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Visual Haze Removal by a Unified Generative
Adversarial Network
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Abstract— Existence of haze significantly degrades visual
quality and hence negatively affects the performance of visual
surveillance, video analysis, and human–machine interaction.
To remove haze from a visual signal, in this paper, we propose
a generative adversarial network for visual haze removal called
HRGAN. HRGAN consists of a generator network and a discrim-
inator network. A unified network jointly estimating transmission
maps, atmospheric light, and haze-free images (called UNTA) is
proposed as the generator network of HRGAN. Instead of being
optimized by minimizing the pixel-wise loss, HRGAN is optimized
by minimizing a novel loss function consisting of pixel-wise loss,
perceptual loss, and adversarial loss produced by a discrimina-
tor network. Classical model-based image dehazing algorithms
consist of three separate stages: 1) estimating transmission
map; 2) estimating atmospheric light; and 3) restoring haze-free
image by using an atmospheric scattering model to process the
transmission map and atmospheric light. Such a separate scheme
is not guaranteed to achieve optimal results. On the contrary,
UNTA performs transmission map estimation and atmospheric
light estimation simultaneously to obtain joint optimal solutions.
The experimental results on both synthetic and real-world image
databases demonstrate that HRGAN outperforms the state-of-
the-art algorithms in terms of both effectiveness and efficiency.

Index Terms— Dehazing, visual quality improvement, genera-
tive adversarial network, convolutional neural network.

I. INTRODUCTION

SEVERE weather conditions (e.g., fog, haze, and smoke)
would significantly compromise the quality of the images

acquired by the cameras. The performance of a lot of computer
vision algorithms (e.g., tracking [1], object detection [2], and
classification) would be adversely affected by the low-quality
images [3]–[6]. So it has a great significance to study how to
restore hazy images.

A large number of image dehazing methods have been
brought forward [7]–[14]. According to whether or not to
utilize physical models, these methods can be divided into
two categories. One is model-based method, and the other

Manuscript received July 16, 2018; revised October 4, 2018; accepted
October 31, 2018. Date of publication November 9, 2018; date of current
version October 29, 2019. This work was supported in part by the National
Natural Science Foundation of China under Grant 61632081, Grant 61871470,
and Grant 61503274 and in part by Nokia. This paper was recommended by
Associate Editor H. Li. (Corresponding author: Xuelong Li.)

Y. Pang and J. Xie are with the School of Electrical and Information Engi-
neering, Tianjin University, Tianjin 300072, China (e-mail: pyw@tju.edu.cn;
jinxie@tju.edu.cn).

X. Li is with the School of Computer Science and Center for OPTical
IMagery Analysis and Learning, Northwestern Polytechnical University, Xi’an
710072, China (e-mail: li@nwpu.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2018.2880223

is model-free method (e.g., IMDM [3]). The model-based
method is a mathematical inversion process of restoring
the haze-free image with the unknown factors (i.e. the
transmission map and the atmospheric light). Because the
physical-based analytical models can describe the composi-
tion of hazy images, the model-based dehazing methods can
achieve state-of-art performance.

Although many model-based image dehazing methods have
been proposed, most of these methods estimate the trans-
mission map and the atmospheric light separately. Obviously,
the separate manner cannot guarantee that final solutions are
joint optimal solutions.

Recently, several Convolutional Neural Networks(CNN)-
based image dehazing methods have been brought
out [15], [16]. In these methods, CNN [17] is used to estimate
the transmission map first, then traditional method is applied
to estimate the atmospheric light, finally the transmission
map and the atmospheric light are used to restore haze-free
images via atmospheric scattering model [18]. Although
these methods have made significant progresses, in fact,
the transmission map and the atmospheric light are still
estimated separately. Therefore, the aforementioned problem
is not solved in these CNN-based methods.

In order to overcome aforementioned drawback, we propose
a unified network which jointly estimates transmission map,
atmospheric light, and the haze-free image called UNTA. That
is, UNTA can obtain joint optimal solutions.

The optimization of traditional CNN-based image dehazing
algorithms is to minimize the mean squared error (MSE)
between the restored haze-free image and ground-truth images.
The pixel-wise image difference can be decreased by decreas-
ing the MSE. However, the less pixel-wise image difference
cannot present better perceptual dehazed result. Instead of
MSE, in this paper, we utilize a more effective loss which
consists of pixel-wise loss (e.g., MSE), perceptual loss, and
adversarial loss. The perceptual loss is the difference between
the high-level features of restored haze-free image and ground-
truth image. By minimizing perceptual loss, perceptual rele-
vant differences of dehazed results can be decreased. In this
paper, we propose a novel Generative Adversarial Network
(GAN)-based framework for image haze removal (called
HRGAN). Sample results of the proposed HRGAN are shown
in Fig. 1. Similar to previous GAN, our network consists
of two networks: a generator network and a discriminator
network. The adversarial loss is produced by discriminator
network. The adversarial loss pushes restored haze-free image
to the realistic haze-free image.
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Fig. 1. Sample results of HRGAN. Top: the input hazy image. Bottom: the
dehazed image.

Fig. 2. Visual comparison between direct regression model and our proposed
HRGAN. Left: input hazy image. Middle: dehazed result of direct regression
model. Right: dehazed result of HRGAN.

The generator network of previous GAN-based image
processing method [19] directly generates resulting images
from input images. However, the direct regression model is
not suitable for image dehazing. In this paper, we choose
UNTA as generator network. As shown in Figure 2, this
direct regression model may lead to serious color distortion.
By contrast, HRGAN based on UNTA can generate visually
appealing haze-free images. The main reason is that UNTA is
based on the atmospheric scatting model. As described above,
atmospheric scatting model can reveal physical characteristics
of hazy images.

Li et al. [20] proposed a CNN-based framework which
could directly generate haze-free image (referred to as
AOD-Net). In their method, the transmission map and
atmospheric light are unified into one variate, and CNN
is used to solve this variate. Although their method has
made great progress, the MSE is the only one loss in their
method. As previously mentioned, the network trained by
pixel-wise loss could lack high-frequency details of resulting
haze-free images. Compared with our method, pixel-wise loss,
perceptual loss, and adversarial loss are utilized to produce
superior visual haze-free image. In addition, the running time
of HRGAN is less than half of AOD-Net.

The novelty, contribution, and characteristic of the proposed
method are as follows.

(1) We propose HRGAN which is a GAN-based image haze
removal network. Compared with previous CNN-based
method, HRGAN is optimized by an effective loss
consisting of pixel-wise loss, perceptual loss calculated
on feature maps of the VGG16 network [21], and adver-
sarial loss produced by discriminator network.

(2) UNTA which can simultaneously estimate transmission
map and atmospheric light is proposed as the gen-
erator network of HRGAN. Compared with previous
model-based image dehazing methods, the UNTA has
the capacity to obtain joint optimal solutions.

(3) HRGAN cannot only produce superior visual haze-free
images but also be implemented very efficiently.

The rest of the paper is organized as follows. The related
work are described in Section II. The proposed method is pre-
sented in III. Experimental results are presented in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we briefly review the literature for existing
model-based image dehazing methods and Generative Adver-
sarial Networks (GAN).

A. Single Image Dehazing

The model-based image dehazing methods are based on the
atmospheric scattering model [18], [22], [23] which assumes
that a hazy image I is composed of direct attenuations ID

and airlight IA , respectively. Specifically, the atmospheric
scattering model can be written as

I (x, y) = ID(x, y) + IA(x, y)

= J (x, y)t (x, y) + A(1 − t (x, y)) (1)

where I (x, y) is the observed hazy image, J (x, y) is the
corresponding haze-free image, A represents the atmospheric
light, t (x, y) is the transmission map, and (x, y) is the position
of the image.

When the atmosphere is homogeneous, the transmission
map t (x, y) can be described as

t (x, y) = e−βd(x,y) (2)

where d(x, y) indicates the distance between the camera and
the scene, and β represents the scattering coefficient of the
atmosphere.

The model-based image dehazing method can be divided
into handcrafted-feature-based method and CNN-based
method.

The handcrafted-feature-based image dehazing methods
are based on handcrafted-features. Generally speaking, these
methods estimate the transmission map by hand-crafted fea-
tures followed by estimating atmospheric light, finally restore
haze-free image by using transmission map and atmospheric
light via atmospheric scattering model. The main difference
of these methods is the way to estimate transmission maps.
For instance, He et al. [24] proposed a valid method based
on dark channel prior (DCP) to estimate transmission maps.
Meng et al. [25] presented a regularization method to esti-
mate transmission maps by exploring the inherent boundary
constraint. Tang et al. [26] proposed a learning-based method
which uses the random forest [27] to learn the correlation
between the transmission maps and four types of handcrafted
features (i.e. multi-scale dark channel [24], multi-scale local
max contrast [28], hue disparity [29], and multi-scale local



PANG et al.: VISUAL HAZE REMOVAL BY A UNIFIED GENERATIVE ADVERSARIAL NETWORK 3213

Fig. 3. The architecture of HRGAN. Top: Generator network. Bottom: Discriminator network.

max saturation). Zhu et al. [30] proposed to create a linear
model based on a color attenuation prior for the depth map
of the hazy image. In addition, Berman et al. [31] presented
a non-local method based on the haze-line prior to estimate
transmission maps.

Because of the great capacity of extracting features,
CNN-based methods have received a lot of attention. The
CNN-based methods can be divided into two categories.
In the first category [15], [16], CNN is used to learn the
mapping between hazy images and their corresponding trans-
mission maps. Subsequently, the transmission maps and the
atmospheric light estimated by traditional method are used
to recover haze-free image via atmospheric scatting model.
In another category [20], taking a hazy image as input, CNN
could output a hazy-free image directly.

B. Generative Adversarial Networks

Goodfellow et al. [32] proposed Generative Adversarial
Network (GAN). A typical GAN consists of two parts: a

generator network and a discriminator network. The purpose of
the generator network is to generate images which are used to
make a fool of discriminator network, and the goal of the dis-
criminator network is to distinguish the generating haze-free
images from realistic haze-free images. Conditional Generative
Adversarial Network (CGAN) is proposed by Mirza and
Osindero [33]. The additional conditional information is added
into traditional GAN, which makes the generator generate
more effective results. GAN recently becomes one of the
focus in the computer vision, and is applied in numerous
tasks such as image super-resolution [19], image-to-image
translation [34], text-to-image translation [35], and image in-
painting [36].

III. PROPOSED METHOD

A. Network Architecture

The architecture of the proposed HRGAN is illustrated
in Figure 3. The network consists of two networks: a generator
network and a discriminator network.
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Fig. 4. The architecture of transmission maps module.

1) Generator Network Architecture: The generator network
aims to generate hazy-free image. The generator network
takes the hazy image as input, and produces hazy-free image.
As shown in the top part of Figure 3, the generator net-
work consists of three components: transmission map module,
atmospheric light module, and processing module.

a) Transmission map module: The task of the trans-
mission map module is to estimate transmission maps. The
architecture of transmission map module is illustrated in
Figure 4. The dilated convolution [37] achieves great success
in semantic segmentation [38]. Inspired by the success, three
parallel dilated convolutional layers with different dilated
factors are used to extract multi-scale features. It is known that
different dilation factor can extract different scales of features.
With dilated factors being 1, 2, and 3, the 3 parallel branches
of transmission map architecture can extract features of small-
scale, middle-scale, and large-scale, respectively. The features
extracted for each dilated factor are processed in separate
branches and fused to generate the final result. As the same
as the method proposed by Ren et al. [16], pooling layers and
up-sampling layers are used after each convolutional layers.
The down-sampling factor of the pooling layer is 2. The
up-sampling factor of the up-sampling layers is 2. In the
last convolutional layers, the 1 × 1 convolutional filter is
utilized to perform a linear transformation of the multi-scale
feature maps produced by multi-branch dilated convolution.
Compared with traditional convolutional filter, the network
parameters of dilated convolutional filter is much fewer. For
example, the receptive field of traditional 7 × 7 convolutional
filter is 7×7. In contrast, 3×3 dilated convolutional filter with
dilated factors 3 has the same receptive field. The parameter
number of each traditional convolution filter is 49. By com-
parison, the parameter number of each dilated convolutional
filter is only 9.

b) Atmospheric light module: Atmospheric light module
aims to estimate atmospheric light A in Eq.(1). As shown

Fig. 5. The architecture of atmospheric light module.

in Fig. 5, the atmospheric light module consists of one
convolutional layer, one sigmoid activation layer, and one
pooling layer. W and H are the dimensions of the input image.
The size of convolutional filters is h×w, the convolution stride
is fixed to 1 pixel, and the padding is 0 pixel. Max-pooling is
performed over a (W − (w − 1)) × (H − (h − 1)) window.

c) Processing module: From Eq.(1), the haze-free image
J (x, y) can be formulated as

J (x, y) = I (x, y) − A(1 − t (x, y))

t (x, y)
. (3)

The transmission map module and the atmospheric light mod-
ule produce the transmission map t (x, y) and the atmospheric
light A, respectively. The purpose of processing module is
to combine the transmission map t (x, y), the atmospheric
light A, and the hazy image I (x, y) to restore haze-free image
J (x, y) from Eq. (3).

2) Discriminator Network Architecture: The discriminator
network is utilized to distinguish generated haze-free images
from realistic images. On the contrary, the generator network
is utilized to fool the discriminator network. Following the
structure proposed in [32], in this paper, the generator network
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and discriminator network are alternately updated by solving
the min-max problem:

min
G

max
D

EJreal∼ptrain (Jreal )[log D(Jreal )]
+ EI∼pG (I )[log(1 − D(G(I ))] (4)

where I represents input hazy image, Jreal is realistic hazy-
free image, G(•) represents generator network, and D(•) is
discriminator network.

The architecture of discriminator network is shown in the
bottom part of Figure 3. It consists of five convolutional layers
with 3×3 convolutional filters, LeakyRELU activation layers,
batch normalization layers [39], two fully connection layer
and sigmoid activation layer. The number of output channels
of the five convolutional layers is 64, 64, 128, 256, and 256,
respectively. The five convolutional layers are followed by two
fully connection layers: the first has 512 channels, the second
performs 2-way classification and thus contains 2 channels
(one for realistic haze-free image, the other for generated
haze-free image).

B. Loss Function

Pixel-wise Euclidean loss, adversarial loss, and perceptual
loss are utilized to form the loss function. The loss function L
is formulated as

L = L E + λA L A + λP L P (5)

where L E is pixel-wise euclidean loss, L A is adversarial
loss which is from the discriminator network, L P represents
perceptual loss, and λA and λP are respectively the weights
of adversarial loss and perceptual loss.

1) Euclidean Loss: The pixel-wise euclidean loss is com-
posed of two components, one is the euclidean distance
between the generated haze-free images and its correspond-
ing ground-truth images, the other is the euclidean distance
between the estimated transmission maps and its correspond-
ing ground-truth transmission maps.

The pixel-wise euclidean loss is calculated as:

L E = L J + λt Lt

= 1

CW H

C∑

c=1

W∑

x=1

H∑

y=1

(G(I )c,x,y − Jc,x,y)
2

+ λt
1

W H

W∑

x=1

H∑

y=1

(Gt (I )x,y − tx,y)
2 (6)

where I is the input hazy image, L J represents the loss of the
haze-free image, Lt represents the loss of the transmission
map, and λt is the weights of Lt . C , W , and H are the
dimensions of the input image. c, x , and y are the location
of the input image. And the function G(•) and Gt (•) is
to generate the haze-free image and the transmission map,
respectively.

2) Adversarial Loss: The task of adversarial loss is to
make haze-free images produced by generator network much
closer to realistic haze-free images. When training generator
network, the min-max problem (4) is reduced to minimize
log(1 − D(G(I ))). At the beginning of the training stage,

log(1 − D(G(I ))) could saturate [32]. Because log(D(G(I )))
can provide stronger gradients during training stage, we max-
imize log(D(G(I ))) to train generator network instead of
training generator network to minimize log(1−D(G(I ))). The
adversarial loss L A would be minimized during training stage.
For N training images, L A can be defined as:

L A =
N∑

n=1

− log D(G(Ii )) (7)

where D(G(Ii )) is the probability that the dehazed
image G(Ii ) is a realistic haze-free image.

3) Perceptual Loss: Perceptual loss based on high-level fea-
tures extracted from pertained network is wildly used in image
super-resolution [40]. In addition, perceptual losses measure
image visual similarities more effectively than pixel-wise loss.
Inspired by this, in this paper, we define a perceptual loss
to increase perceptual similarities between restored haze-free
images and realistic images. The perceptual loss can be
written as:

L P = 1

C f W f H f

C f∑

c=1

W f∑

w=1

H f∑

y=1

(φ(J )c,x,y − φ(G(I ))c,x,y)
2

(8)

where C f , W f and H f are the dimensions of the respective
feature maps within the VGG-16 network [21] and the effect
of φ is to obtain the feature maps from the VGG-16 networks.

C. Optimization

We optimize the transmission map t (x, y) and atmospheric
light A using Stochastic Gradient Descent (SGD) with momen-
tum. The gradients of loss L with respect to transmission
map t (x, y) and atmospheric light A are computed respec-
tively as:

∂L

∂ t (x, y)
= ∂L

∂ J (x, y)

∂ J (x, y)

∂ t (x, y)

= ∂L

∂ J (x, y)

−I (x, y) + A

t2(x, y)
∂L

∂ t (x, y)
= ∂L

∂ J (x, y)

∂ J (x, y)

∂ A

= ∂L

∂ J (x, y)

1 − A

t (x, y)
(9)

where ∂L
∂ J (x,y) is calculated in the loss layer. The gradients

∂L
∂t (x,y) and ∂L

∂ A are passed down to the transmission map
module and atmospheric light module respectively to update
the network parameters with standard back-propagation.

IV. EXPRIMENTAL RESULTS

A. Datasets

We synthesize hazy image using haze-free image and its
corresponding depth map from the NYU2 Depth dataset [41].
For each image, the depth d(x, y) and scattering coef-
ficient β are used to calculate transmission map t (x, y)
using Eq. (2). Next, a haze-free image, the atmospheric
light A, and the transmission map t (x, y) are used to
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TABLE I

AVERAGE PSNR, SSIM, AND MSE OF HRGAN WITH DIFFERENT LOSS
FUNCTION ON INDOOR TEST SYNTHETIC HAZY DATASETS.

√
MEANS

THAT THE CORRESPONDING LOSS TERM IS USED

synthesize hazy image via the atmospheric scatting model
(i.e. Eq. (1)). The atmospheric light A is assumed to be
uniform globally. We set the atmospheric light A = [a, a, a],
where a ∈ [0.7, 1.0], and select the scattering coefficient
β ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}. One thousand haze-
free images are randomly chosen from the NYU2 Depth
dataset. For each hazy-free image, we create ten training
images by using randomly sampled scatting coefficient β
and atmospheric light A to synthesize hazy images. Finally,
we have 10000 training images.

We create an indoor test synthetic dataset containing 300
images which is generated by using images and its correspond-
ing depth maps from the Middlubury stereo dataset [42]–[44].
In addition, 500 outdoor synthetic hazy images from SOTS
dataset [45] are used as outdoor test synthetic dataset. All
these test images are not used in the training stage.

B. Experiment Settings

We train the networks on an NVIDIA TITANX GPU.
The proposed method is implemented using the MatConvNet
toolbox [46]. All the training images are resized to 320 ×
240. We set the parameters of batch-size, weight decay, and
momentum to 10, 0.001, and 0.9, respectively. The initial
learning rates of transmission map module and atmospheric
light module are 10−6 and 10−3, respectively. And the learning
rates of both modules decrease by factor of 10 after every
20 epochs. Training stage stops at 80 epochs. The parameters
are initialized as follows: λt = 1, λA = 102, and λP =
5 × 10−4. The kernel size h × w of convolutional layer in
atmospheric light module is set to be 15 ×15. As the same as
traditional GAN [32], the generator network and discriminator
network are alternately updated.

To quantitatively assess image dehazing methods, three
metrics are used to evaluate the performance on synthetic
images: Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity (SSIM) [47], and Mean Squared Errors (MSE). Because
there are no ground-truth images for real-world images,
the performance on real-world images is evaluated visually
and subjectivity.

C. Ablation Study

Table I shows the average PSNR, SSIM, and MSE of
HRGAN with the different loss function on indoor test syn-
thetic datasets.

√
means that the corresponding loss term

Fig. 6. The dehazed results of HRGAN with different loss function.

is used. L J is always used. Lal = 1
C

C∑
c=1

(Gal(I )c − Ac)
2 is

added into the Euclidean Loss L E = L J + λt Lt + λal Lal ,
where Lal represents the loss of atmospheric light A, λal is
the weights of Lal , and the function Gal(•) is to generate
the atmospheric light. There are the following observations
from Table I: (1) The transmission map euclidean loss Lt

is beneficial to the dehazed results. (2) By utilizing the
perceptual loss L P and the adversarial loss L A, the PSNR
and SSIM becomes higher and the MSE becomes lower. Thus,
we know that both the perceptual loss L P and the adversarial
loss L A can improve dehazed results. (3) The atmospheric
light loss Lal cannot improve the dehazed results. Because,
from Eq. 1, we know the atmospheric light can be solved
by the input hazy image, the output dehazed images, and the
transmission map. When we supervise the L J and Lt , Lal is
supervised implicitly.

The dehazed results with different loss function are shown
in Figure 6. It can be observed that the results without Lt

have significant color distortions. The reason is that there
is a strong correlation between transmission map module
and atmospheric light module. An inaccurate transmission
map estimation would lead to an inaccurate atmospheric light
estimation. An inaccurate atmospheric light estimation tends
to change the color of the dehazed result. By observing the
last three images in Figure 6, we can find that the effect of
L P and L A is to make the dehazed result visually appealing.

Table II shows the average PSNR and SSIM of HRGAN
with different number of parallel branches and different dilated
factors in the transmission maps module. From Table II,
we can easily find that compared with the module with five
parallel branches, three parallel branches has similar SSIM and
PSNR. However, the module with five parallel branches has
more number of parameters and longer running time. Com-
pared with the module with one parallel branch, the dehazed
performance of the module with three parallel branches is
much better. Thus, the module with three branches makes
a good balance of dehazed performance and speed. From
Table II, we can find that with the increase of dilated factors,
the dehazed results would become worse. The main reason is
that too large dilated factor would lead to block artifacts.
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Fig. 7. Comparison of different methods on test synthetic hazy images: First: Aloe. Second: Laundry. Third: Monopoly, Fourth: Buildings, Fifth: Road.
The first three hazy images are from indoor test synthetic hazy datasets, the last two hazy images are from outdoor test synthetic hazy datasets. (a) Synthetic
hazy images. (b) CAP [30]. (c) MSCNN [16]. (d) AOD-Net [20]. (e) HRGAN. (f) Ground-truth images. (Red rectangles in the top-right corner is the
zoom-in views.)

TABLE II

AVERAGE PSNR AND SSIM OF HRGAN WITH DIFFERENT NUMBER OF

PARALLEL BRANCHES AND DIFFERENT DILATED FACTORS IN THE
TRANSMISSION MAPS MODULE ON INDOOR TEST SYNTHETIC

HAZY DATASETS. THE NUMBER IN THE BRACKET IS THE

DILATED FACTORS. FOR EXAMPLE, (1, 2, 3) MEANS THE
MODULE CONSISTS OF THREE PARALLEL BRANCHES,

THE DILATED FACTORS OF PARALLEL

BRANCHES IS 1, 2, AND 3

Table III shows the average PSNR and SSIM of HRGAN
with different loss weights on indoor test synthetic hazy
datasets. From Table III, we can easily find that with increase
of λP , the value of PSNR and SSIM would be decrease. The
reasons is that instead of reducing the difference of the pixel-
level, the perceptual loss is used to reduce the difference of
high-frequency information. As we know, the effect of dis-
criminator network is to make the generated dehazed images
more similar to ground-truth. Therefore, with the increase λA,
the value of PSNR and SSIM is increase.

TABLE III

AVERAGE PSNR AND SSIM OF THE PROPOSED HRGAN WITH

DIFFERENT WEIGHTS OF LOSS FUNCTION ON INDOOR
TEST SYNTHETIC HAZY DATASETS

D. Quantitative Results on Synthetic Images

Table IV and Table V compares our proposed HRGAN with
DCP [24], BCCR [25], CAP [30], NLD [31], MSCNN [16],
AOD-Net [20] in terms of PSNR and SSIM on indoor test syn-
thetic hazy datasets and outdoor test synthetic hazy datasets,
respectively.

It can be observed from Table IV and Table V that our
proposed HRGAN rank first in terms of PSNR and SSIM on
both two datasets. As described in Section III, HRGAN is
optimized by an effective loss consisting of pixel-wise loss,
perceptual loss, and adversarial loss. By minimizing pixel-wise
loss, HRGAN can get high PSNR performance. The perceptual
loss and adversarial loss can make HRGAN get great SSIM.

Figure 7 shows the dehazed results produced by different
methods on test synthetic hazy datasets. Figure 7(a) presents
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TABLE IV

AVERAGE PSNR AND SSIM ON INDOOR TEST SYNTHETIC HAZY DATASETS

TABLE V

AVERAGE PSNR AND SSIM ON OUTDOOR TEST SYNTHETIC HAZY DATASETS

Fig. 8. PSNR of the dehazed images shown in Figure 7.

the hazy images which are from the test synthetic datasets.
Figure 7(b)-7(e) shows the results of CAP [30], MSCNN [16],
AOD-Net [20], and our proposed HRGAN, respectively.
Figure 7(f) gives the ground-truth images.

By observing the dehazed results in Figure 7(b), we can
find that the dehazed results generated by CAP have some
color distortions (e.g., the fourth and fifth line in Figure 7(b)).
We note that the dehazed results of MSCNN have
some remaining haze by observing the dehazed results
in Figure 7(c). We can find that the dehazed results of
AOD-Net have some remaining haze (e.g., the first and second
line in Figure 7(e)), and some color distortions (e.g., the sky
in the fourth and fifth images). In contrast, the dehazed results
of our proposed HRGAN in Figure 7(f) is more visually
appealing and closer to ground-truth haze-free images.

Figure 8 and Figure 9 show the PSNR and SSIM of the
dehazed results produced by different algorithms on the five
images in the Figure 7. It can be easily found that HRGAN
achieves the greatest PSNR and SSIM for all the five images.

In summary, our proposed HRGAN achieves the best per-
formance subjectively and objectively against the state-of-art
dehazing methods on both indoor and outdoor synthetic hazy
images.

E. Qualitative Results on Real-World Images

Figure 10 demonstrates the dehazed hazy-free images and
transmission maps restored by HRGAN. Because most of

Fig. 9. SSIM of the dehazed images shown in Figure 7.

Fig. 10. The dehazed results of HRGAN. Left: input hazy images. Middle:
the restored haze-free images. Right: the restored transmission maps. (Best
viewed in color).

the image haze removal algorithms can obtain nice visual
performance on general real-world images, it is difficult to
rank them. To demonstrate the superiority of our method,
we evaluate our proposed algorithm against the state-of-art
image haze removal algorithms (CAP [30], DehazeNet [15],
MSCNN [16], AOD-Net [20]) using five highly challenging
real-world image shown in Figure 11.
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Fig. 11. Comparison of different methods on real-world images. (a) The hazy images. (b) CAP [30]. (c) DehazeNet [15]. (d) MSCNN [16].
(e) AOD-Net [20]. (f) HRGAN. (Red rectangles are used to highlight the improvements obtained by HRGAN. Red rectangles in the top-right corner is
the zoom-in views).

The blind image quality assessment (BIQA) models can
be used to evaluate the performance of dehazed results of
real-world images [48]–[53]. However, the current image qual-
ity models are mainly designed for degraded images, so the
evaluation performance of dehazed results is unsatisfactory.
Therefore, the BIQA models are not used to evaluate the
dehazed results in our paper.

As shown in figure 11(b), CAP may blur image textures
(e.g., as shown in the fifth line of Figure 11(b), the details
of the mountain are lost). And shown in the fourth line
of Figure 11(b), the dehazed result is much darker than it
should be. DehazeNet produces undesirable results in regions
with heavy hazes (e.g., as shown in the second and fifth
line of Figure 11(c), there are remaining haze in the region
of distant mountains). As show in the second, third, and
fourth line of MSCNN, the dehazed results of MSCNN
have some remaining haze. In addition, as shown in the
fifth line of Figure 11(d), the colors of the sky region
are over saturated. The dehazed results of AOD-Net [20]
sometimes may result in color distortion (e.g., as illustrated
in the fifth line of Figure 11(e), the mountain region is
much darker than it should be). In addition, there are some
remaining haze in the third and fourth line of Figure 11(e)).
In contrast, the dehazed results of HRGAN (shown
in Figure 11(f)) achieve higher visual quality and less color
distortions.

CAP [30] is based on the handcrafted features. Because
handcrafted features are weak to perform image dehazing,
the dehazed results are not satisfactory. Compared with
handcrafted features, the features learned by CNN-based
method [15], [16] include more various kinds of information.
However, the effective features are only used to estimate
transmission maps instead of producing haze-free image. For
this reason, as stated in Section I, the dehazed results of
these two CNN-based methods are not optimal. Because the
AOD-Net optimize the network by minimizing only pixel-wise
loss, the dehazed results cannot achieve high visual quality.

F. Running Time

Efficiency is important for a computer vision
system [54], [55]. The running time comparison on CPUs with
DCP [24] (accelerated by the guided image filtering [56]),
BCCR [25], CAP [30], DehazeNet [15], MSCNN [16] and
our proposed HRGAN is shown in Table VI. All the methods
are implemented in MATLAB, on the same machine (Intel(R)
Core(TM) i7-4790 CPU @3.60GHz, and 16 GB memory).
It can be seen from Table VI that our proposed HRGAN is
much faster than other methods. In addition, AOD-Net [20] is
implemented in PyCaffe. With four different image resolution
640×480, 800×600, 1024×768, and 1600×1200, AOD-Net
costs 1.108, 1.72, 3.252, and 6.298 seconds, respectively.
It can be observed in Table VI that our proposed HRGAN
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TABLE VI

COMPARISON OF AVERAGE RUNNING TIME ON CPUS (IN SECONDS)

TABLE VII

COMPARISON OF AVERAGE RUNNING TIME ON GPUS (IN SECONDS)

costs less than half of the running time of AOD-Net. The
running time comparison on GPUs with MSCNN [16], AOD-
Net [20], and our proposed HRGAN is shown in Table VII.
All the results are tested on the NIVIDIA TITANX. It can
be found that our method is faster than other CNN-based
methods, especially the size of input image is large. The
number of parameter of DehazeNet, MS-CNN, AOD-Net
and our proposed HRGAN is 8.2K, 8.0K, 1.7K, and 3.5K,
respectively. It can be found that compared with DehazeNet
and MS-CNN, the model size of our proposed HRGAN is
smaller. In addition, from Table VI and VII, we can know our
proposed HRGAN is faster than DehazeNet and MS-CNN.
Although the model size of our proposed HRGAN is bigger
than AOD-Net, the running time (shown in VI and VII) of
our proposed HRGAN is faster than AOD-Net on both CPUs
and GPUs. The high efficiency of HRGAN mainly benefits
from the fact that the atmospheric light module based on
light-weight CNN significantly simplifies the estimation of
atmospheric light.

V. CONCLUSION

In this paper, we have proposed a GAN-based image haze
removal network called HRGAN. HRGAN consists of two
networks: a generator network and a discriminator network.
The generator network of HRGAN is a unified network jointly
estimating transmission map, atmospheric light, and haze-free
image. Apart from pixel-wise loss, adversarial loss produced
by the discriminator network and perceptual loss are utilized
in optimization task. Experimental results demonstrate that
HRGAN achieves remarkably high efficiency and outperforms
state-of-art methods on both synthetic and real-world images.
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