt (i, j) in (30)–(32), as indicated below:

ϑx (i, j) = (g0
x(i, j) + g1

x(i, j)) 
 1, (50)

ϑy(i, j) = (g0
y(i, j) + g1

y(i, j)) 
 1, (51)

and

ϑt (i, j) = (I0(i, j) 
 4) − (I1(i, j) 
 4), (52)

where

g0,1
x (i, j) = (I0,1(i + 1, j) 
 6) − (I0,1(i − 1, j) 
 6),

(53)

g0,1
y (i, j) = (I0,1(i, j + 1) 
 6) − (I0,1(i, j − 1) 
 6).

(54)

Table I illustrates the bit-widths of the BDOF intermedi-
ate parameters in (21)–(34) for different internal bit-depths.
As shown in the table, for internal bit-depths from 8 to 16
bits, all the BDOF related computations can be implemented
using integer arithmetic not exceeding 32 bits.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Encoder configurations of random access (RA) and low
delay with B slices (LDB) specified in the JVET common
test conditions (CTC) [54] were used for evaluating the
implementations of the five subblock-based inter coding tools
in VTM-9.0 [55]. In CTC, test sequences are grouped into
several categories according to the spatial resolution and the
application scenario. Class A1 and A2 contain 4K sequences
representing the high quality entertainment video content and
therefore they are not tested with LDB configuration that is
primarily for real-time communication scenario. Out of the
same reason, class E that comprises three typical video con-
ferencing sequences is tested with LDB only. The Bjøntegaard
Delta rate (BD-rate) [56] was employed to measure the bitrate
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TABLE III

CODING GAIN AND RELATIVE RUN TIMES WHEN SWITCHING ON INDI-
VIDUAL TOOL

TABLE IV

CODING GAIN AND RELATIVE RUN TIMES WHEN SWITCHING OFF INDI-
VIDUAL TOOL

savings with the same reproduction quality. The reproduction
quality of a test sequence is measured by PSNR for three color
components of Y, U, and V separately or jointly. Weighted
average of the PSNR of Y, U, and V components with 6 : 1 : 1
ratio [57] was used to measure the quality of the three color
components jointly. For each test sequence, four quantization
parameter (QP) values 22, 27, 32, and 37 were used to generate
four rate points and the piece-wise cubic interpolation was
used for BD-rate calculation [54].

A. Rate-Distortion Performance

The anchor for comparison is VTM-9.0 with the five tools
switched off. The compression efficiency improvement in
terms of BD-rate as well as the computational complexity
increase in terms of the encoder and decoder runtime ratio are
presented in Table II. Averaged BD-rate savings over all test
sequences with joint YUV measurement are 5.7 % and 3.4 %
with RA and LDB configurations, respectively. In addition,
a balanced performance on Y, U, and V components can
be observed. Since DMVR and BDOF are not applicable
to the LDB configuration where the two reference pictures
for bi-prediction come from the same temporal direction,
the compression efficiency in LDB is lower than that in
RA. With the RA configuration, more than 10 % BD-rate
saving is observed for test sequence CatRobot1, Cactus, and
DaylightRoad2 where complex motion such as rotation and
zooming are observed. It is worth noting that such complex
motion typically consumes a lot of bits for coding with
previous standards and therefore is considered to be very
challenging for video compression. However, the five VVC

tools presented in this paper are especially good at handling
complex motion according to the results. Since the encoder
and decoder runtime increase in percentage highly depends
on the specific implementation and the level of optimization,
the data provided in Table II can only be referenced as
a rough estimation of the computational complexity. It is
observed that the encoder runtime in LDB is higher than that
in RA. This is caused by the specific implementation of AMC
motion estimation module in VTM-9.0 where more reference
pictures are checked in the bi-prediction stage with the LDB
configuration.

The gain in compression efficiency with regard to individual
tools are presented in Table III. Only the RA configuration is
tested because DMVR and BDOF are not applicable to LDB.
As shown in Table III, all tools show decent gain while AMC
shows the biggest gain. And in general the overall complexity
considering both encoder and decoder runtime correlates well
with the BD-rate saving for the five tools. Therefore all the
tools demonstrate good trade-off between the compression
efficiency and the computational complexity. Note that PROF
is only applicable to affine-coded CUs and therefore can only
be tested on top of AMC.

Different from Table II and Table III, VTM-9.0 with all five
tools switched on was used as the anchor in Table IV, and each
tool was switched off individually to observe the compression
efficiency loss, where the negative sign of a BD-rate value
indicates a loss. Averaged PSNR of Y, U, and V components
is used for the BD-rate calculation in Table III and Table IV.
We can get a hint of the interaction of the five tools by
checking the corresponding BD-rate values in Table III and
Table IV. For example, the BD-rate of AMC + PROF is
similar to that in Table III in absolute value but different
in sign, which shows that AMC + PROF has almost no
overlap with the other three tools in terms of compression
efficiency gain. However, for SbTMVP, DMVR and BDOF,
the absolute values of BD-rate in Table IV are about half of
the corresponding ones in Table III, indicating that each tool
has a certain level of overlap with the set of the remaining
four tools. Since all the three tools try to save the signaling
overhead of motion information, it is reasonable to observe an
overlap with each other because of competition. Furthermore,
each of the three tools may have an overlap with AMC which
tries to reduce the signaling overhead of motion information by
a more compact representation. However, mild overlap actually
gives more flexibility in practical applications. Assuming that
a certain implementation of the VVC encoder may not favor a
specific coding tool, in this case, this tool can be switched off
while the potential compression efficiency loss can be partially
compensated by other tools.

B. Statistics Analysis

Table V shows the percentage of bitrate reduction for the
test of Class A2 sequences with RA configuration. Class A2
was selected for illustration because it shows top performance
among all classes and therefore can better demonstrate the
trends in statistics. We observed that the five tools can sig-
nificantly reduce the bits for coding the partition and motion
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TABLE V

STATISTICS OF THE BITRATE REDUCTION FOR CLASS A2 WITH RA

Fig. 12. CU partitioning of the 9th frame of CatRobot1.

information. For example, in case of QP 37, the bits reduction
for coding partition information takes 1.3 % of the total
bitstream, and the bits reduction for coding motion information
is 5.3 %. This is because the five tools are designed to either
represent the motion information in a more efficient way or to
derive the motion at the decoder side. And therefore the bits
for coding fine-granular motion in small blocks can be saved.
The bits for coding prediction residual can also be reduced
because more accurate prediction can be achieved by the five
tools. It is also observed that the total bitrate saving increased
dramatically with QP values, reaching up to 7.6 % for QP
37. The reason is that the portion of partition and motion
information in the bitstream becomes larger for higher QP
values, and therefore the advantages of the five tools become
more evident.

Fig. 12(a) and Fig. 12(b) show the CU partitioning in a part
of the 9th frame of the sequence CatRobot1, with the five tools
disabled and enabled. It can be obviously seen that the CU
size increases a lot in the area of the rotating plate. Without
the five subblock-based inter tools, the encoder has to split
the complex motion region into small CUs and transmit huge
amount of motion information. With the five tools enabled,
the complex motion can be efficiently represented and further
refined at the decoder side, and therefore large CU sizes are
selected instead.

C. Visual Quality Impact

The reconstruction for a part of the 41st frame of CatRo-
bot1, with the five tools disabled and enabled, is shown
in Fig. 13. RA configuration was used for the simulation.
With the five tools enabled, the bits for coding the frame is
decreased to 72928 from 90088. Meanwhile, a much better
visual quality is observed. Specifically, the blocking artifact
along the sharp edges on the rotating plate is largely removed.
We believe that the visual quality can be further improved if

Fig. 13. Subjective quality of the 41st frame of CatRobot1.

the bits for coding the two frames are aligned. In the example
in Fig. 13, most of the visual quality benefits are contributed
by AMC and PROF since the two tools are especially good at
handling rotations in video content. For the other three tools,
SbTMVP, DMVR and BDOF, it is observed that their primary
effect is reducing the bits for coding motion information rather
than improving the quality of reconstruction.

VI. CONCLUSION

Five VVC inter coding tools, AMC, DMVR, SbTMVP,
BDOF and PROF, are introduced in this paper. These tools
are designed to perform fine-granular motion compensation
without explicit signaling of subblock MVs. Design elements
considering typical hardware implementations are presented
as well. Experiments are conducted to demonstrate the advan-
tages in RD efficiency and to provide a comprehensive analysis
of the inherent characteristics of the tools.
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