3818

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Block Partitioning Structure in the VVC Standard

Yu-Wen Huang™, Jicheng An

Kai Zhang ™, Senior Member, IEEE, Han Gao

, Han Huang, Xiang Li

, Senior Member, IEEE, Shih-Ta Hsiang,
, Graduate Student Member, IEEE,

Jackie Ma, and Olena Chubach
(Invited Paper)

Abstract— Versatile Video Coding (VVC) is the latest video
coding standard jointly developed by ITU-T VCEG and
ISO/IEC MPEG. In this paper, technical details and experimental
results for the VVC block partitioning structure are provided.
Among all the new technical aspects of VVC, the block par-
titioning structure is identified as one of the most substantial
changes relative to the previous video coding standards and
provides the most significant coding gains. The new partitioning
structure is designed using a more flexible scheme. Each coding
tree unit (CTU) is either treated as one coding unit or split
into multiple coding units by one or more recursive quaternary
tree partitions followed by one or more recursive multi-type tree
splits. The latter can be horizontal binary tree split, vertical
binary tree split, horizontal ternary tree split, or vertical ternary
tree split. A CTU dual tree for intra-coded slices is described
on top of the new block partitioning structure, allowing separate
coding trees for luma and chroma. Also, a new way of handling
picture boundaries is presented. Additionally, to reduce hardware
decoder complexity, virtual pipeline data unit constraints are
introduced, which forbid certain multi-type tree splits. Finally,
a local dual tree is described, which reduces the number of small
chroma intra blocks.

Index Terms—Block partitioning structure, binary tree, CTU
dual tree, H.266, local dual tree, MPEG-I Part 3, multi-type
tree, picture boundary handling, quaternary tree, ternary tree,
versatile video coding, virtual pipeline data unit, VVC.

I. INTRODUCTION

ECHNOLOGY advances of video coding become more
critical as video data occupy higher traffic on the Internet
and video applications demand increasing spatial and temporal
resolutions. In early 2013, the first edition of High Efficiency

Manuscript received August 18, 2020; revised February 8, 2021 and
April 16, 2021; accepted May 28, 2021. Date of publication June 11, 2021;
date of current version October 4, 2021. This article was recommended by
Associate Editor G. J. Sullivan. (Corresponding author: Yu-Wen Huang.)

Yu-Wen Huang, Shih-Ta Hsiang, and Olena Chubach are with Medi-
aTek Inc., Hsinchu 30078, Taiwan (e-mail: yuwen.huang@mediatek.com;
shih-ta.hsiang@mediatek.com; olena.chubach@mediatek.com).

Jicheng An is with Alibaba Group, Beijing 100102, China (e-mail:
jicheng.ajc@alibaba-inc.com).

Han Huang is with Qualcomm Technologies
CA 92121 USA (e-mail: hanhuang @qti.qualcomm.com).

Xiang Li is with Tencent, Palo Alto, CA 94306 USA (e-mail:
xIxiangli@tencent.com).

Kai Zhang is with Bytedance Inc., San Diego, CA 92122 USA (e-mail:
zhangkai.video @bytedance.com).

Han Gao is with Huawei Technologies, 80992 Munich, Germany (e-mail:
han.gao@tum.de).

Jackie Ma is with the
cations, Heinrich Hertz Institute,
jackie.ma@hhi.fraunhofer.de).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2021.3088134.

Digital Object Identifier 10.1109/TCSVT.2021.3088134

Inc., San Diego,

Fraunhofer Institute for Telecommuni-
10587 Berlin, Germany (e-mail:

Video Coding (HEVC) | ITU-T Rec. H.265 | ISO/IEC 23008-2
(MPEG-H Part 2) [1], [2] was finalized, and the HEVC Test
Model (HM) software [3] was developed by the Joint Col-
laborative Team on Video Coding (JCT-VC) of Video Coding
Experts Group (VCEG, ITU-T SG16 Q.6) and Moving Picture
Experts Group (MPEG, ISO/IEC JTC1/SC29). In late 2015,
VCEG and MPEG formed a Joint Video Exploration Team to
explore future video coding technologies. A Joint Exploration
Model (JEM) [4]-[6] was developed and showed substantial
coding gains over the HM. In October 2017, VCEG and
MPEG issued a joint Call for Proposals (CfP) on video com-
pression with capabilities beyond HEVC [7]. In April 2018,
VCEG and MPEG received 22, 12, and 12 responses in
the Standard Dynamic Range (SDR), High Dynamic Range
(HDR), and 360° categories, respectively [8]. Many proposals
contributed as responses to the CfP, e.g., [9]-[14], showed
significant coding gains over the HM and even over the JEM.
The Joint Video Exploration Team was renamed as the Joint
Video Experts Team (JVET), which then officially started
the standardization process of Versatile Video Coding (VVC)
| ITU-T Rec. H.266 | ISO/IEC 23090-3 (MPEG-I Part 3).
After a bit more than two years of standardization work,
in July 2020, the first edition of VVC [15] was finalized.

For more than two decades, macroblocks have been utilized
as a basic compression unit for video coding. In Advanced
Video Coding (AVC) | ITU-T Rec. H.264 | ISO/IEC 14496-10
(MPEG-4 Part 10) [16] and all video coding standards before
AVC, each picture is partitioned into non-overlapping mac-
roblocks. Switching between inter and intra prediction is
performed at the macroblock level. One or multiple prediction
blocks and one or multiple transform blocks are specified
inside each macroblock.

As popular video picture resolution reached full high-
definition (i.e., FHD or 1080p) and kept increasing, the
macroblock-based design became less efficient. Adding further
improvements on top of it did not provide any good tradeoff
between coding gain and increased complexity. Consequently,
after AVC, instead of building new coding tools on top of the
old macroblock-based design, a new recursive block partition-
ing structure [17] was adopted in HEVC. This recursive block
partitioning structure was regarded as one of the most impor-
tant breakthroughs in HEVC. It provided the most significant
coding gains over the AVC reference encoder compared to
other coding tools.

Meanwhile, popular video picture resolutions continued to
increase further and reached ultra-high definition (UHD), i.e.,
4K UHD and 8K UHD. As in the case of AVC macroblocks,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-6547-1557
https://orcid.org/0000-0001-8613-8921
https://orcid.org/0000-0003-3045-1104
https://orcid.org/0000-0001-9232-5723
https://orcid.org/0000-0002-6627-0009
https://orcid.org/0000-0002-0575-2143

HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

adding new coding tools on top of HEVC block partitioning
became a bottleneck in the further enhancement of video
compression capabilities during the JEM development. Thus,
more advanced flexible block partitioning structures [18]—[21]
were researched and developed, which later became a funda-
mental part of VVC.

The rest of this paper is organized as follows. In Section II,
the HEVC block partitioning structure is reviewed.
In Section III, the VVC block partitioning structure is
described. In Section IV, performance impacts from several
aspects of the VVC block partitioning structure are illustrated
through experimental results. Finally, Section V concludes
this paper.

II. HEVC BLOCK PARTITIONING STRUCTURE

A brief review of the HEVC block partitioning structure is
presented in this section. More related details can be found
in [17]. In HEVC, the basic compression unit is called the
coding tree unit (CTU). For non-monochromatic color formats,
one picture is divided into non-overlapping CTUs, and each
CTU contains one luma coding tree block (CTB) and two
corresponding chroma CTBs. In the following, the luma and
two chroma components are respectively noted as Y, Cb, and
Cr. Unlike the macroblock size, which is fixed to be equal
to 16 x 16, the CTU size is flexible and can be specified
in the sequence parameter set (SPS) as 64 x 64, 32 x 32,
or 16 x 16 in units of luma samples. The 64 x 64 CTU size
is suggested to be used for larger video resolutions, allowing
to achieve the best coding efficiency of HEVC. This CTU
size is commonly used in many practical HEVC applications.
Smaller CTU sizes, i.e., 32 x 32 or 16 x 16, can be used to
reduce encoding complexity at the cost of coding efficiency
compared to the 64 x 64 CTU size. The concept of CTUs
can be regarded as a concept of extended macroblocks when
the CTU size is not 16 x 16.

The characteristics of video picture content may be different
and vary significantly, even within one CTU, so flexible par-
titioning adaptation within each CTU is essential for efficient
compression. In HEVC, the CTU is the basic compression
unit and the root of a coding tree. A recursive quaternary
tree (QT) split may be applied to each CTU, where pioneer
researches on QT can be found in [22] and [23]. Accordingly,
every CTU is either treated as one coding unit (CU) or split
into multiple CUs. An encoder generally signals a CU split
indication flag at each QT node to specify whether the current
QT node is partitioned or not. If the encoder decides to split,
the QT node is further divided into four square child QT
nodes of equal size. When the QT node reaches the allowed
minimum CU size signaled in the SPS, the CU split indication
flag is not signaled and is inferred to be 0. Each CU contains
one luma coding block (CB) and two corresponding chroma
CBs. The CU split indication flag is shared between luma and
chroma at each QT node. All QT leaf nodes are treated as CUs.
The CU size can be 64 x 64, 32 x 32,16 x 16, or 8 x 8. The
processing order of CUs within a CTU follows the depth-first
order of a QT. In HEVC, the prediction scheme is specified at
the CU level. The following modes can be applied to a CU:
skip mode inter prediction, non-skip mode inter prediction,
and intra prediction.

3819

In HEVC, each CU can be either treated as one prediction
unit (PU) or further divided into multiple PUs, and the PU is
used as the basic unit for prediction within a CU. Only one
type of prediction process can be applied inside each PU, and
relevant prediction information is signaled at the PU level.
In the rest of this paragraph, the CU size is denoted as
2N x 2N. For CUs of skip mode inter prediction, the PU size
is fixed as 2N x 2N, and the merge scheme is applied at
the PU level. In this case, a merge index is conditionally
signaled. This index indicates which one of the spatially or
temporally neighboring blocks is used to copy all motion
information, or identifies whether a combined bi-predictive
merge candidate or a zero motion vector merge candidate
is applied. Motion information is represented by a prediction
indicator (list O prediction, list 1 prediction, or bi-prediction),
reference indexes, and motion vectors. For a CU of non-skip
mode inter prediction, the following eight PU split modes are
possible: one 2N x 2N PU, two 2N x N PUs, two N x
2N PUs, four N x N PUs, one 2N x 0.5N PU and one 2N x
1.5N PU, one 2N x 1.5N PU and one 2N x 0.5N PU, one
0.5N x 2N PU and one 1.5N x 2N PU, or one 1.5N x 2N PU
and one 0.5N x 2N PU. The last four modes here are used
for asymmetric motion partitioning (AMP). In the non-skip
mode inter prediction, either merge or non-merge scheme can
be applied for each PU. In this case, the prediction indicator,
reference indexes, motion vector prediction (MVP) indexes,
and motion vector differences (MVDs) may be signaled in
the case of a non-merge scheme. The N x N PU mode is
only permitted when the CU size equals the allowed minimum
CU size. This limitation allows avoiding redundancy between
using four N x N PUs for a 2N x 2N CU and splitting
the 2N x 2N CU into four child N x N CUs without any
further partitioning. The inter 4 x 4 PU is forbidden in
HEVC to reduce the worst-case motion compensation (MC)
memory bandwidth. Thus, to support the N x N PU mode,
the allowed minimum CU size must be larger than 8 x 8.
In the case of intra prediction, there are two possible PU split
modes for CUs: one CU can contain either one 2N x 2N
PU or four N x N PUs. Similarly, to avoid redundancy, the
N x N PU mode is only permitted when the CU size equals
the allowed minimum CU size. In this case, because the intra
4 x 4 PU is supported in HEVC, there is no requirement
for the allowed minimum CU size to be larger than 8 x 8.
In general, one PU contains one luma prediction block (PB)
and two corresponding chroma PBs. For inter prediction CUs,
the numbers of the Cb PBs and the Cr PBs are the same as
those of the Y PBs. The chroma PB size and motion infor-
mation of the chroma PBs are derived from the corresponding
luma PB according to the chroma sampling format. At the
same time, for intra prediction CUs, regardless of the selected
PU mode for luma (one 2N x 2N luma PB or four N x N
luma PBs), the chroma PB size is kept the same as the chroma
CB size without any further partitioning. Moreover, while the
Cb PB and the Cr PB do not always have to follow the luma
intra prediction mode, they always share one signaled chroma
intra prediction mode.

In HEVC, each CU can be either treated as one transform
unit (TU) or further divided into multiple TUs. The TU is



3820

used as the basic unit for performing transform, quantization,
and residual coding. Similar to splitting one CTU into one
or multiple CUs, a recursive QT split may be applied at
the CU level to form TUs. To differentiate from the QT
split of a CTU, the latter QT split is often called a residual
quaternary tree (RQT). At each RQT node, an encoder can
select either non-split or split, and a corresponding TU split
indication flag is signaled to the decoder. If the encoder
decides to split, the RQT node is further divided into four
square child RQT nodes of equal size. The maximum RQT
depth is signaled in the SPS and is set to 2 in the common
test conditions (CTCs) used for HEVC standardization. When
the RQT node reaches the maximum RQT depth, the TU split
indication flag is not signaled and is inferred to be 0. Thus,
for one 2N x 2N CU, RQT may result in either one TU with
a size equal to 2N x 2N (RQT depth 0) or multiple TUs with
dimensions equal to N x N (RQT depth 1) or 0.5N x 0.5N
(RQT depth 2). When the RQT node indicates that the TU
size is larger than the allowed maximum TU size in HEVC
(i.e., 32 x 32), the TU split indication flag is not signaled
and is inferred to be 1. In general, one TU contains one
luma transform block (TB) and two chroma TBs. At each
RQT node, the TU split indication flag is shared between
luma and chroma. In HEVC, one exception appears when the
minimum TB size is set to 4 x 4 for both luma and chroma.
In this case, when one 8 x 8 RQT node is split, four 4 x 4
luma TBs are formed, while only one 4 x 4 Cb TB and one
4 x 4 Cr TB are created.

For inter prediction CUs, PUs and TUs are completely
decoupled and can be independently chosen by an encoder.
However, this is not the case for intra prediction CUs, where
no PB boundaries can appear inside any TB. Therefore, for
intra prediction CUs, the root TU split indication flag may
be skipped and inferred to be 1. For example, when the
4 x 4 luma intra prediction mode is selected for one 8§ x 8 CU,
it results in four 4 x 4 luma intra PBs. In this case, the
TU split indication flag at the 8 x 8 block level is not signaled
and is inferred to be 1. Besides the normative relationship
between PUs and TUs mentioned earlier, in the case of
an intra coded CU, information is signaled on a PU basis.
At the same time, prediction is performed on a TU basis. For
example, for one 8 x 8 CU, an encoder can select 8 x 8 luma
intra prediction (resulting in one 8 x 8 luma intra PB) and
set the TU split indication flag to 1 (resulting in four 4 x 4
luma TBs). In this case, only one luma intra mode is signaled
for this 8 x 8 CU, while corresponding luma 4 x 4 TBs are
intra predicted and transformed sequentially, using the same
luma intra mode.

III. VVC BLOCK PARTITIONING STRUCTURE

In this section, the VVC block partitioning structure is
described in detail. Methods to improve the coding effi-
ciency of the block partitioning structure are introduced
in Subsections III-A, III-C, and III-D. Methods to reduce
the hardware decoder implementation cost and increase the
hardware decoder processing throughput are described in
Subsections III-B and III-E, respectively. Split signaling, con-
figurations, and default settings of the VVC Test Model (VTM)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

are presented in Subsection III-F. The encoding algorithm and
speedup methods in VTM are presented in Subsection III-G.

A. Quaternary Tree Plus Multi-Type Tree

In VVC, as in HEVC, one picture is partitioned into multiple
non-overlapping CTUs. A CTU size in VVC can be set up
to 128 x 128 in units of luma samples, while in HEVC,
as mentioned previously, it can be set up to 64 x 64. Increasing
the maximum allowed CTU size can often improve coding
efficiency, and it is especially effective when encoding UHD
sequences. The result of setting a CTU size to 64 x 64 instead
of 128 x 128 will be shown in Section IV. As shown later,
more significant losses appear for higher spatial resolution
videos, which experimentally demonstrates that increasing the
maximum allowed CTU size from 64 x 64 in HEVC to
128 x 128 in VVC helps to achieve better performance for
higher spatial resolution videos. However, just enlarging a
CTU size to 128 x 128 causes a significant cost increase, and
therefore does not provide a good tradeoff between coding
gain and additional complexity. As described in the previous
section, in HEVC, a recursive QT split is applied to each
CTU, resulting in one or multiple CUs, all having square
shapes. In VVC, rectangular CUs are supported together with
square CUs, which allows a better fit to local picture content
characteristics. This better fit is achieved by adopting a binary
tree (BT) split, initially introduced in the quaternary tree plus
binary tree (QTBT) design [18]-[20] in the JEM, and a ternary
tree (TT) split, initially introduced in [21], in addition to the
QT and BT splits.

The QTBT design was initially adopted into JEM3.0 and
then used as the JEM block partitioning structure. According
to the QTBT design, a recursive QT split is applied first to
each CTU, followed by a recursive BT split applied to each
QT leaf node. A general idea of the QTBT is to use BT in
addition to QT so that more CU split options are provided,
allowing to capture the local picture content characteristics
better. The idea behind applying BT only to QT leaf nodes is
to allow a quick adaptation to small local changes while still
using less additional side information. Otherwise, if both QT
and BT are permitted for every coding tree node, the amount
of additional side information will vastly increase, leading to
a significant overhead of bits needed for signaling adaptation.
At the same time, it was experimentally shown that if QT and
BT are allowed to interleave, i.e., further allowing recursive
QT at BT leaf, the additional coding efficiency improvement
is minimal and not worth the complexity increase.

The TT was introduced later on top of the QTBT. The
general idea behind the TT is as follows: when a small object
is located in the middle region of a coding tree node, neither
QT nor BT can provide a good partitioning adaptation, while
TT can. Note that when either BT or TT is applied, both the
width and height of all resulting blocks are kept equal to the
power of 2. Therefore, no new transform size is introduced by
BT or TT.

In VVC, each CTU is either treated as one CU or split
into multiple CUs by a recursive QT, followed by a recursive
binary-ternary tree (BTT). The BTT, also called a multi-type
tree (MTT), is described below. Each CTU is first partitioned



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

Non-split QT split HBT split VBT split HTT split VTT split
Fig. 1. Tllustration of splitting types in QT + MTT.
Partitioning order:
non-split QT split >
— VTT split > non-split
- HBT split = non-split > non-split
- non-split >
- >
non-split QT split > plit > plit > plit > plit >
non-split * non-split  HBT split > non-split - non-split
[r—
QT split
HBT split : . «
non-split :l‘(.].!’.l.-fplit VIT split non-split
3

| - » »5 :

T

non-split

non-split non-split QT split HBT split

Fig. 2. Example of CU partitioning in one CTU of VVC. Each CU is
partitioned recursively, left to right, top to bottom.

by a recursive QT split. Every QT node can either be non-split
(becoming a QT leaf) or be QT split into four child QT nodes.
Each child QT node has a square shape, and its size is equal to
a quarter of its parent’s node size. At every QT leaf, a recursive
MTT split is further applied. It is important to note that once
the MTT is applied to the QT leaf, only the BT and TT are
further allowed, while the QT is disallowed for all subsequent
nodes. Each MTT node can be either non-split (as MTT leaf)
or one of the following: horizontal binary tree (HBT) split into
two child MTT nodes, vertical binary tree (VBT) split
into two child MTT nodes, horizontal ternary tree (HTT)
split into three child MTT nodes, vertical ternary tree (VTT)
split into three child MTT nodes. In the BT case,
two MTT child nodes have the same size, each equal to
half of the parent MTT node. In the TT case, the splitting
ratio is 1:2:1, and three MTT child nodes are of a quarter,
half, and quarter-size of the parent MTT node, respectively.
Fig. 1 illustrates all splitting types of QT + MTT, and
Fig. 2 shows an example of the CU partitioning in one CTU,
where QT 4+ MTT split decisions in the depth-first order are
provided with the drawing. In this example, a QT split is first
applied to the CTU, resulting in four QT nodes, where each
QT node is of the quarter CTU size. The following splits are
further used for the four QT nodes: a VTT split and subsequent
splits of the VTT split are applied to the top-left QT leaf,
a non-split is applied to the top-right QT leaf, a QT split and
subsequent splits of the QT split are applied to the bottom-left
QT node, and an HBT split and subsequent splits of the HBT
split are applied to the bottom-right QT leaf.

As mentioned earlier, in HEVC, the PU and TU are further
specified for every CU, and each CU can contain one or
more PUs and one or more TUs. In VVC, CU, PU, and TU
concepts are unified. In general, the PU and TU are of the same
size as the corresponding CU. This unification simplifies the

3821

4 |5 1Q: Inverse Quantization
0 1 IT: Inverse Transform
6|7 IBC: Intra Block Copy
-
5 3 64
Chroma
CTBs
-
128
Luma CTB
1 1 1
1 1 |
H \ Inter \
1 1 Pred and |
| 1 ]

Entropy i . 1 Rec. 1 Loop
Decoder || . | Intra/IBC | Filtering
$ : /Palette :

1 ! Pred., !
l ! and Rec. !

[«]

el

:

[

Fig. 3. Example of a pipelined hardware video decoder with the VPDU size
equal to 64 x 64-L/32 x 32-C.

VVC block partitioning structure and significantly reduces
signaling overhead for PUs and TUs without sacrificing coding
gain. Some exceptions are yet defined in VVC. For exam-
ple, when a subblock-based temporal motion vector predic-
tion (SbTMVP) or a decoder-side motion vector refinement
(DMVR) is applied to a CU, this CU is conditionally split
into multiple subblocks. Such a split depends on the CU size
and does not require signaling any side information to define
the subblock size. When affine MC is applied to a CU, this
CU is split into multiple subblocks without signaling any
side information to determine the subblock size. In another
example, an intra subpartitions (ISP) mode is applied to an
intra prediction CU. This CU is then partitioned into either
two or four transform block subpartitions. No additional side
information for defining the subpartition size is signaled in
this case. When a subblock transform (SBT) is applied to an
inter prediction CU, this CU is split into two TUs, where one
TU has residual data, and the other TU does not. In this case,
the transform type is decided implicitly; however, signaling
additional syntax elements is still required to define the size
of obtained TUs. In yet another example, when a CB is larger
than the maximum allowed transform size signaled in the SPS,
this CB is implicitly split into multiple TBs without signaling
any side information for defining the TB size.

B. Virtual Pipeline Data Unit Constraints

In this Subsection, the concept of virtual pipeline data
units (VPDUs) [24], [25] is introduced, which is very impor-
tant for hardware video decoder architectures. VPDUs are
non-overlapping M x M-luma(L)/N x N-chroma(C) units of
a picture. In hardware video decoders, successive VPDUs
are processed by multiple pipeline stages simultaneously,
and different stages process different VPDUs simultaneously.
Fig. 3 shows an example of a 4-stage pipelined hardware video
decoder with M = 64 and N = 32, where the corresponding
four pipeline stages simultaneously process four VPDUs.
In most pipeline stages, the VPDU size is roughly proportional
to the buffer size requirement, so it is crucial to keep it small.

In most HEVC hardware decoders, the VPDU size is set
to the maximum allowed TU size. Increasing the maximum



3822

* Prohibit ternary split when any side is greater than 64

* Prohibit vertical binary split when width is 64 and height is 128

128 (luma) HI
—

128 !

1
1
1
1
1
1
1
1
1
1
\ e oy N N
1
1
1
1
1
1
1
1
1
1
1

Fig. 4. Examples of BT or TT splits that are inefficient for 64 x 64-L/32 x
32-C pipelining and the three VPDU constraints to disallow these examples.

allowed TU size from 32 x 32-L/16 x 16-C, as in HEVC,
to 64 x 64-L/32 x 32-C in VVC, may increase coding
gains, yet it will result in four times the size of the VPDU
(i.e., 64 x 64-L/32 x 32-C) when compared to HEVC.
Meanwhile, on top of the QT split, the BT and TT splits are
adopted in VVC. Applying BT or TT recursively to 128 x
128-L/64 x 64-C CTUs will result in 16 times the size of
the VPDU (i.e., 128 x 128-L/64 x 64-C) when compared to
HEVC. Examples of the BT or TT splits that are harmful to
64 x 64-L/32 x 32-C pipelining are shown in Fig. 4.
To reduce the VPDU size back to 64 x 64-L/32 x 32-C
for VVC, when processing CUs in the CTU, it is not allowed
to revisit a 64 x 64-L/32 x 32-C VPDU after leaving it. Also,
the following two conditions must be satisfied for each CTU.

[Condition 1] For each 64 x 64-L/32 x 32-C VPDU
containing one or multiple CUs, all CUs must be contained
entirely in a 64 x 64-L/32 x 32-C VPDU.

[Condition 2] For each CU containing one or multiple
64 x 64-L/32 x 32-C VPDUs, all 64 x 64-1/32 x 32-C
VPDUs must be contained entirely in the CU.

To comply with the above principles, the following three
VPDU constraints are included in the VVC specification text
as normative syntax constraints. 1) Prohibit applying TT split
to any coding tree node with a width or height greater than
64 luma samples. 2) Prohibit applying VBT split to any coding
tree node of 64 x 128 luma samples. 3) Prohibit applying
HBT split to any coding tree node of 128 x 64 luma samples.
With these VPDU constraints, significant hardware decoder
cost savings can be achieved. At the same time, it was reported
in [25] that coding efficiency loss caused by this design is only
0.00%, 0.15%, 0.06% in terms of luma Bjgntegaard Delta rate
(BD-rate) [26], [27] for the all intra (AI), random access (RA),
and low-delay B (LB) VIM CTCs, respectively.

C. CTU Dual Tree

In HEVC, the coding tree of a CTU is shared by Y, Cb,
and Cr components, so one CU consists of one luma CB and
two chroma CBs. In VVC, this single tree structure is retained
for P and B slices. However, in I slices, the luma and chroma
components’ spatial characteristics can differ. This assertion is
utilized in VVC, as described below. In Fig. 5, an exemplary

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Luma CUs

) -~

Choma CUs

N

———

Fig. 5. TIlustration of CU partitions when encoding luma and chroma
separately. QT split CUs are marked with red, MTT split CUs are marked
with green.

CU partitioning of a coded picture is shown, where luma and
chroma components are encoded separately. It can be seen that
luma mostly has a finer texture than chroma, which results
in a higher amount of smaller CUs in luma than those in
chroma. Thus, it is reasonable to use separate coding trees
for the luma and chroma components in I slices. In this case,
a luma CTU (containing only one luma CTB of the original
CTU) forms one coding tree, and a chroma CTU (containing
only two chroma CTBs of the original CTU) forms a chroma
separate tree (CST). In VVC, this CST design in I slices is
also called CTU dual tree.

Starting CST partitioning from the CTU level requires
signaling luma CTB first, followed by signaling chroma
CTBs. Therefore, a decoder must process and store a 128 x
128-L block before processing the corresponding 64 x 64
chroma CTBs. Such processing order results in four times
the buffer size compared to that without the CTU dual tree.
To reduce the buffer requirement in VVC, as suggested
in [28], a CST starts at the maximum TU level instead of the
CTU level.

In the VTM CTCs, every CTU of 128 x 128-L/64 x 64-C
in I slices is first implicitly QT split into four
64 x 64-L/32 x 32-C coding tree nodes. Two separate
coding trees (one is the luma coding tree, and the other is
the CST) start at each of the four 64 x 64-L/32 x 32-C
coding tree nodes. Fig. 6 demonstrates an example of starting
a dual tree at the 64 x 64-L/32 x 32-C level. Here, a QT
split is inferred at the CTU level, which allows the successful
processing of multiple 64 x 64-L/32 x 32-C VPDUs in
parallel by a pipelined VVC hardware decoder.

When the cross-component linear model (CCLM) mode
is selected as a chroma intra prediction mode for the cur-
rent chroma CBs, the following samples are involved in
the process of generating chroma prediction samples: 1) the
reconstructed samples from the chroma neighboring blocks
of the current chroma CBs; 2) the reconstructed samples
from the corresponding luma neighboring blocks and the luma
collocated block of the current chroma CBs. In a single tree
with CCLM chroma CBs, partitions of luma and chroma
components are aligned. The reconstruction of any chroma
sample in the current Cb/Cr CB can be performed right
after reconstructing the required luma samples. Thus, as it
is shown in Example 1 of Fig. 7, if the same CU partitions
are applied to the 64 x 64 luma coding tree node and the



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

Applying an inferred QT
split to the CTU of size
128x128-1L/64x64-C results
in four nodes of size

] [FH
§ |7

PR
64 chroma 64x64-1/32x32-C
2 samples Start dual tree at each of
the 64x64-L/32x32-C node
128 luma samples
: : Inter :
1 ! Pred and |
1 | Rec. |
Entropy 1 1Q, 1T ¥ » T Loop
Decoder ,l d : Intra/IBC : Filtering
1 ' 0
1 | /Palette H
: : Pred., :
A and Rec.

He==HH [+]

Fig. 6.  Example of starting dual tree at 64 x 64-L/32 x 32-C level
for a pipelined VVC hardware decoder with the VPDU size equal to
64 x 64-L/32 x 32-C.

Example 1: Single tree with CCLM chroma CBs

32 No need to wait for the reconstruction of
= 22 an entire luma CB before starting to
34 reconstruct its corresponding Cb/Cr CB.
3216 The first sample of the Cb/Cr CB can be

reconstructed right after the required

luma samples are reconstructed.
fime —
tumacas| cBt | cBF | cBy | cBY |-

Chroma CBs latencZCBOCb/CT L’be/” CBZCb/CT CBSCb/CV e

Luma CBs Chroma CBs

Example 2: CTU dual tree with CCLM chroma CUs:

16

<
GAI

32 If the first Cb/Cr CU is coded
with the CCLM mode, it needs

<>
321:@" to wait for the reconstruction of
the entire 64x64 luma region.

Luma CUs Chroma CUs
time ——»
tumacus| cut | cuk | cut | cut |-
Chroma CUs latency CUDCW” CUfb/Er

Example 3: CTU dual tree when the 64x64 luma coding tree node is QT split

< / The latency for reconstructing the
32 chroma CU is reduced from

—
szi i — 64x64 luma samples to 32x32
32“:' luma samples.
Luma CUs Chroma CU time —

tumacus| cug | cut | cut | cut |-

Chroma CUs _latency culhler

0

Example 4: CTU dual tree when the 64x64 luma coding tree node is non-split

PR SN Although the 64x64 luma coding
32 tree node is non-split, to reduce
64 latency, the reconstruction of
321 top-left 32x32 luma samples is
Luma CU Chroma CUs performeq first
time—»
Luma CUs| CUL

Chroma CUs _tatency CUS™/ T lcy/“ ey S/ ricyP/er| -

Fig. 7. Examples of processing latency for hardware decoding caused by
interaction between CTU dual tree and CCLM.

corresponding 32 x 32 chroma coding tree node, there is no
need to wait for the reconstruction of an entire luma CB before
starting to reconstruct its corresponding Cb/Cr CB. However,
when a CTU dual tree is applied, the CU partitions between
the luma and chroma components might differ, resulting in
different processing orders of the luma and chroma CUs.
Once the CCLM mode is also applied, a long processing
latency issue occurs in hardware decoding. Example 2 in
Fig. 7 demonstrates the worst case when a decoder needs to
reconstruct all four 16 x 64 luma CUs for the reconstruction of

3823
64 32
32 if( the 64x64 luma coding tree node is either
“non-split and non-ISP” or “QT split” )
64 = LumaCond =1
else
Luma Lulna = LumaCond =0
Condition 1:
32 16 if( “LumaCond == 1” && “the 32x32 chroma coding tree node is
P — <> either non-split or QT split” )
16$ = The CCLM mode is allowed for the 32x32 chroma CU, the
32 16x16 chroma CUs, and all children of the 16x16 chroma
coding tree nodes
Chroma Chroma
Condition 2:

else if( “LumaCond == 1” && “the 32x32 chroma coding tree node

32 16 is HBT split” && “the top 32x16 chroma coding tree node is either
p—— S - non-split or VBT split” )

15¢ 16$ | = The CCLM mode is allowed for the top 32x16 chroma CU, the
two top 16x16 chroma CUs, and all children of the two top
16x16 chroma coding tree nodes

Chroma Chroma

Condition 3: else if( “LumaCond == 1" && “the 32x32 chroma coding tree node
Chroma_ is HBT split” && “the bottom 32x16 chroma coding tree node is either
non-split or VBT split” )

g = The CCLM mode is allowed for the bottom 32x16 chroma CU, the
16¢ 16$ ! two bottom 16x16 chroma CUs, and all children of the two bottom

Chroma

> >

32 16 16x16 chroma coding tree nodes
else
= The CCLM mode is not allowed for the corresponding
32x32 chroma region of the 64x64 luma region
Fig. 8. Checks to reduce processing latency for hardware decoding caused

by interaction between CTU dual tree and CCLM. If Conditions 1, 2, and 3
are all false, the CCLM is not allowed.

the first 32 x 16 chroma CU. This case requires a processing
latency of 4096 (4 x 16 x 64) luma samples.

Several proposals allowing to reduce the processing latency
were submitted and studied during the VVC standardization,
e.g., [29]-[32]. The solution adopted in VVC restricts the
usage of the CCLM mode by checking the luma CU parti-
tioning and chroma CU partitioning. The high-level concept
of the solution is to allow the CCLM mode only for those
partitions, which result in a processing latency between luma
and chroma samples of no longer than 1024 luma samples
when the CCLM mode is used. As shown in Fig. 8, in the CTU
dual tree, a variable, LumaCond, is calculated first by checking
the luma CU partitioning. The computation is as follows. If a
64 x 64 luma coding tree node is either “non-split and non-
ISP” or “QT split,” then LumaCond is equal to 1; otherwise,
it is equal to 0. Then Conditions 1, 2, and 3 are checked to
determine whether the CCLM mode is allowed for particular
chroma CUs within the corresponding 32 x 32 chroma region.

[Condition 1] If LumaCond is equal to 1 and the 32 x 32
chroma coding tree node is either non-split or QT split,
the CCLM mode can be applied to 32 x 32 chroma CU,
the 16 x 16 chroma CUs, and all children of the 16 x 16
chroma coding tree nodes.

[Condition 2] If LumaCond is equal to 1, and the 32 x 32
chroma coding tree node is HBT split, and the top 32 x 16
chroma coding tree node is either non-split or VBT split,
the CCLM mode is allowed for the top 32 x 16 chroma CU,
the two top 16 x 16 chroma CUs, and all children of the two
top 16 x 16 chroma coding tree nodes.

[Condition 3] If LumaCond is equal to 1, and the 32 x 32
chroma coding tree node is HBT split, and the bottom 32 x 16
chroma coding tree node is either non-split or VBT split,
the CCLM mode is allowed for the bottom 32 x 16 chroma
CU, the two bottom 16 x 16 chroma CUs, and all children of
the two bottom 16 x 16 chroma coding tree nodes.



3824

The CCLM mode is not allowed for the corresponding
32 x 32 region of the 64 x 64 luma region in all other cases.

When any of Condition 1, 2, or 3 is satisfied, the additional
processing latency needed for generating the CCLM chroma
prediction samples is no longer than 32 x 32 luma samples.
For example, as shown in Example 3 of Fig. 7, the 64 x
64 luma coding tree node is split into four 32 x 32 luma
CUs, and the corresponding 32 x 32 chroma coding tree node
is non-split. In this case, the decoder only needs to wait for
the first 32 x 32 luma CU to be reconstructed before recon-
structing the first chroma sample. In Example 4 of Fig. 7, the
64 x 64 luma coding tree node is non-split, and the cor-
responding 32 x 32 chroma coding tree node is split into
four 16 x 16 chroma CUs. For generating the prediction
samples of the first 16 x 16 chroma CU, the reconstruction
of the collocated 32 x 32 luma samples can be performed
first, and the required latency is kept as 32 x 32 luma
samples. It is reported that the coding efficiency loss caused
by the constrained CCLM is only 0.02%, 0.39%, and 0.35% in
terms of Y, Cb, and Cr BD-rates under the RA VIM CTCs,
respectively, which means that roughly 98% of the original
CCLM coding gain is preserved.

Another case of processing latency for chroma compo-
nents appears when the luma mapping with chroma scaling
(LMCS) [33], [34] and the CTU dual tree are both applied.
In this case, the decoded chroma residual is scaled by a
particular factor. During the LMCS development, the chroma
residual scaling factor was derived initially based on the aver-
age value of the corresponding luma PB (the result of motion
compensation in inter mode or the intra predictor in intra
mode). Such definition, however, resulted in a similar latency
issue as in the case of CCLM. To reduce the latency in LMCS,
one single chroma residual scaling factor is derived for the
entire VPDU instead of defining an individual scaling factor
for each PB. Also, this factor is not based on the values of the
current VPDU. Instead, it is derived based on the average value
of the neighboring luma reconstruction samples of the current
VPDU. As shown in Fig. 9, for each VPDU, the average value
of the M left neighboring luma reconstruction samples and the
M top neighboring luma reconstruction samples is calculated
and denoted as avgY, where the M = min(the luma CTB width,
64). The chroma residual scaling factor is derived using a table
lookup based on the avgY, even before the current VPDU is
decoded. This way, there is no dependency between the luma
and chroma components when CTU dual tree is applied, and
therefore the processing latency does not appear.

D. Picture Boundary Handling

In this paper, a CTU or coding tree node is called a partial
CTU or partial coding tree node when this CTU or coding
tree node is located either at the right or the bottom picture
boundary and contains samples outside of the current picture.
In HEVC, each partial coding tree node is forced to be split
using QT, and CUs located entirely outside of the current
picture are not coded. Such a scheme may result in rows and/or
columns of small square CUs along picture boundaries, leading
to poor coding efficiency for partial CTUs. An example of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

neighbor VPDUs
current VPDU

coded VPDU (recon.
luma available)

== luma samples used
for scale derivation

Fig. 9. VPDU neighboring samples used in chroma scaling factor derivation.

(b)

Fig. 10. CTU split at picture boundaries; (a) HEVC-like forced QT split
at the bottom picture boundary; (b) forced split using QT or BT split at the
bottom picture boundary. QT split CUs are marked with red, MTT split CUs
are marked with green.

a cropped coded picture is shown in Fig. 10 (a) and (b).
In the first case, a picture of 1080p resolution is partitioned
using HEVC-like forced QT split, which leads to many small
blocks in partial coding tree nodes at the bottom picture
boundary. During the VVC standardization process, several
contributions, e.g., [35]-[37], etc., advocated that a partial
coding tree node can be split into child CUs using either QT or
BT split, as shown in Fig. 10 (b). The CU partition signaling
procedure for partial CTUs in VVC is presented below.

First of all, for each partial CTU, split_cu_flag (indicating
whether this coding tree node is a coding tree leaf) is not
signaled and is inferred to be 1. Also, assuming that any
one of the following conditions is satisfied, a QT split is
enforced to the current coding tree node (i.e., split_qt_flag,
indicating whether the QT split is applied, is not signaled
and inferred to be 1): 1) the current partial coding tree node
crosses both the right and the bottom picture boundary, and
the size of the current coding tree node is greater than the
minimum allowed QT size (the minimum QT leaf CB size
for luma, MinQtSizeY, in cases of the single tree and the



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

dual tree for luma, or the minimum QT leaf CB size for
chroma, MinQtSizeC, in case of the dual tree for chroma);
2) the size of the current partial coding tree node is greater
than the maximum allowed BT size (the maximum CB size
for luma to apply the BT split, MaxBtSizeY, in cases of
the single tree and the dual tree for luma, or the maximum
CB size for chroma to apply the BT split, MaxBtSizeC,
in case of the dual tree for chroma). Otherwise, if the MTT is
enabled and any one of the following conditions is true, then
a BT split is enforced to the current partial coding tree node
(i.e., split_qt_flag is not signaled and inferred to be 0, and
the flag which specifies whether a CU is split using a binary
or ternary split, mtt_split_cu_binary_flag, is not signaled and
inferred to be 1): 1) the hierarchy depth of the MTT splitting of
the current CB, i.e., the MTT depth (the maximum hierarchical
MTT depth for luma, MaxMttDepthY, in cases of the single
tree or the dual tree for luma, or the maximum hierarchical
MTT depth for chroma, MaxMttDepthC, in case of the dual
tree for chroma) of the current partial coding tree node is
greater than 0; 2) the size of the current partial coding tree
node is less than or equal to the minimum allowed QT
size (MinQtSizeY in cases of the single tree and the dual
tree for luma, or MinQtSizeC in case of the dual tree for
chroma). Otherwise, if the MTT is enabled and none of
the previous conditions apply, either a QT or BT split can
be selected by an encoder for the current coding tree node
(i.e., split_qt_flag is signaled). If the QT split is not chosen by
the encoder (split_qt_flag is 0), then mtt_split_cu_binary_flag
is not signaled and inferred as 1.

When a BT split is applied to the current partial coding
tree node, mtt_split_cu_vertical_flag (identifies whether a cod-
ing unit is split horizontally or vertically) is not signaled
and inferred, as described below. If the BT split is applied
to the current coding tree node, which crosses the bottom
picture boundary, an HBT split is enforced to this coding
tree node (i.e., mtt_split_cu_vertical_flag is inferred to be 0).
Otherwise, a VBT split is enforced to this coding tree node
(i.e., mtt_split_cu_vertical_flag is inferred to be 1). The above
processes are recursively applied until the coding tree node
represents a CU located entirely within a picture. During the
splitting process of a partial CTU, the maximum allowed
MTT depth for the current coding tree node is increased by
an accumulated number of BT splits of the corresponding
ancestor partial coding tree nodes.

To prevent the picture boundary handling process from
violating the 64 x 64-L/32 x 32-C VPDU principles, an addi-
tional VPDU constraint is required at the picture bound-
ary [38]. This constraint and the motivation behind it are
described below. The left side of Fig. 11 shows one example
of a violation caused by the picture boundary handling scheme
described in the previous paragraphs. The dotted lines are
64 x 64-L/32 x 32-C VPDU boundaries. The left 48 x 128-
L/24 x 64-C region of the 128 x 128-L/64 x 64-C partial
CTU is located within a picture and marked in white. The right
80 x 128-L/40 x 64-C region of the 128 x 128-L/64 x 64-C
partial CTU is located outside of the picture and marked
in grey. Three VBT splits are applied recursively at three
MTT depths, resulting in one 32 x 128-L/16 x 64-C CU

3825

128 (luma) 128 (luma)

128 |---- - 128

1
Right Pic. Boundary
With additional VPDU constraint:
QT split > VBT split > no split >
split > no split > VBT split >
no split >

Right Pic. Boundary

Without additional VPDU constraint:
VBT split > VBT split > no split >
VBT split > no split

split > no split

Fig. 11. TIllustration of additional VPDU constraint at a picture boundary.

and one 16 x 128-L/8 x 64-C CU, which are both located
entirely within the picture. Since the CU height is larger than
64-L/32-C, TU splits are inferred for the two CUs. The
processing order of the four TUs is as follows (marked
with numbers 0-3 on the left side of Fig. 11): the top-left
32 x 64-L/16 x 32-C TU, the bottom-left 32 x 64-L/16 x
32-C TU, the top-right 16 x 64-L/8 x 32-C TU, and the
bottom-right 16 x 64-L/8 x 32-C TU. This order violates the
VPDU principles defined in Subsection III-B. To solve this
issue, an additional VPDU constraint needs to be enforced at
picture boundaries. Specifically, if the CTU size is set to 128 x
128-L/64 x 64-C, then the QT split is always applied to the
root coding tree node of any partial CTU. This additional
VPDU constraint is demonstrated on the right side of Fig. 11.
The QT split is first applied to the partial CTU, and then
two VBT splits are applied recursively at two MTT depths to
each of the two QT child nodes that are not totally outside the
picture. As a result, four CUs are generated, and the processing
order becomes as follows (marked with numbers 0-3 on the
right side of Fig. 11): the top left 32 x 64-L/16 x 32-C
CU, the top right 16 x 64-L/8 x 32-C CU, the bottom left
32 x 64-L/16 x 32-C CU, and the bottom right 16 X
64-L/8 x 32-C CU. This order satisfies all VPDU principles.
An example of the bottom picture boundary is omitted in this
paper since it can be easily derived from an analogy.

The following corner case of a coding tree split [39] is also
considered in VVC: when a coding tree node crosses a picture
boundary, and no splitting mode is allowed, the QT split is
inferred to be applied to this coding tree node. For example,
let us consider a case when the maximum allowed hierarchical
MTT depth (MaxMttDepthY in cases of the single tree and
the dual tree for luma, or MaxMttDepthC in case of the dual
tree for chroma) is set to 0, and the size of a current partial
coding tree node is equal to the minimum allowed QT size
(MinQtSizeY in cases of the single tree and the dual tree for
Iuma, or MinQtSizeC in case of the dual tree for chroma).
In this case, any QT split is not permitted because the size of
a current coding tree node reaches the minimum allowed QT
size; BT and TT splits are not allowed because the maximum
hierarchical MTT depth is equal to 0. Yet, in VVC, the current
coding tree node is inferred to be further split by a QT split,
even though no splitting mode is allowed.



3826

E. Local Dual Tree

When too many small blocks are present in the coded
picture, the average processing throughput drops in most hard-
ware video decoders. Intra blocks cannot be processed in par-
allel and must be decoded sequentially. Thus, the worst-case
processing throughput is dominated by the smallest intra block
size. Besides that, intra prediction processes in VVC become
much more complex than those in HEVC after adopting the
CCLM mode, the 4-tap interpolation filters, and the posi-
tion dependent prediction combination (PDPC) mode. It was
identified that the worst-case hardware decoder processing
throughput occurs when the CTU dual tree is switched off,
and the coded CTU is full of the smallest intra CUs, where the
smallest luma CB size is 4 x 4, and the smallest chroma CB
size is 2 x 2 [40]-[42]. It was also noted that when the CTU
dual tree is on, the smallest luma CB size is 4 x 4, and the
smallest chroma CB size is either 4 x 4 or 8 x 2. Therefore,
the worst-case scenario cannot occur when using the CTU dual
tree. To improve the worst-case hardware decoder processing
throughput, a local dual tree for the single tree structure is
adopted into VVC. As a general rule, a chroma CB with an
area less than 16 samples or/and a width less than 4 samples
are disallowed in VVC.

Details of the local dual tree are elaborated in this para-
graph. In the single tree, scanned from the root toward leaves,
if any further split of this coding tree node will result in a
chroma CB with an area less than 16 samples or width less
than 4 samples, then the current coding tree node is called
the smallest chroma intra prediction unit (SCIPU). All CUs
within one SCIPU have to be either non-inter (intra, intra
block copy (IBC), or palette) coded or inter coded. There
cannot be any mixture of inter and non-inter CUs within one
SCIPU. Three examples of the SCIPU are shown in Fig. 12,
where the three SCIPU sizes are 8 x 8-L/4 x 4-C, 16 x 8-
L/8 x 4-C, and 8 x 16-L/4 x 8-C, respectively. When one
SCIPU is non-inter coded, its chroma CBs are not further
split together with luma, and as a result, a local dual tree
is formed. This way, the smallest luma CB size is 4 x 4,
and the smallest chroma CB size is either 4 x 4 or 8 x 2,
which alleviates the bottleneck issue of the processing through-
put. For each SCIPU, a syntax element, non_inter_flag, is con-
ditionally signaled by an encoder, indicating whether this
SCIPU is all non-inter coded or all inter coded. If the current
slice is I slice (always non-inter coded) or if the current SCIPU
has any 4 x 4 luma CB (there is no inter 4 x 4 in VVC, so the
4 x 4 luma CB must be intra or IBC coded), non_inter_flag
is not signaled and inferred to be 1. Otherwise, non_inter_flag
is signaled before sending CUs in the SCIPU.

F. Split Signaling, Configurations, and Default Settings in
the VTM

In the following subsection, syntax elements used for the
split signaling of a coding tree are described, together with
configurations and default values in the VTM.

In VVC, a syntax element, split_cu_flag, is signaled or
inferred at each coding tree node. If split_cu_flag is 0, a coding
tree leaf is reached, and this coding tree node is treated

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

1 1
Y: 8x8 : Y: 16x8 : Y: 8x16 Ch/Cr: 4x8

1 1
1 1
1 1

1 | X
1 1
1 1
1 1
1 1
1 1
Ch/Cr: 4x4 I Ch/Cr: 8x4 1
1 1
1 1
X | X X 1
1 1
1 1

Fig. 12.  Examples of local dual tree.

X —X—

VBT VIT HBT HTT
VBT VBT S vBT HBT HBT L weT
Not Allowed Not Allowed

Fig. 13.  Removal of redundant partitions between BT and TT.

as a CU; otherwise, a syntax element, split_qt_flag, is signaled
or inferred to select between the QT split and the MTT split.
If split_qt_flag is equal to 1, then the QT split is applied;
otherwise, a syntax element, mtt_split_cu_vertical_flag, is sig-
naled or inferred to select between the horizontal split direc-
tion and the vertical split direction; and a syntax element,
mtt_split_cu_binary_flag, is signaled or inferred to choose
between the BT split and the TT split. When signaling
syntax elements related to the coding tree, some additional
conditions allow to reduce signaling redundancy. For example,
if split_qt_flag is 0 for a CU of size not larger than the maxi-
mum CU size for the BT split but larger than the maximum CU
size for the TT split, mtt_split_cu_binary_flag is not signaled
and inferred to be 1. Another case is related to inferring these
four coding tree split information flags depending on syntax
elements in either SPS or picture header (PH). For example,
the maximum allowed CU size for BT split and the maximum
allowed CU size for the TT split can be derived from the
related parameters in either SPS or PH. Besides decreasing
syntax redundancy using SPS and PH syntax elements, syntax
redundancy between BT and TT is also reduced in VVC.
As shown in Fig. 13, two redundant partitioning patterns are
removed by syntax constraints. If a parent node is split by
TT and the to-be-split node is the second child TT node, then
prohibit the BT partitioning along the same direction as that of
the parent node. In this case, mtt_split_cu_binary_flag is not
signaled and is inferred to be 0. Nevertheless, certain syntax
redundancy between QT and BT is retained in VVC. This
syntax redundancy is preserved on purpose to reduce coding
tree parsing complexity without sacrificing significant coding
efficiency.

The abovementioned four syntax elements are all con-
text coded by the context-based adaptive binary arithmetic
coding (CABAC). It is expected that the partitioning deci-
sions for a coding tree node may be closely related to
the partitioning structures of the current and neighboring



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

coding tree nodes. Therefore, in VVC, 9, 6, 5, and 4 con-
text variables are assigned respectively for entropy cod-
ing split_cu_flag, split_qt_flag, mtt_split_cu_vertical_flag, and
mtt_split_cu_binary_flag. To specify how to derive the context
index increment, ctxlnc, the following variables are defined.

o Agum = 2Aor +Apu+ Ay +Arn + Aty — 1, where
AQT, ApH, Apv, ArH, and Ary denote the availability
information for QT, HBT, VBT, HTT, VTT, respectively.
For example, if a QT split is allowed for a coding tree
node, Agr = 1; otherwise, Apr = 0.

o widthC, widthA, heightC, and heightL denote the width of
the current CB, the width of the above CB, the height of
the current CB, and the height of the left CB, respectively.

o gtDepthC, qtDepthA, and gtDepthL denote the QT depth

of the current CB, the QT depth of the above CB, and

the QT depth of the left CB, respectively.

dy = widthC | widthA

dy = heightC | heightL

d=(dy,==dp)?0:(dy <dp ?1:2)

mttDepthC denotes the MTT depth of the current CB

O O O O

The variable ctxInc for each of the four syntax elements is
derived as follows:

o For split_cu_flag, ctxInc in the range of 0 to 8, inclusive,
is derived as follows:
ctxlnc = ((widthC > widthA) 7 1: 0) + ((heightC >
heightL) ? 1: 0) + 3 * ((Asum == 0) 7 0: (Asum—1) > 1).

o For split_qt_flag, ctxInc in the range of 0 to 5, inclusive,
is derived as follows:
ctxlnc = ((qtDepthA > qtDepthC) ? 1: 0) + ((qtDepthL
> gtDepthC) ? 1: 0) + 3 * ((qtDepthC < 2) ? 0: 1).

o For mtt_split_cu_vertical_flag, ctxInc in the range of 0
to 4, inclusive, is derived as follows:
ctxlne = ((Apn + Arn) == (Apy + Arv)) ? d:
(((Apr + Arn) < (Apy + Ary)) ? 3: 4).

o For mtt_split_cu_binary_flag, ctxInc in the range of 0
to 3, inclusive, is derived as follows: ctxlnc = 2 *
mtt_split_cu_vertical_flag + (mttDepthC <=1 ? 1: 0).

Table I shows the related syntax elements to the coding tree
in the SPS and their corresponding values used in the VIM
CTCs [43], [44]. In VVC, the following settings are allowed:

o The CTB size for luma (CtbSizeY) can be 32, 64, or 128.

o The minimum CB size for luma (MinCbSizeY) must be
less than or equal to min(64, CtbSizeY).

o The maximum luma transform size (MaxTransformSize)
can be 32 or 64.

o MinQtSizeY must be in the range between MinCbSizeY
and min(64, CtbSizeY).

o MaxMttDepthY must be in the range between 0 and 2
*(CtbLog2SizeY — MinCbLog2SizeY), inclusive, where
CtbLog2SizeY is the base 2 logarithm of the CtbSizeY
and MinCbLog2SizeY is equal to the base 2 logarithm
of MinCbSizeY.

o MaxBtSizeY must be in the range between MinQtSizeY
and min(64, CtbSizeY) inclusive if intra slice with CST
is enabled; in the range of MinQtSizeY to CtbSizeY,
inclusive, otherwise.

3827

TABLE I
CODING TREE RELATED SYNTAX IN SPS

seq_parameter_set rbsp() { CTC values

sps_log2 ctu_size minus5 2 /I CtbSizeY = 128

if( ChromaArrayType !=0)
sps_qtbtt_dual tree intra_flag 1 // enabling dual tree in intra slices

sps log2 min luma coding block size minus2 0 //MinCbSizeY =4

sps_partition_constraints override enabled flag 1_// Enabling override in PH

sps_log2 diff min_qt min cb_intra slice luma 1 _// MinQtSizeY = 8 for intra slices

sps_max_mtt hierarchy depth intra slice luma 3 // MaxMttDepthY = 3 for intra slices

if( sps_max mitt hierarchy depth intra slice luma != 0) {
sps_log2 diff max_bt _min_qt intra_slice_luma 2 // MaxBtSizeY = 32 for intra slices
sps_log2 diff max_tt_min_qt intra_slice_luma 2 // MaxTtSizeY = 32 for intra slices

H

sps_log2 diff min_qt min_cb_inter slice

sps_max_mtt _hierarchy depth inter_slice

if( sps_max_mtt_hierarchy depth inter slices != 0) {

sps_log2 diff max_bt min_gt_inter_slice

1 _// MinQtSizeY = 8 for inter slices
3 //MaxMttDepthY = 3 for inter slices

4 // MaxBtSizeY = 128 for inter slices

sps_log2 diff max tt min gt inter slice 3 // MaxTtSizeY = 64 for inter slices
H
if( sps_qtbtt dual tree intra flag ) {
sps_log2 diff min_qt min cb_intra slice chroma 0_// MinQtSizeC = 4 for CST
sps_max_mtt_hierarchy depth_intra_slice_chroma 3 // MaxMttDepthC = 3 for CST

if (sps_max_mtt hierarchy depth intra slice chroma != 0) {
sps log2 diff max bt min gt intra slice chroma
sps_log2 diff max tt min_gt intra slice chroma
H

4 // MaxBtSizeC = 64 for CST
3 // MaxTtSizeC = 32 for CST

H
if( CtbSizeY >32)
sps_max_luma_transform_size 64 _flag 1 // MaxTransformSize = 64

o The maximum CB size for luma to apply the TT
split (MaxTtSizeY) must be in the range between Min-
QtSize and min(64, CtbSizeY), inclusive.

For CST, the following settings are allowed in VVC:

o MinQtSizeC must be in the range between MinCbSizeY
and min(64, CtbSizeY).

o MaxMttDepthC must be in the range between 0 and 2
*(CtbLog2SizeY — MinCbLog2SizeY), inclusive, where
CtbLog2SizeY is the base 2 logarithm of the Ctb-
SizeY and MinCbLog2SizeY is the base 2 logarithm
of MinCbSizeY;

o MaxBtSizeC must be in the range between 0 and min
(64, CtbSizeY) — MinQtSizeC, inclusive.

o The maximum CB size for chroma to apply TT
split (MaxTtSizeC) must be in the range between 0 and
min(64, CtbSizeY) — MinQtSizeC, inclusive.

Table II shows the corresponding coding tree-related syn-
tax elements in the PH. {MinQtSizeY, MaxMttDepth,
MaxBtSizeY, MaxTtSizeY} for intra slices, {MinQtSizeC,
MaxMttDepthC, MaxBtSizeC, MaxTtSizeC} for CST, and
{MinQtSizeY, MaxMttDepth, MaxBtSizeY, MaxTtSizeY} for
inter slices. Initially, they are set in the SPS but can be
overridden by the corresponding 12 syntax elements in the PH.
These 12 parameters are critical for the rate-distortion (RD)
performance and encoding time. In the VTM CTCs, the corre-
sponding four parameters for intra slices, four parameters for
CST, and MaxMttDepthY for inter slices are fixed as signaled
in SPS and are not overridden in the PH. At the same time,
to achieve a good tradeoff between the RD performance and
the encoding time, MaxBtSizeY for inter slices can be adjusted
in the PH. When an average CU size of the previous picture,
which has the same quantization parameter (QP) layer index
of the group of pictures (GOP) structure, is larger than a
predefined threshold, then MaxBtSizeY for the current inter
slice is set to a larger value and vice versa. Here, the QP layer
index of the i-th picture is defined as the smallest non-negative



3828

TABLE 11
CODING TREE RELATED SYNTAX IN PH

picture _header rbsp() {

if( sps_partition constraints override enabled flag) {
ph_partition_constraints_override flag
if(ph intra slice allowed flag) {
if(ph partition constraints override flag) {
ph_log2 diff min_qt min cb intra slice luma
ph _max mtt hierarchy depth intra slice luma
if( ph_max mtt hierarchy depth intra slice luma != 0) {
ph_log2 diff max bt min qt intra slice luma
ph_log2 diff max_tt_min_qt _intra_slice_luma
!
if( sps qtbtt dual tree intra flag) {
ph_log2 diff min_qt min_cb_intra_slice chroma
ph _max mtt hierarchy depth intra slice chroma
if( ph_max mtt hierarchy depth intra slice chroma != 0) {
ph _log2 diff max bt min qt intra slice chroma
ph log2 diff max tt min qt intra slice chroma
!
!
!

}
if(ph inter slice allowed flag) {
if(ph partition constraints override flag) {
ph log2 diff min qt min cb inter slice
ph_max_mtt_hierarchy depth_inter_slice
if( ph_max_mtt hierarchy depth inter slice != 0) {
ph log2 diff max bt min gt inter slice
ph _log2 diff max tt min gt inter slice
!
t

integer value k for which there is an integer y such that
i = y*20m=K) where m is base two logarithm of half of the
GOP size.

G. Encoding Algorithm and Speedup Methods in the VIM

This subsection describes the related VTM encoding algo-
rithm. A recursive function xCompressCU() starts from the
root of the coding tree, i.e., CTU, and visits other coding
tree nodes for all nonzero coding tree depths. The following
options are tested inside the xCompressCU(): 1) one coding
tree node of non-split, and 2) child coding tree nodes from
the HBT split, VBT split, HTT split, VIT split, and QT
split, with 2, 2, 3, 3, and 4 times of recursive calls of the
xCompressCU() function, respectively. The best split decision
for a coding tree node is updated by finding the minimum
RD cost among the abovementioned variants. Depending on
the parameters defined in the previous subsection, some of
the split options may become invalid and be skipped. On top
of the described encoding flow, to reduce the encoding time,
six encoder speedup methods are adopted in the VTM. These
speedup methods are summarized below.

[Method 1] The minimum and maximum QT depths are
derived from the QT depths of the neighboring CUs at left,
bottom-left, above, above-right positions relative to the current
coding tree node. If the derived minimum QT depth minus m is
greater than the QT depth of the current coding tree node, then
the QT split is enforced (i.e., HBT, VBT, HTT, and VTT splits
of the current coding tree node are skipped). Here, m = 1,
if the derived minimum QT depth is greater than O,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

and m = 0, otherwise. If the derived maximum QT depth
plus n is less than or equal to the QT depth of the current
coding tree node, then the QT split is prohibited. Here, n = 1,
if the derived maximum QT depth is less than the maximum
allowed QT depth, and n = 0, otherwise.

[Method 2] Skip testing the HTT split of the current coding
tree node if the HBT split has been already tested for this
coding tree node, and the best split decision of this coding tree
node is non-split with zero residual. Similarly, skip checking
the VTT split of the current coding tree node if the VBT split
has already been tested for this coding tree node, and the best
split decision of this coding tree node is non-split with zero
residual.

[Method 3] Skip testing the HBT, VBT, and QT splits of the
current coding tree node if the current slice is either non-intra
or allows IBC, and the skip mode is the best mode of non-split
for the current coding tree node, the parent coding tree node,
and the grandparent coding tree node.

[Method 4] Skip testing the QT split of the current coding
tree node if: a) the HBT and VBT splits of this coding tree
node have been tested, and the best split decision of this coding
tree node does not result in a large BT depth; b) the CU size
represented by the current coding tree node does not exceed
64 x 64 in units of luma samples.

[Method 5] Test the QT split of the current coding tree
node right after testing non-split for this coding tree node if
the following conditions apply:

o at least one of the two conditions below is true:

— at least one CU on the left or above the current
coding tree node has a QT depth larger than the QT
depth of the current coding tree node;

— the CU width represented by the current coding
tree node is greater than or equal to S in units of
luma samples, where S = 32/64/128 for QP layer
index 0/1/2;

o the QT split of the current coding tree node is allowed.

The HBT, VBT, HTT, and VTT splits are skipped if the
following conditions apply:

o the QT split is tested right after testing non-split of the

current coding tree node;

o the best split decision for a current coding tree node is

QT split.

[Method 6] As shown in Fig. 14, the same CU may be tested
multiple times when testing different partitionings. Therefore,
to reduce computational overhead, some of the previously
obtained encoding results can be reused as follows. If a current
coding tree node was previously tested, the following two rules
could be conditionally applied. 1) Always test the same split
option, equal to the best split option of the current coding tree
node. 2) If the best split option of the current coding tree node
tested earlier is non-split, skip testing the HBT, VBT, HTT,
VTT, and QT splits; otherwise, skip testing non-split.

A more detailed analysis of these encoder speedup methods
can be found in [45]. The presented above algorithms are
included in the paper for reference, as those were already
considered by the JVET experts and included in the VTM
software. These six methods should not be regarded as an



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

Fig. 14. Tllustration of testing the same CU multiple times.

TABLE III
RESULTS OF SETTING CTU SI1ZE TO 64 x 64 COMPARED TO 128 x 128

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 0.37% 3.03% 2.58% 102% 99%
Class A2 0.62% 1.01% 0.36% 101% 103%
Class B 0.39% 0.14% 0.89% 101% 106%
Class C 0.31% 0.36% 0.79% 100% 105%
Class E 0.39% -0.19% 2.25% 100% 108%
Overall 0.41% 0.76% 1.29% 101% 104%
Class D 0.12% -0.09% 0.50% 98% 102%
Class F -1.12% -1.37% -0.95% 88% 107%

Random Access

YBD-rate CbBD-rate CrBD-rate EncT DecT
Class A1 3.15% 4.53% 5.07% 7% 98%
Class A2 3.17% 4.77% 4.98% 83% 92%
Class B 1.70% 3.72% 4.93% 87% 100%
Class C 0.38% 1.39% 2.02% 96% 101%
Overall 1.93% 347% 4.19% 86% 98%
Class D 0.09% 041% 0.75% 102% 98%
Class F 0.19% 0.51% 1.43% 86% 108%

Low Delay B

YBD-rate CbBD-rate CrBD-rate EncT DecT
Class B 1.64% 3.78% 6.09% 85% 92%
Class C 0.26% 0.63% 1.19% 94% 101%
Class E 2.41% 4.21% 4.45% 76% 103%
Overall 1.37% 2.84% 4.05% 86% 97%
Class D -0.18% -1.00% 0.22% 99% 110%
Class F 1.16% 1.73% 2.63% 85% 108%

extensive list of all possible encoder speedups. Any encoder
complexity depends on the implementation and the speedup
methods used.

IV. EXPERIMENTAL RESULTS

In the VIM CTCs [44], there are 3, 3, 5, 4, 4, 3, and
4 test sequences in Classes Al, A2, B, C, D, E, and F,
respectively. Corresponding spatial resolutions of Classes Al,
A2, B, C, D, and E in units of luma samples are 3840 x 2160,
3840 x 2160, 1920 x 1080, 832 x 480, 416 x 240, and
1280 x 720, respectively. The spatial resolution of Class F
ranges from 832 x 480 to 1920 x 1080. Class F contains
test sequences with screen content and mixed content, while
the other classes of test sequences include camera-captured
content only. Class E is skipped in the RA condition.
Classes Al and A2 are omitted in the LB condition. The
overall average does not include Classes D and F. In this paper,
only the class averages and the overall average are shown to
avoid too much data. Y BD-rates, Cb BD-rates, Cr BD-rates,
encoding time ratios, and decoding time ratios over the anchor
for all conducted experiments are provided in the following
paragraphs.

Table IIT shows the VTM9.0 results of setting a CTU size
to 64 x 64 against 128 x 128. More significant losses are
observed for sequences in Classes Al and A2. These results
experimentally demonstrate that increasing the maximum CTU
size from 64 x 64 to 128 x 128 allows for achieving
better performance for larger sequences. However, this level

3829

TABLE IV
DIFFERENT SETTINGS OF CU SPLITTING METHODS AND CTU DUAL TREE

(Anchor) Setting 1 On Off Off Off

on  On  Of  Of
on of on  Of
on  On  On  Of

(VTM Default) Setting 5 On On On On

TABLE V

RESULTS OF SETTING 2 (QT SPLIT ON, BT SPLIT ON, TT SPLIT OFF,
CTU DUAL TREE OFF) COMPARED AGAINST SETTING 1 (QT SPLIT
ON, BT SpLIT OFF, TT SPLIT OFF, CTU DUAL TREE OFF)

AllIntra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 3.49% -5.27% -7.33% 456% 110%
Class A2 4.12% -9.53% -8.61% 561% 110%
Class B 5.09% -9.42% -10.13% 600% 110%
Class C 7.41% -9.05% -9.49% 659% 127%
Class E 8.16% -10.51% -9.83% 526% 108%
Overall 5.69% -8.84% -9.22% 566% 113%
Class D 7.22% -9.27% -9.36% 581% 132%
Class F 12.56% -14.22% -14.88% 536% 119%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 6.78% -8.68% -11.03% 360% 97%
Class A2 8.97% -13.29% -12.36% 335% 93%
Class B 7.94% -12.89% -13.38% 335% 94%
Class C 9.23% -10.91% -11.61% 325% 91%
Overall 8.26% -11.60% -12.23% 337% 93%
Class D 8.87% -12.22% -12.23% 291% 92%
Class F 14.18% -15.18% -15.95% 262% 90%

Low Delay B

YBD-rate CbBD-rate CrBD-rate EncT DecT
Class B 7.00% -13.13% -13.91% 316% 105%
Class C 7.36% -11.07% -12.10% 286% 100%
Class E 8.21% -13.22% -13.13% 233% 100%
Overall 7.42% -12.46% -13.11% 283% 102%
Class D 7.46% -11.12% -12.28% 235% 91%
Class F 14.11% -17.37% -19.27% 216% 97%

of coding gain improvement is much lower than that of the
VVC block partitioning, as shown in the next paragraph.

To demonstrate the benefits of the BT split, the TT split,
and the CTU dual tree in the VTM, five settings are shown
in Table IV. They were simulated using VTM9.0, where Set-
ting 1 is treated as the anchor, and Setting 5 is the same as the
VTM default setting. Tables V, VI, VII, and VIII summarize
the results of comparing Settings 2, 3, 4, and 5 against
Setting 1, respectively. It is worth noting that if comparing
Tables V, VI, and VII, gains from BT and TT do not
entirely add up. One of the reasons for that may be fast
algorithms applied during encoding, which affect decisions
made by an already very complex encoding algorithm. Since
different partitioning options are checked recursively, even
if one additional option is added, the complexity increases
exponentially, not linearly. Thus, the increase will be even
more without any speedups than those shown in Tables V, VI,
and VII. According to Tables V, VI, VII, and VIII, evidence
is reported that the BT split, the TT split, and the CTU dual
tree provide significant coding gains in all tested cases. For
example, in Table VIII, Setting 5 (the VTM default setting) is
compared against Setting 1 (QT split only, no BT split, no TT
split, no CTU dual tree). And Setting 1 is similar to (but not



TABLE VI

RESULTS OF SETTING 3 (QT SpLIT ON, BT SPLIT OFF, TT SPLIT ON,
CTU DUAL TREE OFF) COMPARED AGAINST SETTING 1 (QT SPLIT
ON, BT SpLIT OFF, TT SPLIT OFF, CTU DUAL TREE OFF)

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -1.53% -2.19% -3.15% 285% 107%
Class A2 -2.28% -5.37% -4.68% 326% 116%
Class B -2.75% -5.77% -6.40% 321% 108%
Class C -4.04% -5.62% -5.74% 314% 116%
Class E -5.00% -7.77% -7.49% 289% 103%
Overall -3.13% -5.41% -5.61% 309% 110%
Class D -3.66% -5.56% -5.14% 277% 110%
Class F -8.19% -9.77% -10.62% 294% 111%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -3.35% -4.21% -5.51% 250% 97%
Class A2 -5.94% -8.83% -8.06% 249% 95%
Class B -4.28% -7.20% -7.45% 243% 96%
Class C -5.49% -6.43% -6.59% 239% 93%
Overall -4.75% -6.72% -6.95% 244% 95%
Class D -4.15% -6.06% -5.81% 204% 97%
Class F -9.47% -10.41% -10.90% 188% 96%

Low Delay B

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class B -3.99% -781% -8.14% 248% 109%
Class C -4.38% -6.86% -7.23% 230% 99%
Class E -3.96% -6.49% -7.02% 187% 99%
Overall -4.11% -7.16% -7.56% 225% 103%
Class D -3.32% -6.08% -6.18% 186% 99%
Class F -9.89% -12.43% -13.07% 183% 99%

TABLE VII

RESULTS OF SETTING 4 (QT SpLIT ON, BT SpLIT ON, TT SPLIT ON,
CTU DUAL TREE OFF) COMPARED AGAINST SETTING 1 (QT SPLIT
ON, BT SpLIT OFF, TT SpLIT OFF, CTU DUAL TREE OFF)

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -4.07% -5.87% -8.38% 869% 110%
Class A2 -5.01% -11.44% -10.32% 1174% 110%
Class B -6.07% -11.26% -12.14% 1261% 115%
Class C -8.76% -11.38% -11.92% 1495% 121%
Class E -9.66% -13.20% -12.71% 1088% 108%
Overall -6.76% -10.74% -11.26% 1187% 114%
Class D -8.30% -11.43% -11.48% 1298% 118%
Class F -14.52% -16.87% -18.01% 1098% 116%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -8.10% -10.34% -13.13% 670% 103%
Class A2 | -11.12% -16.29% -15.20% 608% 100%
Class B -9.85% -15.54% -16.05% 615% 102%
Class C -11.60% -13.95% -14.84% 656% 99%
Overall -10.22% -14.23% -14.97% 635% 101%
Class D -11.02% -15.34% -15.81% 545% 106%
Class F -16.77% -18.50% -18.93% 459% 99%

Low Delay B

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class B -8.95% -15.90% -16.48% 608% 105%
Class C -9.71% -14.44% -15.54% 575% 99%
Class E -10.36% -15.74% -16.44% 336% 95%
Overall -9.55% -15.37% -16.16% 514% 101%
Class D -9.86% -15.17% -15.68% 441% 94%
Class F -17.38% -21.73% -22.62% 361% 99%

the same as) HEVC block partitioning structure under RA
condition. Results are as follows: 10.33% Y, 17.49% Cb, and
18.27% Cr BD-rate savings, with 617% encoding and 94%
decoding runtimes. In [18], it is reported that compared to the
HEVC reference software HM13.0 default setting, the prelim-
inary development of the new block partitioning structure built
on top of HM13.0 with QT split on, BT split on, TT split off
(TT was not proposed at that time), and CTU dual tree on,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

TABLE VIII

RESULTS OF SETTING 5 (QT SpLIT ON, BT SPLIT ON, TT SPLIT ON,
CTU DUAL TREE ON) COMPARED AGAINST SETTING 1 (QT SPLIT ON,
BT SpLiT OFF, TT SPLIT OFF, CTU DUAL TREE OFF)

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -4.71% -14.55% -10.97% 543% 111%
Class A2 -5.17% -19.27% -16.06% 798% 113%
Class B -6.50% -20.33% -23.31% 843% 104%
Class C -9.22% -16.64% -17.78% 1050% 115%
Class E -9.79% -20.52% -21.09% 724% 97%
Overall -7.13% -18.40% -18.44% 795% 108%
Class D -8.67% -15.94% -15.84% 952% 120%
Class F -14.88% -21.25% -23.30% 849% 107%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -8.16% -12.20% -13.36% 660% 93%
Class A2 | -11.17% -19.69% -17.30% 597% 94%
Class B -9.96% -20.67% -22.80% 596% 95%
Class C -11.80% -15.83% -17.01% 630% 93%
Overall -10.33% -17.49% -18.27% 617% 94%
Class D -11.16% -17.86% -18.28% 520% 97%
Class F -16.91% -20.37% -21.79% 426% 92%

Low Delay B

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class B -8.97% -16.98% -18.32% 611% 110%
Class C -9.76% -14.78% -16.28% 577% 100%
Class E -10.51% -18.92% -19.68% 335% 95%
Overall -9.62% -16.73% -17.98% 516% 103%
Class D -9.88% -16.74% -17.41% 428% 89%
Class F -17.34% -22.21% -24.14% 363% 94%

results in BD-rate reductions of 5.97% (Y), 13.89% (Cb), and
15.29% (Cr), with 158% encoding and 106% decoding run-
times under the RA condition. Y PSNR values of Setting 5 and
Setting 1 for Tango2 sequence encoded with RA condition at
various bitrates are shown in Fig. 15. Setting 5 and Setting 1
are plotted with squares and diamonds, respectively. As it can
be seen, a more flexible partitioning (Setting 5) provides higher
PSNR values at all tested bitrates. It is reported that Y, Cb,
Cr BD-rate savings of Setting 5 compared against Setting 1 are
9.57%, 16.35%, and 15.06%, respectively, which is consistent
with the curves in Fig. 15. Cb/Cr PSNR-bitrate curves of
Tango2 and Y/Cb/Cr PSNR-bitrate curves of other sequences
show the same trend, that Setting 5 is better than Setting 1
at all tested bitrates, so, for the sake of brevity, they are
omitted in this paper. When comparing Tables VII and VIII,
one can notice a substantial reduction in encoder runtime,
particularly for the AI condition. It is caused by the CTU
dual tree being switched off in Setting 4. Chroma CUs in the
CTU dual tree tend to be larger than those in the CTU single
tree, and testing small chroma CUs is often skipped by fast
encoding algorithms. Also, it should be noted that the Class C
sequences, in many cases, have the highest encoder complexity
increase. This increase may be because the algorithms of the
VTM were developed targeting more on encoding videos of
UHD and higher resolutions. Thus, the encoding time for the
smaller Class C sequences was less optimized since it is not a
bottleneck of the computing resources, unlike sequences from
Classes A and B.

Table IX summarizes the VVC picture boundary han-
dling results against the HEVC picture boundary handling.
VTMO9.0 uses the VIM CTC default settings, and it is
compared to the modified VTM9.0, where the QT splits are
always applied to all partial CTUs. As expected, BD-rates are



HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

Tango2, RA, Y PSNR vs Bitrate

SettingS /
40
Setting 1
Z39
kA
x
z
7
o
>38 /
37 T T T T . .
0 5000 10000 15000 20000 25000 30000
bitrate (kbps)
Fig. 15.  Performance of Setting 5 (red squares) and Setting 1 (black

diamonds) at various bitrates (RA CTC QPs 22, 27, 32 and 37) of
Tango2 sequence.

TABLE IX

RESULTS OF VVC PICTURE BOUNDARY HANDLING USING VTM9.0
DEFAULT SETTING COMPARED AGAINST HEVC
PICTURE BOUNDARY HANDLING

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -0.07% -0.25% -0.28% 99% 100%
Class A2 -0.03% -0.15% -0.08% 99% 94%
Class B -0.16% -0.69% -0.66% 99% 92%
Class C -0.01% -0.05% -0.04% 98% 94%
Class E -0.11% -0.17% -0.18% 100% 93%
Overall -0.08% -0.30% -0.28% 99% 94%
Class D -0.11% -0.20% -0.22% 103% 97%
Class F -0.14% -0.53% -0.68% 98% 95%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 -0.38% -0.48% -0.57% 98% 107%
Class A2 -0.24% -0.23% -0.16% 97% 110%
Class B -0.86% -1.24% -1.13% 98% 109%
Class C -0.07% -0.17% -0.19% 98% 117%
Overall -0.43% -0.60% -0.57% 98% 111%
Class D -0.51% -0.59% -0.55% 104% 121%
Class F -0.41% -0.61% -0.77% 98% 108%

Low Delay B

YBD-rate CbBD-rate CrBD-rate EncT DecT
Class B -0.92% -1.43% -1.62% 102% 107%
Class C -0.09% -0.16% 0.07% 100% 91%
Class E -1.12% -1.12% -1.00% 96% 87%
Overall -0.69% -0.93% -0.90% 100% 96%
Class D -0.72% -1.37% -1.44% 103% 87%
Class F -0.61% -1.25% -1.56% 99% 92%

affected by spatial resolutions. The Class B (1920 x 1080)
test sequences and the Class E (1280 x 720) test sequences
have larger coding gains, and luma BD-rates decrease roughly
by 0.9% and 1.1%, respectively, under non-Al conditions.

Performance results (the RA condition and the test
sequences from Classes A and B) of the QT + MTT structure
over HEVC are reported in [46]. The coding gains and the
encoder complexity depend on the allowed maximum depths
for QT, BT, and TT partitions. On average, for the Class A test
sequences, the reported luma BD-rate saving of QT + MTT
varies between 17.2% and 21.4%, with encoder runtime up
to 314%.

Table X summarizes the results of enabling the local dual
tree compared to disabling the local dual tree. The VITM CTC
default settings are compared to the modified VITM9.0 without

TABLE X

RESULTS OF ENABLING LOCAL DUAL TREE COMPARED AGAINST
DISABLING LOCAL DUAL TREE ON VTM9.0

All Intra

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 0.00% 0.00% 0.00% 100% 100%
Class A2 0.00% 0.00% 0.00% 101% 101%
Class B 0.00% 0.00% 0.00% 101% 101%
Class C 0.00% 0.00% 0.00% 101% 99%
Class E 0.00% 0.00% 0.00% 101% 100%
Overall 0.00% 0.00% 0.00% 101% 100%
Class D 0.00% 0.00% 0.00% 101% 97%
Class F 0.00% 0.00% 0.00% 101% 100%

Random Access

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class A1 0.05% 0.03% 0.19% 100% 100%
Class A2 0.10% 0.28% 0.27% 100% 100%
Class B 0.10% -0.13% 0.01% 100% 101%
Class C 0.25% -0.24% -0.23% 99% 100%
Overall 0.13% -0.05% 0.04% 100% 100%
Class D 0.37% 0.67% 0.58% 98% 99%
Class F 0.23% 0.29% 0.23% 97% 101%

Low Delay B

YBD-rate Cb BD-rate CrBD-rate EncT DecT
Class B 0.14% 0.45% 0.24% 101% 100%
Class C 0.35% 0.39% 0.17% 102% 102%
Class E 0.15% 0.56% 0.10% 101% 103%
Overall 0.21% 0.46% 0.18% 101% 101%
Class D 0.35% -0.01% 0.47% 101% 105%
Class F 0.70% 1.05% -0.03% 97% 101%

using the local dual tree. Since the CTU dual tree is always
used in the AI condition and the local dual tree affects
only the single tree structure, all BD-rates are zero for Al
In the RA and LB conditions, luma BD-rates increase only
by roughly 0.1% and 0.2%, respectively. It is claimed that
a significant improvement in hardware decoder processing
throughput completely justifies such minor coding efficiency
loss caused by the local dual tree.

V. CONCLUSION

In this paper, the block partitioning structure in VVC is
introduced. The block partitioning in VVC is more flexible
than in HEVC and contributes significantly to coding effi-
ciency and encoder run time. Several design concepts for
improving coding efficiency and reducing hardware com-
plexity are illustrated. Related experiments demonstrate the
benefits of various aspects of the VVC block partitioning
structure. It is reported that on average 10.33% Y BD-rate
saving, 17.49% Cb BD-rate saving, and 18.27% Cr BD-rate
savings are achieved for the RA condition with 6 times of
encoding runtime in the VTM.

ACKNOWLEDGMENT

The authors would like to thank Chih-Wei Hsu, Ching-
Yeh Chen, Tzu-Der Chuang, Chia-Ming Tsai, Zhi-Yi Lin,
Shaw-Min Lei, Ru-Ling Liao, Adam Wieckowski, and many
other experts in the JVET for their valuable comments,
collaborative suggestions, and significant contributions to the
VVC block partitioning structure and this article.

REFERENCES

[1] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.



3832

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

High Efficiency Video Coding (HEVC), document ITU-T Rec. H.265,
ISO/IEC 23008-2 (MPEG-H Part 2), Apr. 2013.

High Efficiency Video Coding Test Model (HM) Reference Software
of the JCT-VC of ITU-T VCEG and ISO/IEC MPEG. Accessed:
Jun. 13, 2021. [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/
svn_HEVCSoftware/

J. Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, and J. Boyce, Algo-
rithm Description of Joint Exploration Test Model 7 (JEM 7), doc-
ument JVET-G1001, Output Document of the 7th JVET Meeting,
Jul. 2017.

Joint Exploration Test Model (JEM) Reference Software of the JVET of
ITU-T VCEG and ISO/IEC MPEG. Accessed: Jun. 13, 2021. [Online].
Available: https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/

J. Chen, M. Karczewicz, Y.-W. Huang, K. Choi, J.-R. Ohm, and
G. J. Sullivan, “The joint exploration model (JEM) for video compres-
sion with capability beyond HEVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 5, pp. 1208-1225, May 2020.

A. Segall, V. Baroncini, J. Boyce, J. Chen, and T. Suzuki, Joint Call
for Proposals on Video Compression With Capability Beyond HEVC,
document JVET-H1002, Output Document of the 8" JVET Meeting,
Oct. 2017.

V. Baroncini, J.-R. Ohm, and G. J. Sullivan, Report of Results From
the Call for Proposals on Video Compression With Capability Beyond
HEVC, document JVET-J1003, Output Document of the 10" JVET
meeting, Apr. 2018.

J. Pfaff et al., “Video compression using generalized binary par-
titioning, trellis coded quantization, perceptually optimized encod-
ing, and advanced prediction and transform coding,” IEEE Trans.
Circuits  Syst. Video Technol., vol. 30, no. 5, pp. 1281-1295,
May 2020.

X. Xiu et al., “A unified video codec for SDR, HDR, and 360° video
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 5,
pp- 1296-1310, May 2020.

Y.-W. Huang et al., “A VVC proposal with quaternary tree plus binary-
ternary tree coding block structure and advanced coding techniques,”
IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1311-1325,
May 2020.

K. Choi et al., “Video codec using flexible block partitioning and
advanced prediction, transform and loop filtering technologies,” IEEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1326-1345,
May 2020.

W.-J. Chien et al., “Hybrid video codec based on flexible block
partitioning with extensions to the joint exploration model,” [EEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1346-1360,
May 2020.

K. Misra, A. Segall, and F. Bossen, “Tools for video coding beyond
HEVC: Flexible partitioning, motion vector coding, luma adaptive
quantization, and improved deblocking,” IEEE Trans. Circuits Syst.
Video Technol., vol. 30, no. 5, pp. 1361-1373, May 2020.

Versatile Video Coding (VVC), document ITU-T Rec. H.266, ISO/IEC
23090-3 (MPEG-I Part 3), Feb. 2021.

Advanced Video Coding (AVC), document ITU-T Rec. H.264 | ISO/IEC
14496-10 (MPEG-4 Part 10), Mar. 2005.

I.-K. Kim, J. Min, T. Lee, W.-J. Han, and J. Park, “Block partitioning
structure in the HEVC standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1697-1706, Dec. 2012.

J. An, Y.-W. Chen, K. Zhang, H. Huang, Y.-W. Huang, and S.-M. Lei,
Block Partitioning Structure for Next Generation Video Coding,
document MPEG m37524 and ITU-T SG16 COM16-C966, Input Doc-
ument of MPEG and ITU-T SG16 Meeting, Oct. 2015.

J. An, H. Huang, K. Zhang, Y.-W. Huang, and S.-M. Lei, Quadtree
Plus Binary Tree Structure Integration With JEM Tools, docu-
ment JVET-B0023, Input Document of the 2nd JVET Meeting,
Feb. 2016.

H. Huang, K. Zhang, Y.-W. Huang, and S.-M. Lei, EE2.1: Quadtree
Plus Binary Tree Structure Integration With JEM Tools, document JVET-
C0024, Input Document of the 3rd JVET Meeting, Jun. 2016.

X. Li et al., Multi-Type Tree, document JVET-D0117, Input Document
of the 4th JVET Meeting, Oct. 2016.

G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images
and video,” IEEE Trans. Image Process., vol. 3, no. 3, pp. 327-331,
May 1994.

G. M. Schuster and A. K. Katsaggelos, “An optimal quadtree-based
motion estimation and motion-compensated interpolation scheme for
video compression,” IEEE Trans. Image Process., vol. 7, no. 11,
pp. 1505-1523, Nov. 1998.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

C.-W. Hsu, T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and S.-M. Lei,
CEI-Related: Constraint for Binary and Ternary Partitions, document
JVET-K0556, Input Document of the 11th JVET Meeting, Jul. 2018.
C.-M. Tsai, C.-W. Hsu, T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and
S.-M. Lei, CEI1.2.1: Constraint for Binary and Ternary Partitions,
document JVET-L0081, Input Document of the 12th JVET Meeting,
Oct. 2018.

G. Bjgntegaard, Calculation of Average PSNR Differences Between RD
Curves, document VCEG-M33, Input Document of the 13th VCEG
Meeting, Apr. 2001.

G. Bjgntegaard, Improvements of the BD-PSNR Model, document
VCEG-AI11, Input Document of the 35th VCEG Meeting, Jul. 2008.
T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and S.-M. Lei, CEl-Related:
Separate Tree Partitioning at 64 x 64-Luma/32 x 32-Chroma Unit Level,
document JVET-K0230, Input Document of the 11th JVET Meeting,
Jul. 2018.

Y. Zhao and H. Yang, CE2-Related: CCLM for Dual Tree With 32 x 32
Latency, document JVET-O0196, Input Document of the 15th JVET
Meeting, Jul. 2019.

C.-M. Tsai, C.-W. Hsu, Y.-W. Huang, and S.-M. Lei, CE2-Related:
Luma-Chroma Latency Reduction for Chroma Separate Tree, document
JVET-00273, Input Document of the 15th JVET Meeting, Jul. 2019.
C.-M. Tsai, T.-D. Chuang, C.-W. Hsu, Y.-W. Huang, and S.-M. Lei,
Luma-Chroma Dependency Reduction for Chroma Separate Tree by
Constraining CCLM Usage, document JVET-00274, Input Document
of the 15th JVET Meeting, Jul. 2019.

Y. Zhao et al., Draft Text for CCLM Restriction to Reduce Luma-
Chroma Latency for Chroma Separate Tree, document JVET-O1124,
Input Document of the 15th JVET Meeting, Jul. 2019.

M. Karczewicz et al., “VVC in-loop filters,” IEEE Trans.
cuits  Syst. Video Technol., early access, Apr. 9, 2021,
10.1109/TCSVT.2021.3072297.

J. Chen et al., Non-CE2: Unification of Chroma Residual Scaling
Design, document JVET-O1109, Input Document 15th JVET Meeting,
Jul. 2019.

S.-T. Hsiang and S.-M. Lei, CE1.2.0.10: CU Partitioning Along Picture
Boundaries, document JVET-K0224, Input Document of the 11th JVET
Meeting, Jul. 2018.

A. Wieckowski et al., CEl-Related: Joint Proposal for Picture Boundary
Fartitioning by Fraunhofer HHI and Huawei, document JVET-K0554,
Input Document of the 11th JVET Meeting, Jul. 2018.

H. Gao, Z. Zhao, E. Steinbach, and J. Chen, “Improving picture
boundary handling for video coding beyond HEVC,” in Proc. IEEE
Int. Conf. Vis. Commun. Image Process. (VCIP), Taichung, Taiwan,
Dec. 2018, pp. 1-4.

C.-M. Tsai et al., CEl-Related: Picture Boundary CU Split Satisfying
the VPDU Constraint, document JVET-M0888, Input Document of the
13th JVET Meeting, Jan. 2019.

R.-L. Liao et al., On Block Partitioning at Picture Boundary, doc-
ument JVET-Q0330, Input Document of the 17th JVET Meeting,
Jan. 2020.

Z.-Y. Lin, T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and S.-M. Lei, CE3-
Related: Shared Reference Samples for Multiple Chroma Intra CBs,
document JVET-MO0169, Input Document of the 13th JVET Meeting,
Jan. 2019.

Z.-Y. Lin, T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and S.-M. Lei,
CE3-2.2: Shared Reference Samples for Multiple Chroma Intra CBs,
document JVET-NOO81, Input Document of the 14th JVET Meeting,
Mar. 2019.

Z.-Y. Lin et al., CE3-2.1.1 and CE3-2.1.2: Removing 2 x 2, 2 x 4, and
4 %2 Chroma CBs, document JVET-O0050, Input Document of the 15th
JVET Meeting, Jul. 2019.

Versatile Video Coding Test Model (VTM) Reference Software
of the JVET of ITU-T VCEG and ISO/IEC MPEG. Accessed:
Jun. 13, 2021. [Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM

F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Siihring, JVET Common
Test Conditions and Software Reference Configurations for SDR Video,
document JVET-N1010, Output Document of the 14th JVET Meeting,
Mar. 2019.

A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand, “Fast
partitioning decision strategies for the upcoming versatile video coding
(VVC) standard,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Taipei,
Taiwan, Sep. 2019, pp. 4130-4134.

F. Le Leannec et al., “Highly flexible coding structures for next-
generation video compression standard,” in Proc. Data Compress.
Conf. (DCC), Snowbird, UT, USA, Mar. 2019, pp. 280-289, doi:
10.1109/DCC.2019.00036.

Cir-
doi:


http://dx.doi.org/10.1109/TCSVT.2021.3072297
http://dx.doi.org/10.1109/DCC.2019.00036

HUANG et al.: BLOCK PARTITIONING STRUCTURE IN VVC STANDARD

Yu-Wen Huang received the B.S. degree in electri-
cal engineering and the Ph.D. degree in electron-
ics engineering from National Taiwan University,
Taiwan, in June 2000 and December 2004,
respectively.

He joined MediaTek Inc., Hsinchu, Taiwan,
in December 2004, and is currently the Deputy
Director of the Multimedia Technology Develop-
ment Division. In 2006, he started attending interna-
tional video coding standard meetings held by ITU-T
VCEG and ISO/IEC MPEG and has been an active
contributor since 2009. His current research interests include image/video
coding and processing and related hardware architectures.

Jicheng An received the bachelor’s degree in
automation and the master’s degree in control sci-
ence and engineering from Central South University
(CSU), Changsha, Hunan, China, in June 2006 and
June 2009, respectively.

From 2009 to 2016, he was with MediaTek Inc.,
Beijing, China. From 2016 to 2018, he was with
HiSilicon Ltd., Beijing. From 2009 to 2018, he was
involved in developing new video coding algorithms
for next generation video coding standards. He has
contributed actively to the development of the ITU-T
VCEG and ISO/IEC MPEG video coding standards HEVC and VVC. Since
2018, he has been a Senior Algorithm Engineer with Alibaba Group, Beijing,
working on video coding for real-time communication. His research interests
include image and video compression, block structure partitioning, and error
resilient video coding.

Han Huang received the B.S. degree in computer
engineering and the Ph.D. degree in signal and
information processing from Beijing Jiaotong Uni-
versity, China, in June 2007 and November 2013,
respectively.

He is currently a Senior Staff Engineer at
Qualcomm Inc., San Diego, CA, USA. Before
he joined Qualcomm, he was with MediaTek
Inc., from November 2013 to May 2018. From
September 2009 to August 2011, he was a Visiting
Student with Rensselaer Polytechnic Institute, Troy,
NY, USA. Since 2014, he has been contributing actively to international video
coding standard meetings held by ITU-T VCEG and ISO/IEC MPEG. His
current research interests include image and video coding and processing.

Xiang Li (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in electronic engineering
from Tsinghua University, Beijing, China, and the
Dr.-Ing. degree in electrical, electronic and com-
munication engineering from the University of
Erlangen-Nuremberg, Germany.

He is currently the Head of video coding standards
at Tencent’s Media Lab. Before joining Tencent,
he was with Qualcomm, MediaTek, the Institute
of Communications Engineering at RWTH Aachen
University, and Siemens. He has been working in
the field of video compression for years and is contributing actively to
international video coding standards. He served as the chair and the co-chair in
a number for ad hoc groups and core experiments, including the co-chair for
JEM reference software and VVC reference software. He was a co-editor of
MPEG-5 EVC. He has published over 50 journal articles, over 50 conference
papers, more than 300 standard contributions, and holds more than 240 U.S.
granted and pending patents. His research interests include video coding and
processing.

Shih-Ta Hsiang received the B.S. degree in elec-
trical engineering from National Cheng Kung Uni-
versity, Tainan, Taiwan, the M.S. degree in elec-
trical engineering from the University of Florida,
Gainesville, FL, USA, and the M.S. degree in math-
ematics and the Ph.D. degree in electrical, computer,
and systems engineering from Rensselaer Polytech-
nic Institute, Troy, NY, USA.

From 2002 to 2004, he was a Research Scientist
with the Imaging Technology Department, Hewlett
Packard Laboratories, Palo Alto, CA, USA. From
2004 to 2011, he was a Principal Researcher with the Multimedia Research
Laboratory, Motorola Labs, Schaumburg, IL, USA. In 2011, he joined Medi-
aTek, Taiwan, as a Senior Technical Manager, where he has been involved in
research related to video coding standardization.

Kai Zhang (Senior Member, IEEE) received the
B.S. degree in computer science from Nankai Uni-
versity, Tianjin, China, in 2004, and the Ph.D. degree
in computer science from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 2011.

From 2011 to 2012, he was with Tencent Inc.,
Beijing. From 2012 to 2016, he was with MediaTek
Inc., Beijing. In 2016, he joined Qualcomm Inc.,
‘ £ San Diego, CA, USA. He is currently a Senior

Research Scientist at Bytedance Inc., San Diego. His
research interests include video/image compression, coding, processing and
communication, and video coding standardization.

Han Gao (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from Xidian University, Xi’an, China, in 2012, and
the M.S. degree in electrical engineering and infor-
mation technology from the Technical University
of Munich (TUM), Munich, Germany, in 2015,
where he is currently pursuing the Ph.D. degree.
In 2016, he joined the Chair of Media Technology at
TUM and the Audiovisual Technology Laboratory at
Huawei Technologies, Munich. Since 2016, he has
been actively involved in the development of the
VVC standard that was jointly issued by ITU-T VCEG and ISO/IEC MPEG.
His research focuses on image and video processing and traditional and neural
network-based video compression and coding.

Jackie Ma received the M.S. degree in mathematics
and the Dr. rer. nat. degree from the Technical
University of Berlin, Berlin, Germany, in 2013 and
2016, respectively.

From 2012 to 2016, he was Visiting Researcher
at ETH Zurich, Switzerland, the University of
Cambridge, U.K., and The University of Hong Kong,
Hong Kong. In 2017, he joined the Fraunhofer
Institute for Telecommunications, Heinrich Hertz
Institute, Berlin, as a Project Manager. During the
development of VVC, he has made several technical
contributions and was the coordinator of the core experiments on partitioning.
He is currently with the Machine Learning Group, Heinrich Hertz Institute,
coordinating several projects on machine learning and medicine.

Olena Chubach received the M.S. degree in applied
mathematics from Odesa National LI. Mechnikov
University, Ukraine, in July 2010, and the Ph.D.
degree in electrical engineering from RWTH Aachen
University, Germany, in September 2018.

She joined MediaTek Inc., San Jose, USA,
in June 2018, and is currently a Staff Engineer with
the Multimedia Technology Development Division.
Her current research interests include video coding
algorithms and related Al technologies.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


