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Abstract— This paper presents an overview of the technologies
for in-loop processing and filtering in the Versatile Video Cod-
ing (VVC) standard. These processes comprise luma mapping
with chroma scaling, deblocking filter, sample adaptive offset,
adaptive loop filter and cross-component adaptive loop filter.
They are qualified as “in-loop” because they are applied inside
the encoding and decoding loops, before storing the pictures in
the decoded picture buffer. The filters are complementary and
address different purposes. Luma mapping with chroma scaling
aims at adaptively modifying the coded samples distribution
for improved coding efficiency. The deblocking filter aims at
reducing blocking discontinuities. Sample adaptive offset mostly
aims at reducing artifacts resulting from the quantization of
transform coefficients. Adaptive loop filter and cross-component
adaptive loop filter are adaptive filters enabling to enhance the
reconstructed signal, using for instance Wiener-filter encoding
approaches. The paper provides an overview of the in-loop filter-
ing process and a detailed description of the filtering algorithms.
Objective compression efficiency results are provided for each
filter, with indication of cumulative coding gains. Subjective
benefits are illustrated. Implementation issues considered during
the design of the VVC in-loop filters are also discussed.

Index Terms— Video coding, in-loop filters, adaptive loop filter,
cross-component adaptive loop filter, deblocking, luma mapping
with chroma scaling, Versatile video coding.

I. INTRODUCTION

VERSATILE Video Coding (VVC) [1] is a new video cod-
ing standard developed by the Joint Video Experts Team

(JVET) grouping experts from the ITU-T SG 16/Q.6 Video
Coding Experts Group (VCEG), and the ISO/IEC JTC 1/SC
29/WG 11 Moving Pictures Experts Group (MPEG), which
had also jointly developed the AVC (H.264) [2] and HEVC
(H.265) [3] standards. As in previous video coding standards,
VVC uses a block-based hybrid coding scheme, as illustrated
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in Fig. 1 that depicts a simplified VVC decoder block diagram
emphasizing the in-loop filtering coding blocks (gray-shaded
rectangles). The filters are defined as “in-loop” because these
processes are applied inside the encoding/decoding loop that
is prior to the picture storage in the decoded picture buffer
(DPB). The decoding process starts with entropy decoding
using a context-adaptive binary arithmetic coding (CABAC)
engine, followed by inverse quantization and inverse transform
that results in the decoded residue. The residue is added to
the prediction signal (intra, inter, or mix of both in case of
combined intra-inter prediction mode (CIIP)). The resulting
reconstructed signal is then processed through different in-loop
filtering steps. The filtered picture is finally stored in the DPB.

In VVC, the pictures are partitioned into Coding Tree
Units (CTUs), which represent the basic coding processing
units, also specified in HEVC. CTUs consist of one or three
Coding Tree Blocks (CTBs) depending on whether the video
signal is monochrome or contains three-color components.
For YCbCr 4:2:0 video, a CTU consists of one luma CTB
and two chroma CTBs each a quarter of the size of the
luma CTB. The maximum CTU size (defined by the largest
CTB of the CTU) is 128 × 128 samples. A CTU can be
recursively divided into Coding Units (CUs) according to three
partitioning modes: quadtree (division into four equally sized
CUs); ternary-tree (division into three CUs of size 1/4th, 2/4th,
1/4th); and binary-tree (division into two equally sized CUs).
Additional partitioning can arise in some cases where a CU
is split into Transform Units (TUs) of smaller size than the
CU size. In intra slices, it is possible to apply separate luma
and chroma coding trees, in which case the luma and chroma
CTBs can be recursively split according to their own coding
trees.

The picture partitioning and the quantization steps used
in conventional block-based hybrid coding may cause coding
artifacts such as block discontinuities, ringing artifacts, mos-
quito noise, or texture and edge smoothing. In-loop filtering
processes are applied in the encoding and decoding loops
to reduce these artifacts. In VVC, four different in-loop
filters are specified: Deblocking Filter (DBF) for reducing
the blocking artifacts, Sample Adaptive Offset (SAO) for
attenuating the ringing artifacts and correcting the local aver-
age intensity changes, Adaptive Loop Filtering (ALF) and
Cross-Component Adaptive Loop Filtering (CC-ALF) for fur-
ther correcting the signal based on linear filtering and adaptive
clipping. In addition, a specific filtering step called Luma
Mapping with Chroma Scaling (LMCS) is also defined. LMCS
does not specifically address the coding artifacts reduction but

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4952-3024
https://orcid.org/0000-0002-0551-2705
https://orcid.org/0000-0001-5423-6359
https://orcid.org/0000-0002-9390-2518
https://orcid.org/0000-0002-2451-1994


3908 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 1. VVC decoder simplified block diagram; shaded rectangles correspond
to in-loop filtering coding blocks.

aims at better using the signal range for improved coding
efficiency.

The filters are applied after the picture reconstruction and
before saving the picture in the DPB, in the following decoding
process order (see Fig. 1): inverse LMCS (luma mapping part),
DBF, SAO, ALF, and CC-ALF. The forward LMCS (luma
mapping part) is also applied to the luma prediction signal in
the inter prediction case and chroma scaling part of LMCS
is applied to the chroma residues after inverse transform. The
specific order in which these tools are applied is justified by
their incremental and complementary benefits. The DBF and
SAO are two filters aiming at reducing the artifacts caused
by the coding process. The DBF focuses on visual artifacts at
block boundaries while SAO complementarily reduces artifacts
resulting from the transform coefficients quantization which
can arise inside the blocks. These two filters follow inverse
LMCS. Applying inverse LMCS right after the sample recon-
struction and prior to DBF was motivated by the fact that
DBF was designed to perform in the original sample domain,
based on subjective criteria, not in the mapped sample domain.
ALF and CC-ALF perform a final corrective step that typically
targets improving the signal fidelity and thus are placed at the
last in-loop filtering stage.

Compared to HEVC, the new in-loop filtering technologies
in VVC are ALF, CC-ALF and LMCS. The DBF is conceptu-
ally like the HEVC DBF with several enhancements. SAO is
identical to that in HEVC. It consists of classifying samples
of one CTU into different groups and applying an offset to
samples of a group to reduce sample distortions, the group
index and offset value being signalled in the bitstream.

SAO, ALF, and CC-ALF add corrective offsets to the
signal, while DBF applies a filtering across the block frontiers.
Though SAO and ALF/CC-ALF are partly overlapping, they
operate in different ways and address different signal artifacts.
In addition, SAO is of much lower complexity than ALF and
CC-ALF, which makes SAO relevant for low-complexity or
low-latency encoders.

ALF is based on adaptive filters, which are typically applied
to reduce the mean square error (MSE) between the original
and the reconstructed samples using Wiener-based filtering [4].
ALF includes a classification of non-overlapping 4 × 4 blocks
based on their local sample gradients. For each class a specific
filter is applied among the different filters signalled in the
bitstream. Based on this classification, geometric transforma-
tion, such as 90-degree rotation, diagonal or vertical flip,
of coefficients within filter shape can also be applied. ALF
applies to luma and chroma samples. Further details are
provided in Section II.

CC-ALF exploits the correlation between the luma and
chroma samples and applies only to the chroma samples.
CC-ALF generates a correction of chroma samples using a
linearly filtered version of the luma samples located around the
same relative location as the chroma samples. A Wiener-filter
approach can be used at encoder side to derive the filters for
the purpose of MSE reduction. CC-ALF operates in parallel
with ALF. CC-ALF details are provided in Section III.

VVC DBF uses the HEVC DBF design, with some adapta-
tions mainly related to the addition of long-tap filters for both
luma and chroma and for some specific coding conditions,
leading for example to stronger smoothing in case of large
coding blocks. VVC deblocking control also benefits from
more flexibility and supports a new control mode based on
average local luma samples level. More details on DBF are
provided in Section IV.

LMCS contains two components: luma mapping (LM) and
luma-dependent chroma residue scaling (CS). The basic idea
of luma mapping is to make better use of the range of luma
code values at a specified bit depth, as some luma code values
may not be used in the input video. The CS is designed to
compensate for the LM impact on the bit cost repartition
between the luma signal and the chroma signal [5]. LMCS
details are provided in Section V.

ALF coefficients and LMCS parameters are carried in
ALF adaptation parameter sets (ALF APS) and LMCS APSs,
respectively [6]. Hence, when multiple slices in the same or
different pictures use the same ALF coefficients or the same
LMCS parameters, redundant transmission of ALF coefficients
and LMCS parameters can be avoided. When ALF or LMCS
is applied to a picture or a slice, only IDs of the referenced
APSs are signalled in the picture or slice header.

The rest of the paper is organized as follows. Sections II
and III describe ALF and CC-ALF, respectively. The deblock-
ing filter is explained in Section IV. Section V addresses
the LMCS process. Note that the authors have preferred for
clarity purpose presenting the tools in a different order than
their application order in the encoding and decoding process.
Experimental results are presented and discussed in Section VI
whereas Section VII concludes the paper.

II. ADAPTIVE LOOP FILTER

This section describes ALF techniques employed in VVC.
The ALF design including filter shapes, precision and adaptive
clipping is presented in Section II.A. Filtering adaptations
at sub-block and CTB levels are described in Section II.B
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Fig. 2. ALF filter shapes.

and Section II.C, respectively. Syntax design is presented in
Section II.D. Reduction of ALF line buffer requirements is
discussed in Section II.E. Finally, the ALF encoder design in
the VVC test model (VTM) [67] is presented in Section II.F.

A. Filter Shapes, Linear Filtering and Adaptive Clipping

ALF is applied to the output samples of SAO. Two filter
shapes, 7 × 7 diamond shape and 5 × 5 diamond shape are
supported for luma and chroma components respectively [9],
as shown in Fig. 2. In Fig. 2, each square corresponds to a
luma or a chroma sample and the center square corresponds to
a current to-be-filtered sample. To reduce the signalling over-
head and the number of multiplications, the filter coefficients
use point-symmetry [4]. Each integer filter coefficient ci is
represented with 7-bit fractional precision [10]. In addition,
to preserve DC neutrality, the sum of coefficients of one filter
must be equal to 128, which is the fixed-point representation
of 1.0 with 7-bit fractional precision:

2
∑N−2

i=0
ci + cN−1 = 128. (1)

In Eq. (1), the number of coefficients N is equal to 13 and
7 for 7 × 7 and 5 × 5 filter shape, respectively.

A filtered sample value R̃ (x, y) at coordinates (x, y) is
derived by applying coefficient ci to the reconstructed sample
values R (x, y) as follows:

R̃(x, y)=
[∑N−2

i=0
ci (R (x +xi , y + yi )+ R (x − xi , y − yi ))

+ cN−1 R (x, y) + 64

]
>> 7, (2)

where (x + xi , y + yi ) and (x − xi , y − yi ) are the coor-
dinates of the reconstructed samples corresponding to i-th
coefficient ci . Due to the constraint in Eq. (1), Eq. (2) can
be written as

R̃ (x, y) = R (x, y)

+
{[∑N−2

i=0
ci (R (x + xi , y+yi)− R (x, y))

+
∑N−2

i=0
ci (R (x −xi , y−yi) − R (x, y)) + 64

]

>> 7

}
. (3)

Based on Eq. (3), the filtered sample R̃ (x, y) is obtained by
adding to the reconstructed sample R (x, y) a weighted sum
of the differences between the to-be-filtered sample R (x, y)
and its neighboring samples.

The coefficients in Eq. (3) are the same for all the samples in
the same relative geometric position to the to-be-filtered sam-
ple. Unlike linear filters which take into consideration only the
geometric closeness of the picture samples, non-linear filters
such as bilateral filter [11] can also adjust their coefficients
based on the similarity of the sample values. Hence bilateral
filter can effectively remove the noise while preserving edges.
To allow ALF filter to take into consideration both spatial
relationship and value similarity between the samples, the pos-
sibility to clip the difference between the neighboring sample
value and the current to-be-filtered sample is added [12] to
Eq. (3). When non-linear ALF is enabled Eq. (3) is modified
as follows:

R̃ (x, y) = R (x, y) +
[(∑N−2

i=0
ci fi + 64

)
>> 7

]
, (4)

where

fi = min (bi , max (−bi , R (x + xi , y + yi ) − R (x, y)))

+ min (bi , max (−bi , R (x − xi , y − yi ) − R (x, y))) .

(5)

bi is the clipping parameter for a coefficient ci determined by
a clipping index di . bi is derived as follows:

bi =
{

2BD, when di = 0

2BD−1−2di , otherwise
(6)

where BD is the sample bit depth and di can be 0, 1, 2 or 3.

B. Luma Sub-Block Level Filter Adaptation

Sub-block level filter adaptation is only applied to luma
component. Each 4 × 4 luma block is classified based on its
directionality and 2D Laplacian activity [13]. First, the values
of sample gradients for horizontal, vertical and two diagonal
directions are calculated:

Hk,l = |2R (k, l) − R (k − 1, l) − R (k + 1, l)| ,
Vk,l = |2R (k, l) − R (k, l − 1) − R (k, l + 1)| ,

D0k,l = |2R (k, l) − R (k − 1, l − 1) − R (k + 1, l + 1)| ,
D1k,l = |2R (k, l) − R (k − 1, l + 1) − R (k + 1, l − 1)| .

(7)

Based on the sample gradients, sub-block horizontal gradient,
gh , vertical gradient, gv , and two diagonal gradients, gd0 and
gd1, are calculated as

gh =
∑i+5

k=i−2

∑ j+5

l= j−2
Hk,l,

gv =
∑i+5

k=i−2

∑ j+5

l= j−2
Vk,l ,

gd0 =
∑i+5

k=i−2

∑ j+5

l= j−2
D0k,l ,

gd1 =
∑i+5

k=i−2

∑ j+5

l= j−2
D1k,l . (8)
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Fig. 3. Subsampled sample gradients for a 4×4 sub-block ALF classification.
Gradient values of samples marked with × are calculated. Gradient values of
other samples are set to 0.

Fig. 4. Geometric transformation of 7 × 7 diamond filter shape. From left
to right: diagonal flip, vertical flip and 90-degree rotation.

Indices i and j refer to the coordinates of the upper left sample
in the 4 × 4 luma block. As it can be seen from Eq. (8),
the sum of sample gradients within a 10 × 10 luma window
that covers the target 4 × 4 block is used for classifying that
block. To reduce the complexity, only gradient of every second
sample in a 10 × 10 window is calculated [14] as illustrated
in Fig. 3. The values of other sample gradients are set to 0.

Second, to assign the directionality D, the ratio of the
maximum and the minimum of the sub-block horizontal and
vertical gradients

gmax
h,v = max (gh, gv ) , gmin

h,v = min (gh, gv) , (9)

and the ratio of the maximum and the minimum of two
sub-block diagonal gradients

gmax
d0,d1 = max (gd0, gd1) , gmin

d0,d1 = min (gd0, gd1) , (10)

are compared against each other and with a set of thresholds
t1 and t2:

Step 1: If both gmax
h,v ≤ t1 · gmin

h,v and gmax
d0,d1 ≤ t1 · gmin

d0,d1,
D is set to 0 (block is categorized as “texture”).

Step 2: If gmax
h,v

/
gmin

h,v > gmax
d0,d1

/
gmin

d0,d1, the directionality
D is calculated in Step 3, otherwise in Step 4.

Step 3: If gmax
h,v > t2 · gmin

h,v , D is set to 2 (block is
categorized as “strong horizontal / vertical”), otherwise D is
set to 1 (block is categorized as “weak horizontal / vertical”).

Step 4: If gmax
d0,d1 > t2 · gmin

d0,d1, D is set to 4 (block is
categorized as “strong diagonal”), otherwise D is set to 3
(block is categorized as “weak diagonal”).

Each subsequent step in the above calculation of D is only
executed if there is no value assigned to D in the previous

TABLE I

GEOMETRIC TRANSFORMATION BASED ON SUB-BLOCK
GRADIENT VALUES

steps. Third, an activity value A is calculated as

A =
(∑i+5

k=i−2

∑ j+5

l= j−2

(
Vk,l + Hk,l

))
>> (BD − 2) .

(11)

A is further mapped to the range of 0 to 4: Â = Qmin(A,15)

where {Qn} = {0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4} .
Finally, each 4 × 4 luma block is categorized into one of the
25 classes:

C = 5D + Â. (12)

Each class can have its own filter assigned.
Before filtering each 4×4 luma block, a geometric transfor-

mation, such as 90-degree rotation, diagonal or vertical flip,
is applied to the filter coefficients, as illustrated in Fig. 4,
depending on the sub-block gradient value as specified in
Table I. This is equivalent to applying these transformations
to the samples in the filter support region. The goal is to align
the directionality of the different blocks, in order to reduce
the number of ALF classes and, in turn, filter coefficients.
Applying the geometric transformation allows a 4 × 4 block
with a horizontal edge and a 4 × 4 block with a vertical edge
to both have the same directionality D.

C. Coding Tree Block Level Filter Adaptation

In addition to the luma 4 × 4 block-level filter adaptation,
ALF supports CTB-level filter adaptation [15], [16]. A luma
CTB can use a filter set calculated for the current slice or
one of the filter sets calculated for the already coded slices.
It can also use one of the 16 offline trained filter sets. Within
each luma CTB, which filter from the chosen filter set should
be applied to each 4 × 4 block, is determined by the class C
calculated in Eq. (12) for this block.

Chroma uses only CTB-level filter adaptation. Up to 8 filters
can be used for chroma components in a slice. Each CTB can
select one of these filters.

D. Syntax Design

Filter coefficients and clipping indices are carried in ALF
APSs. An ALF APS can include up to 8 chroma filters and one
luma filter set with up to 25 filters. An index iC is also included
for each of the 25 luma classes. Classes having the same
index iC share the same filter. By merging different classes,
the number of bits required to represent the filter coefficients is
reduced. The absolute value of a filter coefficient is represented
using a 0th order Exp-Golomb code followed by a sign bit for
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Fig. 5. ALF 4 × 4 luma sub-block classification at line buffer boundaries.
Dashed lines are horizontal CTU boundaries and solid bold lines are line
buffer boundaries. 4 × 4 luma blocks to be classified are shaded. Gradient
values of samples marked with × and × are calculated. Gradient values of
other samples are set to 0. (a): Current 4 × 4 block is above a line buffer
boundary. (b): Current 4 × 4 block is below a line buffer boundary.

a non-zero coefficient. When clipping is enabled, a clipping
index is also signalled for each filter coefficient using a two-
bit fixed-length code. The storage needed for ALF coefficients
and clipping indices within an APS is at most 3480 bits. Up to
8 ALF APSs can be used by the decoder at the same time.

Filter control syntax elements include two types of infor-
mation. First, ALF on/off flags are signalled at sequence,
picture, slice and CTB levels. Chroma ALF can be enabled
at picture and slice level only if luma ALF is enabled at
the corresponding level. Second, filter usage information is
signalled at picture, slice and CTB level, if ALF is enabled
at that level. Referenced ALF APSs IDs are coded at a slice
level or at a picture level if all the slices within the picture use
the same APSs. Luma component can reference up to 7 ALF
APSs and chroma components can reference 1 ALF APS. For
a luma CTB, an index is signalled indicating which ALF APS
or offline trained luma filter set is used. For a chroma CTB,
the index indicates which filter in the referenced APS is used.

E. Line Buffer Reduction

To reduce the storage requirement for ALF, VVC employs
line buffer boundary processing. In VVC, line buffer bound-
aries are placed 4 luma samples and 2 chroma samples above
horizontal CTU boundaries. When applying ALF to a sample
on one side of a line buffer boundary, samples on the other
side of the line buffer boundary cannot be used.

Fig. 5 gives two examples in which a 4 × 4 luma block
is adjacent to a line buffer boundary. Without the line buffer
boundary processing when applying ALF to the 4 × 4 luma
block in rows E to H in Fig. 5(a), samples from rows B to
K, filtered using DBF and SAO, are required. DBF and SAO
filters cannot be applied to rows A to D until the lower CTU is
available. Hence, without the line buffer boundary processing
ALF could not be applied to samples in rows E to H until
the lower CTU is available. As a result, 7 luma rows from E
to K, in addition to rows A to D, would have to be stored in
the line buffer for luma ALF. Similarly, 4 additional chroma
rows would have to be stored in the line buffer for chroma
ALF [17].

Fig. 6. Symmetrical sample padding of luma ALF filtering when the filter
shape of a to-be-filtered sample crosses a line buffer boundary. Bold lines are
line buffer boundaries. Shaded samples represent padded samples.

Fig. 5 also illustrates the calculation of sample gradient
values, when classifying a 4 × 4 luma block adjacent to the
line buffer boundary. To calculate the sample gradient values
adjacent to the line buffer boundary, which are marked as ×,
repetitive padding is applied to replace samples which cannot
be used. For example, in Fig. 5(a), samples in row D are
replaced with samples in row E. All sample gradient values
on the other side of the line buffer boundary are set as 0. Since
we set some of the sample gradient values to 0, reducing the
sum of the sample gradients, the activity derivation in Eq. (11)
is scaled as follows:
A =

(∑i+5

k=i−2

∑ j+5

l= j−2

(
Vk,l + Hk,l

) · 3

)
>> (BD − 1) .

(13)

The line buffer boundary filtering applies symmetrical sam-
ple padding illustrated in Fig. 6, where p12 marks the to-
be-filtered sample, p0 to p24 are the sample values after SAO
and p�

0 to p�
24 are the modified sample values. When the

filter shape of the to-be-filtered sample does not cross the
line buffer boundary, sample values after SAO are used in
the filtering process. Otherwise, the modified values are used
in the filtering process. Compared to the repetitive padding,
symmetrical sample padding has been demonstrated to create
less noticeable visual artifacts. However, when a sample to be
filtered is located in a row closest to the line buffer boundary,
as shown in Fig. 6(a), the 2D filter is equivalent to a horizontal
filter, which still can introduce noticeable visual artifacts.
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These artifacts are minimized by reducing the filter strength
by a factor of 8 [18], leading to the following formula, where
the shift by 7 in Eq. (4) is replaced by the shift by 10:

R̃ (x, y) = R (x, y) +
[(

N−2∑
i=0

ci fi + 512

)
>> 10

]
(14)

F. ALF Encoder Design in VTM

The ALF encoder implementation in VTM-9.0 [67] is
described here. The encoder calculates values of ALF syntax
elements by minimizing a rate-distortion cost [19], which is a
weighted sum of the distortion, measured as the square error
between the original samples and the samples after applying
the ALF filter, and the number of bits required to transmit ALF
syntax elements. Filter coefficients are calculated by solving
Wiener-Hopf equations [4]. A square error estimation method
proposed in [4] is adopted allowing to calculate the filtering
distortion without performing actual filtering operations. The
statistics required to calculate filter coefficients and estimate
distortion are collected for all possible combinations of clip-
ping indices. The statistics are collected separately for each
CTB, and in case of luma component, for each class of each
CTB.

1) Luma Component: For each picture, a new filter set for
luma component based on this picture’s statistics, denoted as
FY,D , is obtained as follows:

1) The encoder derives the filter set FY,D , by merging
statistics of the CTBs for which ALF is enabled. In the
first iteration, it is assumed that ALF is enabled for all
CTBs.

2) Whether to apply ALF filter is determined for each CTB
based on the rate-distortion cost calculated using the
derived filters and the statistics of the CTB.

Steps 1) and 2) are repeated 4 times.
When designing a luma filter set in Step 1), the encoder

first calculates a filter for each of the 25 luma classes. Then
a merging algorithm is applied to these 25 filters. In each
iteration, by merging two filters, the algorithm reduces the
number of filters by 1. To determine which two filters should
be merged, for every pair of the remaining filters, the encoder
redesigns a filter by merging two filters and the corresponding
statistics, respectively. Using the redesigned filter, the dis-
tortion is then estimated. The encoder merges the pair with
the smallest distortion. 25 filter sets are obtained, the first
set having 25 filters, the second one 24 filters, and so on
until the 25th one contains a single filter. The set which
minimizes rate-distortion cost, including bits required to code
filter coefficients, is selected.

When designing a filter, the clipping indices and the N − 1
filter coefficients are calculated iteratively until there is no
decrease of the square error. In each iteration, the values of the
clipping indices are updated one by one, starting with index d0
and continuing till index dN−2 is reached. When updating the
index, up to 3 options are tested: keeping its value unchanged,
increasing by 1 or decreasing by 1. The filter coefficients and
the approximate distortion are calculated for these 3 values and
the value which minimizes square error is selected. At the start

Fig. 7. CC-ALF architecture.

of the first iteration the values of clipping indices are initialized
to 2, or when merging two filters, the value of di is set to the
average of the corresponding clipping indices for these filters.

Luma component can also use the offline trained filter
sets and the luma filter sets carried in available ALF APSs.
By accessing APSs, from the most recently signalled to the
last one, the encoder obtains up to 7 luma filter sets, which
are denoted as Fi

Y,APS , where i = 0, . . . , NAPS − 1. The
final values of the luma ALF syntax elements are obtained by
selecting the best combination of filter sets Fi j , where i = 0,
1 and j = 0, . . . , NAPS :

• 16 offline trained filter sets,
• FY,D , if i is 1,
• and F0

Y,APS , . . . , F j−1
Y,APS , if j > 0.

2) Chroma Components: Based on the current picture statis-
tics, a chroma filter set FC,D is calculated. 8 chroma filter sets
are derived, denoted as Fi

C,D where i = 1, 2, . . . , 7, 8. Filter
set Fi

C,D contains i filters. The filters set Fi
C,D is obtained as

follows:

1) The current picture is uniformly partitioned into i
regions. For each region, a chroma filter is calculated
by merging the statistics of all CTBs in this region.

2) For each chroma CTB in the picture, ALF on/off flag
and the filter index from set Fi

C,D is determined as to
minimize the estimated rate-distortion cost.

3) Each filter in Fi
C,D is re-designed, by merging statistics

of chroma CTBs for which the current to-be-redesigned
filter was selected in step 2).

4) Steps 2) and 3) are repeated i + 1 times.

The filter set Fi
C,D that minimizes rate-distortion cost is

selected as chroma filter set FC,D . Finally, the encoder selects
FC,D or one of the filter sets from the available APSs to be
used for the chroma components.

III. CROSS-COMPONENT ADAPTIVE LOOP FILTER

CC-ALF uses the luma sample values to refine the chroma
sample values within the ALF process. As shown in Fig. 7,
a linear filtering operation takes the luma sample values as
input and generates the correction values for the chroma sam-
ple values. The correction is generated independently for each
chroma component i , i ∈ {Cb, Cr} and can be represented by:
�Ri (x, y) =

∑
(x0,y0)∈Si

RY
(
xC + x0, yC + y0

)
ci (x0, y0),

(15)
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Fig. 8. Relative location of filtered chroma sample and its support in the
luma plane for 4:2:0 chroma format with chroma location type 0.

where (x, y) is the sample location of the chroma component
i , (xC , yC) is the luma sample location derived from (x, y),
(x0, y0) are the filter support offset around (xC , yC), Si is the
filter support region in luma for the chroma component i , and
ci (x0, y0) represent the filter coefficients of the component
i . The luma location (xC , yC) is determined based on the
spatial scaling factor between the luma and chroma planes.
The sample values in the luma support region are also inputs
to the ALF luma stage and correspond to the output of the
SAO stage. Applying a cross-component filtering operation in
the ALF process was first proposed in [20] and subsequently
refined in [24]–[32]. While this work is primarily focused
on the VVC ALF process, in the past other work has also
considered the correlation between the luma and the chroma
channels, for example [22], [23], [34]. Some of the design
decisions for CC-ALF and their rationale were previously
described in [21]. The CC-ALF design has been further refined
with the aim of reducing complexity, and the final VVC design
is described in subsequent sections.

A. Filter Shape and Precision

As shown in Fig. 8, the CC-ALF filter has a diamond shape.
Compared to a rectangular shape, the diamond shape reduces
the number of coefficients and, consequently, the number of
multiply-accumulate (MAC) operations for the filter. As seen
in Fig. 8, for a 4:2:0 video sequence, with chroma location
type 0, i.e., when the chroma samples are horizontally co-sited
with the even numbered columns of the luma samples and
vertically interstitial between the rows of the luma samples,
the center of the diamond is aligned with a chroma sample
location. To further reduce MAC operations, the size of the
diamond was reduced from the original design of 5×6 to 3×4
[24]–[26]. Overall, when considering all color components,
for 4:2:0 chroma format, the number of MACs increases from
15 per luma sample for ALF-only to 19 for ALF and CC-ALF,
which represents an increase of about 25%.

CC-ALF coefficients have a greater degree of flexibility
compared to regular ALF coefficients, since no symmetry
constraints are enforced. This flexibility is desirable because
the relative position of the luma and the chroma samples can
vary based on the chroma location type and the chroma format.
However, two limitations are enforced:

1) To preserve DC neutrality, the sum of CC-ALF coef-
ficient values is required to be zero [28]. As a result,
only seven of the eight CC-ALF coefficients need to be
signalled in the bitstream, and the coefficient at location
(xC , yC) is derived at the decoder.

2) The absolute value of CC-ALF coefficients is restricted
to be either zero or an integer power of two, specifically

0, 1, 2, 4, 8, 16, 32, 64}. This enables implementations to
use variable bit-shift operations in place of multiplica-
tions for CC-ALF [27], if desired.

Since the absolute value of a coefficient can be indicated
using three bits, in the worst-case, the storage needed for
CC-ALF filter coefficients within an APS is 224 bits.

B. Latency and Buffering

As has been described in [21], CC-ALF can be executed
concurrently with ALF filters using the data flow shown in
Fig. 7. The correction values output by CC-ALF are also
clipped to

[−2Bit Depth−1, 2Bitdepth−1 − 1
]

to reduce storage
requirements. For example, when CC-ALF is first applied
concurrently with luma ALF, and chroma ALF is applied later,
the memory access pattern for CC-ALF input is the same as
that for luma ALF.

As described in Section II.E, the luma and the chroma
line buffer boundaries are four and two samples, respectively,
above the CTU boundary. For the 4:2:0 chroma format, this
results in line buffer boundaries that are aligned for chroma
and luma. However, for 4:2:2 and 4:4:4 chroma formats,
the chroma and the luma line buffer boundaries are not aligned
with each other. As a result of this misalignment, for 4:2:2 and
4:4:4 chroma formats, CC-ALF is not applied to the rows three
and four samples above the CTU boundary [31].

Tools that use luma samples to predict chroma samples, such
as Cross Component Linear Model (CCLM) intra prediction,
may introduce latency as luma samples need to be fully
processed before the reconstruction of chroma samples can
begin. However, due to its design, no such latency issue exists
for the CC-ALF tool.

C. Syntax Design

To mitigate the impact of the filter size reduction on
coding efficiency, the maximum number of filters per chroma
component of a picture was increased from one in [20]
to four [26] in the final design of VVC. A different set
of CC-ALF coefficients can be selected for each CTU of
a chroma component. As is the case for the regular ALF
coefficients, CC-ALF coefficients are signalled within an ALF
APS. Each ALF APS contains up to four CC-ALF filters
for each chroma component. While CC-ALF can be enabled
at a sequence level, it can only be enabled if ALF is also
enabled for the sequence. Similarly, CC-ALF can be enabled
at picture and slice level only if luma ALF is enabled at the
corresponding level [29].

IV. DEBLOCKING FILTER

In a block-based video codec such as VVC, discontinuities
can appear at the transform and prediction block boundaries.
These discontinuities can lead to visual artifacts that are
referred to as blocking artifacts. The main reason for blocking
artifacts is the difference in mean sample values between
adjacent blocks. A deblocking filter aims to achieve a smooth
transition across the block boundaries while avoiding removal
of natural edges. What is regarded as natural edges depends
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Fig. 9. Four samples long vertical boundary segment formed by block P
and block Q. Deblocking decisions are based on line 0 and line 3.

on the QP (quantization parameter) used for compressing
transform coefficients. Lower QP corresponds to presence of
natural edges of smaller magnitude, and vice-versa.

The VVC DBF is based on the HEVC design [35]. In
HEVC, the first step is to determine the boundary strength
(bS) on an 8 × 8 sample grid. The boundary strength can take
one of the three possible values: 0, 1, and 2. For the luma
component, only block boundaries with bS values equal to
one or two are filtered. For chroma, only boundaries with bS
equal to 2 are filtered. bS is determined for a four samples
long boundary segment between block P and Q, as shown
in Fig. 9, according to the following rules:

- If P or Q is intra coded, bS is set to 2.
- Otherwise, if there is a significant difference in motion

between P and Q or if P or Q have non-zero transform
coefficients, bS is set to 1.

- Otherwise, bS is set to 0.
The second step is making a filtering decision based on

the spatial activity analysis of lines 0 and 3 of the bound-
ary segment. When the spatial activity is below thresholds
derived from QP-dependent parameters tc and β, the DBF is
applied for all four lines of the boundary segment. Otherwise,
no deblocking process is applied. Both tc and β increases
with QP. This avoids applying the DBF in the presence of
natural edges. The amount of smoothing of the DBF is further
controlled by tc. Clipping is used to make sure that a filtered
value does not deviate more than tc from the sample value
before filtering. The QP used for determining tc is increased
by 2 if bS is equal to 2. This enables larger modifications
for intra coded blocks which typically have blocking artifacts
with greater strength. The filtering decisions and operations are
applied first to vertical block boundaries and then to horizontal
block boundaries.

VVC allows larger block sizes than HEVC does, for exam-
ple, blocks of 128 × 128 samples. When the HEVC DBF
is applied as is, visible artifacts can still exist, especially in
relatively smooth areas. The DBF in VVC extends the HEVC
DBF design to address these artifacts. This section gives an
overview of the VVC deblocking design. For further details
the reader is referred to the VVC specification [1] and to the
corresponding JVET input contributions.

A. Luma Deblocking

Due to the flexible block sizes and new coding tools in
VVC, the luma deblocking is applied on a 4 × 4 sample
grid [43] for boundaries between CUs and TUs [38], [39] and
on an 8×8 grid for boundaries between PUs [37] inside CUs,
as shown in Fig. 10. In this section, “PUs” refer to prediction

sub-blocks within a CU that use affine or sub-block based
temporal motion vector prediction (SbTMVP) coding mode.
In the following sub-sections filtering decisions and filtering
operations for luma are described.

a) Filtering decisions: Before deriving bS and perform-
ing filtering decisions based on spatial activity, it is required
to decide whether to use long-tap filters and determine appro-
priate filter lengths. This step is carried out to ensure that no
spatial dependency exists between deblocking of the adjacent
vertical or horizontal block boundaries. The deblocking length
is defined as the number of samples to be filtered for each
line for adjacent blocks P and Q (see Fig. 9). The deblocking
length of P and Q is denoted as SP and SQ respectively. The
number of samples used for filtering decisions and filtering
operations are (SP + 1) and (SQ + 1). The value of SP and
SQ depends on the size of the block side orthogonal to the
block boundary for block P and Q, respectively. SP /SQ of
the CU/TU boundary is set initially as follows:

- If the CU/TU block side size is greater than or equal to
32, SP /SQ is set to 7.

- Otherwise, if the CU/TU block side size is less than or
equal to 4, SP and SQ are set to 1.

- Otherwise, remaining uninitialized SP /SQ is set to 3.

If a CU uses PUs, SP /SQ of the CU/TU boundary is set as
follows:

- If CU/TU boundary is 8 samples distant from a PU
boundary, corresponding SP or SQ is restricted to be less
than or equal to 5.

SP /SQ of the PU boundary is calculated as:

- If the PU boundary is 8 samples distant from a CU/TU
boundary, SP and SQ are restricted to be less than or
equal to 2.

- Otherwise, if the PU boundary is 4 samples distant from
a CU/TU boundary, SP and SQ are set to 1.

- Otherwise, SP and SQ are set to 3.

SP on the upper side of a horizontal CTU boundary,
is restricted to be less than or equal to 3. The deblocking
lengths, SP + SQ , can thus be 7 + 7, 7 + 5, 5 + 7, 5 + 5, 7 + 3,
3 + 7, 5 + 3, 3 + 5, 3 + 3 or 1 + 1 for CU/TU boundaries and
3 + 3, 2 + 2 or 1 + 1 for PU boundaries inside a CU. These
deblocking lengths can be reduced further in the subsequent
steps of filtering decisions.

After determining the deblocking filter lengths, bS is
derived. Compared to HEVC, bS derivation is modified to
accommodate new VVC coding tools. For example, if both
blocks adjacent to the boundary use block-level differential
pulse code modulation (BDPCM), bS is set to 0, to avoid
smoothing such samples. If one of the blocks uses CIIP, bS
is set to 2, because that mode is based on intra prediction
and stronger filtering should be applied. If both blocks have
different prediction modes (inter, palette, intra-picture block
copy), bS is set to 1. If both blocks use intra-picture block
copy (IBC), bS is set to 1 when their respective IBC vectors
are different. bS derivation based on differences in motion
in adjacent blocks is only derived for CU/PU boundaries to
avoid filtering TU boundaries based on motion. Half-sample
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Fig. 10. Illustration of vertical and horizontal block boundaries on the 4 × 4
grid, 32 × 32 samples CU with PUs on 8 × 8 grid and vertical boundary that
may require long-tap deblocking.

differences in motion can set bS to 1 because of the high
precision of motion in VVC.

In the next step, decisions based on spatial activity are made
for the cases of non-zero bS. If the deblocking length is larger
than 3 on at least one side, the spatial activity decision for
the long-tap deblocking filter applies [40], [41]. Otherwise,
the decision process for short-tap deblocking filter applies. The
short-tap decision process is identical to that of HEVC and is
based on the following 4 conditions [35]:

d P Q0 + d P Q3 < β,

2d P Qi < thr1,

(s Pi + s Qi ) < thr2,

|p0,i − q0,i | < 2.5tc, (16)

where i is equal to 0 or 3. d P Qi checks for natural edges and
is equal to the sum of |p0,i − 2 p1,i + p2,i | and |q0,i − 2q1,i +
q2,i |. s Pi and s Qi check the signal flatness and are equal to
|p0,i − p3,i | and

∣∣q0,i − q3,i
∣∣, respectively. thr1 and thr2 are

equal to β >> 2 and β >> 3, respectively. If the deblocking
length is equal to 1 or 2, only the first condition of Eq. (16) is
checked. If only the first condition holds, the short-tap normal
filter is selected to be used. If all conditions hold, the short-tap
strong filter is selected.

The spatial activity decision for the long-tap filter extends
Eq. (16) to include more samples. When SP is greater
than 3, d P Qi and s Pi also depend on |p3,i − 2 p4,i +
p5,i | and |p3,i − pSP ,i |, respectively. If SP is equal to 7,∣∣p4,i − p5,i − p6,i + p7,i

∣∣ is additionally used when calculat-
ing s Pi . Derivation of d P Qi and s Qi is similarly modified
when SQ is greater than 3.

To avoid over smoothing of the long-tap deblocking filter,
the thresholds thr1 and thr2 in Eq. (16) are reduced to be
equal to β >> 4 and 3β >> 5, respectively. If, according
to the spatial activity decision, long-tap deblocking is not
applied, then the decoder falls back to the short-tap deblocking
decision.

b) Filtering operations: If SP or SQ is larger than 3 the
long-tap deblocking filter is applied. If both SP and SQ are

equal to 3 the short-tap strong deblocking filter is applied.
Otherwise, the short-tap normal deblocking filter is applied.
The short-tap deblocking filters are identical to the HEVC
deblocking filters [35] with the exception of a modification
to the clipping of the short-tap strong deblocking filter. The
modification enables position-dependent clipping to control
the difference between filtered values and the sample values
before filtering. The clipping range is reduced when the
distance from the boundary increases. The clipping range
is ±3tc, ±2tc and ±tc instead of ±2tc, for all positions.
The long-tap deblocking filter also applies position-dependent
clipping. If the deblocking length is 7, the ranges are ±6tc,
±5tc, ±4tc, ±3tc, ±2tc, ±tc and ±tc. Otherwise, if the
deblocking length is 5, the ranges are ±6tc, ±5tc, ±4tc, ±3tc
and ±2tc. Otherwise, the ranges are ±6tc, ±4tc and ±2tc.

The long-tap deblocking filter is designed to preserve
inclined surfaces or linear signals across a block bound-
ary [40]. The long-tap deblocking filter, which is applied
before the position-dependent clipping, is described in Eq. (17)
and in Table II.

p�
k,i = ( fkre f Mi + (64 − fk)re f Pi + 32) >> 6,

q �
l,i = (glre f Mi + (64 − gl)re f Qi + 32) >> 6,

re f Pi = (
pSP ,i + pSP+1,i + 1

)
>> 1,

re f Qi = (
qSQ,i + qSQ+1,i + 1

)
>> 1, (17)

where, i = 0 to 3, k = 0 to SP−1, l = 0 to SQ − 1, p�
k,i

is a filtered sample in block P and q �
l,i is a filtered sample

in block Q. Other variants of the long-tap deblocking filter
are obtained by interchanging p with q , SP with SQ and f
with g.

B. Chroma Deblocking

The chroma deblocking is applied on an 8 × 8 sample grid
on boundaries of both CUs and TUs. In the following sub-
sections, filtering decisions and filtering operations for chroma
are described.

a) Filter decision: As for luma, an additional step to
determine the deblocking lengths is performed before the bS
determination. The deblocking lengths, SP and SQ are set
to 3, when the CU/TU block side sizes orthogonal to the
block boundary are both greater than or equal to 8 in chroma
samples. Otherwise, SP and SQ are set to 1. The deblocking
length for the upper side of a horizontal CTU boundary, SP ,
is restricted to be 1 [42]. The deblocking lengths, SP + SQ ,
can thus be 3 + 3, 1 + 3 or 1 + 1.

After deriving the deblocking lengths, the boundary strength
is determined. Compared to HEVC, the bS derivation is
modified such that bS is set to 1 when at least one side of the
chroma component block boundary has transform coefficients.
For the new VVC coding modes BDPCM and CIIP, bS is
derived in the same way as for luma. If both SP and SQ are
equal to 1 and bS is not equal to 2, SP and SQ are reduced
to 0. When SQ is equal to 3 and bS is non-zero, an additional
decision based on spatial activity is made.

The spatial activity decision for the long-tap chroma filter
is determined as in Eq. (16). It is used for lines 0 and 1 of
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TABLE II

FILTER KERNELS FOR LONG-TAP DEBLOCKING FILTERING

chroma samples instead of lines 0 and 3 of luma samples
when the chroma format is 4:2:0 and otherwise for lines 0 and
3 of chroma samples [47]. The long-tap chroma deblocking
filter is applied only when the long-tap chroma spatial activity
decision holds, otherwise SP and SQ are reduced to 1.

b) Filter operation: If both SP and SQ are equal to 3,
the long-tap chroma deblocking filter is applied (before clip-
ping the output by ±tc) for lines i = 0 to 3 as follows:
p�

0,i = (
p3,i + p2,i + p1,i + 2 p0,i + q0,i + q1,i + q2,i + 4

)
>> 3,

q �
0,i = (

p2,i + p1,i + p0,i + 2q0,i + q1,i + q2,i + q3,i + 4
)

>> 3,

p�
1,i = (

2 p3,i + p2,i + 2 p1,i + p0,i + q0,i + q1,i + 4
)

>> 3,

q �
1,i = (

p1,i + p0,i + q0,i + 2q1,i + q2,i + 2q3,i + 4
)

>> 3,

p�
2,i = (

3 p3,i + 2 p2,i + p1,i + p0,i + q0,i + 4
)

>> 3,

q �
2,i = (

p0,i + q0,i + q1,i + 2q2,i + 3q3,i + 4
)

>> 3, (18)

Otherwise, if SP is equal to 1 and SQ is equal to 3, the long-tap
chroma deblocking filter is applied with reduced support in
block P as follows:

p�
0,i = (

3 p1,i + 2 p0,i + q0,i + q1,i + q2,i + 4
)

>> 3

q �
0,i = (

2 p1,i + p0,i + 2q0,i + q1,i + q2,i + q3,i + 4
)

>> 3

q �
1,i = (

p1,i + p0,i + q0,i + 2q1,i + q2,i + 2q3,i + 4
)

>> 3

q �
2,i = (

p0,i + q0,i + q1,i + 2q2,i + 3q3,i + 4
)

>> 3 (19)

Otherwise, if both SP and SQ are equal to 1, the short-tap
chroma deblocking filter, identical to the HEVC chroma
deblocking filter, is applied.

C. Adaptive Control of Deblocking

Because the range of QPs is increased in VVC compared
to HEVC, the QP-dependent look-up tables that determine tc
and β have been extended correspondingly [44], [46]. The tc
table also uses a higher precision [45] since it is defined for
10-bit video instead of for 8-bit video. For 8-bit video the high
precision tc is right-shifted by 2 which produces the same tc
as in HEVC for the corresponding QP.

D. Sequence, Picture, Slice and Luma Level Adaptivity

Because different sequences can have different characteris-
tics, the parameters tc and β can be adjusted for each slice
and/or picture. Compared to HEVC, more flexible deblocking
control parameters are offered, by allowing signalling the
parameters for each color component [48].

The deblocking can also be controlled by a new feature,
luma-adaptive deblocking [36], where the amount of deblock-
ing is controlled by the average local luma level, lumaLevel,
defined for the boundary segment as follows:

lumaLevel = (
p0,0 + p0,3 + q0,0 + q0,3

)
>> 2 (20)

The luma-adaptive deblocking is locally adapted by modi-
fying the QP, using a luma-level dependent QP offset table
signalled at sequence level. This new feature can be useful
to control the amount of deblocking differently for content
with highly non-linear transfer functions such as Perceptually
Quantized (PQ) and Hybrid Log Gamma (HLG) [8]. During
the development of VVC this tool was shown to also provide
subjective benefit for standard dynamic range (SDR) [49].

E. Computational Complexity and Parallelism

Although deblocking can be applied on a 4 ×4 sample grid
for luma, the worst-case complexity in terms of number of
multiply-accumulate (MAC) operations per sample for luma
deblocking has not been changed compared to HEVC. The
worst-case is still deblocking of 8 × 8 samples blocks. The
reasons for not increasing the worst-case complexity for luma
are twofold. First, linear interpolation is employed in the long-
tap deblocking filter design. The long-tap deblocking filter
and the associated long-tap spatial activity decision are only
applied for large block sizes. Second, when a segment of a
block boundary is filtered and at least one side of the boundary
has a block side size orthogonal to the boundary equal to 4,
both SP and SQ are restricted to 1. This limitation only uses
the first spatial activity condition in Eq. (16). For chroma,
the worst-case deblocking complexity is increased. First, SP

and SQ are both increased from 1 to 3. Second, an additional
long-tap chroma spatial activity decision for each chroma
component is needed.

The line buffer requirements for CTU-based deblocking in
VVC are the same as in HEVC. This is achieved by limiting
the number of lines accessed by the deblocking above the CTU
when deblocking a horizontal CTU boundary. The limitation
is 4 and 2 lines for luma and chroma, respectively.

In HEVC deblocking, CTU-based processing can be per-
formed independently on 8 × 8 samples block units [35].
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In VVC, the chroma and luma deblocking can be performed
independently on block units of 8 × 8 and 16 × 16 samples,
respectively.

V. LUMA MAPPING WITH CHROMA SCALING

Unlike ALF and DBF, which have been extensively studied
in standards prior to VVC, LMCS is a new coding tool only
present in VVC. LMCS consists of a luma mapping (LM) part
and a chroma scaling (CS) part. LM remaps the luma code
values and CS allows flexible adjustment between luma and
chroma signals. LM aims at improving the coding efficiency
by reallocating the luma code values of the input video signal
within the complete codeword range. For example, in a video
signal that conforms to the ITU-R BT.2020-2 [7] or ITU-R
BT.2100-2 [8] specification, only luma code values between
64 to 940 are allowed for a 10-bit narrow-range video. More-
over, a video clip may use only a narrow range of luma code
values. For example, a 1,000 cd/m2 high dynamic range (HDR)
ITU-R BT.2100 PQ video occupies approximately 75% of the
total allowed code values. Such inefficient codeword utilization
allows for coding performance improvements via remapping.
CS aims at re-balancing the impact of luma remapping on the
relative luma/chroma coding bit costs. The flexible adjustment
between luma and chroma signal can be achieved by enabling
or disabling chroma scaling at the sequence or picture level or
further adjusting chroma scaling by applying a chroma scaling
offset.

A. Development of LMCS

The design of LMCS (originally referred to as “in-loop
reshaper”) originated from an earlier proposal of an out-
of-loop reshaper. The out-of-loop reshaper applied for-
ward and backward reshaping (or mapping) as out-of-loop
pre-processing and post-processing to HEVC Main 10 to
improve the subjective coding performance of high dynamic
range/wide color gamut (HDR/WCG) PQ videos [50]. The
out-of-loop reshaper, in various forms, was adopted to the
Exploratory Test Model (ETM) [51] developed during the
MPEG exploration phase of HDR video coding.

The first version of the in-loop reshaper was proposed as a
response to the call for evidence (CfE) for video compression
with capability beyond HEVC [52]–[54], and it was applied
only to HDR PQ content. The proposed in-loop reshaper
included an up-to-32 pieces linear mapping for the 10-bit luma
component and luma-based chroma QP offsets to compensate
for the change of the luma signal. A refined in-loop reshaper
was proposed in response to the call for proposals (CfP) for
video compression beyond HEVC and then included in a JVET
Core Experiment (CE) [55]. The subsequent development
focused on improvements to support both SDR and HDR
(PQ and HLG) content and on implementation simplifications.
In the initial design, chroma inverse quantization had to
wait for the completion of luma decoding. To alleviate this
decoder pipeline dependency issue, an alternate design using
chroma residue scaling was proposed [56]. In [57], SDR and
HDR were both supported, and the architecture was further
simplified by performing intra prediction in the reshaped

sample domain and inter prediction in the original sample
domain to remove the latency issue in the intra prediction loop.
Furthermore, the luma mapping look-up-table was reduced
to 16 pieces; the reshaper syntax elements were inserted in
the slice header (SH); and chroma scaling was disabled for
separate luma/chroma tree to avoid pipeline latency concerns.
The resulting in-loop reshaper design was eventually adopted
in VVC and renamed as LMCS.

Subsequent contributions further fine-tuned the design.
These contributions include: 1. signalling LMCS model para-
meters in the APS instead of the SH [58] to manage the
temporal dependencies; 2. implicitly deriving chroma residue
scaling factors from previously reconstructed neighboring
luma samples to solve luma-chroma dependent issue [59]; and
3. optionally signalling CS offsets to fine tune the balance
between luma and chroma coding performance [60]. The final
LMCS design in VVC [62] combines all these contributions.

B. LMCS Coding Tool in VVC

The decoding architecture with LMCS is illustrated in
Fig. 11. The upper part of the figure illustrates the CS process,
while the lower part of the figure illustrates the LM process.
LMCS maps the luma code values of an input video signal
from the original (unmapped) sample domain to the mapped
sample domain. Thus, the appropriate transformation of the
sample values between the two domains may be required.
As shown in Fig. 11, the processes in the mapped sam-
ple domain (gray-shaded blocks) include inverse quantization
(Q−1), inverse transform (T−1), luma intra prediction (Intra
Prediction) and summing the luma prediction with the luma
residue values (Reconstruction). The processes in the origi-
nal sample domain include in-loop filters (deblocking, SAO,
ALF), inter prediction, chroma intra prediction, summing
chroma prediction with the chroma residue values and storage
of pictures in a DPB. Forward luma mapping which maps
the luma code values from the original sample domain to the
mapped sample domain, inverse luma mapping which maps
the luma code values from the mapped sample domain back
to the original sample domain, and Chroma Scaling, which
determines a chroma scaling factor and scales the chroma
residue values according to the scaling factor, are the new
processes (gray-dotted blocks) introduced by LMCS.

In the decoder, the following steps are performed for LM:
a) inverse quantization and inverse transform are applied to
the decoded luma transform coefficients to produce the luma
residues in the mapped sample domain, Y �

res ; b) reconstructed
luma sample values in the mapped sample domain, Y �

r , are
obtained by summing Y �

res with the corresponding predicted
luma values in the mapped sample domain, Y �

pred (for intra
prediction, Y �

pred is directly obtained by performing intra pre-
diction in mapped sample domain, while for inter prediction,
the predicted luma values in original sample domain, Ypred ,
are first obtained by motion compensation using reference
pictures from the DPB, and then forward luma mapping is
applied to produce the luma values in the mapped sample
domain, Y �

pred ); and c) the reconstructed values, which is the
sum of Y �

pred and Y �
res , is then inverse-mapped and processed
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Fig. 11. LMCS decoder diagram.

by other in-loop filters before being stored in the DPB (in the
original sample domain).

For CS, the following steps are performed in decoding:
a) inverse quantization and inverse transform processes are
applied to the decoded chroma transform coefficients to pro-
duce chroma residue-scaled values, CresScale; b) the chroma
residue values, Cres , are obtained by multiplying CresScale

by the inverse scaling factor invScaleC; c) reconstructed
chroma sample values, Cr , are obtained by summing Cres

with the corresponding predicted chroma value Cpred . CS is
disabled for chroma blocks with area size less than or equal
to 4 samples.

C. LMCS Syntax Design and Model Derivation

The LMCS syntax elements are signalled in the APS
with aps_parameter_type set equal to 1 (LMCS_APS). Up to
4 LMCS APSs are supported in a coded video sequence
(CVS), but only one LMCS APS may be used for a picture.
LMCS data contains two parts: 1) syntax related to a piece-
wise linear model of up to 16 pieces; 2) a CS offset value
deltaCRS, if the video signal is not monochrome. LMCS can
be controlled at sequence level, picture level or slice level to
give the encoder the flexibility to fit the video content and
balance the complexity and the performance.

As depicted in Fig. 11, luma mapping uses a forward
mapping function, FwdMap, and a corresponding inverse
mapping function, InvMap. These two mapping functions
are represented by a piecewise linear model which can be
derived from the syntax elements signalled in LMCS APS.
The input codeword range of the piecewise linear forward
mapping function is uniformly sampled into 16 pieces of same
length OrgCW. For example, for a 10-bit input video, each

of the 16 pieces contains OrgCW = 64 input codewords.
For each piece of index i , the number of output (mapped)
codewords is defined as binCW [i ]. binCW [i ] is determined at
the encoding process. The difference between binCW [i ] and
OrgCW is signalled in LMCS APS. The slopes scaleY [i ]
and invScaleY [i ] of the functions FwdMap and InvMap are
respectively derived as:

scaleY [i ] = binCW [i ]

OrgCW
(21)

invScaleY [i ] = OrgCW

binCW [i ]
(22)

The CS applies a forward scaling to the chroma residue
with factor scaleC at the encoder and a corresponding inverse
scaling with factor invScaleC at the decoder. The value of
invScaleC is determined by the number of mapped codewords
binCW [i ] in the corresponding piece and a chroma scaling
offset value, deltaCRS, which is signalled in LMCS APS.
To reduce the pipeline latency, a single average luma value,
avgY �

r is computed for all the coding blocks within the
current virtual pipeline data unit (VPDU), which consists of
non-overlapping 64 × 64 luma samples. avgY �

r is computed
as the average of a fixed number of top and left reconstructed
luma samples neighboring the VPDU. The index i of the
piece to which avgY �

r belongs is then identified. The value
of invScaleC is derived as:

invScaleC [i ] = OrgCW

binCW [i ] + deltaC RS
(23)

D. LMCS Encoder Parameters Estimation

The VTM software encoder implements two algorithms
to estimate LMCS parameters for HDR PQ videos and
SDR/HDR HLG videos, respectively. For HDR PQ videos,
the algorithm is designed to optimize for weighted PSNR
(wPSNR), the luma mapping curve being derived directly
based on the weights used in wPSNR [53], [54]. For
SDR/HDR HLG, the algorithm is designed to optimize for
PSNR. The basic idea of the encoder algorithm for SDR
and HDR HLG videos is to assign more luma codewords
to spatially smooth areas than non-smooth areas [61], [62].
The mapping curve is estimated only at IRAP pictures and
signalled in the APS associated with the IRAP picture. The
flexible LMCS design allows encoder to limit or disable LM
and/or CS based on the QP values and the picture statistics.
To be specific, the VTM encoder allows 3 adaptations: slice
adaptation, rate or QP adaptation, and chroma adaptation.

- Slice adaptation: the slice activation of LMCS using the
estimated LMCS parameters at IRAP picture can be made
according to the following options: 1) for all intra and
subsequent inter slices; 2) only for subsequent slices
belonging to pictures with TemporalID = 0; 3) only
for subsequent inter slices. For example, if the average
spatial variance of the picture in the mapped domain
exceeds the average spatial variance of the picture in the
original (non-mapped) domain by a set of predetermined
thresholds, LMCS is either disabled for intra slices, or,
alternatively, enabled only for slices belonging to pictures
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with TemporalID = 0. Otherwise, LMCS is enabled for
all slices.

- Rate/QP adaptation: LMCS can be disabled for QP less
than or equal to 22 but enabled for higher QPs to preserve
fidelity in a picture at higher bitrate.

- Chroma adaptation: CS can be enabled or disabled based
on the relative average spatial variance of the luma and
chroma components of the picture. If the ratio of the
average chroma variance to the average luma variance
exceeds a predetermined threshold value, CS is disabled,
otherwise CS is enabled.

VI. EXPERIMENTAL RESULTS

This section presents individual experimental results of
ALF, CC-ALF, SAO, DBF and LMCS. Cumulative results
combining these tools are also provided.

A. Test Conditions

The experiments are conducted using the VTM-9.0 [67]
and, for all in-loop filter tools, using the common test
conditions (CTC) defined for SDR content [63]. In addi-
tion, CC-ALF and LMCS are also tested using the CTC
defined for HDR content [64]. CC-ALF results for non-4:2:0
“sensor-generated content” [68] are also reported.

The coding efficiency is measured by the BD-rate varia-
tions [65], [66] for each luma and chroma component and
for a combined YUV component using a weighted com-
bined per-sequence average PSNR, as suggested in [66]. The
weighted PSNR is derived according to Eq. (24), (25) and (26)
for 4:2:0, 4:2:2 and 4:4:4 chroma formats, respectively:
PSN R_Y U V seq

= 6 ∗ PSN R_Y seq + PSN R_Useq + PSN R_V seq

8
(24)

PSN R_Y U V seq

= 2 ∗ PSN R_Y seq + PSN R_Useq + PSN R_V seq

4
(25)

PSN R_Y U V seq

= PSN R_Y seq + PSN R_Useq + PSN R_V seq

3
(26)

The CTC define a set of sequences covering a wide range
of resolutions and use cases. They specify the four following
configurations:

- All Intra (AI): only intra-prediction is used;
- Random Access (RA): intra pictures are used at

certain time intervals, bi-prediction is enabled and
inter-prediction can use preceding and future pictures in
display order;

- Low Delay B (LDB): only the first picture uses all intra,
bi-prediction is enabled and inter-prediction can only use
preceding pictures in display order;

- Low Delay P (LDP): same as LDB but only
uni-directional inter-prediction is used.

TABLE III

EXPERIMENTAL RESULTS OF ALF

B. ALF Performance

The results are summarized in Table III. The anchor is
VTM-9.0 with ALF disabled for both luma and chroma and the
test is VTM-9.0. ALF achieves 2.47% YUV BD-rate reduction
in AI configuration and over 4.2% YUV BD-rate reduction
in all the other configurations. When ALF is applied to a
picture, the objective quality of this reconstructed picture is
improved. If this reconstructed picture is used as a reference
frame by another frame, the energy of prediction error is
reduced resulting in better coding performance. However,
an intra-frame coded picture cannot use filtered sample values
as predictors. Therefore, the BD-rate reduction in RA, LDB
and LDP configurations is higher than that in AI configura-
tion. EncT and DecT are encoding and decoding time ratios
between test and anchor. In VTM-9.0, ALF increases EncT
and DecT by around 4% and 10% respectively. This implies
that ALF has a bigger impact on DecT than on EncT. When
encoding a frame, VTM searches for the best combinations
of different coding modes, such as block partitioning, intra
modes, inter modes and transforms. Rate and distortion of
each combination are calculated by performing prediction,
transform, quantization, entropy coding, inverse quantization
and inverse transform. On the other hand, in the encoder ALF
filtering is only applied once when reconstructed picture is
generated. Fast distortion estimation introduced in Section II.F
is applied when deriving filter coefficients and deciding on
which filter set should be applied to a given CTB.

In addition, improvements brought by the different tech-
niques employed by ALF such as sample difference clipping
(Eqs. (4)-(6), luma sub-block filter level adaptation (Section
II.B) and CTB level adaptation (Section II.C) are analyzed.
Results obtained for RA configuration by disabling each
of these techniques separately are summarized in Table IV.
In each row of Table IV, the anchor is VTM-9.0 with the
technique indicated in the first column disabled and the test
is VTM-9.0. For each technique, EncT and DecT increase by
less than 3% with over 0.6% YUV BD-rate reduction.

In VTM-9.0, although ALF encoder is designed to improve
objective quality, subjective quality improvement can also be
observed. In example in Fig. 12, ALF reduces both ringing
artifacts (marked with the black circles) and blocking artifacts
(marked with the white circles).

C. CC-ALF Performance

In this experiment, CC-ALF is disabled in the anchor and
enabled in the test. For all QP values, the VTM is configured to
consider only Lagrangian cost minimization to derive CC-ALF
parameters (CCALFQpTh parameter set to 100). For CC-ALF,
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Fig. 12. RaceHorses, LDB, QP 37: (left) ALF off, (right) ALF on.

TABLE IV

EXPERIMENTAL RESULTS OF ALF SUB-TOOLS

the traditional BD-rate measurement tends to show a loss in
luma but a gain in chroma, since the additional bits spent
by CC-ALF are used to improve the chroma quality while
the luma quality remains nearly the same. The test results for
CC-ALF are shown in Table V and contain three parts. The
first part shows the results for the case where the encoder tar-
gets PSNR gains and the content is in YCbCr color space with
ITU-R BT.1886 Opto-Electrical Transfer Function (OETF)
[69]. In the second part, the encoder again targets PSNR
gains, while the content is in RGB color space with ITU-R
BT.1886 OETF. The third part is related to PQ 4:2:0 content
and shows results where the encoder targets a weighted PSNR
metric. For PQ 4:2:0, the input PSN R_Y seq , PSN R_Useq
and PSN R_V seq to Eq. (24), correspond to the per-sequence
wPSNRY, wPSNRU and wPSNRV [64] output by VTM. From
the first part, the combined YUV BD-rate gain for CC-ALF is
between 1.6% to 6.4% in every encoder configuration, for both
SDR and HLG content, amongst all chroma formats. For the
content using RGB color space, the CC-ALF gain is between
0.7% to 4.3%. Since CC-ALF operates on chroma channels,
the results in Table V demonstrate higher gains for 4:4:4 and
4:2:2 content. This is because the ratio of chroma samples to
luma samples is larger compared to that in 4:2:0 content. Also,
worth noting is the fact that although the chroma location types
of HLG and PQ content is different, the coding efficiency gains
for the two are similar, since CC-ALF does not impose any
symmetry restrictions on its filter coefficients. The increased
decoding time ratio for CC-ALF is reflective of the fact
that its implementation in VTM does not include any Single
Instruction, Multiple Data (SIMD) optimizations.

D. SAO Performance

Table VI reports the BD-rate improvement of enabling SAO
in VTM-9.0 with/without ALF and CC-ALF, for SDR content.
The anchor in each case corresponds to SAO disabled. When
ALF and CC-ALF are enabled, the average YUV BD-rate

TABLE V

EXPERIMENTAL RESULTS OF CC-ALF

gain of enabling SAO in four test conditions is 0.2%. When
ALF and CC-ALF are disabled, SAO not only achieves 1.3%
YUV BD-rate gains in average but also provides subjective
benefits, as shown in Fig. 13. The BD-rate improvement of
enabling SAO is partially overlapped with ALF. However,
considering that SAO is well deployed in HEVC and the
required computation complexity is very low, SAO is kept in
VVC to allow using SAO to further improve both objective
and subjective quality, especially when ALF is disabled.

E. DBF Performance

Table VII shows the objective BD-rate gain by enabling the
DBF for various CTC configurations. For AI configuration
the DBF increases the bitrate by 0.6%. For other configura-
tions, the DBF decreases the bitrate between 1% and 1.6%.
The long-tap deblocking filter, which is the main difference
between the HEVC and the VVC deblocking filter, provides
similar bitrate at the same objective quality as can be seen in
Table VIII. It can be observed that the objective performance
from enabling the DBF does not provide the same amount of
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TABLE VI

EXPERIMENTAL RESULTS OF SAO

Fig. 13. Screenshot illustrating visual quality improvement from SAO for
PartyScene @ 1.13Mbps with VTM-9.0 and ALF disabled in LDP case: (left)
SAO off, (right) SAO on.

TABLE VII

EXPERIMENTAL RESULTS OF DBF

improvement for VVC as for HEVC [35]. The main reason
is that VVC includes ALF, and in VTM ALF is optimized to
produce a picture as close to the source picture as possible.
ALF takes part of the objective gain from the DBF, because
in VTM, the DBF is optimized mainly to increase subjective
quality, not to reduce the MSE between the source picture
and the reconstructed picture. The tuning of the tC and β
parameters can also be used to achieve better objective and/or
subjective performance. To reduce the amount of smoothing
of a color component, the value of tC and β can be reduced
for that component. To increase the amount of smoothing,
the value of tC and β can be increased. Fig. 14 shows the
visual quality improvement using the DBF for AI, RA and
LDB cases, respectively. It can be observed that the VVC DBF
can effectively attenuate the blocky artifacts, as highlighted in
red and blue circles.

F. LMCS Performance

Table IX reports the BD-rate improvement of enabling
LMCS for SDR content in AI, RA, LDB and LDP cases.
The anchor in each case corresponds to LMCS disabled. The
interaction of LM and CS components can be appreciated

Fig. 14. (left) DBF off, (right) DBF on. Top: Basketball Drive, LDB, QP 37;
Middle: Tango, AI, QP 37; Bottom: Tango, RA, QP 37.

TABLE VIII

EXPERIMENTAL RESULTS OF LONG-TAP DBF SUB-TOOL

by comparing the data shown in Table X to the data shown
in Table IX (SDR RA). When CS is completely disabled,
LM results in a chroma coding performance loss, as indicated
by results of Table X (LM only, CS disabled). When CS
is enabled and scaling factors are derived implicitly, chroma
performance loss is reduced, as indicated by results of Table X
(LMCS with deltaCRS = 0). When CS is enabled and chroma
scaling factors are explicitly signalled in the LMCS APS,
LMCS results in both luma and chroma coding performance
gain, as indicated by the results of Table IX (SDR RA).
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TABLE IX

EXPERIMENTAL RESULTS OF LMCS: SDR 4:2:0

TABLE X

EXPERIMENTAL RESULTS OF LMCS SUB-TOOLS: SDR RA

TABLE XI

EXPERIMENTAL RESULTS OF LMCS: HDR-HLG RA

TABLE XII

EXPERIMENTAL RESULTS OF LMCS: HDR-PQ RA

TABLE XIII

EXPERIMENTAL RESULTS OF OVERALL IN-LOOP FILTER: SDR 4:2:0

The performance of LMCS for HDR sequences are shown
in Table XI for HDR HLG sequences and Table XII for
HDR PQ sequences in RA configuration. For HDR HLG
sequences, LMCS is evaluated with the same objective metrics
as those for SDR. For HDR PQ sequences, the objective
metrics for evaluation are DE100, PSNRL100, wPSNRY,
wPSNRU and wPSNRV [64]. The anchor is LMCS disabled
and luma-dependent quantization enabled.

To show subjective improvement, LMCS is configured to
use an adaptive curve. The design is based on [53], where
a parametric model estimates the subjective importance of
each piece of the piecewise linear model and pre-defines code-
word allocation for luma intervals based on piece importance.
Fig. 15 shows a snapshot of a PQ sequence (Market). With
LMCS on, the wall texture is better preserved under same
bitrate (1Mbps).

G. In-Loop Filter Overall Performance

Table XIII reports the overall performance of in-loop filters
in VVC for SDR 4:2:0 content. The reference is VTM-
9.0 with LMCS, ALF, CC-ALF, SAO, and DBF off. The test

Fig. 15. Screenshot illustrating visual quality improvement from LMCS for
Market @ 1Mbps with VTM-9.0: (top) LMCS off, (bottom) LMCS on.

is VTM-9.0 with all in-loop filters activated. The set of in-loop
filters brings a substantial gain for all encoder configurations
and for all three color components and for the PSNR-YUV
case. Higher gains are observed in inter configurations, with
11.64% PSNR-YUV gains in RA configuration, and highest
gains obtained in LDP (15.68% in PSNR-YUV), which tends
to show that the VVC in-loop filters can very efficiently
compensate for the less efficient temporal prediction.

VII. CONCLUSION

VVC defines five different in-loop filters that bring sig-
nificant compression efficiency improvements, both in terms
of objective and subjective quality. Three tools are mostly
designed for reducing coding artifacts: DBF, SAO and ALF.
SAO is identical to its HEVC design while DBF is an enhanced
version of the HEVC DBF, with the usage of long-tap filters
and a more flexible deblocking control including a luma
level-dependent control. ALF is a new tool bringing substantial
coding gains for both luma and chroma components. The
ALF gain comes from the precise block classification of ALF
allowing a fine tuning of the ALF offsets per block class.
The fourth tool, CC-ALF, takes advantage of the correlation
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between luma and chroma for improving the signal fidelity
and providing objective gains for chroma components. The
fifth tool, LMCS is in a different category: It improves the
coding efficiency by adaptively exploiting the video signal
range. In RA configuration using the JVET CTC, the set of
in-loop filtering tools brings an average PSNR-Y, U and V
cumulative BD-rate gain of 9.54%, 18.72%, 18.43% for SDR
content. When considering PSNR-YUV, the average BD-rate
gain is 11.64%. Gains of higher range are observed for the
LDP inter configuration with 15.68% PSNR-YUV average
BD-rate gain.

The design of the in-loop filter tools has been made with
particular care on their complexity and implementation for
software and hardware platforms. Parallelization support has
also been carefully considered, which is of high interest for
new video applications using very high picture resolutions
such as 4K and 8K and beyond, virtual reality with 360◦ video,
and cloud gaming applications.
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