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Hypothesis Testing Based Tracking With
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Abstract— Data association is one of the key research in
tracking-by-detection framework. Due to frequent interactions
among targets, there are various relationships among trajectories
in crowded scenes which leads to problems in data association,
such as association ambiguity, association omission, etc. To handle
these problems, we propose hypothesis-testing based tracking
(HTBT) framework to build potential associations between target
by constructing and testing hypotheses. In addition, a spatio-
temporal interaction graph (STIG) model is introduced to
describe the basic interaction patterns of trajectories and test
the potential hypotheses. Based on network flow optimization,
we formulate offline tracking as a MAP problem. Experimental
results show that our tracking framework improves the robust-
ness of tracklet association when detection failure occurs during
tracking. On the public MOT16, MOT17 and MOT20 bench-
mark, our method achieves competitive results compared with
other state-of-the-art methods.

Index Terms— Multi-object tracking, tracking-by-detection,
network flow, hypothesis testing, interaction modeling.

I. INTRODUCTION

MULTI-OBJECT tracking (MOT) is an important
research in the field of computer vision, aiming at

recovering the position of targets in each frame and their
complete trajectories as well. Although detection technology
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has been greatly improved through deep learning methods,
frequent target interaction still leads to a large number of tra-
jectory interruptions and false association in crowded scenes.
Therefore, tracking targets with complex interactions is still a
challenging task.

Tracking-by-detection framework consists of two parts
including detection and association. First, targets are located
by detectors as accurately as possible from the video. Then,
these detections are associated into trajectories of each target.
If all targets are detected correctly, it means there is no false
detection and generating trajectories is a naive data association
problem.

However, even modern detectors ofter fail in crowded scenes
and results false detection, missing detection and detection
offset. These problems make data association a tough task.
As shown in Fig.1, as targets move, there are different types
of interactions between the trajectories, such as aggregation,
abruption and stabilization. From this view, we introduce a
hypothesis testing method with interaction modeling frame-
work to deal with problems in tracklet association.

To improve the accuracy and robustness in tracklet associ-
ation, we propose hypothesis-testing based tracking (HTBT)
method in this paper. First, a non-independent hypothesis is
defined to formulate each association condition. Then, the data
association is divided into two steps including hypothesis
construction and hypothesis testing. Hypothesis construction
assumes relationships among each dependent trajectory, while
hypothesis testing estimates and tests the assumptions accord-
ing to the interaction information in the context. In addition,
spatio-temporal features of the target interaction are modeled
as the basis for hypothesis testing. Finally, HTBT is integrated
into the network flow framework for tracking as a MAP
problem, including robust tracklet association and enhanced
tracklet refinement. Robust tracklet association is assigned to
handle association failure when occlusion occurs. Enhanced
tracklet refinement re-estimate and update tracklets when the
detection is false or missed.

In summary, this paper makes the following contributions:
• Hypothesis-testing based tracking (HTBT) method is pro-

posed to construct and test association assumption, and
thus improve the association performance and robustness
for tracking.

• Spatio-temporal interaction graph (STIG) is introduced as
the basis of hypothesis testing, by modeling the spatio-
temporal interaction relationships among tracklets.

• HTBT is integrated into the network flow tracking to
improve tracklet association and refinement.
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Fig. 1. Target interaction during tracklet association. From frame 65 to frame 148, the interactions between pairwise targets have various features and
tendencies, which change with time frame.

• We formulate tracking with hypothesis testing as a MAP
problem and solve it by network flow framework.

The rest of the paper is organized as follows. Related work
is discussed in Sec.II. In Sec.III, different relationships among
tracklets are introduced and the framework of hypothesis-
testing based tracking (HTBT) is proposed. In Sec.IV, spatio-
temporal interaction graph (STIG) is constructed to formulate
the interaction process of tracklets. Network flow tracking with
HTBT is solved in Sec.V. Experiments and conclusion are in
Sec.VI and VII.

II. RELATED WORK

A. Multi-Object Tracking

MOT has been a popular topic in computer vision for
years and most recent tracking methods can be generally
categorized into two groups: online and offline. Online meth-
ods are widely applied in realtime applications. The state of
targets is estimated with only current and past observations by
kalman filters [38], particle filters [16] and other deep learning
methods. It is hard for online methods to correct trajectories
when an early error is made.

In contrast, offline methods take all frames into considera-
tion where the entire or a batch of the sequences is processed.
Tracking-by-detection is one of the most popular frameworks
in recent research. Detections are gained by detectors in each
frame and then linked into trajectories. Therefore, the multi-
object tracking can be converted into a data association prob-
lem and various methods are proposed.

Conditional random field (CRF) based methods [27], [28]
formulate tracking as an energy minimization problem and
solve data association by energy minimization. Data associ-
ation and trajectory estimation are joint in these methods.
However, lacking robustness in tracking occluded targets is
a common shortcoming of them.

Multiple hypothesis tracking (MHT) [19] is a classic track-
ing method where association decisions are delayed. To solve
the detection failure problem, [9] models the association
between detections and scenes and [33] proposes a hetero-
geneous association graph that fuses high-level detections
and low-level image evidence for target association. However,
MHT often suffers from the high computation complexity and
consumes too much memory.

Zhang et al. [42] and Butt and Collins [7] propose a min-
cost network flow based data association method for tracking.
They solve the optimal problem though linear programming

and Lagrangian methods. Since network flow based associa-
tion methods have the benefit of finding the globally optimal
solution efficiently, many following methods [8], [25] [10] are
proposed to improve the robustness of association.

In addition, some spatio-temporal model based
tracking approaches have been proposed in recent
research. Ren et al. [29] proposes a spatio-temporal target-
to-sensor data association method. Zhang et al. [43]
proposes an spatio-temporal context learning based method
with self-correction under multiple views to track players
in soccer videos. To deal with the problems of missed
detections, a combined model utilizing the information of
spatio-temporal correlation is proposed in [37]. The above
approaches still have limitations in terms of interactive target
association in crowded scene. In this paper, we focus on
this issue and aims to cope with association ambiguities and
association failure problems in crowded scene.

B. Visual Tracking With Hypothesis Testing

Hypothesis testing has also been explored to solve tracking
problem. In this framework, tracking is formulated as a Max-
imum A Posteriori (MAP) segmentation problem where each
pixel is assigned a binary label indicating whether it belongs
to the target or not. Enescu et al. [15] proposes an approach
to track non-rigid targets based on MAP-MRF framework.
An MRF model is used for data association, region smoothness
and elliptic shape constraints. Zhang et al. [44] presents a
method for regional tracking. They use hypothesis testing and
statistical methods to judge trajectories and avoid probability
distribution problem of the estimated density function.

Hypothesis testing is often implemented iteratively in track-
ing. Amit et al. [1], [2] implements an iterative hypothesis
testing strategy to exploit the appearance features, even targets
are only intermittent available. They connect detections across
frames based on their position and appearance. However,
since their iteration is under the assumption that the target
appearance is defined by the key-node appearance estimate,
inaccurate appearance estimation and error hypothesis occur
in crowded scenes.

Probability hypothesis testing is also used for tracking
targets with specific moving. Demirbas [13] proposes a maneu-
vering target tracking method with hypothesis testing. Target
motion is described by nonlinear models in a spherical coor-
dinate system. Hypothesis testing is used to estimate the states
of the nonlinear model, which prevents false state estimation
due to the model linearization errors. Li et al. [22] proposes an
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initiation algorithm for dim and small moving target based on
spatio-temporal hypothesis testing. Different spatio-temporal
features are utilized in hypothesis testing to recognize target
and initialize trajectories.

However, the above mentioned hypothesis testing based
methods can not handle the data association problem well
in crowded scenes because their assumption is based on the
low-level image information. High-level potential information
is ignored such as target interaction. In this paper, in order
to handle tracking failure and ambiguity in crowded scenes,
we focus on implementing hypothesis testing for tracking with
spatio-temporal interaction modeling.

III. HYPOTHESIS-TESTING BASED TRACKING

Data association can be converted into a MAP problem
where individual trajectories are described by a Markov chain.
Then, hypothesis-testing based tracking (HTBT) is proposed to
describe the state transition likelihood with dynamic trajectory
relationship according to successive pairwise detections with
appearance and background features. In this section, non-
independent hypothesis is introduced to represent the tuple
relationship and tracking is formulated as a MAP problem to
describe various relationships among tracklets.

A. Non-Independent Hypothesis for Tracking

For a given video sequence, let D denotes a set of detec-
tions, where each element d = (x, y, w, h, f, a) ∈ V consists
of location (x, y), scale (w, h), frame t and appearance
features a. The appearance features for each detection are
extracted after the FC layer in [34] and downsample it as a
256-dimensional vector. Thus a trajectory can be expressed as
a set of selected detections as t = {d1, d2, . . . , dk} and each
detection can only belong to one trajectory.

The motion of all targets can be regarded as a set of
trajectories T = {t1, t2, . . . , tn}. Therefore, tracking is for-
mulated as finding an optimal T ∗ that has the maximum
posterior probability P(T |t). Assuming that each trajectory is
independent of each other and follows Markov chain, the MAP
inference can be expressed as follows:

T ∗ = arg max
T

P(T |t)
= arg max

T

�
i

P(di |T )P(T )

= arg max
T

�
i

P(di |T )
�

j

P(t j ) (1)

where P(di |T ) is the probability of di to describe a real target
and P(t j ) represents the probability of t j to be a correct
trajectory. For a trajectory t = {d1, d2, . . . , dk}, its probability
can be expressed as:

P(t) = P(d1)P(dk)

k�
n=2

P(dn |dn−1) (2)

where P(dn |dn−1) is the probability of dn and dn−1 are two
consecutive detections in the trajectory.

Fig. 2. Illustration of the classification of association relationships of
tracklets. (a) shows an example of unary relation, (b) is an example of binary
relation and (c) indicates a N-ary relation.

B. Hypothesis Construction

1) Unary Hypothesis: Most people have little difference
in height, so for a fixed camera, the heights of targets at a
certain position in the scene should be similar. We formulate
the distribution of the height of targets as M(x, y). Therefore,
we can predict the possible height of the target at (x, y).
Given a detection di = (xi , yi , wi , hi ), its unary hypothesis is
denoted as H1. di is used for tracking only if H1 is accepted
which is defined as follows:

μlower M(xi , yi ) � hi � μupper M(xi , yi ) (3)

where μlower and μupper are the lower and upper limit
parameters. They make the height distribution prediction have
an offset range, thus being able to describe pedestrians of
different heights while enduring detection offset to a certain
extent. We set μlower = 0.5 and μupper = 1.5 in this paper
that can cover the possible height of most people and bear a
certain degree of fitting error.

2) Binary Hypothesis: We define three different forms of
binary hypothesis H2 including inclusion, exclusion and coex-
istence.

a) Inclusion: When two tracklets ti and t j are likely to
have an inclusion relationship, they do not intersect in neither
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Fig. 3. Illustration of the STIG construction for tracklet interaction. An initial graph is formed by polynomial regression. Then it is refined according to the
tracklet motion.

spatial nor temporal domains. Inclusion hypothesis Hin is
defined as:

Hin = �
< ti , t j > |T (ti ) ∩ T (t j ) = ∅,

S(ti ) ∩ S(t j ) = ∅�
(4)

b) Exclusion: When two tracklets ti and t j are likely to
have an exclusion relationship, they have intersection only in
temporal domain. Exclusion hypothesis Hex is defined as:

Hex = �
< ti , t j > |T (ti ) ∩ T (t j ) �= ∅,

S(ti ) ∩ S(t j ) = ∅�
(5)

c) Coexistence: When two tracklets ti and t j are likely to
have a coexistence relationship, they intersect in both spatial
and temporal domains. Coexistence hypothesis Hco is defined
as:

Hco = �
< ti , t j > |T (ti ) ∩ T (t j ) �= ∅,

S(ti ) ∩ S(t j ) �= ∅�
(6)

3) N-ary Hypothesis: The N-ary relationship Rn among
tracklet tuple < ti,1, . . . , ti,n > can be derived from the unary
relationship R1 and the binary relationship R2. Given the
relationship R = {R1, R2} on tracklets, we can build the
transitive closure τ (R), which is defined as:

τ (R) =
n�

i=0

Ri (7)

where R0 is the identity relation and Ri+1 = Ri · R. Then N-
ary relationship Rn can be derived from the transitive closure:
Rn = {< ti,1, . . . , ti,n > |∀p, q ∈ [1, n],< tp, tq >∈ τ (R)}

(8)

Therefore, N-ary hypothesis Hn can be reduced to a combi-
nation of unary hypotheses and binary hypotheses.

IV. SPATIO-TEMPORAL INTERACTION MODELING

As introduced in Sec.III-B.2, spatio-temporal interaction
information is used for binary hypothesis construction. The
spatial and temporal intersection of tracklets is a general
description which needs more specific definition for tracking.
In this section, a weighted directed graph model named
as spatio-temporal interaction graph (STIG) is proposed to
formulate the interaction between tracklets in detail.

A. Definition

For a given tracklet ti , if it consists of a set of detections
{di,1, di,2, . . . , di,k } coming from frames { fi,1, fi,2, . . . , fi,k }
respectively. The temporal intersection of pairwise tracklets ti
and t j can be expressed as:

It (ti , t j ) = T (ti ) ∩ T (t j )

= { fi,1, fi,2, . . . , fi,k } ∩ { f j,1, f j,2, . . . , f j,k} (9)

Then, the spatial intersection of pairwise tracklets ti and t j at
frame k can be expressed as:

I k
s (ti , t j ) = S(tk

i ) ∩ S(tk
j )

= di,k ∩ d j,k

di,k ∪ d j,k
(10)

where k ∈ It (ti , t j ). I k
s describes the intersection-over-union

(IoU) of two tracklets at certain frame. Obviously, the value
of I k

s ranges 0 to 1. The relation between intersection of time
can be formulated by the Pearson correlation coefficient as
follows:

ρ(Is , f ) = cov(Is , f )

σIs σ f
, f ∈ It (11)

Therefore, three basic patterns of pairwise tracklets interaction
are defined according to ρ(Is , f ).
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Fig. 4. Three types of basic interaction patterns. (a) is the state of aggregation
in which the overlap is positively related to time. (b) is the state of abruption in
which the overlap is negatively related to time. (c) is the state of stabilization
in which the overlap is around a constant.

1) Aggregation: It is an interaction pattern in which the
spatial intersection Is is positively related to the time (frame)
as illustrated in 4(a), expressed as:

ρ(Is , f ) > 0 (12)

Aggregation describes an upward intersection trend during
tracklets interaction.

2) Abruption: It is another interaction pattern in which the
spatial intersection Is is negatively related to the time (frame)
as illustrated in 4(b), expressed as:

ρ(Is , f ) < 0 (13)

Aggregation describes a downtrend of tracklets intersection.
3) Stabilization: It is an interaction pattern in which the

spatial intersection Is is nearly maintained at a constant as
illustrated in 4(c), expressed as:

ρ(Is , f ) = 0 (14)

Tracklets of stabilization move close with a similar motion
while the intersection is in a stable range.

B. STIG Initialization

According to the different value of ρ in Sec.IV-A, the entire
period of tracklet interaction can be divided into multiple
basic interaction patterns. However, the interaction between
tracklets is constantly changing and cannot be described by a
single interaction pattern. In this section, a weighted directed
graph named as STIG is proposed to describe the changing
interaction of pairwise tracklets. Therefore, the interaction
modeling problem can be formulated by constructing graph
G = (V , E; W ). Each edge ei, j =< vi , v j > links tracklets to
represent a basic interaction pattern where vi and v j represent
the start and end frames of this interaction. The weight
wi, j ∈ W of the corresponding edge have three possible values
of 1, −1 and 0, representing different interaction patterns.
As illustrated in Fig.3, the construction of STIG consists of
two steps including initialization and refinement.

STIG represents an optimal division of the entire interaction
which describes the general trend of tracklets interaction.
Specifically, the relation between intersection and time can
be modeled by regression analysis to fit the general trend
of interaction. For a given interaction period during frames
f = { f1, f2, . . . , fn}, the entire interaction can be modeled

Algorithm 1 Finding the Suboptimal Solution of Polynomial
Fitting
Input: Interaction period f = { f1, . . . , fk, . . . , fn}
Output: Polynomial Fr

poly
Parameters: λ, θth , fth , Eth

1: for each fk ∈ f do
2: calculate I k

s by Eq.10
3: end for
4:

5: for every five ordered elements {i1, . . . , i3} ∈ [0, 	 f 	0] do
6: calculate {Erms(i1), . . . , Erms(i3} by Eq.16
7: if Erms(it ) = min(Erms(i)) satisfies Eq.17 and Eq.18

then
8: r = it

9: Fr
poly = f it

poly
10: break
11: end if
12: end for

by a polynomial function. Let Fr
poly be the polynomial fitting

function of order r which is defined as:

Fr
poly( fk) =

r�
i=0

ωi f i
k (15)

For a specific order r , we can use the least square method to
find the fitting function Fr

poly . However, in the real world, the
intersection of pairwise tracklets does not change frequently
and greatly in a short time. Based on this consideration,
we solve finding the optimal fitting Fr

poly as an optimization
problem formulated as follows:

arg min Erms(r) =

���	
 fn
k= f1

(Fr
poly(k) − I k

s )2

	 f 	0

+ λ

r�
i=0

ω2
i (16)

s.t . |Fr
poly


( fk)| < θth, ∀ fk ∈ f (17)

| f p − fq | > fth, ∀ f p, fq ,

Fr
poly



( f p) = 0, Fr
poly



( fq) = 0 (18)

r = 0, 1, 2, . . . , n (19)

where λ is set to 0.01 for the regular penalty term to penalize
over-fitting. Thus the optimal order of the fitting function can
be found by minimize the RMS error Erms(r). In addition, θth

and fth are also used to avoid over-fitting. In Eq.17, the first
derivative of Fr

poly is limited by θth to prevent the interaction
pattern from changing frequently. In Eq.18, the limitation fth

on the second derivative ensures the trend changing smoothly.
θth is set to 0.5 and fth is set to 10 frames.

It is difficult to find the optimal fitting Fr
poly due to the high

computational complexity when the tracklet is too long. So we
introduce an efficient algorithm in Alg.1 to find a suboptimal
solution instead. We traverse r from small to large in group
of 3, and take the minimum Fro

poly from the first group with
feasible solution as the suboptimal solution. Therefore, Fro

poly
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is a feasible polynomial with relatively low order that fits the
trend and avoids over-fitting problem at the same time.

Then we generate an initial STIG G = {V , E; W } by Fr0
poly .

The peaks and troughs of Fr0
poly are the most potential critical

points in the interaction period. We define V as follows:
V = �(Fr0

poly) ∪ f (20)

where �(Fr0
poly) is the set of all extreme points. Two adjacent

extreme points are the start and end points of a basic interac-
tion and elements in V are sorted in ascending order through
frames and define E as follows:

E = {ei,i+1|vi ∈ V , vi+1 ∈ V } (21)

Since Fr0
poly is a polynomial function, it is continuous and

differentiable. So the trend of IoU through frames can be
reflected by its derivative. If the derivative is positive from
vi to vi+1, the basic interaction in this period can be regarded
as an aggregation process with growing IoU. Similarly, if the
derivative is negative from vi to vi+1, we consider this basic
interaction as an abruption process. Otherwise, the basic
interaction between vi and v j is classified as a stabilization
process. Therefore, the weight of ei,i+1 can be defined as:

wi,i+1 =

⎧⎪⎨
⎪⎩

1, ∀ fk ∈ [ fvi , fvi+1 ], f r0
poly


( fk) > 0

−1, ∀ fk ∈ [ fvi , fvi+1 ], f r0
poly


( fk) < 0

0, ∀ fk ∈ [ fvi , fvi+1 ], f r0
poly


( fk) = 0

(22)

where fvi and fvi+1 are the start and end frames of the
interaction according to ei,i+1.

C. STIG Refinement

The derivative of Fr0
poly = 0 is a sufficient and unnecessary

condition of the interaction to be a stabilization process. It is an
ideal situation that the Pearson correlation coefficient ρ(Is , f )
equals 0 when a tracklet interaction belongs to stabilization.
In the real world, if two pedestrians are walking side-by-side
with similar motion, Is is always changing through frames.
However, it ofter just changes in a certain extent. Thus we
further propose a method to refine the initialized STIG which
can better describe the trend of tracklet interaction.

For a given interaction during frames f = { f1, f2, . . . , fn},
it can be described as an edge ei,i+1 with weight wi,i+1 in
the initialized STIG. Its weight is updated by the following
formula:

wi,i+1 =
�

0, max(Is) − min(Is) < Ith

wi,i+1, otherwi se
(23)

where Ith represents the maximum degree that IoU can shift
during a stabilization process. Ith is set to 0.5 in this paper.

Since the weights of the STIG are updated, there are
adjacent edges such as ei,i+1, ei+1,i+2, …, e j−1, j with weights
of 0. These edges are merged into a new edge as ei, j and
remove the corresponding vertices except vi and v j . Therefore,
the refined STIG is constructed to describe the interaction of
pairwise tracklets as shown in Fig.3

D. STIG for Hypothesis Testing

In Sec.III-B.2, three different types of binary hypothesis
for tracklets are introduced. Since STIG describes the spatio-
temporal interaction of pairwise tracklets, it can test hypothe-
ses among tracklets.

For give pairwise tracklets ti and t j , we find the polynomial
fitting Fr0

poly by Alg.1 and construct a STIG graph G =
{V , E; W } to describe the interaction between them through
frames. According to G, the entire interaction process in
divided into several basic interaction patterns. If two targets
approach each other from a distance, the weight wi, j of the
corresponding edge in G is 1, representing that the value of
Fr0

poly is gradually increases from near-zero. If two targets are
moving away from each other, the weight of the corresponding
edge is −1 while Fr0

poly drops from a high level. If the weight
of the edge of the corresponding interaction is 0, it mean the
value of Fr0

poly does not change greatly and the two targets are
probably walking side-by-side.

If ti and t j have intersection in temporal domain, exclusion
hypothesis Hex and coexistence hypothesis Hco are con-
structed between them. Then, these hypothesis can be tested
and decided whether or not to accept according to G.

As defined in Eq.5, tracklets with exclusion hypothesis do
not have intersection in spatial domain. According to the
meaning of G, if all the weights in G is 0 and the value
of Fr0

poly is always equal to 0, it means that the pairwise
tracklets do not have spatial intersection. Formally, the exclu-
sion hypothesis Hex between ti and t j is accepted only if the
following statement is true.

∀wi,i+1 ∈ W, wi,i+1 = 0 ∧ Fr0
poly ≡ 0 (24)

According to the definition of Hco in Eq.6, pairwise tracklets
with coexistence hypothesis Hco have intersection in both tem-
poral and spatial domains. Corresponding to G, the value of
Fr0

poly is always positive. Formally, the coexistence hypothesis
Hco is accepted only if the following statement is true.

min(Fr0
poly) > 0 (25)

Another binary hypothesis is inclusion hypothesis Hin .
Different from Hex and Hco, pairwise tracklets with inclusion
hypothesis Hin do not have intersection in temporal domain.
A typical example is that a pedestrian is occluded by another
one in a certain period, so its tracklets are visible only before
and after the occlusion. This common phenomenon can be
described by STIG. For a given target with two separated
tracklets ti and t j , where ti is ahead of t j in time, another target
that occludes it is defined as tracklet tk . Inclusion hypothesis
Hin for ti and t j is constructed and tested by STIG. Let
Gi,k = {V1, E1; W1} describe interaction between ti and tk ,
and G j,k = {V2, E2; W2} represent t j and tk . If the last edge
en−1,n in Gi,k shows an aggregation process while the first
edge e1,2 in G j,k describes abruption, tk is regarded as an
occlusion. Formally, the inclusion hypothesis Hin of ti and t j

is accepted only if the following statement is true.

wn−1,n ∈ W1, wn−1,n = 1 ∧ w1,2 ∈ W2, w1,2 = −1 (26)

Therefore, three different types of binary hypotheses for
pairwise tracklets can be tested through STIG and the poly-
nomial fitting.
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Fig. 5. Illustration of network flow tracking. A trajectory is start with a green
line and end with an orange line. Red lines represent detections in different
frames while the blue lines link detections in adjacent frames.

V. HTBT APPLICATION WITH STIG

In this section, the traditional formulation of tracking with
network flow framework is introduced. Then, we analyze the
shortcoming of the traditional network flow in terms of data
association and propose a method to handle it with HTBT.

A. Network Flow Tracking

Network flow tracking simultaneously estimates the trajec-
tories based on the tracking-by-detection paradigm. The input
of the algorithm mainly includes two aspects. One is the
observation information of the target to be tracked in the video,
which is typically obtained by the target detection algorithm.
The other is the similarity information among detections,
which can be obtained via various methods, such as optical
flow [35], appearance model [12], motion model [20], etc.

Therefore, tracking multiple targets can be converted into
a data association problem and formulated as a maximum a
posteriori (MAP) problem. The maximum posterior probability
includes the detection cost and the linking cost between detec-
tions in adjacent frames. In addition, to ensure the validity of
the tracking results, the results should correspond to the actual
target trajectory. The network flow can be defined as a graph
G = {V , E1, E2; W }, then MAP can be formulated as the
following integer programming problem:

arg max
xi

E =
�
xi∈V

wi j xi x j (27)

s.t . ∀ei j ∈ E1, xi = x j , (28)

xi = 0 or 1 (29)

where E1 is the set of edges linking pairwise nodes to describe
a detection and E2 represents association between detections
in adjacent frames. Each edge ei j in E1 links a pairwise
nodes (xi , x j ) to represent a detection, so its corresponding
weight wi j is defined as the confidence of the detection. Each
edge ei j in E2 links nodes in adjacent frames to describe the
association between targets, its weight wi j is defined by the
similarity between detections. In addition, the value of each

node xi = 1 if the corresponding detection is used in the
trajectory. Otherwise, xi = 0 to represent a false detection.

Therefore, a set of trajectories that satisfies the conditions
has an energy according to Eq.30, so the tracking task is
converted to find an optimal solution with the maximum
energy.

In summary, network flow tracking converts the data asso-
ciation problem into a MAP problem and set flow constraints
to ensure that the network flow solution corresponds to the
correct tracking results. Only association between targets in
adjacent frames are considered while the potential associa-
tions across frames are ignored. To exploit more possible
associations, we integrate HTBT into the network flow as a
new framework. In our framework, more potential associations
are built by constructing various kinds of hypotheses between
tracklets. Then, these additional hypotheses are tested by STIG
model for tracklet association refinement. The whole process is
performed iteratively during network flow tracking, as shown
in Fig.5.1. In this way, the tracking results are obtained by
finding the optimal solution of the network flow.

Our network flow tracking is based on tracklets instead of
discrete detections that are used in traditional network flow.
We separate the entire video into a series of windows with
fixed frames. In this paper, we set the size of the window to
5 frames as same as our baseline method TEM [10]. Then
each node xi in the network flow G represents a tracklet.
In addition, ei j in E1 represents a tracklet and ei j in E2 links
tracklets in adjacent windows.

B. Robust Tracklet Association With HTBT

The main drawback of the traditional network flow method
is that it cannot represent the relationship between detections
with large gap in spatial or temporal domain. As a result, lots
of potential associations are ignored which makes it difficult to
describe complex relationship between targets. To handle this
defect, we further exploit the association between targets in the
network flow by constructing and testing possible hypotheses.

Considering the structure of the network flow framework,
E2 in G is extended with edges linking tracklets in the same
window and across windows as hypothesis terms. Therefore,
the objective energy function with hypothesis testing term hi j

can be defined as follows:
arg max

xi
E =

�
xi∈V

wi j hi j xi x j (30)

s.t . ∀ei j ∈ E1, xi = x j (31)

xi = 0 or 1 (32)

hi j = 0 or 1 (33)

where hi j represents the hypothesis between tracklets ti and
t j . Hypothesis term hi j is 1 if the corresponding hypothesis is
accepted, otherwise it equals 0. Hypothesis hi j for edge in E1
represents unary hypothesis while hi j for edge in E2 describes
the binary hypothesis between tracklets. Unary hypothesis is
tested by Eq.3 and binary hypothesis can be tested by the
method in Sec.IV-D.

These additional hypothesis terms can model more
relationship between tracklets than traditional network flow
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Fig. 6. The framework of hypothesis-testing based tracking (HTBT) with network flow. Each iteration consists of two main steps, including robust tracklet
association based on hypothesis construction and enhanced tracklet refinement with hypothesis testing.

framework. Tracklets are linked not only in adjacent windows,
but pairwise tracklets across windows are also associated by
the hypothesis terms. By integrating with HTBT, the ability
of traditional network flow framework in representing more
complicated relationship between targets is improved.

C. Enhanced Tracklet Refinement With HTBT

Since the potential association among tracklets are described
with hypothesis terms, we further discuss the weight of these
additional edges. For a given edge ei j , if it belongs to E1,
its weight wi j represents the confidence of the corresponding
tracklet and unary hypothesis, which can be defined as follows:

wi j = wc + wH1 (34)

wH1 = ave(
|hi j − ˜hi j |

˜hi j
) (35)

where wc is the average confidence of detections in the tracklet
and wh1 is the average of the relative error between the height
of the detection hi j and the predicted height ˜hi j calculated by
M(x, y) in Eq.3. wH1 describes the confidence of accepting
the corresponding unary hypothesis.

If edge ei j belongs to E2 linking tracklets ti and t j ,
the corresponding weight wi j represents the similarity between
tracklets and the cost of the binary hypothesis. The binary
hypothesis is categorized into three types in Sec.III-B, includ-
ing inclusion, exclusion and coexistence. According to the
definition of the binary hypothesis, different binary hypotheses
are not compatible with each other, so there is at most one
binary hypothesis between a pairwise tracklet. Therefore, dif-
ferent weight for the corresponding binary hypothesis H2(i, j)
can be defined respectively as follows:

wi j = wa + wH2 (36)

wa = ave(cos(ai , a j )) (37)

wH2 =

⎧⎪⎨
⎪⎩

wH2 = e−ave(di j ), H2(i, j) ⊂ Hin

wH2 = 0, H2(i, j) ⊂ Hex

wH2 = −ave(Is), H2(i, j) ⊂ Hco

(38)

where cos(ai , a j ) is the cosine distance between the appear-
ance features of ti and t j and the similarity is defined as
the average cosine distance. ave(di j ) is the average dis-
tance between detections in ti and t j . The weight wH2 for

binary hypothesis has different definition according to its
type. If H2(i, j) belongs to inclusion hypothesis, it means
the pairwise tracklet is likely to be of the same target.
Thus wH2 encourages two tracklets to be linked. In contrast,
if H2(i, j) belongs to coexistence hypothesis, ti and t j have
high probability to represent different target. wH2 is set as a
penalty to discourage them from being linked, where wH2 is
a non-positive value.

VI. EXPERIMENTS

Platform: HTBT tracking in this paper is implemented
through MATLAB 2019b and the parallel optimization by the
GPU toolbox is used as well. The configuration of our hard-
ware platform consists of i7-9700K, GeForce RTX 2080 and
32GB DDR4 RAM.

Dataset: Our method is tested on both MOT16 [26],
MOT17 and MOT20 [14] benchmarks. MOTChallenge bench-
marks have been widely used for fair comparison in recent
years, which contain video sequences in various unconstrained
environments. There are 7 training sequences and 7 test
sequences with 11235 frames in the MOT16 benchmark and
21 training sequences and 21 test sequences with 33705 frames
in the MOT17 benchmark. MOT20 is the latest benchmark
for multi-object tracking which contains 4 training and 4 test
sequences with 6811 frames. It is the most difficult challenge
for MOT at present with density over 100 per frame. Sec.VI-A
presents the results of hypothesis testing for tracklet associa-
tion on MOT16 training dataset, which are used to evaluate the
performance of HTBT. Sec.VI-B evaluates the performance
of our proposed STIG model. Sec.VI-C presents the results
on the training sequences to evaluate tracking performance
of network flow with HTBT. Sec.VI-D shows the comparison
results of our method with other state-of-the-art trackers. For
fair comparison, we use the public detections provided by the
benchmark as the inputs of our methods.

Evaluation Metrics: We use the standard CLEAR MOT
metrics [4] to evaluate the tracking performance. MOTA↑
(multiple object tracking accuracy) combines three types of
errors: FP↓ (false positives), FN↓ (false negatives), IDs↓
(identity switches) and Hz↑ (computational speed). MOTP↑
(multiple object tracking precision) is the precision of the
output trajectories relative to the ground truth. IDF1 [30] is the
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Fig. 7. Results without and with hypothesis testing. Arrows represent the trajectories of targets. (a) On the left, it is the result without unary hypothesis and
the result with unary hypothesis testing on the right. (b) On the left, it is the result without binary inclusion hypothesis and the result with binary inclusion
hypothesis on the right. (c) On the left, it is the result without the binary exclusion hypothesis and results with binary exclusion hypothesis on the right.
(d) On the left, it is the result without the N-ary hypothesis and results with N-ary hypothesis on the right.

ratio of correctly identified detections to the average number
of ground truth and computed detections. MT↑ (the number
of mostly tracked trajectories), ML↓ (the number of mostly
lost trajectories), and FM↓ (track fragmentations) are also
reported. MOTA is mainly used to compare trackers. However,
MOTA does not properly account for identity switches [24],
[41]. Unlike MOTA, IDF1 penalizes switches over the whole
trajectory in which fragments are assigned the wrong identity
[30], [32]. Therefore, MOTA and IDF1 are reported in our
results. The indicator ↑ denotes the higher the better while ↓
denotes the lower the better.

A. Hypothesis Testing for Tracklet Interaction

In this subsection, we analyze the effectiveness of the
hypothesis testing in HTBT qualitatively. Since the hypoth-
esis are used to revise the tracklet association in tracking,
the number of tracklets with different interaction is counted
manually in the baseline method [10] on MOT16 training
dataset, including unary hypothesis, binary hypothesis and
N-ary hypothesis. In addition, the number of the revised
tracklets with HTBT method is listed in Tab.I. The percentage
of the revised tracklets can reflect the effectiveness of HTBT
in revising tracklet association.

First, we present the results of revising tracklets with
unary hypothesis. Unary hypothesis is constructed to find
false detections. As demonstrated in Fig.7(a), there are false
tracklets with abnormal height in the scene. Through our
unary hypothesis construction and testing, we discover false
detections according to the height normalization method. More
than 50% of the false tracklets with unary relationship are

revised in HTBT compared with the baseline. It shows the
effectiveness of unary hypothesis testing on revising tracklets.

Then, we present the results of the binary hypothesis testing
for tracklets with inclusion relationship. Inclusion hypothesis
describes mutual inclusion relationship between interactive
tracklets. As shown in the left of Fig.7(b), tracklet (ID: 48)
without inclusion hypothesis testing leads to fragmentation
and identity switches problems. Through binary hypothesis
testing, we construct binary hypothesis between potential
pairwise tracklets with inclusion relationship. Therefore,
in Tab.I, near 70% of the false tracklets are found and
revised in HTBT, which shows the effectiveness of the binary
inclusion hypothesis.

The results of binary exclusion hypothesis are also pre-
sented in the table. Exclusion hypothesis represents exclusion
relationship between tracklets. As shown in Fig.7(c), there
are false overlapping trajectories (ID: 63 and 66) without
constructing exclusion hypothesis. We are able to avoid this
kind of false trajectories with exclusion hypothesis testing.
In Tab.I, 63.3% of these false tracklets are revised. The high
percentage shows the performance of the exclusion hypothesis
testing in HTBT.

N-ary relationship is a kind of complex relationship among
targets with various forms. We show a typical N-ary rela-
tionship in the left of Fig.7(d). Tracklet (ID: 61) is occluded
by two pedestrian (ID: 14 and 29) which leads to trajectory
fragmentation and identity switches. Through constructing
N-ary hypothesis among targets, we generate the complete
trajectory (ID: 86) without fragmentation in the right of
Fig.7(d). According to Tab.I, a total of 71 false tracklets with
N-ary relationship are revised, near 60% of the false tracklet
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TABLE I

RESULTS OF HYPOTHESIS TESTING FOR TRACKLET INTERACTION IN MOT16 TRAINING

TABLE II

RESULTS ON MOT16 TRAINING DATASET

TABLE III

RESULTS ON MOT17 TRAINING DATASET

in the baseline method. It proves that N-ary hypothesis testing
performs expectably in handling relationship among multiple
tracklets.

B. Spatio-Temporal Interaction Modeling

In Sec.IV, we propose a STIG model to formulate various
interaction between tracklets which is used for binary hypoth-
esis testing. In this section, we set comparison experiments to
test the performance of our spatio-temporal interaction mod-
eling approach. In Tab.II and Tab.III, we show the results of
the baseline method, baseline with unary hypothesis, baseline
with binary hypothesis and HTBT tracking which integrated
with both unary and binary hypothesis. With unary hypothesis
testing, our method achieve higher MOTA and IDF1 by
reducing the number of the FP and IDs. By integrating binary
hypothesis testing into the baseline, we achieve a higher score
on MOTA and IDF1. Then, we test HTBT tracking with both
unary and binary hypothesis testing and get the best results
on both MOT16 and MOT17 training datasets. By compare
the tracking performance of baseline with and without HTBT,
almost all of the evaluation metrics are better with HTBT,
especially on identity switches. It proves that HTBT can
substantially improve the overall tracking performance.

This comparison experiment indicates that binary hypothesis
has better performance on enhancing tracklet association than
only using unary hypothesis. In addition, the results show that
binary hypothesis works together with unary hypothesis.

C. Framework Verification

Our HTBT framework with STIG modeling is an iterative
process with energy minimization, as discussed in Sec.IV.
When the number of trajectories is greater than that in the

previous iteration, we terminate the iteration and take the
previous results as the final trajectories.

Experimental results have demonstrated that this strategy is
effective on most sequences, e.g., MOT17-02-DPM. During
the process of iteration, the changes in the numbers of trajec-
tories, ID switches and MOTA on MOT17-02-DPM sequences
are presented in Fig.6.2. The number of trajectories decreases
with the process of iteration because additional tracklets are
linked into longer trajectories in each iteration. As a result,
MOTA and IDF1 are improved and remain steady as the
number of iterations increases. These metrics change in the
same way on the other sequences in the MOT17 dataset.

In addition, we analyze the computational efficiency of our
method. As shown in the last column in TabII and Tab.III,
the baseline method shows absolute speed advantage compared
with HTBT. It can process more than 20 frames per sec-
ond. However, our method integrates HTBT into the network
flow but can still maintain a processing speed of 10 frames
per second, which is much higher than lots of other offline
tracking methods. Since our implementation of HTBT is
based on MATLAB, which suffers from low efficiency on
memory management, there is still much room to improve
the efficiency.

D. Benchmark Comparison

Finally, we evaluate HTBT tracker on the MOT16 and
MOT17 benchmarks. The comparison of our method with
other state-of-the-art trackers is presented in Tab.IV and
Tab.V.

Tab.IV presents the results on the MOT16 benchmark. Our
method gets competitive score on two aggregative metrics
including MOTA and IDF1. Our tracker takes the first place
on MOTA by 50.3 and the second highest score on IDF1 by
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Fig. 8. The number of trajectories, MOTA and IDF1 during the iterative process on the MOT17-02-DPM sequence. With the gradual stabilization of the
number of trajectories, MOTA and IDF1 grow higher and tend to be more stable.

TABLE IV

RESULTS ON MOT CHALLENGE 2016 BENCHMARK (2020.4)

TABLE V

RESULTS ON MOT CHALLENGE 2017 BENCHMARK (2020.4)

TABLE VI

RESULTS ON CVPR CHALLENGE 2019 AND MOT20 BENCHMARK (2020.4)

55.0. On most other metrics, our method performs comparably
to other popular trackers.

On the more recent MOT17 benchmark, our results are
presented in Tab.V. We gets the second highest score on
both MOTA and IDF1, by 52.3 and 54.5 respectively. Due to
constructing various hypothesis between targets, we are able to
generate more complete trajectories. It is shown in the results
that our method outperforms most of the others in terms of
identity switches and fragmentations. TEM [10] is the baseline
method which is based on network flow as well. Compared
with it, our method shows substantial improvements on almost
all metrics. Considering the high computational efficiency of
the network flow, we are convinced that our method is practical
for applications requiring both quality and efficiency.

In addition, we have conducted a comparison experiment
on the latest MOT20 benchmark which is the most diffi-
cult dataset for MOT at present. Since the submission of
MOT20 has just been opened, there are few methods that can
be compared. However, MOT20 is almost the same dataset
as CVPR Challenge 2019 (submission closed), expect that
public detections are slightly different. Therefore, we eval-
uate our method on MOT20 and compare it with others
on CVPR19 in Tab.VI. Our method takes the second place
on MOTA by 48.9 while achieves the best performance on
IDF1, MT, ML, FN, IDs and FM. Especially on IDF1 and
IDs, HTBT tracker is obviously much better than others
which shows that our method generates more complete
trajectories.
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VII. CONCLUSION

This paper proposes a hypothesis-testing based tracking
(HTBT) method to construct and test hypothesis of track-
lets association. It improves the performance and robustness
of association for tracking in crowded scenes. According
to the different features of interaction between trajectories,
spatio-temporal interaction graph (STIG) model is proposed
to describe the basic patterns of the interaction. By using
STIG as the basis of hypothesis testing in HTBT, various
association relationships between tracklets are built. Then,
HTBT is integrated into traditional network flow framework
to solve tracking as a MAP problem. The experimental results
show that our method accurately describes various relationship
between trajectories and improves the association between
tracklets as well. Experimental results show that HTBT has
great improvement compared with traditional network flow
method. Our method achieves much better tracking perfor-
mance and maintains the advantages of network flow method
in computational efficiency at the same time. On the pub-
lic MOT16, MOT17 and MOT20 benchmark, our method
achieves competitive results compared with other state-of-the-
art trackers.
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