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Resolution Adaptation
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Abstract— A video compression framework based on spatio-
temporal resolution adaptation (ViSTRA) is proposed, which
dynamically resamples the input video spatially and temporally
during encoding, based on a quantisation-resolution decision, and
reconstructs the full resolution video at the decoder. Temporal
upsampling is performed using frame repetition, whereas a con-
volutional neural network super-resolution model is employed for
spatial resolution upsampling. ViSTRA has been integrated into
the high efficiency video coding reference software (HM 16.14).
Experimental results verified via an international challenge show
significant improvements, with BD-rate gains of 15% based on
PSNR and an average MOS difference of 0.5 based on subjective
visual quality tests.

Index Terms— Video compression, spatial resolution adapta-
tion, temporal resolution adaptation, perceptual video compres-
sion, CNN-based super-resolution.

I. INTRODUCTION

W ITH the ever increasing demand for more immersive
visual experiences, video content providers have been

extending the video parameter space by using higher spatial
resolutions, frame rates and dynamic ranges. This dramatically
increases the bitrate required to store and distribute video con-
tent, challenging current bandwidth limitations and demanding
greater compression efficiency than offered by the current
generation of video codecs.

Previous work has shown that the optimal parameters
for video representation with respect to perceptual quality
is highly content dependent [1], [2]. Thus, by dynamically
predicting these parameters, bitrates could be significantly
reduced while maintaining equivalent perceptual video quality.
In this context, several authors have proposed reducing spatial
resolution for low bitrate encoding [3], [4], but lack a reliable
adaptation technique. Others have developed prediction mod-
els [5], [6] or have introduced the resolution adaptation as one
of the rate-distortion optimized modes at a block level (CTU)
[7] but apply them for H.264 or intra coding only. Regarding
temporal adaptation, a few methods for frame rate selection
have been proposed in [8] and [9]. However these have
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not been fully integrated with video compression algorithms.
Moreover, the reconstructed video quality depends highly
on the video resampling technique applied. Previous spatial
resolution adaptation approaches have mostly employed linear
filters, such as bicubic, for the reconstruction of full resolution
video frames. However, in recent years, CNN-based super-
resolution techniques [10], [11] have become popular in the
field of computer vision due to the improved reconstruction
quality. Such machine learning-based approaches have how-
ever not been fully explored for video compression.

Inspired by our previous work on quality assessment [1],
[2], [12], [13] and spatial resolution adaptation for intra cod-
ing [14], we propose a spatio-temporal resolution adaptation
framework for video compression, ViSTRA, which dynami-
cally predicts the optimal spatial and temporal resolutions for
the input video during encoding and attempts to reconstruct
the full resolution video at the decoder.

The main contributions of our paper include:
• The integration of both spatial and temporal adaptation

into a single framework;
• A Quantization-Resolution Optimization (QRO) module

which applies perceptual quality metrics and machine
learning techniques to generate reliable resolution adap-
tation decisions;

• The employment of a CNN-based super resolution model
to reconstruct full spatial resolution content, trained
specifically for compressed content;

• The integration of the ViSTRA framework with HEVC
reference software (HM 16.14).

The experimental results presented here, are based on test
sequences used in the Video Compression Grand Challenge at
IEEE ICIP 2017 [15]. These show substantial coding gains,
on average 14.5% BD-rate (PSNR) and 0.52 average MOS
difference (from independent subjective test), compared to the
original HEVC anchor codec (HM 16.14).

The remainder of this paper is organised as follows:
Section II describes the proposed framework; Section III
provides more detail into the design of the QRO mod-
ule; Section IV describes the employed methods for spatial
and temporal resolution resampling; Section V presents and
discusses the experimental design and results, and finally
section VI provides conclusions and ideas for future work.

II. PROPOSED FRAMEWORK

The proposed framework, shown in Fig. 1, integrates spatio-
temporal adaptation with video encoding in order to maximize
rate-quality performance. As the first step, video frames of
the full resolution video are processed by the QRO module,
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Fig. 1. Diagram of the proposed resolution adaptation framework for video
compression.

which is responsible for predicting the suitability for both
spatial and temporal adaptation, given the content of the video
and the input quantisation parameter (QP). Two decisions
are made: one for spatial and one for temporal adaptation.
These decisions then control the modules that apply spatial
and temporal downsampling, respectively. The adaptation is
signaled in the bitstream using flag bits. The input of the host
encoder is therefore the resolution optimized video. At the
decoder, the flag bits are extracted from the bitstream and
resolution resampled video frames are decoded by the host
decoder. Finally, video frames are spatially and temporarily
upsampled to the original resolution for displaying based on
the resampling decisions from the encoder.

Temporal adaptation decisions are made between 2 frames
and require one flag bit per frame to be added to the bitstream.
In contrast, Spatial adaptation decisions are made for each
Group-of-Pictures (GOP) requiring one flag bit per GOP.
If two subsequent GOPs are found to contain different spatial
decisions, e.g., the resolution of the second GOP is half the
resolution of the first GOP, a split is introduced at that point
and two separate bitstreams are encoded. This procedure is
required due to the fact that the HEVC does not inherently
support the encoding of different spatial resolutions.

III. QUANTISATION-RESOLUTION OPTIMIZATION

Before compression, full resolution video frames are sent
to the QRO module, where temporal and spatial resolutions
are subsequently optimized according to the initial quatisation
parameter and video content.

A. Temporal Decisions

Temporal resolution optimization employs a frame rate
dependent quality metric, FRQM [12], to assess the perceptual
quality difference between a temporally downsampled video
frame and its full frame rate original. FRQM is a state-
of-the-art quality metric that provides the best performance
for perceptual evaluation of frame-rate reduction artifacts.
Temporal downsampling is achieved using frame averaging.
If the resulting FRQM score is higher than a pre-determined
threshold, TH, the temporally downsampled video frame is
encoded in place of the original versions. In this work, only

a ratio of 2 was used for downsampling, and each decision
is made within a time window of 2 frames. The temporal
resolution flag, TRflag, which indicates if temporal resolution
adaptation is performed, is computed as follows:

TRflag =
{

1, if FRQM > TH

0, otherwise.
(1)

where TH = 48, which is the FRQM score that corresponds
to a DMOS of 10 (from 0 to 100) based on the relationship
between FRQM and DMOS predicted in [12]. This ensures
that there are no significant perceptual differences between
the temporally resampled video and the original video. Based
on [1] and [12], we expect that temporal resampling to be more
beneficial for videos with higher frame rates (from 120 fps
and higher).

B. Spatial Decisions

The spatial resolution decision module employ a learning-
based approach using low level spatio-temporal features from
the uncompressed video frames, following a similar method-
ology as the one applied in [14]. These features are com-
puted on the Y (luma) channel only and are used to predict
a Quantization Parameter (QP) threshold, QPthres, at which
encoding the input video at a lower resolution will produce
higher rate-quality performance compared to encoding at the
original resolution. In this work, a single ratio of 2 is used for
resampling.

In our previous publication on intra coding [14], we pro-
posed a module that predicted QP thresholds based on the
PSNR of each frame downsampled and upsampled using a
Lanczos filter (kernel size 3), the resampling PSNR. How-
ever, for random access configuration, features that measure
temporal correlations are also required. Therefore, in this
paper, in addition to PSNR, two spatio-temporal features are
calculated for consecutive frames, Normalized Cross-Correla-
tion (NCC) and Temporal Coherence (TC), which are defined
in [16]. In total, 4 features are used for prediction forming the
feature vector K as follows:

K = [PSNRr, NCCskewness, TCkurtosis, TCskewness] (2)

where PSNRr is the resampling PSNR, NCCskewness is the
skewness of the NCC, TCkurtosis is the kurtosis of the TC
and TCskewness is the skewness of the TC. This particular set
of features was obtained by forward feature selection using
5-fold cross-validation.

We represent the relationship between the spatio-temporal
features, K of the video content and the spatial QP threshold,
QPthres, using linear regression given by:

QPthres = W · K� + β (3)

where W and β are the fitting parameter.
The features are computed for a training dataset, consisting

of 57 temporally cropped UHD videos from the Harmonic
Inc video database [17]. After calculating the feature vector
and true QP thresholds (based on multiple encodes with HM
16.14) for all sequences, the fitted linear regression parameters
are given by W = [−0.62, 1.94,−0.58,−3.87] and β = 63.7.



AFONSO et al.: VIDEO COMPRESSION BASED ON SPATIO-TEMPORAL RESOLUTION ADAPTATION 277

The Root Mean Square Error (RMSE) of the fit on the training
data is 3.26 (QP values).

Finally, for the test sequences, a simple comparison between
the predicted QP threshold, QPthres and the input QP used
for encoding, QPin is performed, which determines the spatial
resampling decision SRflag, as shown below:

SRflag =
{

1, if QPin > QPthres

0, otherwise.
(4)

In addition, if resolution downsampling is applied, the base
QP used to encode the low resolution video is reduced by
a default value of 6, following the analysis in [7] and [14],
in order to achieve a similar bitrate as would be achieved if
no resampling was performed.1

IV. SPATIAL AND TEMPORAL RESAMPLING

This section introduces the methods used for temporal and
spatial resampling. In ViSTRA, these resampling methods are
applied separately (see Fig. 1).

A. Temporal Resampling

Temporal downsampling is achieved using frame averaging,
a technique commonly applied for adapting video frame
rates [1], [18]. Compared to dropping frames, this has been
shown to provide more perceptually pleasing artifacts and
better frame rate up-conversion. Moreover, nearest-neighbor
interpolation is used for upsampling which emulates a hold-
type display (e.g. LCD) [1].

B. Spatial Resampling

In our previous work [14] we have proposed using Lanc-
zos3 filters for both downsampling and upsampling. However,
in order to further improve reconstruction performance for
upsampling, ViSTRA employs a deep CNN.

Although previously proposed CNN-based methods for
super-resolution, including SRCNN [10] and VDSR [11], pro-
vide exceptional performance, they are not directly applicable
to video coding because their models were training with
uncompressed images. We therefore use the CNN architecture
of VDSR (Fig. 2) and retrained it for HEVC compressed
video. This architecture contains 20 convolutional layers with
64 3 × 3 filters followed by ReLU activation functions and
applies residual learning.

The same dataset used for training the QRO module
(Section III) was also used for training the CNN. The train-
ing mechanism works as follows: first, each sequence is
downsampled using a Lanczos3 filter with a downsampling
ratio of 2. Then the low resolution versions are encoded
and decoded using HEVC (HM 16.14), random access main
configuration using 4 different QP values (22, 27, 32 and 37).
The reconstructed videos are then upsampled using the same
filter. The frames that result from this process are then used
as training inputs to the CNN with the output targets being
the original uncompressed frames.

1Note that the Lagrange multipliers used in the encoder’s Rate-Distortion
Optimization (RDO) process follows the same relationship as described in the
HEVC reference software, HM 16.14.

Fig. 2. Network architecture applied to spatial resolution upscaling.

We select a subset of the frames of the resulting video, split
them into 41×41 pixels blocks (the size of the receptive field
of the CNN) and choose 400 blocks randomly. In addition,
in order to provide more generalization for the CNN, data aug-
mentation is applied in the form of block rotation. Therefore,
a total of approximately 4 million blocks were used to train the
CNN. Finally, training was performed using CAFFE [19] and
the following training parameters: Adam optimization [20],
batch size of 64, learning rate of 1e-4 (fixed), Weight decay
of 1e-4 and 10 epoch.

V. EXPERIMENTAL RESULTS

The proposed framework was integrated into HEVC test
model HM 16.14 and was submitted to the Grand Challenge
on Video Compression Technology at the International Con-
ference on Image Processing (ICIP) 2017 [15]. The aim of this
Challenge was to identify technologies that provide significant
improvement beyond the current state of the art in video
compression. It is important to note that the subjective results
presented have been obtained independently by the organizers
of the challenge.

The test dataset is composed of 9 sequences, 4 HD (1920×
1080) and 5 cropped UHD (2560 × 1600), obtained from the
JVET (Joint Video Exploration Team) UHD test set [21] and
the BVI Texture database [22]. In addition, the organizers
provided 4 target rate points per sequence and the respective
HEVC (HM 16.14) anchors per rate point. These were selected
mainly in order to provide low quality anchors which could
be perceptually improved by the submissions. In order to meet
the target bit rates for the test sequences, the QP values were
iteratively adjusted until the output bitrates became sufficiently
close to the target bitrates. A sample frame and target rate
points for each sequence can be found in Fig. 3.

The test results are based on PSNR, Video Multimethod
Assessment Fusion (VMAF) [23] and subjective tests. For the
subjective tests, a single-stimulus methodology with 28 partici-
pants conforming to the home environment conditions outlined
in BT.500-13 [24], was conducted using the submissions
received and the anchors. TABLE I shows the Bjøntegaard
measurements [25] on PSNR, VMAF and subjective MOS for
the proposed method against the HEVC anchor. In addition,
Fig. 4 presents the rate-quality curves for two test sequences,
LampLeaves (S03) and CatRobot (S05). The BD-MOS values
were computed by following the procedure in [26].
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Fig. 3. Test sequences and target bitrates used for experimental results: proposed for the Grand Challenge on Video Compression Technology at ICIP 2017.
All sequences are 60 fps except for ParkRunning which is 50 fps.

Fig. 4. Rate-quality curves comparing the anchor HEVC (HM 16.14),
ViSTRA without the CNN and the proposed approach. Subjective tests
(MOS) were only performed using the anchor and the proposed methods. The
error bars represent 95% confidence intervals. (a) LampLeaves-S03 (PSNR).
(b) CatRobot-S05 (PSNR). (c) LampLeaves-S03 (VMAF). (d) CatRobot-S05
(VMAF). (e) LampLeaves-S03 (MOS). (f) CatRobot-S05 (MOS).

It is noted that significant improvements have been achieved
for the proposed method over the anchor codec, with an
average of 14.5% BD-rate gains (using PSNR) and

TABLE I

EXPERIMENTAL RESULTS OF THE PROPOSED METHOD

COMPARED TO HEVC HM 16.14 ANCHOR

0.55 BD-PSNR. When using VMAF, which correlate better
with subjective quality [27], the results are more pronounced
with an average of 21.2% BD-rate and 6.1 BD-VMAF.
Finally, the subjective tests confirm the perceptual quality
gains achieved by the proposed framework, with an average
BD-MOS of 0.52.

The results show that ViSTRA achieves more significant
gains for higher spatial resolutions, 17.7% BD-rate (PSNR)
for 2560 × 1600 test sequences compared to 10.4% for
1920 × 1080. This is due to the increased spatial redundancy
for higher resolutions, which means that less information may
be lost by applying the downsampling process.

Figure 4 also compares the rate-quality performance of
ViSTRA without the use of the CNN at the decoder for the
two example sequences. On average, the use of the CNN
increases the quality of the reconstructed frames by 0.19 dB
and 3.5 VMAF values, which is reflected in an increase of
BD-rate by 6.0% based on PSNR and 14.1% based on VMAF.
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For the majority of sequences and rate points tested, only
spatial resampling is invoked, except for TreeWills. This is
due to the fact that the highest frame rate used for the
test sequences is 60 fps and temporal resampling is mostly
beneficial at higher frame rates or for sequences containing
slow motion, which is the case for TreeWills. A separate
analysis shows that spatial adaption is responsible for 12.9 %
of the total BD-rate gains based on PSNR for this sequence.
Additionally, no adaptation was applied for only one rate point,
LampLeaves at 7500 kbps, in which the original resolution was
encoded (see Fig. 4 (a)).

In relation to the complexity of the proposed approach,
the average encoding time is reduced to 0.58 times that of
the HM 16.14 encoder. This is due to the fact that ViSTRA
allows the encoding of reduced spacial and temporal resolu-
tion videos, which decreases the encoding time significantly.
However, the average decoding time of ViSTRA is on average
61 times that of HM, due to the application of the CNN for
spatial resolution upscaling. These values were obtained on a
shared cluster from the University of Bristol which contains
SandyBridge CPUs with 16 cores, 2.6 GHz clock speed and
4GB memory each. The decoding jobs were run in GPU nodes
with NVIDIA K20.

VI. CONCLUSION

This paper proposes a spatio-temporal resolution adapta-
tion framework for video coding, ViSTRA, which optimally
resamples input video frames during encoding and reconstructs
the full resolution video frames at the decoder. We propose a
quantization-resolution module which computes features from
the original uncompressed input video frames and determines
the optimal spatial and temporal resolution at which to encode
them. At the decoder, we apply frame repetition and a Con-
volutional Neural Network (CNN) for temporal and spatial
resolution upscaling, respectively. This framework has been
integrated into HEVC test model HM 16.14 and extensive
experimental results were conducted using objective quality
metrics and subjective tests. These show that significant coding
gains can be achieve by applying the proposed framework
for video coding. Future work will focus on improving the
performance and reducing the complexity of the CNN for
spatial-temporal resampling and on testing more immersive
video formats including 4K resolution and 120 fps sequences.
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