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Abstract— In recent years, video surveillance has become
essential for security applications used to monitor many organi-
zations and locations, and it is therefore important to ensure the
reliability of these surveillance videos. Unfortunately, surveillance
videos can be forged with little effort by deleting an object from
a video scene while leaving no visible traces. A fundamental
challenge in video security is to determine whether or not an
object has been removed from a video. This task is particularly
challenging due to the lack of ground truth bases that can be used
to verify the originality and integrity of video contents. In this
paper, we propose a novel approach based on sequential and
patch analyses to detect object removal forgery and to localize
forged regions in videos. Sequential analysis is performed by
modeling video sequences as stochastic processes, where changes
in the parameters of these processes are used to detect a video
forgery. Patch analysis is performed by modeling video sequences
as a mixture model of normal and anomalous patches, with the
aim to separate these patches by identifying the distribution of
each patch. We localize forged regions by visualizing the move-
ment of removed objects using anomalous patches. We conduct
our experiments at both pixel and video levels to determine
the effectiveness and efficiency of our approach to detection of
video forgery. The experimental results show that our approach
achieves excellent detection performance with low-computational
complexity and leads to robust results for compressed and low-
resolution videos.

Index Terms— Sequential analysis, patch analysis, spatio-
temporal analysis, video forensics, object removal video forgery.

I. INTRODUCTION

FOR many years, surveillance videos have become essen-
tial for public security that monitors many organizations,

and thus, it is important to ensure the reliability of these
surveillance videos. If these videos are manipulated, it could
lead to many critical problems that are related to public
security or legal evidence [1]. These manipulated videos are
often eye-deceiving and appear in a way that is realistic and
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believable. Media are sometimes tricked to use fake videos as
if they are real. As a result, video contents should be carefully
analyzed to ensure their originality and integrity [2].

In general, video forgery can be divided into two cate-
gories: frame-based and object-based forgeries [3]. Frame-
based forgery is created by deleting frames from a video
scene, inserting frames into the video scene, or duplicating
frames in the video scene. This forgery is easy to perform by
using any of basic editing tools because a manipulator needs
only to divide a video into frames to create a video forgery.
Object-based forgery is created by adding new moving objects
to a video scene or removing existing moving objects from
the video scene. It is difficult to add moving objects without
leaving invisible traces since videos might expose different
motions and illuminations. Hence, object-based video forgery
often refers to removing objects from a video. An example
of object removal video forgery is illustrated in Fig.1, where
the man in the red box has been removed from the scene.
This forgery is more complicated to perform compared to
frame-based forgery because a forger needs to manipulate
specific regions in video frames while maintaining temporal
consistency between these frames.

Creating an automatic approach to detect forged videos is
a challenging problem due to the lack of truthful bases that
can be used to verify the originality and integrity of video
contents. A forged video may not only run through deleting an
object from a video scene, but also run through other complex
processes including compression, rotation, and resizing. These
processes make forgery detection more challenging. Further-
more, if a forger removes an object (e.g., person) from a video
scene, it becomes difficult to detect forged regions due to
the high correlation between these forged regions and original
regions. As a result, it is challenging to ensure the originality
and integrity of video contents.

In this paper, we propose a novel approach based on
sequential and patch analyses to detect object removal forgery
and localize forged regions in videos. We perform sequential
analysis by modeling video sequences as stochastic processes,
where changes in the parameters of these processes indicate
a video forgery. Patch analysis is performed by modeling
video sequences as a mixture model of normal and anomalous
patches, with the aim to separate these patches by identifying
the distribution of each patch. Finally, we localize forged
regions in videos by visualizing a movement of removed
objects using anomalous patches.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. An example of object removal video forgery: Images on the top row indicate frames from the original video; Images on the bottom row indicate
corresponding frames from the tampered video where the man in the red box has been removed from the scene.

This paper is an extension to our paper [4] with the
following contributions:

1) We model video sequences as multivariate processes to
improve the detection accuracy.

2) We model our patch analysis approach as a mixture
model of normal and anomalous patches to further
improve the detection accuracy.

3) We use the multivariate sequential and patch analyses
to exponentially reduce the computational complexity.
As a result, our approach is scalable.

The rest of the paper is organized as follows. Related
work is provided in Sec. II. Our data model is explained
in Sec. III. Our proposed approach is described in Sec. IV.
The spatiotemporal filter is presented in Sec. IV-A. Univariate
and multivariate sequential analyses are presented in Sec. IV-
B. Our patch analysis approach is explained in Sec. IV-C.
Object removal visualization is described in Sec. IV-D. The
experimental results are discussed in Sec. V. This paper is
concluded in Sec. VI.

II. RELATED WORKS

Although several works have been conducted to review
video forensic approaches [5]–[9], most of these works
focused on detecting frame-based forgery [10]. These works
can be divided into three categories: motion-based [11]–[15],
correlation-based [16]–[19], and compression-based [20]–[24].
First, motion-based approaches use inconsistencies of motion
vectors as an evidence of a frame deletion or insertion.
A drawback of these approaches is that the detection accuracy
decreases when compression increases. Second, correlation-
based approaches use high correlation between suspicious
frames as an indication of a frame duplication. These
approaches fail to detect the frame duplication when the frame
duplication occurs in static background frames or performs
in a different order. Third, compression-based approaches
declare video forgery by detecting double compression. These
approaches are not applicable when a complete group of
pictures (GOP) is removed, or recompression is occurred
without video tampering.

Only a few works have been conducted to detect object-
based forgery compared to frame-based forgery [25]. These
works tackle two types of object-based forgery: object inser-
tion video forgery and object removal video forgery. The

following works are proposed to detect object insertion video
forgery [26]–[32]. Some approaches use correlation between
blurring features [26], or edge features [27], to detect blue
screen compositing. The forgery is detected by examining
changes in correlation patterns between these features. These
approaches fail to detect video forgery if the background of a
video is green or blue. Other approaches use DCT coefficients
[28], or luminance and contrast [30], as local features to
measure the similarity between foreground and background.
The forgery is detected by identifying inconsistencies in these
features between foreground and background. A limitation
of these approaches is that the detection accuracy decreases
when the bit rate of videos decreases. Conotter et al. proposed
an approach that uses projectile motion to identify falsified
objects [31]. D’Avino et al. presented an approach that uses
deep learning to learn an intrinsic model of an original video,
where a video is classified as forged if it does not fit the
learned model [32].

Object removal video forgery is achieved by using inpaint-
ing algorithms [33]–[35]. The following works are proposed
to detect object removal video forgery [36]–[44]. Zhang et al.
developed an approach that uses ghost shadow artifact to iden-
tify inconsistencies between foreground mosaic and trajectory
of moving foreground [36]. Hsu et al. introduced an approach
that uses temporal correlation of noise residues to identify
irregular changes in the correlation of noise residues through-
out video frames [37]. A similar approach uses correlation of
Hessian matrices to detect object removal forgery [39]. Richao
et al. presented an approach that uses object contour features
with a support vector machine (SVM) algorithm to detect
removed moving objects with static background [41]. Another
approach uses steganalytic features, which are extracted from
motion residual matrices, with ensemble classifiers to classify
a frame into three categories: pristine, forged, and double
compressed [42]. Lichao et al presented an approach based on
compressive sensing to detect removed moving objects with
static background [43]. All of the above works can detect video
forgery, but they cannot localize forged regions in videos.
Lin et al. introduced an approach based on spatiotemporal
coherence analysis to detect and localize tampered regions
[44]. A limitation of this approach is that detection perfor-
mance drops significantly when tampered videos are saved
in compressed formats. Deep Convolutional Neural Networks
(CNNs) require large data sets for training to achieve excellent
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Fig. 2. A flowchart of the proposed approach to object removal video forgery detection and localization.

results [9]. However, there are a few object removal forgery
data sets that are publicly available [8], [9]. As a result, CNNs
are not ideal to tackle the object removal forgery problem.

III. DATA MODEL

We propose an approach based on sequential and patch
analyses. Our approach requires the following assumptions
about video sequences. First, video sequences are assumed to
be captured by a static camera. Our approach aims to detect
changes between video frames due to objects removal. When a
camera is moving, it will generate video frames with different
backgrounds. Thus, it would be hard to distinguish between
changes due to movement of a camera or objects removal.
Therefore, our approach mainly focuses on surveillance video
clips where the camera is static. Second, video frames must
be well-registered into a common reference frame prior to
performing video forgery detection. We assume well-registered
frames to eliminate changes due to non-registered frames.

In general, a pixel’s intensity is corrupted by three sources
of additive noise: photon counting noise, readout noise, and
quantization noise [45], [46]. Photon counting noise comes
from a discrete random number of photons striking the sensor
and is modeled as a Poisson process. Readout noise is pro-
duced by the amplifier and is modeled as a Gaussian process.
Quantization noise results from the selection of discrete pixel
values and is modeled as a uniform distribution. It is extremely
difficult to find the exact distribution of the additive noise
that is added to pixel intensities [47]. Many previous works
approximate this additive noise to be normally distributed [48].
Therefore, we assume pixels’ values are drawn from a normal
distribution, independent and identically distributed, and the
variance remains constant throughout video frames while the
mean is dependent on the scene.

The following notation and definitions will be used through-
out the paper. Scalars are written as lowercase letters, vectors
are written as underlined lowercase letters, and matrices are
written as uppercase letters. A block is defined as a group of
spatially adjacent pixels, and it is described by a feature vector.
A patch is defined as a set of temporally adjacent blocks, and
it is described by a set of feature vectors.

IV. OBJECT REMOVAL VIDEO FORGERY DETECTION AND

LOCALIZATION

We briefly describe our approach in the following steps,
as illustrated in Fig.2. First, we apply spatial decomposition

(i.e., Laplacian pyramid) to the video frames, followed by
temporal high pass filter to detect edges spatially and highlight
variations temporally. Then, we perform sequential analysis
by modeling video sequences as stochastic processes, where
changes in the parameters of these processes indicate a video
forgery. If the patch analysis is performed, we model video
sequences as a mixture model of normal and anomalous
patches. These patches are subsequently separated by identi-
fying if they have been generated by the normal or anomalous
distribution. Finally, we localize forged regions by visualizing
a movement of removed objects using anomalous patches.

A. Spatiotemporal Filter

We apply the spatiotemporal filter, which is presented
in Fig.4, for two reasons. First, we use the spatiotemporal
filter to expose traces (edges) that are left at a removed object
boundary due to structure inpainting, texture inpainting, or a
combination of the two. Second, we apply the spatiotemporal
filter to zero out pixels’ values at static regions, as shown
in Fig.3. As a result, this filtering process enables sequential
and patch analyses to accurately detect changes (i.e., anom-
alous) in forged videos.

Since the size of the removed objects is unknown, a video
is divided into frames, and Laplacian pyramid decomposition
[49] (spatial filtering) is applied to each frame to detect edges
in all possible scales. The Laplacian pyramid decomposition
subtracts each frame from its blurred version to form a video
scale, down-samples each frame by half, and repeats this
process until the minimum resolution of a frame is reached.
This process constructs multiscale videos that represent edges
at different scales, as shown in Fig.4. We perform temporal
filtering at each scale by using the pixels’ values throughout
time in a frequency band and apply a high-pass filter to remove
static edges.

B. Sequential Analysis

The spatiotemporal filter results in multiscale videos as
shown in Fig.4, hence applying sequential analysis in each
scale would result in very high computation time. Therefore,
we first reconstruct the Laplacian pyramid to transfer multi-
scale videos to one video scale (i.e., the input video scale)
[49]. The Laplacian pyramid reconstruction upsamples and
blurs each frame in the lowest scale of Laplacian pyramid
decomposition, adds the upsampled and blurred version to



920 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 3, MARCH 2021

Fig. 3. Intensity traces through video frames for (a) an authentic pixel
before using the spatiotemporal filter (b) a forged pixel before using the
spatiotemporal filter (c) an authentic pixel after using the spatiotemporal filter
(d) a forged pixel after using the spatiotemporal filter.

the next lowest scale to obtain the approximation of each
frame at the next scale, and repeats this process until the
input video scale is reached. Then, we apply the following
univariate or multivariate sequential analysis to the input video
scale.

1) Univariate Analysis: We model the object removal
forgery as an additive change in the mean value of probability
density function associated with a pixel sequence in a video.
We begin the analysis by introducing a null hypothesis H0
that states there is no change in a pixel’s mean value, and
an alternative hypothesis H1 that states there are changes in a
pixel’s mean value. The mean before the change μ0 is assumed
to be known, and the mean after the change μ1 is assumed to
be completely unknown but different than μ0. We formulate
the null and alternative hypotheses as follows:

H0 = {μ : μ = μ0, n < t}
H1 = {μ : μ �= μ0, n ≥ t} (1)

where n is the frame index, and t is the true change time.
Based on our assumption that pixels’ values are drawn from
a normal distribution, independent and identically distributed
as discussed in Sec. III, we form the null and alternative
likelihoods as follows:

�H0
k (xi ) = p(xk, . . . , xn|H0) = 1√

2πσ 2

n∏
i=k

e
−(xi−μ0)2

2σ2 (2)

�
H1
k (xi ) = sup

μ1

p(xk, . . . , xn |H1) = sup
μ1

1√
2πσ 2

n∏
i=k

e
−(xi−μ1)

2

2σ2

(3)

where xi represents values of a pixel throughout video frames;
μi and σ 2 are the mean and variance of the pixel, respectively.
Using (2) and (3), we form log-likelihood ratio as follows:

�n
k = ln

supμ1
p(xk, . . . , xn |H1)

p(xk, . . . , xn |H0)
(4)

Fig. 4. An overview of the proposed spatiotemporal filter.

= ln
supμ1

∏n
i=k e

−(xi−μ1)
2

2σ2

∏n
i=k e

−(xi−μ0)2

2σ2

(5)

The unknown mean is replaced by its maximum likelihood
estimate (MLE) as follows:

x̂ n
k =

1

n − k + 1

n∑
i=k

xi . (6)

Then, the log-likelihood ratio becomes

�n
k =

1

2σ 2

[ n∑
i=k

(xi − μ0)
2 −

n∑
i=k

(xi − x̂ n
k )2

]
(7)

= 1

2σ 2

n∑
i=k

[
(xi − μ0)

2 − (xi − x̂ n
k )2

]
(8)

=
n∑

i=k

[
(x̂ n

k − μ0)xi

σ 2 + μ2
0 − x̂ n2

k

2σ 2

]
. (9)

Then, the generalized log-likelihood gn
k and alarm detection

τ become

gn
k = max

1≤k≤n
�n

k (10)

τ = min{n ≥ 1 : gn
k ≥ hu}. (11)

In (11), τ is a frame index where a change occurs, n is the
discrete time index (frame index), and hu is a threshold.

Let us summarize the univariate analysis. First, μ0 and σ 2

are assumed to be known. In fact, they can be estimated using
a pixel’s values throughout all video frames. x̂ n

k is calculated
sequentially by using all previous values of a pixel as described
in (6). Finally, a change is declared if gn

k exceeds a certain
threshold hu and this change is located at frame index τ .

2) Multivariate Analysis: We model the object removal
forgery as an additive change in the mean parameter of
probability density function associated with feature vectors
that are extracted from dividing video frames into distinct
blocks. We assume feature vectors are drawn from a Gaussian
distribution, independent and identically distributed, with the
following probability density function

p(y
i
) = 1√

(2π)r |�|e
− 1

2

(
y

i
−μ

)T
�−1

(
y

i
−μ

)
(12)
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Algorithm 1 Object Removal Forgery Detection and Local-
ization Based on Patch Analysis
Require: V � Input video
1: b � Block size
2: p � Patch size

Ensure: M � Object removal visualization result
3: N f ← Number O f Frames
4: R← Empty Array � Size of R is the same as size of V
5: Apply spatiotemporal f ilter on V
6: Divide R and f iltered V into distinct blocks b × b
7: for each block (BV i ) in V do
8: {y

1
, . . . , y

N f
} ← Get All FeatureV ectorsT hrough V

9: Ini tiali zation : k = 0, N0 = {y1
, . . . , y

N f
}, A0 = {}

10: while k ≤ N f − p do
11: C = {yk+1, . . . , yk+p}
12: Compute likelihood ratio �k based on (31)
13: Compute log − likelihood ln(�k) based on (32)
14: if ln(�k) < h p then
15: Nk = Nk−1 − {yk+1, . . . , yk+p}
16: Ak = Ak−1 ∪ {yk+1, . . . , yk+p}
17: k = k + p � C is an anomalous

patch, hence k is
increased by p

18: else
19: Nk = Nk−1
20: Ak = Ak−1
21: k = k + 1 � C is a normal patch,

hence k is increased by
1

22: end if
23: end while
24: BRi ← Binary Array � Explained in Sec.IV-D
25: end for � BRi ≡ Corresponding block in R
26: M ← RemovalV isuali zation � Explained in Sec.IV-D

where μ and � are the mean vector and covariance matrix of
feature vectors, respectively; r is the dimension of the feature
vector.

We begin with a general case [50] where the mean vector
before the change μ0 is limited by an upper bound, and mean
vector after the change μ1 is limited by a lower bound. Then,
the null and alternative hypotheses become

H0 = {μ : ||μ− μ0||2� ≤ a2, n < t}
H1 = {μ : ||μ− μ0||2� ≥ b2, n ≥ t} (13)

where ||μ−μ0||2� =
(
μ− μ0

)T
�−1

(
μ− μ0

)
; t is the true

change time; n is the frame index; a < b. Then, the log-
likelihood ratio becomes

�n
k = ln

sup||μ−μ0||�≥b
∏n

i=k p(y
i
)

sup||μ−μ0||�≤a
∏n

i=k p(y
i
)

(14)

= ln
sup||μ−μ0||�≥b e

− 1
2

∑n
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(
y

i
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)T
�−1

(
y

i
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)

sup||μ−μ0||�≤a e
− 1

2
∑n

i=k

(
y

i
−μ

)T
�−1

(
y

i
−μ

) (15)

= sup
||μ−μ0||�≥b

{
− 1

2

n∑
i=k

(
y

i
− μ

)T
�−1

(
y

i
− μ

) }

− sup
||μ−μ0||�≤a

{
− 1

2

n∑
i=k

(
y

i
−μ

)T
�−1

(
y

i
− μ

) }
. (16)

The unknown parameter is replaced by its maximum like-
lihood estimate (MLE) as follows:

ŷn
k
= 1

n − k + 1

n∑
i=k

y
i
. (17)

Then, the log-likelihood ratio becomes

2

n − k + 1
�n

k =

⎧⎪⎨
⎪⎩
−(Zn

k − b)2, Zn
k < a

−(Zn
k − b)2 + (Zn

k − a)2, a ≤ Zn
k ≤ b

(Zn
k − a)2, Zn

k > b

(18)

where Zn
k is given by

Zn
k = [

(
ŷn

k
− μ0

)T
�−1

(
ŷn

k
− μ0

)
]1/2. (19)

We set a = b = 0 in (18) because we are interested
in the case where the mean vector before the change μ0 is
assumed to be known and the mean vector after the change
μ1 is assumed to be completely unknown but different than μ0.
Then, the generalized log-likelihood gn

k and alarm detection τ
become

gn
k = max

1≤k≤n

{n − k + 1

2
(Zn

k )2} (20)

τ = min{n ≥ 1 : gn
k ≥ hm}. (21)

Let us summarize the multivariate analysis. First, μ0 and
� are assumed to be known. In fact, they can be estimated
using feature vectors of a particular block throughout all video
frames. ŷn

k
and Zn

k are calculated sequentially by using all
previous feature vectors of a particular block as described in
(17) and (19), respectively. Finally, a change is declared if gn

k
exceeds a certain threshold hm and this change is located at
frame index τ .

The current formulation of univariate and multivariate
analyses enables us to detect only a single change in the
whole time (frame) series. However, we need to detect multiple
changes, hence we use binary segmentation [51]. Binary seg-
mentation starts by detecting a single change in the complete
time series. If there is a change, it splits the time series
around this change into two sub-series and repeats this process
until no changes are detected. By using binary segmentation,
the time series that represents video frames will be divided
into segments.

A segment is considered as a forged segment (removed
object segment) if two conditions are met: (1) the mean of
this segment exceeds a certain threshold to identify whether
this segment belongs to a background or a removed object, and
(2) the length of this segment is less than a certain threshold
based on our definition that removed objects are moving as
discussed in Sec.I.
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Fig. 5. Illustration of the proposed patch analysis approach. Top sequence shows video frames that are divided into non overlapping blocks with a selected gray
block to apply patch analysis; bottom sequence indicates patch size p = 5 with overlapping step s = 1. Patch analysis starts by calculating the log-likelihood
under the assumption that all blocks belong to normal set. Then, it calculates the log-likelihood under the assumption that P1 belongs to anomalous set. If the
difference between these two log-likelihoods is less than a threshold h p , P1 is moved from normal set to anomalous set. Otherwise, P1 remains in the normal
set. The analysis is repeated for P2, P3, . . . , PN−p .

C. Patch Analysis

We model the object removal forgery as a mixture model
of normal and anomalous patches. A patch is defined as a set
of temporally adjacent blocks, and it is described by a set of
feature vectors. We assume that all feature vectors in a patch
are either normal or anomalous. Some patches that are located
at the border between forged and original regions may contain
feature vectors that belong to both normal and anomalous
sets. However, these patches are few because forged regions
are generally small compared to the original regions in a
video. Hence, we neglect patches at the border and consider
only patches that contain either normal or anomalous feature
vectors. We also assume that normal features are drawn from a
Gaussian distribution, and anomalous features are drawn from
a uniform distribution because anomalies are often assumed
to be uniform [52], [53]. The probability density functions
for normal pN (y) and anomalous pA(y) feature vectors are
defined as

pN (y
i
) = 1√

(2π)r |�|e
− 1

2

(
y

i
−μ

)T
�−1

(
y

i
−μ

)
(22)

pA(y
i
) =

⎧⎨
⎩

1

(b − a)r
, y

i
∈ (a, b)r

0, Otherwi se
(23)

where μ and � are the mean vector and covariance matrix of
feature vectors, respectively; r is the dimension of the feature
vector; a and b are the minimum and maximum values of
arbitrary feature vectors, respectively. We let Nk and Ak be
the sets of normal and anomalous feature vectors, at frame
index k, respectively. Initially, all feature vectors of a particular
block are put in a normal set while an anomalous set is empty.

We begin with a general case where the null hypothesis
H0 states that there is at least one feature vector y

i
in a

patch belongs to a normal set and an alternative hypothesis
H1 states that all feature vectors y

i
in the patch belong

to an anomalous set. We formulate the null and alternative
hypotheses as follows:

H0 = {∃yi
∈ C, y

i
∼ pN (y

i
)}

H1 = {∀y
i
∈ C, y

i
∼ pA(y

i
)} (24)

where C = {yk+1, . . . , yk+p} is a patch that consists of p
feature vectors. By assuming that the patches are generated
in an independent manner, the likelihood of null (�H0

k (y)) and

alternative (�H1
k (y)) hypotheses of the entire feature vectors

for a particular block at an arbitrary frame k are as follows:

�
H0
k (y) =

∑
ci∈(P(C)−{C})

(1− λ)|Nk−1−ci | ∏
y

i
∈(Nk−1−ci )

pN (y
i
)

×
(
(λ)|Ak−1∪ci | ∏

y
i
∈(Ak−1∪ci )

pA(y
i
)
)

(25)

= (1− λ)|Nk−1 | ∏
y

i
∈Nk−1

pN (y
i
)(λ)|Ak−1 | (26)

∏
y

i
∈Ak−1

pA(y
i
)

∑
ci∈(P(C)−{C})

(
λ

1− λ
)|ci | ∏

y
j
∈ci

pA(y
j
)

pN (y
j
)

(27)

�H1
k (y) = (1− λ)|Nk−1−C | ∏

y
i
∈(Nk−1−C)

pN (y
i
) (28)

(
(λ)|Ak−1∪C | ∏

y
i
∈(Ak−1∪C)

pA(y
i
)
)

= (1− λ)|Nk−1 | ∏
y

i
∈Nk−1

pN (y
i
)(λ)|Ak−1 |

×
∏

y
i
∈Ak−1

pA(y
i
)
(
(

λ

1− λ
)|C |

∏
y

i
∈C

pA(y
i
)

pN (y
i
)

)
(29)

where P(C) is the power set of C , which is the set of all
subsets of C; |·| is the cardinality of a set; and λ is the expected
fraction of anomalies. Then, the likelihood ratio becomes
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�
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k (y)

�
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λ
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j
∈ci

pN (y
j
)

pA(y
j
)
. (30)

Based on our assumption that all feature vectors in a patch
are either normal or anomalous, the probability of the second
term in (30) to occur is zero. Hence, the likelihood and
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log-likelihood become
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λ
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(31)

ln(�k) = |C| ln(
1− λ
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pN (y
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∑
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i
∈C

pA(y
i
)

H0
≷
H1

h p

(32)

where h p is the decision threshold.
Let us summarize patch analysis as described in Algo-

rithm 1. Initially, all feature vectors of a particular block are
put in a normal set while an anomalous set is empty. A patch
is chosen in an overlapping manner with overlapping step
s = 1. Then, we calculate the likelihood and log-likelihood
using equations described in (31) and (32), respectively. If the
log-likelihood is less than a threshold h p , this patch is declared
as an anomaly and it is moved from the normal set to the
anomalous set. Otherwise, this patch remains in the normal
set. The main steps of patch analysis approach are illustrated
in Fig.5.

D. Object Removal Visualization

We construct a binary video where a pixel equals one in
frames that belong to anomalous sets (changed segments) and
equals zero in frames that belong to normal sets (unchanged
segments). A video forgery is detected if a number of consec-
utive frames hF have an area that is larger than a threshold
h A and contains only ones. In the experiment, we set hF to
25 frames and h A to 500 pixels based on the results of ROC
curve shown in Fig.6b.

We localize the movement of removed objects by construct-
ing another binary video where a pixel equals one in a frame
where a change occurs until the last video frame and equals
zero in the other frames; essentially, once a pixel’s value
becomes one, it maintains that value until the last video frame.
This process will create paths of removed objects; these paths
can be visualized by plotting the last spatiotemporal XT slice
(width vs. time), which is a bird’s-eye view of a video as
shown in Fig.2.

V. EXPERIMENTAL ANALYSIS

In this section, we describe the data set and detection
performance measurements. We also analyze the results of
our approach and compare our approach with state-of-the-art
approaches. We carry out our experiments using a MacBook
Pro with 2.9 GHz Intel dual core i7 CPU and 8 GB RAM.

A. Data Set

To the best of our knowledge, the only available video
forgery data sets are SULFA [54] and SYSU-OBJFORG [42].
SULFA is a frame-based forgery, which is beyond the scope
of this work. Therefore, we use SYSU-OBJFORG, where all
videos are extracted from a static surveillance camera with a
resolution of 1280× 720 and 25 frames per second. This data
set consists of 100 original videos and 100 object-based forged
videos; each video is approximately 11 seconds in duration.

According to the authors of [42], SYSU-OBJFORG is the
largest object-based forged video data set in the literature.
However, most of the forged videos are not realistic because
the counterfeit regions can be identified using the naked eye.
In other words, object-based forgery is performed in the
middle of frames, e.g., a walking person is removed before
leaving a video scene, so this person is seen for a couple
of seconds and suddenly disappeared from the video scene.
Hence, we use SYSU-OBJFORG data set to generate realistic
object removal forged videos by using two recent inpainting
algorithms [33], [35]. Fig.7 shows three examples of object
removal forgery from the data set.

To evaluate the effectiveness of our approach, we gener-
ate three video sets from the data set. The first set is an
uncompressed video set, which has object removal forged
videos without compressing these videos. The second set is
a compressed video set, which has object removal forged
videos with compressing these videos using H.264/MPEG-
4 with 1 Mbps. The third set is a low-resolution video set,
which has object removal forged videos with reducing the
original resolution by half, i.e., 640× 360.

B. Evaluation Metric

We evaluate object removal forgery detection on video
and pixel levels. The most important aspect in practice is to
determine whether a video is forged or not, i.e., video level
performance. However, the effectiveness of an algorithm is
determined by how accurately the tampered regions can be
identified in a video, i.e., pixel level performance. We measure
the performance at video level by defining TP as the correctly
detected forged videos, FP as original videos that have been
incorrectly detected as forged, and FN as falsely missed forged
videos. Then, Precision, Recall, F1, and Intersection over
Union (IoU) are as follows:

Precision = TP

TP + FP
(33)

Recall = TP

TP + FN
(34)

F1 = 2TP

2TP + FP + FN
(35)

IoU = TP

TP + FP + FN
(36)

Precision shows the probability that a detected forgery is
truly a forgery, Recall indicates the probability that a forged
video is detected, F1 score shows the average performance,
and IoU score shows the worst case performance.

We measure the performance at pixel level by defining TP as
the correctly detected forged pixels, FP as original pixels that
have been incorrectly detected as forged, and FN as falsely
missed forged pixels. Then, we compute Precision, Recall,
F1, and IoU as in (33), (34), (35), and (36) respectively.

C. Feature Selection

There are several feature extraction approaches that have
been used to detect image forgery such as SIFT [55], and
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TABLE I

DETECTION RESULTS AT PIXEL AND VIDEO LEVELS OF OBJECT REMOVAL
VIDEO FORGERY USING SEQUENTIAL ANALYSIS WITH DIFFERENT

BLOCK SIZES AND DIFFERENT VIDEO SETS

SURF [56]. However, these approaches lead to a high dimen-
sional feature vector that reduces detectability of changes,
especially if this vector contains irrelevant features [57]. One
way to overcome this problem is to use one of dimension
reduction approaches such as PCA [58], but these approaches
often result in loss of relevant features. Since feature vectors
are required to be relevant with small size, we experimentally
observe that mean and variance are relevant features to
our model. In particular, we observe that removed object
traces that are exposed by the proposed spatiotemporal filter
disrupt mean and variance of video frame blocks. Therefore,
we believe that mean and variance are appropriate features
for our model. As a result, we compute the mean and
variance for each block in video frames and use them as
feature vectors throughout multivariate and patch analyses.

D. Threshold Settings

Initially, we choose 10% of the dataset to tune threshold
values of univariate (hu), multivariate (hm), and patch (h p)
analyses. The receiver operating characteristic (ROC) curves
that are illustrated in Fig.6a suggest the best tradeoff between
the true positive and false positive rates at pixel level for the
three analyses can be achieved when hu = 15, hm = 35, and
h p = 10. Thus, we choose these threshold values based on
the results of ROC curves.

We also tune threshold values for the number of consecutive
frames (hF ) and areas (h A) that are used to declare forgery
at video level. We start with hF = 5 with an increment of
10 frames and h A = 300 with an increment of 100 pixels.
The ROC curve that is shown in Fig.6b suggests the best
tradeoff between the true positive and false positive rates can
be achieved when hF = 25 and h A = 500. Thus, we selected
these threshold values for all experiments.

Fig. 6. ROC curves: True positive vs. false positive rates at (a) pixel level for
different change thresholds using univariate, multivariate, and patch analyses,
and (b) at video level using different thresholds for the number of consecutive
frames (h F ) and areas (h A).

E. Detection Results

We evaluate detection results at both pixel and video levels
using sequential analysis, followed by patch analysis.

1) Results of Sequential Analysis: We evaluate both the
effectiveness of (1) the univariate analysis when the block size
equals one, and (2) the multivariate analysis with changes in
block size.

Detection results of the uncompressed video set at pixel
and video levels for different block sizes are shown in Table I.
We observe that Recall and F1 values at the pixel level increase
when the block size increases until they reach their largest
values at the block size equals 10. Then, these values slightly
decrease, which suggests that the optimal block size is 10.
Similarly, Recall and F1 values at the video level follow the
same pattern with better detection results because detecting
only one forged second (i.e., 25 frames) is enough to declare
that a video is forged as discussed in Sec.V-D.

Detection results of the compressed video set at pixel and
video levels for different block sizes are shown in Table I.
We observe that the largest Precision value at the pixel level
occurs at the block size equals one, which indicates that the
false positive rate increases when the block size increases.
The largest F1 and IoU scores at both pixel and video levels
happen at the block size equals 15, which suggests that the
optimal block size is 15. Furthermore, we notice that detection
results are still high even though videos in this video set are
compressed, which indicates that the sequential analysis is
robust against compressed videos.

Detection results of the low-resolution video set at pixel and
video levels for different block sizes are shown in Table I(c).
We observe that the smallest Precision value at both pixel and
video levels occurs at the block size equals five. However,
the largest Recall and F1 values at both pixel and video levels
happen at the block size equals five, which suggests that the
optimal block size is five. Moreover, we notice that detection
results are still high even though videos in this video set have
low resolutions, which indicates that the sequential analysis is
also robust against lower resolution videos.

We observe that detection results at video level are better
than detection results at pixel level. This result is expected
because it is enough to detect a small number (i.e., 25) of
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TABLE II

DETECTION RESULTS AT PIXEL AND VIDEO LEVELS OF OBJECT REMOVAL
VIDEO FORGERY USING PATCH ANALYSIS WITH DIFFERENT PATCH

SIZES AND DIFFERENT VIDEO SETS

consecutive forged frames to declare forgery at video level
(i.e., video forgery detection) as discussed in Sec.V-D, whereas
detecting forgery at pixel level requires to detect all forged
pixels, which is often significantly large, to localize forged
regions in a video (i.e., video forgery localization).

In summary, we observe that the optimal block sizes of
uncompressed, compressed, and low-resolution video sets are
ten, fifteen, and five, respectively, because these block sizes
lead to the highest detection performance (F1 score). We also
consider ten as the optimal block size of compressed video set
because F1 scores are almost the same at block sizes equal ten
and fifteen. Therefore, the optimal block size of uncompressed
video set is the same as the optimal block size of compressed
video set because these video sets have the same resolution
(i.e., 1280 × 720). The optimal block size of low-resolution
video set is half of the optimal block size of uncompressed
video set, which is expected because the resolution of low-
resolution video set is reduced by half compared to the
resolution of uncompressed video set. The highest detection
performance is achieved when using the uncompressed video
set, and then it slightly decreases throughout the compressed
and low-resolution video sets. The overall detection perfor-
mance (F1 score) of the three video sets is improved when
using the multivariate analysis compared to the univariate
analysis, which is one of our key contributions. We believe the
reason for this improvement is that forged regions in a video
are always larger than one pixel, hence applying multivariate
analysis, which is based on blocks, increases detection results
throughout the three video sets.

2) Results of Patch Analysis: We need to fix the block
size while the patch size is varied in order to evaluate the
effectiveness of the patch analysis. We notice that the optimal
block size is not the same for the three video sets. However,
the difference between the largest F1 score and the other
F1 scores at the block size equals 10 is very small across the

three video sets. Hence, we set the block size to 10 throughout
the patch analysis.

Detection results of the uncompressed video set at pixel and
video levels for different patch sizes are shown in Table II.
We observe that the Recall value at the pixel level peaks
when the patch size is eight, and then subsequently decreases,
indicating that the false negative rate increases as the patch
size increases. The largest F1 and IoU scores at both pixel and
video levels happen at the patch size equals 12, which suggests
that the optimal patch size is 12. We also notice that when
the detection results at the pixel level improve, the detection
results at the video level improve as well, which is expected
because the pixel is a fundamental unit of videos.

Detection results of the compressed video set at pixel and
video levels for different patch sizes are shown in Table II.
We observe that the largest Recall value at the pixel level
occurs at the patch size equals four, which indicates that
the true positive rate does not improve when the patch size
increases. The largest Precision value at both pixel and video
levels occurs at the same patch size, which is 12. However,
the largest F1 score at pixel and video levels happens at the
patch sizes equal 12 and eight, respectively. Hence, the optimal
patch size at pixel level is not the same as the optimal patch
size at video level.

Detection results of the low-resolution video set at pixel and
video levels for different patch sizes are shown in Table II(c).
We observe that Precision value at both pixel and video level
increases when the patch size increases until it reaches its
largest value at the patch size equals eight. Then, its value
slightly decreases, which indicates that the false positive rate
increases when the patch size increases beyond eight. The
largest F1 score at pixel and video levels happens at the patch
sizes equal eight and twelve, respectively. However, at the
pixel level, the difference between F1 score at patch size equals
eight and twelve is very small. Hence, the optimal patch size
at both pixel and video levels is 12.

As can be seen from Table II, the pixel level performance
of our patch analysis approach (which is currently one of few
approaches available for detection of object removal video
forgery) achieves a detection rate of only 81.06%, therefore
the data set employed provides a challenging framework for
evaluation of the detection of object removal video forgery.

In summary, we consider that the optimal patch size of
uncompressed, compressed, and low-resolution video sets is
twelve because this patch size leads to the highest detec-
tion performance (F1 score). We observe that there are no
significant differences between the largest F1 scores in the
three video sets. Hence, our patch analysis approach is robust
against compressed and lower resolution videos. We believe
that there are two reasons for this robustness. First, the pro-
posed spatiotemporal filter is able to expose traces that are left
at a removed object boundary even though videos are com-
pressed or have low resolutions. Second, compression or low
resolution is applied to all video frames, hence all patches
are compressed or have low resolutions. As a result, our
patch analysis can distinguish between normal and anomalous
patches in a video if the attack (e.g., compression) is applied
to all patches. The highest detection performance is achieved
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Fig. 7. Three examples of visualization results of a removed object movement using the univariate, multivariate, and patch analyses. In each example, images
on the top row indicate frames from the original video; images on the middle row indicate the corresponding frames from the tampered video where the object
in the red box has been removed from the scene; images on the bottom row (from left to right) indicate the ground truth of the removed object movement,
the movement visualization using the univariate analysis, multivariate analysis, and patch analysis, respectively.

Fig. 8. Average computation time per video in seconds for the three video sets using (a) univariate analysis, (b) multivariate analysis with different block
sizes, and (c) patch analysis with different patch sizes.

when using the uncompressed video set, and then it slightly
decreases throughout the compressed and low-resolution video
sets. The overall detection performance (F1 score) of the
three video sets is further improved when using our patch

analysis approach, which is another major contribution of this
work. We believe the reason for this improvement is that
object removal forgery always happens in temporally adjacent
regions, hence applying patch analysis, which is based on
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TABLE III

COMPARISON RESULTS OF OBJECT REMOVAL FORGERY DETECTION AT VIDEO LEVEL FOR OUR PATCH ANALYSIS APPROACH AND OTHER APPROACHES
USING DIFFERENT VIDEO SETS

temporally adjacent blocks, increases detection results
throughout the three video sets.

3) Comparison Between Sequential and Patch Analyses:
We set the block size to 10 and the patch size to 12 in this
comparison because these values are optimal for block and
patch sizes based on the results in Table I and Table II.

We compare forgery detection between sequential and
patch analyses by plotting receiver operating characteristic
(ROC) curves. Fig.6a shows ROC curves for different change
thresholds (hu , hm , h p) using univariate, multivariate, and
patch analyses. We observe that our patch analysis outper-
forms univariate and multivariate analyses throughout differ-
ent change thresholds, which is expected because detection
results in Table II are better than detection results in Table I.
We believe that our patch analysis outperforms sequential
analysis because our patch analysis is based on spatiotemporal
analysis, whereas sequential analysis is based on spatial analy-
sis. Hence, our patch analysis detects object removal forgery,
which is always created using temporally adjacent frames,
better than sequential analysis.

We compare forgery localization between sequential and
patch analyses by visualizing a movement of removed objects.
Fig.7 shows three examples for visualization results of a
removed object movement using univariate, multivariate, and
patch analyses. We observe that our patch analysis localizes
the removed object movement more accurately compared
to univariate and multivariate analyses, which is expected
because detection results using patch analysis at the pixel level
are improved as discussed in Sec.V-E2. However, the false
positive rate of patch analysis is higher than the false pos-
itive rates of univariate and multivariate analyses as shown
in Fig.7c, which is expected because the largest Precision
value in Table II(a) is less than the largest Precision value
in Table I(a).

F. Computational Complexity

We will use the following notation throughout this section.
N is the number of frames in a video, M is the number of
pixels in each frame, B is the number of pixels in each block,
and P is the number of blocks in each patch.

Univariate analysis detects additive changes that are asso-
ciated with a pixel sequence in a video using the binary
segmentation algorithm. We know that the computational
complexity of the binary segmentation is O(N log(N)) [51].
Therefore, the computational complexity of univariate analysis
is O(M N log(N)) because univariate analysis detects changes
in each pixel. We also show the average computation time
per video in seconds for the three video sets using univariate

analysis in Fig.8a. We observe that the average computation
time for low-resolution video set is much less than the average
computation time for uncompressed and compressed video
sets, which is expected because the resolution of this video
set is reduced by half compared to the other video sets.

Multivariate analysis detects additive changes associated
with feature vectors that are extracted from dividing video
frames into non overlapping blocks. Each block requires
O(N B) computations to extract feature vectors through-
out video frames and O(N log(N)) computations to detect
changes using the binary segmentation algorithm. As a
result, the computational complexity of multivariate analysis
is O(M/B(N B + N log(N))). We also show the average
computation time per video in seconds for the three video
sets using multivariate analysis in Fig.8b. We observe that
the average computation time is exponentially reduced for the
three video sets. The reason is that the multivariate analysis
is performed for each block instead of each pixel, hence the
average computation time is dramatically decreased when the
block size increases.

Patch analysis detects anomalous patches, which are tempo-
rally adjacent blocks, throughout video frames by examining
each patch in an overlapping manner with overlapping step
equals one. The computational complexity of patch analy-
sis is similar to multivariate analysis. The only difference
is that calculating the log-likelihood of overlapping patches
throughout video frames requires O((N−P)N) computations.
As a result, the computational complexity of patch analysis
is O(M/B(N B + (N − P)N)). We also show the average
computation time per video in seconds for the three video
sets using patch analysis in Fig.8c. We observe that the
average computation time does not significantly change when
the patch size increases because our patch analysis approach
is performed based on overlapping patches instead of non
overlapping patches.

We conclude that by using either the multivariate or patch
analysis not only improves the detection performance com-
pared to univariate analysis as discussed in Sec.V-E, but also
results in much less computational time, which is another
major contribution of this work.

G. Comparison Results With Other Approaches

We compare our approach with five recent approaches [4],
[41]–[44]. We refer to [4] as UniSeq, [41] as StatFeat, [42]
as StegFeat, [43] as CompSen, and [44] as STCA throughout
the comparison results.

Detection results at video level for our patch analysis
approach and the other approaches using different video sets
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Fig. 9. Two examples of visualization results of removed objects’ movement using our patch analysis approach and STCA approach. In each example,
images on the top row indicate frames from the original video; images on the middle row indicate the corresponding frames from the tampered video where
the objects in the red box have been removed from the scene; images on the bottom row (from left to right) indicate the ground truth of the removed objects’
movement, the movement visualization using the STCA approach, and our patch analysis approach, respectively.

are shown in Table III. We set the patch size to 12 across
the three video sets to have a fair comparison with the other
approaches. We observe that detection results of our approach
are consistent across the three video sets. We also observe that
StegFeat achieves slightly better performance compared to our
approach throughout uncompressed and low-resolution video
sets. However, our approach outperforms all five approaches in
compressed video set. This result indicates that our approach
is more practical because most of the online videos are
compressed. Moreover, our approach not only detects forgery
but also localizes forged regions, unlike other approaches [4],
[41]–[43]

Detection results at pixel level for our patch analysis
approach and the STCA approach using different video sets
are shown in Tables IV(a) to IV(c). We compare with the
STCA approach only because the other approaches are not
able to detect pixel level forgery. We observe that our approach
outperforms the STCA approach throughout the three video
sets. We also observe that detection results of our approach
are consistent across the three video sets.

H. Generalization

To evaluate the generalization of our approach using dif-
ferent data sets and different inpainting algorithms, we use
the data set that is introduced by Lin and Tsay [44]. This
data set consists of 26 object removal forged videos that are
generated using two inpainting algorithms: temporal copy-and-
paste [59] and exemplar-based texture synthesis [60]. This data
set contains forged videos with multiple removed objects as

TABLE IV

COMPARISON RESULTS OF OBJECT REMOVAL FORGERY DETECTION AT
PIXEL LEVEL FOR OUR PATCH ANALYSIS APPROACH AND THE STCA

APPROACH USING DIFFERENT VIDEO SETS

shown in Fig.9. All videos in this dataset are compressed using
MPEG-4 with 3Mbps and a resolution of 320×240. We refer
to this dataset as Lin’s video set throughout the comparison
results.
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Detection results at pixel level for our patch analysis
approach and the STCA approach using Lin’s video set are
shown in Table IV(d). We observe that STCA achieves a
slightly better Precision score compared to our approach. How-
ever, our approach outperforms STCA in terms of Recall, F1,
and IoU scores. This result confirms that our approach can
detect and localize object removal forgery in forged videos
with multiple removed objects for different data sets and
inpainting algorithms.

Two examples of localization results for our patch analy-
sis approach and the STCA approach are shown in Fig.9.
We observe that our patch analysis localizes the removed
objects’ movement more accurately compared to STCA.
In fact, our patch analysis correctly localizes three removed
objects in Fig.9b. However, the STCA localizes only one
removed object in Fig.9b. We believe that our patch analysis
can detect and localize multiple removed objects because patch
analysis detects all anomalous patches of a particular block by
investigating all overlapping patches of this block as shown
in Fig.5. For example, if there are two removed objects that
pass through a block in video frames, then patch analysis
would detect two anomalous segments for this block.

VI. CONCLUSION

We investigated the object removal video forgery problem,
and proposed a novel approach based on sequential and patch
analyses to detect video forgery and localize forged regions
by visualizing a movement of removed objects. We modeled
video sequences as stochastic processes, where changes in the
parameters of these processes indicate a video forgery. We also
modeled video sequences as a mixture model of normal and
anomalous patches, with the aim to separate these patches
by identifying the distribution of each patch. We evaluated
detection performance at pixel and video levels, unlike most of
the existing approaches that evaluated detection performance
at video level only without localizing forged regions. The
experimental results show that the detection performance is
improved by using multivariate sequential analysis compared
to univariate sequential analysis. Furthermore, our patch analy-
sis approach not only achieves excellent detection performance
with low computational complexity, but also leads to robust
results against compressed and lower resolution videos.

In the future, we plan to investigate non-additive change
models such as changes in covariance or correlations using
the asymptotic local hypotheses. In the sequential analysis,
we modeled video sequences as an additive change in scalar
and multidimensional parameters. The detection results at
the video level are superior, but the detection results at the
pixel level can be further improved. Hence, using non-additive
change models may lead to better detection performance.
We also plan to extend our work to be able to detect object
removal forged videos with moving backgrounds.
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