
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018 1273

Partial Depth Image Based Re-Rendering for
Synthesized View Distortion Computation

Gerhard Tech, Karsten Müller, Senior Member, IEEE, Heiko Schwarz, and Thomas Wiegand, Fellow, IEEE

Abstract— 3D video systems transmit depth maps in order
to render synthesized views (SVs) at a receiver. To anticipate
this purpose when processing a depth map, a sender-side depth
processing algorithm (DPA), e.g. a depth encoder, can also render
the SVs, compute their SV distortion (SVD), and adapt to it. This
requires a low-complexity algorithm as computational resources
are usually limited. We propose such an algorithm in this paper.
First, we discuss a measure that relates a depth change to an SVD
change using rendering. Then, we present an optimized process
combining basic rendering steps, as warping, occlusion handling,
interpolation, hole filling, and blending. Furthermore, we analyze
which parts of an SV are affected by a depth change and modify
the process to re-render only them. The resulting algorithm is
significantly less complex than an unoptimized rendering-based
variant and quantifies the SVD more accurately than existing esti-
mation methods. The algorithm is used by the 3D-High Efficiency
Video Coding reference software encoder as the main method for
distortion computation and can also be used by other DPAs.

Index Terms— 3D video, 3D-High Efficiency Video
Coding (HEVC) reference software, complexity reduction,
depth image-based rendering (DIBR), partial re-rendering,
synthesized view distortion change (SVDC), view synthesis
optimization.

I. INTRODUCTION

3D video can be presented on glasses-free autostereoscopic
displays emitting a large number of views. As conven-

tionally only a small number can be recorded and transmitted,
synthesis of additional views should be supported by a 3D
video format. Complying formats often consist of textures
depicting the 3D scene from different perspectives and a depth
map per texture [1]. The texture samples can be warped using
disparities derived from the depth maps [commonly called
depth image-based rendering (DIBR)] to create synthesized
views (SVs) for an autostereoscopic display [2].

DIBR can be part of the receiver of a 3D video system
(Fig. 1). Then, the system not only transmits texture, but also
generates and transmits depth maps by additional sender-side

Manuscript received March 18, 2016; revised August 1, 2016 and
September 14, 2016; accepted November 8, 2016. Date of publication
November 22, 2016; date of current version June 4, 2018. This paper was
recommended by Associate Editor G. Cheung.

G. Tech, K. Müller, and H. Schwarz are with the Fraunhofer Institute
for Telecommunications, Heinrich Hertz Institute, 10587 Berlin, Germany
(e-mail: gerhard.tech@hhi.fraunhofer.de).

T. Wiegand is with the Fraunhofer Institue for Telecommunications,
Heinrich Hertz Institute, 10587 Berlin, Germany, and also with the Department
of Electrical Engineering and Computer Science, Technical University of
Berlin, 10587 Berlin, Germany.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2016.2631568

Fig. 1. Sender and receiver of a 3D video system.

depth processing steps. The first step, which is required when
depth maps are not directly recorded, is depth estimation,
which uses stereo matching [3] to provide a depth map. The
depth map can then be filtered [4] or manually modified in an
enhancement step. After enhancement, the depth map is lossy
encoded and transmitted. Transmitted depth maps are decoded
at the receiver and used to generate SVs by DIBR.

Minimizing the SV distortion (SVD) is an obvious target for
a 3D video system, and thus also in compression performed by
the depth encoder. Conventional encoders, however, optimize
based on the depth distortion and are not aware of the SVD.
To overcome this, we proposed to already render at the
encoder [5], [6]. This way, an encoder can compute the exact
SVD. With such a modification, we reduced the depth bit rate
to about 50% at constant SVD.

However, rendering at the encoder requires additional
computational operations. Since computational resources
are usually limited, a low-complexity algorithm especially
tailored for SVD calculation is required. We present such an
algorithm in this paper. Several questions concerning its opti-
mized implementation, complexity, rendering performance,
and application are addressed. Answers provide an insight
how and at what costs rendering for SVD computation can
be applied in a 3D video system. This might not only be in
encoding, but also in other depth processing algorithms (DPAs)
as depth estimation or enhancement.

A. Problem Statement and Paper Outline

The motivation for this paper is that a DPA improves when it
considers the SVD. We define this use case with the notations
in Table I1 as follows. A DPA (e.g., an encoder) processes a
depth map sD,l of an input view (IV), which is used in DIBR
to render a texture s′

T ,l of an SV. The DPA changes the values

1Most autostereoscopic displays use views from a parallel camera setup,
such that rows with the same vertical position y in different 2D signals
correspond to each other. As we constrain rendering similarly and avoid
vertical dependencies, we can drop y and only treat 1D signals and regions.

1051-8215 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1274 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

TABLE I

OVERVIEW OF FREQUENTLY USED SYMBOLS

of a region B (e.g., a coding block) in sD,l to candidate values
(e.g., provided by a particular coding mode), which are in the
following called depth candidate s̃B . In general, this creates
a changed version of s′

T ,l denoted as s̃′
T ,l . In order to reject

or adopt the depth candidate s̃B in B (e.g., to decide whether
to use the coding mode), it is now of interest for the DPA to
quantify the distortion in s̃′

T ,l introduced by s̃B .
The basic idea addressed in this paper is to quantify this

distortion by partial re-rendering and direct computation. This
means by: 1) re-rendering the region B̃ ′ in that the SV textures
s′

T ,l and s̃′
T ,l differ and 2) computing the change of the SVD

in B̃ ′ that occurs when s′
T ,l changes to s̃′

T ,l . In doing so,
the SVD in s′

T ,l and s̃′
T ,l is calculated as sum of squared

differences (SSDs) compared with a reference texture s′
Re f ,

which can be a recorded texture or SV texture rendered from
initial IV depth. Design, implementation, and application of
such an approach raise several questions, which we address.

An initial question is how the SVD computation method
described before is motivated. To answer this, we flesh out
our findings from [5] in Section II and present a rendering-
based distortion measure called SVD change (SVDC), which
we embed in a framework called renderer model (RM).

To calculate the SVDC, the RM performs re-rendering,
which increases computational complexity. Since resources are
usually limited, a major question is how this can be done with
low complexity. To achieve this, we combine different ren-
dering approaches and implement them in an optimized way
(Section III). Result is an integrated low complexity rendering
algorithm that is used by the RM in SVDC calculation.

For SVDC calculation, the RM only needs to re-render the
region B̃ ′ that changes in the SV when the DPA changes the
region B in the depth map sD,l to the candidate s̃B . This
raises the questions, how to derive boundaries of B̃ ′ and how
to extent the rendering algorithm to start and stop at these
boundaries. Answers are provided in Section IV and enable the
RM to perform partial re-rendering and SVDC calculation.

The RM implementation targets low complexity, a suffi-
cient SV quality, and should also perform well when the
receiver uses a view synthesis algorithm different from the
RM. An evaluation in Section V discusses whether this has
been reached by comparing the RM with other approaches.
Finally, Section VI discusses evaluation results in the light of
constraints imposed by the different application scenarios and
addresses how DPAs can be improved by partial re-rendering
for SVDC calculation.

B. Relationship to Other Works

In recent years, several methods have been proposed
for SVD estimation, which model the relationship between
depth distortion and SVD linearly [7] or with polynomi-
als [8], estimate the SVD due to warping with incorrect
disparities [9]–[11], or model sample interpolation [12], [13]
and occlusions [12]. In summary, all methods use simplified
models. Our method—the RM—is fundamentally different: it
renders with an actual view synthesis algorithm and computes
an exact SVDC. This way, it can consider all techniques
usually used for view synthesis, as warping, occlusion
handling, hole filling, fractional sample interpolation, and view
combination.

For rendering, there is a great variety of methods to increase
quality as by depth filtering [14], boundary noise removal [15],
or advanced hole filling [16]; and to reduce complexity as
for hardware implementations [17], by switching between
IVs [18], or by input driven real-time implementations [19].
Furthermore, the VSRS 3.5 software comprises a rich set
of different methods [20]. Those prior art methods render
whole SVs. In contrast, the RM is specialized to only
re-render parts of the SV to determine the SVDC. We show
how this can be done with low complexity by introducing a
rendering algorithm in Section III and extending it for partial
re-rendering in Section IV.

Our contribution in Section III is that we select and modify
basic rendering techniques and combine them to an algorithm
that can be extended by partial re-rendering. More specifically,
we combine: 1) techniques commonly used (in [18] and [20]),
such as warping, hole detection, hole, and margin filling;
2) occlusion detection from [19], which we extend for the
detection of foreground (FG) edges; 3) correct rendering of
FG edges [21] having an effect similar to boundary aware
splatting [20]; 4) view blending similar to [20], but modified
to operate after hole filling; and 5) a texture mapping approach,
inspired by backward warping in [20], but embedded by us in
an intervalwise processing scheme. In summary, Section III
provides a comprehensive overview on how these techniques
can be implemented in an optimized way that allows to
understand the required complexity down to single operations.
Then, in Section IV, we present our main contribution. We
propose how the rendering algorithm can find IV positions
that ensure that the whole changed region B̃ ′ is re-rendered
and how it can be extended to start and stop at these positions.

Known as view synthesize optimization, our method is part
of the 3D-High Efficiency Video Coding (HEVC) reference
software encoder [22], [23], since we proposed it as starting

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1275

Fig. 2. (a) SV texture regions related to an IV depth distortion. x ′ is the
SV position of a sample when shifted with the disparity s�,l . A sample’s IV
position can thus be found by following its intersecting diagonal line to the
x ′ axis. Samples (and their connections) on the top are closer to the camera
and thus occlude samples below. (b) Example for SVDC calculation.

point for the development of 3D-HEVC [24]. It is, according
to JCT-3V’s test conditions [25], the main method for dis-
tortion derivation in rate-distortion-based mode selection in
depth coding (for details, see [23] and Section VI). The first
encoder version including all optimizations we describe in this
paper is HTM-16.1 [22]. We developed the RM in parallel
with the VSRS 1D-Fast software [24] (the main renderer in
3D-HEVC development [23]). In contrast to the RM, 1D-Fast
does not support re-rendering, but boundary noise removal.
Although we proposed the SVDC and the RM before for
encoding [5], [6], [24], our previous papers and standardization
contributions provide only a high-level description of the
underlying algorithm; in particular, they do not present the
ideas behind and analysis of partial re-rendering—the main
contributions of this paper.

II. RENDERING-BASED DISTORTION MEASURE

This section addresses an initial question—how to measure
the exact SVD introduced by a depth candidate using render-
ing. To answer this, we first analyze the relationship between
the IV depth and SV texture, which is given by the DIBR
process. DIBR shifts the samples of the IV texture sT ,l by
disparities s�,l derived from the IV depth map sD,l . More
specifically, in a parallel coplanar camera setup, a sample at
an IV position x is shifted to the SV position

x ′ = f(x) = x − s�,l (x). (1)

With a depth representation format similar to the one in [26],
the disparity s�,l can be derived as follows:

1/sZ ,l(x) = c0 · sD,l(x) + c1 (2)

s�,l(x) = c2/sZ ,l(x). (3)

Parameters c0, c1, and c2 are given by the camera setup. sZ ,l

represents the physical depth, thus the distance to the camera
plane. sD,l , in contrast, represents rather scaled disparity values
although commonly called depth map.

The relationship defined by (1) is visualized in an
x ′-s�,l -space in Fig. 2. Therefore, samples of the IV texture
sT ,l are marked with solid dots. The horizontal position of
a dot, however, does not correspond to the sample’s IV
position x , but to its SV position x ′. The vertical position

corresponds to its disparity s�,l(x) used for shifting. Equa-
tion (1) shows that when s�,l(x) of a sample from an IV
position x changes, its position in the x ′-s�,l -space can only
move diagonally. Furthermore, (3) shows that s�,l increases
with decreasing sZ ,l . This means, when two points share the
same SV position x ′, the upper point in the x ′-s�,l -space is
closer to the camera plane and the lower point is occluded.
To understand which samples are in the FG and visible in the
SV, the x ′-s�,l -space is thus a valuable tool.

We use this tool in Fig. 2 and show what happens when
the initial IV depth (associated with the solid dots) gets
distorted: the samples move diagonally in the x ′-s�,l -space
from their initial positions (solid dots) to distorted positions
(dashed dots). This distorts the SV texture. To define an
SVD-based measure, the question is now how to map the
SVD to distorted IV depth regions. For simplification, we
analyze this with respect to two IV regions Ba and Bb (shown
in Fig. 2), which are related to two SV regions B̃ ′

a and B̃ ′
b. B̃ ′

a
is the SV region affected by the depth distortion in Ba; it is
thus spanned by the left- and rightmost of initial and distorted
SV positions related to Ba . Accordingly, B̃ ′

b is the SV region
that is affected by the distortion in Bb. Obviously, the SVD
in nonoverlapping parts of B̃ ′

a and B̃ ′
b can solely be related

to Ba and Bb. In the overlapping part B̃ ′
v , however, the SVD

is caused by the distortions in Ba and Bb (e.g., the sample
from Bb erroneously shifted to x ′ = 2.75 is only visible as
Ba is distorted). This shows that distorted SV regions cannot
be mapped bijectively to IV regions, which is a first problem
for determining the SVD related to a particular IV region, as
it is unclear how to divide up the SVD in SV regions that
map to more than one IV region. A second problem arises in
practice: when a DPA processes Ba first, the distortion in Bb,
and thus the SVD in the affected region B̃ ′

b and in the overlap
B̃ ′

v are not known.
To resolve both problems, we proposed the SVDC [5],

which is conceptually agnostic about where the SVD related to
a distorted IV region B is located in the SV. The SVDC is the
change of the total SVD of a whole SV texture that occurs
when the depth in an IV region B changes from initial to
distorted depth, while other IV depth regions contain distorted
depth, if already known, and initial depth otherwise.

Fig. 2(b) shows how the SVDC can be calculated for Ba and
Bb in three steps. Step 0 renders an SV texture from the initial
depth sD,0; as this SV texture is used as reference, its SVD D0
is equal to zero. Step 1 renders an SV texture from a depth map
sD,1 with initial depth in Bb (as the distorted depth is not yet
known) and distorted depth in Ba , derives the SVD D1 related
to sD,1, and finally the SVDC for Ba as �D0,1 = D1 − D0.
Step 3 renders using a depth map sD,2 with distorted depth in
Ba and Bb (as Ba has already been processed its distortion is
known), derives the related SVD D2, and finally the SVDC
for Bb as �D1,2 = D2 − D1.

In doing so, both problems raised earlier are addressed.
The second problem is solved by using initial depth when
the distorted depth is not yet known. In step 1, the SVD
Dv̄ in B̃ ′

v is calculated based on the assumption that Bb

contains initial depth. The first problem is then solved in

1276 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

Fig. 3. RM and its application in a DPA.

step 2 by considering for B̃ ′
v only the SVDC that occurs

when Bb gets additionally distorted, i.e., Dv − Dv̄ . This
way, the sum of SVDCs separately calculated for Ba and
Bb (i.e., �D0,1 + �D1,2) is equal to the SVDC caused by
a joint change of Ba and Bb from initial to distorted depth
(i.e., �D0,2 = D2 − D0). This property (commonly called
additivity) is usually required by DPAs (e.g., by encoder for
splitting of blocks) and the reason for using the SVDC instead
of the SVD.

A. Renderer Model

So far, we described the SVDC only conceptually. The
question is now how to efficiently derive the SVDC of an
SV texture s′

T ,l that occurs when a DPA changes the related
IV depth map sD,l in an IV region B to a depth candidate s̃B .
As B is, in general, only a small region in sD,l , only a related
small region B̃ ′ in s′

T ,l changes. Therefore, it suffices to re-
render B̃ ′ and to calculate the SVDC within it. To do this, we
embedded SVDC computation in a framework, which is called
RM [5] and shown in Fig. 3. The RM has a state comprising
the current IV depth sD,l , the current SV texture s′

T ,l , and its
per sample SVD s′

E . The RM initializes s′
T ,l and s′

E by steps
I1 and I2 in Fig. 3 before the DPA starts processing the IV
depth sD,l . While processing sD,l , the DPA can input an IV
region B and its depth candidate s̃B to the RM and invoke it
in two modes, called GET and SET mode.

In GET mode, the RM computes the SVDC �D caused
by s̃B in B with respect to its current state (G1–G4). For
this, it re-renders B̃ ′ (G2), and computes the new per sample
SVD s̃′

E (G3) and the SVDC in B̃ ′ relative to the old SVD
s′

E (G4). In doing so, the RM state remains unchanged, so that
memory bandwidth is reduced. This way, the DPA can check
the SVDC of multiple candidates s̃B for B (e.g., �D[i][j] for
B[i] in Fig. 3) before choosing one (e.g., s̃B [i][h]).

When the DPA has chosen a candidate, the final depth for
the respective IV region B is known and can be adopted to the

Fig. 4. Overview of the rendering approach, its single steps and involved
signals. Depicted signals represent one row of input, intermediate, or output
data. Arrows show the relationship between samples or their positions.

RM’s state, so that it is regarded when testing candidates for
other IV regions. For this, the DPA can invoke the RM’s SET
mode. In this mode, the RM adopts s̃B in B by performing
steps S1–S4, i.e., it re-renders B̃ ′ (S2), computes s̃′

E in B̃ ′
(S3), and stores changed signals as new state (S4).

This way, the RM’s state is always aligned with decision
taken by the DPA, so that SVDC calculation is always based
on all adopted candidates and can be performed efficiently by
partial re-rendering of B̃ ′.

III. BASIC RENDERING ALGORITHM

DPAs conventionally evaluate multiple candidates for a
particular IV depth region. In this use case, SVDC calculation
can easily exceed computational resources when re-rendering
with a sophisticated high complexity approach. Consequently,
a low-complexity algorithm that is extendable for partial re-
rendering is needed. For this, we modify and combine several
basic methods (as described in Section I) to a new rendering
algorithm that can be implemented in an optimized way. Single
steps of the resulting process are shown in Fig. 4 and discussed
in this section. For simplification, we assume that the RM
renders a whole SV texture s′

T by iterating once over all IV
sample positions. The extension for partial re-rendering and
SVDC calculation is then discussed in Section IV.

A. Intervalwise Processing and Warping Step

For rendering the RM iterates over the IV from right to
left (to enable occlusion detection described later), as shown
in Fig. 5, it starts with the current IV position xs equal to the
row width w. After the RM has initialized rendering of the
current row (P1 in Fig. 5) and after further iterations, it stores
xs as the last processed IV position xe before decrementing
xs for the next iteration (P2). This way, an IV interval [xs, xe]
(e.g., b in Fig. 4) is provided in each iteration.

To render the SV samples related to [xs, xe], the RM derives
two SV positions (P3). The first, x ′

s , is the SV position related
to the current IV position xs and thus derived using x ′

s = f(xs)
with (1) using quarter sample precision. The second, x ′

e, is the
SV position related to the last IV position xe and is, as such,

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1277

Fig. 5. Top: intervalwise processing and render mode selection. Bottom:
examples for render mode selection.

set equal to x ′
s of the last iteration. Both positions provide the

SV interval [x ′
s, x ′

e] (e.g., b′ in Fig. 4).
Starting with render mode selection (P4), the RM then

applies steps described in Sections III-B–III-D consecutively
for the SV interval of the current iteration before continuing
with the next iteration. This way, the RM renders all SV
samples related to an IV interval in one iteration, so that it
can start and stop easily at arbitrary IV positions, as later
required for partial re-rendering.

B. Render Mode Selection Step

When rendering a right SV from a left IV, IV samples are
shifted leftward with (1). As FG objects are shifted further
leftward than the background, they occlude it on their left
side and holes (disocclusions) occur on their right-hand side.
Moreover, no IV sample usually remains on the right SV
margin. To adapt to such scenarios, the RM distinguishes the
following SV interval types, which are shown in Figs. 4 and 5.

A left edge interval (e.g., e′ in Fig. 4) occurs on the left
of an FG object. x ′

e is the leftmost FG object position and is
not occluded. Other positions are occluded by the FG object.
An occluded interval (f ′) can occur on the left of an FG object
after a left edge interval. x ′

s and x ′
e are both occluded by the

FG object. A right edge interval (b′) occurs on the right-hand
side of an FG object. x ′

s is the rightmost FG object position and
is not occluded. x ′

e belongs to the background. SV positions
between x ′

s and x ′
e are disoccluded. The right-hand side may be

occluded by another FG object on the right-hand side of xe in

the IV. In a continuous interval (a′, c′, d ′, and g′), all positions
in [x ′

s, x ′
e] belong to the same object. x ′

s is not occluded. The
right-hand side may additionally be occluded (g′) by another
FG object on the right-hand side of xe. When all IV samples
are shifted leftward, a gap occurs on the right-hand side in
the SV in a margin interval (m′). x ′

s is given by shifting the
rightmost IV position, and thus by f(w). x ′

e is the rightmost
SV position w.

As margin intervals can only occur at the right SV margin,
they are directly rendered as described in Section III-C5 when
the RM initializes a row (P1). In subsequent iterations, the
question is how the RM can differentiate between the other SV
interval types to select the corresponding render mode. This
is done by occlusion detection and hole detection as follows.

The first objective of occlusion detection is to find left edge
and occluded intervals. Both differ from other types in that
the current SV position x ′

s is occluded. To detect this, the
RM utilizes an auxiliary variable x ′

O , which is called minimal
occluding position. While processing the IV from right to left,
x ′

O corresponds to the leftmost fractional SV position that has
already been rendered [19], [27] in previous iterations. When
x ′

s is greater than or equal to x ′
O , it is occluded (see [27] or

the Appendix) and the current SV interval is a left edge or
occluded interval. To distinguish between both is the second
objective. They differ in that the last SV position x ′

e is also
occluded for occluded intervals. To detect this, we extended
the method from [27] by another auxiliary variable bO , which
is called occlusion flag and indicates whether x ′

s of the SV
interval rendered in the previous iteration (and thus x ′

e in the
current) is occluded.

More specifically, the RM addresses both objectives by
evaluating x ′

O and bO in conditions (O1) and (O2) in Fig. 5.
The result determines how the RM continues.

1) x ′
s ≥ x ′

O and bO = false → left edge interval.
The RM sets x ′

O equal to x ′
e, as it is now the leftmost

SV position occluding other positions (O3); sets the
bO equal to true, to indicate that x ′

s is occluded (O4);
and uses the render mode for left edge intervals
(Section III-C3).

2) x ′
s ≥ x ′

O and bO = true → occluded interval.
Rendering or update of auxiliary variables is not
required.

3) x ′
s < x ′

O → right edge or continuous interval.
The RM sets x ′

O equal to x ′
s , as samples shifted further

right are occluded (O5); sets bO equal to false to
indicate that x ′

s is not occluded (O6); and chooses the
render mode for nonoccluded SV interval parts by hole
detection.

Hole detection is based on the depth difference at the
SV interval boundaries x ′

s and x ′
e. This difference is large

in right edge intervals as x ′
s and x ′

e belong to the FG and
the background, respectively; in continuous intervals, they
belong to the same object and the depth difference is small.
For simplification, hole detection distinguishes between both
cases based on the SV interval length x ′

e − x ′
s (H1), which is

proportional to the depth difference. If x ′
e−x ′

s is greater than 2,
the RM assumes a right edge (Section III-C4) and otherwise
a continuous interval (Section III-C2).

1278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

Fig. 6. Render modes for an SV interval. Ren(ẋ ′, x̂, h) maps a sample from
the upsampled IV texture to the current SV position ẋ ′ (R7). The IV depth
is mapped similarly, but for simplification only with integer precision (R8).

In conclusion, the RM selects a render mode for an SV
interval based on its boundaries and auxiliary variables only.
This way, information from state variables related to other
intervals is not necessary and no complex z-buffering method
is required to detect occlusions.

C. SV Interval Rendering Step

The render mode selection step has identified the SV
interval type. The RM can now adapt to this type to derive
the SV texture samples at SV interval positions that are not
occluded. How this is done by interval type specific render
modes is shown in Fig. 6 and described in the following.

1) Occluded SV Interval Parts: As discussed before, the
right-hand side of continuous and right edge intervals can be
occluded. In this case, the occluding SV positions have already
been rendered in previous iterations as the RM processes the
IV from right to left (see the Appendix). They should not
be overwritten when rendering the current SV interval. For
this, the RM uses an auxiliary variable ẋ ′

O , which tracks the
leftmost integer SV position ẋ ′ rendered in iterations before
(R1 in Fig. 6) and thus corresponds to x ′

O but in integer
precisions. The RM must only render integer SV positions
ẋ ′ of the current SV interval that are on the left of ẋ ′

O [27].
2) Continuous Intervals: In this mode, the SV interval

[x ′
s, x ′

e] boundaries belong to the same object. The RM must
derive the nonoccluded samples in [x ′

s, x ′
e], which are at

integer positions ẋ ′ in the interval

[ẋ ′
s, ẋ ′

e] = [ceil(x ′
s), ẋ ′

O − 1]. (4)

To interpolate them, a renderer could, in general, employ
information of both sides of [x ′

s, x ′
e], since they belong to the

same object. However, the RM cannot do this, as it operates
intervalwise and does not know SV samples that are warped
to the left of x ′

s yet. To resolve this, the RM interpolates
the IV and maps positions in the SV interval to the interpolated
samples in the IV. More specifically, on initialization, the RM
quadruples the horizontal sampling rate of the IV texture sT ,l

to derive an upsampled texture ŝT ,l . Then, while rendering, the
RM derives the value of a sample in [ẋ ′

s, ẋ ′
e] by mapping its

SV position ẋ ′ to a position x̂ in the corresponding IV interval
in ŝT ,l and setting s′

T ,l(ẋ ′) to ŝT ,l(x̂) (R2 and R7). The RM

maps positions with (5), so that the relative position of x̂ in
the interval in ŝT ,l is equal to the relative position of ẋ ′ in the
SV interval

x̂ = 4 ·
(

ẋ ′ − x ′
s

x ′
e − x ′

s
+ xs

)
. (5)

In conclusion, the interpolation mode has the advantage that
computational complex interpolation is only required once for
initialization of the RM and not during re-rendering.

3) Left Edge Interval: In this mode, the left SV interval
boundary x ′

e is the leftmost position of an FG object, which
is, in contrast to the remaining SV interval positions, not
occluded. Consequently, the RM must render the related SV
integer position ẋ ′

F L = round(x ′
e) correctly. The leftmost

integer position already rendered is ẋ ′
O . Therefore, if ẋ ′

F L is
equal to ẋ ′

O , then the RM has already rendered the SV sample
at ẋ ′

F L in the last iteration. However, when ẋ ′
F L is not equal to

ẋ ′
O (R3), the RM sets the SV sample at ẋ ′

F L to sT ,l(xe) [i.e.,
ŝT ,l(4 · xe)]. This way, the fractional left FG edge position is
correctly mapped to the integer SV sampling grid [21], which
has an effect similar to boundary aware splatting [20].

4) Right Edge Interval: In this mode, x ′
s is the rightmost

SV position of an FG object, whereas x ′
e belongs to a back-

ground object. To derive SV samples within the integer SV
boundaries given by (4), the RM must fill the disocclusion
and render the right FG edge correctly. The rightmost integer
FG object position is given by ẋ ′

F R = round(x ′
s). Therefore,

the disocclusion is in the SV interval [ẋ ′
F R + 1, ẋ ′

e]. To fill
it, the RM extrapolates SV samples from the background
sample sT ,l(xe) at the right (R4). Then, the RM examines
whether the left integer SV interval boundary ẋ ′

s is equal to
the rightmost integer FG object position ẋ ′

F R (R5). If this is
true, ẋ ′

F R belongs to the current SV interval and the RM sets
the SV sample at ẋ ′

F R to sT ,l(xs). Otherwise, ẋ ′
F R belongs to

the next SV interval and will be rendered later. This way, the
RM provides an estimate for the hole and maps the right FG
edge positions correctly to the integer positions.

5) Margin Interval: To fill the gap that occurs to the right-
hand side of x ′

s = f(w), the RM sets the SV sample values
in the margin interval [ẋ ′

s, w] equal to value of rightmost IV
sample at w (R6), so that a rough estimate for the gap is
provided.

6) Signals for View Combination: In right edge and margin
intervals, some SV texture samples are extrapolated from their
neighbors and thus unreliable. To identify them later, the
RM derives two signals while rendering an SV interval (R8).
The disocclusion flags s′

H,l indicate whether an SV texture
sample is extrapolated by hole or margin filling; and the SV
depth s′

D,l represents the depth of SV texture samples. Both
signals are used to replace unreliable SV samples in view
combination (R9).

D. View Combination Step

To replace unreliable samples in SV texture s′
T ,l , it is

common practice to combine s′
T ,l rendered from a left IV,

with a second SV texture s′
T ,r . s′

T ,r is rendered from a right IV,
so that it contains information not available in s′

T ,l . The RM
does this similar to [20] based on the SV depths s′

D,l(ẋ ′)

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1279

and s′
D,r (ẋ ′), and the disocclusion flags s′

H,l(ẋ ′) and s′
H,r (ẋ ′).

In contrast to [20], the RM derives s′
T (ẋ ′) instantly after the

corresponding sample s′
T ,l(ẋ ′) has been derived as follows.

1) When only s′
T ,l(ẋ ′) or only s′

T ,r (ẋ ′) is disoccluded, take
the other.

2) When both are disoccluded, take the background sample
to avoid that FG samples occur in the disocclusion.

3) When no sample is disoccluded, compare their depth
difference d� = |s′

D,l(ẋ ′) − s′
D,r (ẋ ′)| to a threshold

dth = 0.3 · (dmax − dmin) with dmax and dmin denoting
the maximal and minimal possible depth value [20].

a) If d� > dth is true, take the FG sample to not
impair the FG object.

b) Otherwise, combine them, as both are reliable.
In case 3b), the sample of the SV texture rendered from the
closer IV view is more reliable. The RM thus derives the
weighted average of both samples as follows [20]:

s′
T (ẋ ′) = s′

T ,l(ẋ ′) + [
s′

T ,r (ẋ ′) − s′
T ,l(ẋ ′)

] · x ′
V − xV ,r

xV ,l − xV ,r
(6)

with x ′
V , xV ,l , and xV ,r denoting the horizontal camera

positions of the SV, the left IV, and the right IV, respectively.

IV. PARTIAL RE-RENDERING AND SVDC CALCULATION

So far, we discussed rendering of the complete SV by
processing the complete IV depth map sD,l . However, re-
rendering only the SV region B̃ ′ that changes when the IV
region B in sD,l changes to s̃B is the basic idea of the
RM. We thus present RM modifications in this section, which
enable such partial re-rendering. In particular, they enable re-
rendering from a random access position in the IV depth map
(Section IV-A) and stopping at a position ensuring that B̃ ′ has
been updated entirely (Section IV-C). To get an insight how
these positions can be derived, we provide an analysis of B̃ ′
in Section IV-B. Finally, we discuss how the RM can exploit
partial re-rendering for SVDC calculation (Section IV-D).

A. Recovery of Auxiliary Variables for Random Access

As presented in Section III-B, the RM employs three
auxiliary variables: x ′

O and ẋ ′
O track the leftmost fractional

and integer SV positions that have already been processed;
bO indicates whether the left boundary of the last and thus the
right boundary of the current SV interval is occluded. These
variables are initialized when the RM starts at the right picture
boundary w and then continuously updated while iterating.
However, when the RM starts re-rendering at a position not
equal to w, they are unknown.

To resolve this and recover them, we modified the RM, as
shown in Fig 7. One of the modifications derives an occlusion
signal sO,l . For this, the RM sets sO,l (xs) equal to x ′

O as it is
when starting the iteration for xs (A2). Another modification,
called recovery process (A3), then employs sO,l to derive x ′

O ,
ẋ ′

O and bO at random access at a particular position xs .
When re-rendering starts at xs , the first IV interval to be

processed is [xs, xe]. The recovery process must consequently
determine whether the right boundary x ′

e = f(xe) of the
corresponding SV interval is occluded to derive bO . This is

Fig. 7. Top: modifications for partial re-rendering. Bottom: recovery of
auxiliary variables bO and x ′

O at random access at xs .

done by comparing x ′
e to sO (xe), as sO (xe) was the minimal

occluding position before x ′
e was rendered (A4). When x ′

e is
greater than or equal to sO(xe), x ′

e is occluded by an FG object
that ends at sO (xe). Consequently, the RM raises the flag bO ,
sets x ′

O equal to sO (xe), and finally, in order to regard the
correct position of the left FG edge, ẋ ′

O to round(x ′
O) (A5).

When x ′
e is less than sO (xe), x ′

e is not occluded. The RM thus
sets the flag bO to zero, and finally x ′

O and ẋ ′
O to x ′

e and
ceil(x ′

e), respectively, since these are the minimal fractional
and integer SV position already rendered (A6).

This way, the RM can recover all three auxiliary variables
at random access by only storing x ′

O while rendering. Conse-
quently, required memory bandwidth is reduced.

B. Determination of the Exact Changed SV Region B̃ ′

In Section IV-A, we explained how the RM can start
re-rendering at a random access position. The exact start
and stop position for re-rendering the whole SV region
B̃ ′ = [x ′

C,s, x ′
C,e] to be changed when the IV region

B = [xB,s, xB,e] changes to the depth candidate s̃B (and thus
the IV depth from sD,l to s̃D,l) is determined in this section.
In the analysis, we first neglect rounding to the SV integer
grid.

The change of the IV depth has two effects on the SV. First,
SV samples are removed from their old positions, and second,
they are moved to new positions. To identify these positions,
we introduce two other regions in Fig. 8. The first is the old
SV region B ′

S , which includes the old sample positions. Its
boundaries x ′

S,s and x ′
S,e are, therefore, given by the left- and

the rightmost positions that are obtained by shifting samples
of B with the unchanged IV depth sD,l as follows:

B ′
S = [x ′

S,s, x ′
S,e] = [min

x∈B
f(x), max

x∈B
f(x)]. (7)

The second, the new SV region B ′
S , includes the new sample

positions. It is derived similar to B ′
S , but by shifting samples

1280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

Fig. 8. SV and IV regions related to the IV depth change in B: B̃ ′ changes in
the SV. B̃ ′

M is a superset of B̃ ′. B ′
S and B̃ ′

S include the samples shifted from
B before and after the depth change, respectively. B‖ needs to be processed
to re-render directly affected SV intervals. BP is processed to re-render B̃ ′.

of B with the changed IV depth s̃D,l , which is denoted by f̃:
B̃ ′

S = [x̃ ′
S,s, x̃ ′

S,e] = [min
x∈B

f̃(x), max
x∈B

f̃(x)]. (8)

Obviously, B ′
S ∪ B̃ ′

S is a subset of SV positions that may
change. However, rendering of an SV interval depends on both
of its boundaries, i.e., when the depth at xB,s and xB,e changes,
the SV intervals related to [xB,s −1, xB,s] and [xB,e, xB,e +1]
are affected. Regarding this additionally, the SV region that
might change is B̃ ′

M = [x̃ ′
M,s, x̃ ′

M,e] with

x̃ ′
M,s = min

(
x ′

S,s, x̃ ′
S,s, f(xB,s − 1)

)
(9)

x̃ ′
M,e = max

(
x ′

S,e, x̃ ′
S,e, f(xB,e + 1)

)
. (10)

In summary, B̃ ′
M is the region in that SV samples may

depend on the IV depth change in B . However, IV samples
outside B can also be warped to B̃ ′

M , as we found in Section II,
and their SV intervals may overlap with and also affect
samples in B̃ ′

M . In order to re-render B̃ ′
M , it must thus be

answered: 1) which IV positions need to be processed to re-
render SV intervals directly related to the depth change in B
and 2) which IV positions need to be processed additionally
to regard overlaps of their SV intervals with B̃ ′

M . The answer
to 1) is that processing IV positions in B‖ = [xB,s − 1, xB,e]
is sufficient, as an SV interval is rendered when its left IV
boundary is processed. To answer 2) and so to find where to
start and stop in the IV, we analyze overlaps in the following.

1) Start Position: To find the position to start, we analyze
whether the RM needs to process any IV positions that is on
the right-hand side of B‖ in the region B� = [xB,e + 1, wB].
This could be true when processing B‖ would alter SV position
that are also related to B�. When starting at xB,e, the right
boundary of its related SV interval is f(xB,e + 1). Taking this
as reference position, SV intervals of B‖ and B� can only
overlap when one or both of the following cases occur.

1a) IV samples in B� are shifted to the left of f(xB,e + 1).
1b) IV samples in B‖ are shifted to the right-hand side

of f(xB,e + 1).

In case 1a), SV intervals of B� [e.g., (Fig. 8) xB,e + 2]
occlude SV intervals of B‖ on the left of f(xB,e + 1). The
occluding SV intervals of B� are, however, not altered when
processing B‖, as the minimal occluding position x ′

O , which is
recovered at random access at xB,e excludes them from being
re-rendered. Case 1b) occurs when x ′

S,e or x̃ ′
S,e [e.g., (Fig. 8)

xB,e] is greater than f(xB,e +1). Then, parts of the old or new
SV region, and thus SV intervals of B‖, are occluded by SV
intervals of B�. However, as in case 1a), the SV intervals of
B� are preserved by using x ′

O .
In conclusion, as in both cases processing B‖ does not alter

occluding SV intervals of B�, re-rendering can start at xB,e.
2) Stop Position: After starting at xB,e, the RM processes

remaining IV positions in B‖. The question is whether it needs
to continue with IV positions in B	 = [1, xB,s−2]. This could
be true when processing B‖ alters SV position that are also
related to B	, which can be in case that the following holds.

2a) IV samples in B‖ are shifted to the left to f(xB,e − 1).
Case 2a) occurs when the old or the new SV region boundary
x ′

S,s or x̃ ′
S,s is less than f(xB,s − 1). Then, parts of the old

or new SV region, and thus SV intervals of B‖, occlude SV
intervals of B	. To analyze this, we distinguish two subcases.

In the first subcase, x ′
S,s is on the left of x̃ ′

S,s [e.g.,
(Fig. 8) xB,s + 1]. Thus, SV intervals of B	 that overlap
with [x ′

S,s, x̃ ′
S,s] have been occluded before by SV inter-

vals of B‖ and become visible. To re-render them, the
RM needs to continue until it has processed a position xP

with f(x P) < x ′
S,s .

In the second subcase, x ′
S,s is on the right-hand side of

x̃ ′
S,s (e.g., imagine Fig. 8 with B ′

S and B̃ ′
S swapped). Then,

SV intervals of B	 that overlap with [x̃ ′
S,s, x ′

S,s] have been
visible previously and become occluded by SV intervals of
B‖. Thus, to re-render s′

T only, processing could be stopped at
the position xs in B‖ with f̃(xs) = x̃ ′

S,s. However, as the SV
region [x̃ ′

S,s, x ′
S,s] is occluded now, its occlusion signal sO,l

changes and needs to be updated. Therefore, the RM needs
to continue, until a position x P that is not occluded by B̃ ′

S
has been processed, which is given at the position xP with
f(x P) < x̃ ′

S,s.
In summary, the subcases show that, after processing

xB,e − 1, the RM needs to continue until a position xP with
f(x P) < min(x ′

S,s, x̃ ′
S,s) has been processed. Having reached

x P (which can also be equal to xB,e − 1), a further overlap
occurs when the following is true.
2b) IV positions in [1, xP − 1] are shifted to the right-hand

side of f(xP)
[e.g., (Fig. 8), xP − 1]. However, since related SV inter-
vals have been and are occluded, processing of positions
in [1, x P −1] is not required and the RM can stop processing.

3) Conclusion: Discussed cases show that the RM needs to
process B‖ first. Then, it must continue in B	 until position x P

with f(x P) < min(x ′
S,s, x̃ ′

S,s) has been processed. 2 Therefore,
the IV region to be processed for re-rendering B̃ ′ is

BP = [min(xP , xB,s − 1), xB,e]. (11)

2It should be noted that although we neglected rounding to the integer SV
grid, it can be easily shown that this condition is still sufficient when rendering
with quarter sample precision and rounding half sample position up.

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1281

When processing BP , the whole changed SV region B̃ ′ is
re-rendered. Cases 1a) and 1b) show that B̃ ′ is a subset of
B̃ ′

M as its right-hand side can be occluded. More specifically,
with the minimal occluding position sO (xB,e) (as derived in
Section IV-A), B̃ ′ is equal to [x̃ ′

M,s, sO (xB,e)].

C. re-rendering the Changed Region B̃ ′

In Section VII, we found BP as the IV region that needs
to be processed to re-render the changed region B̃ ′. How to
start at xB,e was discussed in Section IV-A. The question is
now, how the RM can find xP to stop re-rendering there. To
answer this, Fig. 7 shows further modifications.

As shown on the left, re-rendering starts with processing B.
One of the modifications there is the derivation of the min-
imal changed position x ′

C . For initialization, x ′
C is set equal

to w (C1). In subsequent iterations, x ′
C is updated (C2) to

x ′
C =

{
min(f̃(xs), x ′

C) if s̃D,l(xs) > sD,l(xs)

min(f(xs), x ′
C) otherwise.

(12)

With (1), (7), and (8), it can easily be shown that the iterative
derivation using (12) results in x ′

C equal to min(x ′
S,s, x̃ ′

S,s),
after the RM has processed B (C3).

Then, the RM continues with processing positions on the
left of B ′, as shown on the right-hand side in Fig. 7. In the first
iteration, the RM processes xB,s − 1. Subsequently, the RM
evaluates the condition x ′

s < x ′
C (C4). If this is true, xs is equal

to xP and the RM stops processing. Otherwise, it continues
iterating.

This way, the RM can derive x ′
C , which is required to

find xP and stop directly while re-rendering. Consequently,
a prior analysis of B to find xP is not necessary.

D. SVD and SVDC Calculation Step

This section discusses how the RM can use partial re-
rendering for its major purpose—the quantification of the
SVDC that is related to a depth candidate. As we discussed
in Section II, this quantification is enabled by two modes, the
SET and the GET mode. In both, a depth candidate s̃B for an
IV region B is provided to the RM, either to adopt it (S4) or
to calculate the related SVDC (G4).

To this end, the RM re-renders the changed SV region B̃ ′
(S2, G2) related to the depth candidate by iteratively process-
ing the IV region BP . In each iteration, the RM renders zero
(e.g., f ′ in Fig. 4) or more changed SV texture samples s̃′

T (ẋ ′).
Directly after a sample has been rendered [i.e., after (R9)], the
RM computes its SVD s̃′

E (ẋ ′) = [s̃′
T (ẋ ′)−s′

Ref (ẋ ′)]2 (G3, S3).
In the SET mode, the RM stores s̃′

E (ẋ ′) as s′
E (ẋ ′) (S4). In GET

mode, the stored SVD is used to derive the SVDC according
to G4, by incrementing �D, which is set to zero when re-
rendering starts (C1), by

�D(ẋ ′) = ([
s̃′

T (ẋ ′) − s′
Re f (ẋ ′)

]2 − s′
E (ẋ ′)

)
. (13)

This way, when the RM reaches position xP and stops re-
rendering, B̃ ′ has been entirely re-rendered, so that �D is the
SVDC related to the depth candidate s̃B .

V. EVALUATION

A. Complexity Analysis

As we target a low-complexity RM design, we analyze
how the RM’s complexity is related to different functionalities
and depends on the input depth data. What we neglect is the
complexity of the RM initialization, i.e., steps I1 and I2, as
it is insignificant when the RM performs a huge number of
SET and GET operations. Evaluation results are discussed in
Section VI, in light of different application scenarios.

1) Complexity of Different RM Setups and Modes: The RM
design enables rendering with a subset of functionalities (in the
following called setup). This can avoid overfitting or reduce
complexity. Moreover, rendering can be applied in GET and
SET mode. Which complexity is added by which functionality
and how modes differ in complexity is thus of interest and
evaluated in this section.

a) Methodology: When re-rendering small IV regions B ,
the overhead for the recovery process (Section IV-A) can
become significant. Furthermore, when s̃B is a large depth
change, an overhead for processing positions on the left of B
(Section IV-C) occurs. Both effects are evaluated in Section
V-A2. To avoid them here, GET and SET operations are
performed with B corresponding to the full size initial IV
depth. This way, operations related to the depth candidate’s
characteristics are insignificant in the evaluation.

For evaluation, we employed two different methods. First,
we counted the number of operations and memory accesses
that are conceptually needed per IV depth sample in a simula-
tion. This provides a platform independent measure. Second,
we measured the number of IV depth samples that can be
processed per second on a PC system. For both, the IVs
were at stereo distance to the SV and we averaged over
eight sequences provided by JCT-3V [25] (listed in Table III
and in the following called JCT-3V sequences). Results for
different setups and modes are provided in Table II and show
which kind and number of operations and memory accesses
are performed. Their total number is denoted as NT . Sample
rates are denoted with RS . We show only averages, as results
depend only slightly on the sequence content. In all sequences,
the majority of intervals are continuous intervals, which thus
determine the complexity. Large deviations might only occur
for uncommon sequences with large occlusions.

b) RM setups: Evaluated setups are shown in the top
row of Table II. The base setup supports extrapolation of an
IV luma component with integer sample precision. On top,
this distortion computation, quarter sample precision, and view
combination are added in the extended setup. In addition, two
chroma components with the same resolution as the luma
component are rendered in the full setup. For reference, we
used a calculation of the SSD.

Table II shows that compared with SSD, NT (averaged over
both modes) for the base, extended, and full setup is increased
by the factors of 2.5, 5.5, and 8, respectively. These results are
supported by the sample rate measurement. Compared with
SSD, RS (averaged over both modes) of the three setups is
divided by 2.6, 5.7, and 8.6, respectively. Considering that
full rendering is performed, these factors are relative low.

1282 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

TABLE II

AVERAGE NUMBER OF OPERATIONS AND MEMORY ACCESSES PER DEPTH
SAMPLE, AND SAMPLE RATE DEPENDING ON THE RM SETUP

TABLE III

(A) RM VERSUS SVD ESTIMATION. (B) RM VERSUS

RENDERING METHODS

c) RM modes: Table II shows that the GET mode does
not write to the memory. In contrast, the SET mode does to
adopt the depth change and thus to update the RM’s state.
More specifically, it stores the changed state variables that
are marked with (*) in Table I. When the GET mode renders

Fig. 9. Average number of operations and memory accesses per IV depth
sample depending on (a) wB and (b) disparity change.

a current interval, these variables change as well. However,
their change is irrelevant for rendering further intervals, as
this depends only on the old RM state, the auxiliary variables,
and the RM input. Therefore, the GET mode does not store
them and the RM state is preserved.

This way, the RM can test further candidates without revert-
ing its state. Moreover, memory bandwidth is approximately
halved, which can also be seen from measured sample rates:
RS increases drastically in the base setup when performing
a GET instead of the SET operation. Since the major differ-
ence between both modes is the number of writing memory
accesses, the memory bandwidth seems to be the determining
factor on the used platform.

2) Dependency from the Depth Candidate: So far, we
analyzed re-rendering of a whole SV with an unchanged
IV depth. However, re-rendering is usually performed for a
small region B with changed depth s̃B . So it is of interest
how such characteristics increase the complexity. To answer
this, we analyze how the average number of operations and
memory accesses per IV depth sample increases: 1) for the
recovery process (NR); 2) for processing B (NB); 3) for
processing positions on the left of B (NL); and 4) in total
(NT = NB +NL +NR). For evaluation, we used the base setup
with quarter sample precision enabled. We used the same view
setup and averaged over sequences as before.

a) Dependency from IV region width: To evaluate how
complexity depends on the width wB = (xB,e − xB,s + 1) of
B , we first partitioned an IV depth in regions B of size wB .
Then, we performed a GET operation for each region B with
a depth candidate s̃B corresponding to the depth values in B
plus an offset leading to a disparity change of 1.

Results in Fig. 9 show that when B corresponds to one IV
sample only (wB = 1), the additional complexity (NR + NL)
introduced by the recovery process and by processing samples
left of B is even larger than the complexity (NB) required for
processing B . However, NL and NR and thus NT decrease
fast with wB . In conclusion, for wider IV regions (wB ≥ 8),
the additional complexity is insignificant.

b) Dependency from depth change: A second aspect
impacting the complexity is the magnitude of the depth
change. For evaluation, we used the same approach as in
Section V.A.2.a, with the differences that wB has been fixed
to a value of 4 and the depth value offset and thus disparity
was varied.

For negative disparity changes, NT decreases, as shown
in Fig. 9. Reason is that the new SV region B̃ ′

S (as shown

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1283

in Fig. 8) moves to the right in s′
T , consequently samples at the

right-hand side of B̃ ′
S become occluded. As occluded samples

can be skipped while rendering, NB decreases. Furthermore, as
a disocclusion appears on the left of B̃ ′

S , hole filling increases
NL . When B̃ ′

S is entirely occluded, the hole has its maximal
size and NB and NL remain constant.

For positive disparity changes NB and NL and thus NT

increase almost linearly. This is because B̃ ′
S is shifted left

in s′
T and occludes left neighboring samples. As the addi-

tionally occluded positions need to be processed to update the
occlusion signal sO,l , NL increases. Furthermore, the hole on
the right-hand side of B̃ ′

S gets larger and additional operations
are required for hole filling, which increases NB .

In summary, the complexity increases significantly when
testing large positive disparity changes.

3) Memory Requirements: The RM stores state variables
marked with (*) in Table I as its state. However, since the
RM operates rowwise, it accesses only rows that belong to
a currently processed IV block. For a horizontal processing
order and small block sizes, it can thus easily be derived from
Table I that the RM requires memory for less than a picture.

B. Comparison to Alternative Approaches

This section evaluates whether the optimizations of the RM
are effective and how the RM compares with other SVD
estimation methods and rendering algorithms.

1) Complexity Reduction Due to Key Features: The RM
uses several features for optimization and re-rendering. The
question is if these features are effective. As we are not aware
of other partial depth image-based re-rendering algorithms, we
compare the RM to a hypothetical unoptimized variant. For
comparison, we assume that the variant and the RM have the
functionality of the base setup with distortion calculation in
the GET mode. In this setup, the RM performs NO = 19
operations and NM = 5 memory accesses per IV sample
(Table II). How NO and NM increase when a particular RM
feature is not supported is very roughly estimated in the
following.

a) Partial re-rendering: To enable our main
contribution—re-rendering—we suggested: 1) the storage
of state variables as basis; 2) the recovery process to
start at a random access position; 3) the derivation of the
changed region to find out where to stop re-rendering; and
4) intervalwise processing to simplify starting and stopping.
Without these features, an unoptimized algorithm would
re-render a complete row upon a depth change in a small
part of it, since the unoptimized algorithm would neither
know whether samples at the start position are occluded, nor
where to stop rendering. Assuming a row width of w = 1024
and a changed IV region of width wB = 16, the number of
processed IV samples and thus NO and NM would increase
by a factor of w/wB = 64.

b) Intervalwise processing: Per IV depth sample, the RM
performs all steps consecutively to derive the related SV sam-
ples and the SVD. To enable that, we modified and combined
basic rendering techniques (as described in Section I), e.g.,
instant interpolation, hole filling, view combination, and SVD
calculation. A step instantly processes intermediate results of

its preceding step, as shown in Fig. 4 by vertical arrows.
Crucial for intervalwise processing is the occlusion detec-
tion method from [19]: no information of other intervals or
z-buffering methods are required to handle occlusions, since
the minimal occluding position is tracked while rendering.

Without intervalwise processing, an unoptimized algorithm
would process all samples of the change region consecutively
in one step, before starting the next step. This way, it would
need to store and read additional intermediate results (i.e.,
sample values before interpolation or hole filling). Moreover,
additional operations would be necessary to iterate multiple
times over the changed region. Estimating that an unopti-
mized algorithm performs three additional iterations over the
changed region and that each iteration requires one addition
and one comparison per sample, NO increases by a factor
of 25/19 ≈ 1.3. Assuming that two additional intermedi-
ate results are stored and read, NM increases by a factor
of 9/5 = 1.8.

c) GET mode: Intervalwise processing enables a further
contribution—the GET mode. In GET mode, the RM can
calculate the SVDC mode without changing its state and thus
does not perform writing accesses. Table II shows that for
an unoptimized algorithm with SET mode only, NM would
increase by a factor of 8/5 = 1.6.

d) Fast interpolation: For quarter sample precision, the
RM maps SV positions to an upsampled IV texture, simi-
lar to backward warping [28], but embedded by us in the
intervalwise processing scheme. In contrast, the VSRS 3.5 1D
mode warps a complete IV texture, which has been upsampled
to obtain an SV texture. This SV texture is then decimated.
Assuming that an unoptimized algorithm operates the same
way in the base setup and upsamples by a factor of 4,
it requires about 4 · 20 operations and 4 · 3 memory accesses
(Table II) when neglecting decimation. The RM requires about
30 operations and three memory accesses (Base + QPel in
Table II) only. Therefore, for the unoptimized algorithm,
NO and NM increase by factors of 80/30 ≈ 2.7 and 16/4 ≈ 4.

e) Conclusion: As features are orthogonal, the derived
factors can be multiplied. Inverting them shows that inter-
valwise processing, the GET mode and fast interpolation
reduce NO and NM to about 100/(1.3 · 1 · 2.7) ≈ 29% and
100/(1.8 ·1.6 ·4) ≈ 9%, respectively, and in total NT to about
19% (as NM is about one quarter of NT after reduction). On
top of this, the most significant reduction is achieved by our
main feature—partial re-rendering—as it avoids rendering of
a complete row.

2) Comparison to Estimation Methods: The SVDC pro-
vided by the RM is always exact with respect to its rendering
algorithm. However, when the receiver-side renderer in the 3D
video system and the RM differ, deviations can occur. Then,
it is of interest how the SVDC derived by the RM correlates
with the SVD at the receiver-side renderer.

We evaluate this in comparison to two existing methods,
which are based on the disparity difference sp(x) = s̃�,l(x)−
s�,l(x) due to the depth distortion. The first has been proposed
besides another method by Kim et al. [9], [10]. It derives the
SSD between the texture samples sT ,l in B and the correspond-
ing samples at positions shifted by the disparity difference

1284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

sp(x), i.e., it sums up [sT ,l(x)− sT ,l(x − sp(x))]2. The second
metric—the View Synthesis Distortion (VSD) [12], [29]—
derives a weighted sum of squared disparity differences sp(x)
over x ∈ B with weights being the square of the horizontal
gradient at sT ,l(x).

We evaluated the performance of a particular sender-side
SVD derivation method M (the RM’s extended setup, Kim’s
method, or the VSD) for a receiver-side rendering method R
(RM, 1D-Fast [23], or VSRS 3.5 [20]) as follows. Similar
to [10], we first partitioned several distorted SV textures
rendered with method R in horizontal slices with a height
of 16 samples. Then, we evaluated the correlation of: 1) the
exact SVDs of the slices with respect to the rendering method
R and 2) the estimated SVDs of the slices provided by
method M . We used horizontal slices instead of blocks as
distorted SV regions might be related to multiple IV blocks
as discussed (Section II).

More specifically, we used method R to render: 1) distorted
SV textures from coded IV texture and coded IV depth and
2) respective reference SV textures from coded IV texture and
original IV depth. In doing so, the SV was at stereo distance
between the IVs. Then, we computed the exact SVDs as SSDs
between the luma components of the distorted and reference
SV texture slices. This way, the exact SVDs are the distortions
introduced by depth coding when method R is used, thus the
distortions that should be provided by method M . To derive
the distortions that are actually provided by method M for an
SV slice, we applied M to the associated IV data slices (i.e.,
the respective parts of the coded IV textures and coded and
original IV depth). This means, we used method M on the left
IV data, on the right IV data, and averaged over both results.

This way, we processed slices of all pictures of all
JCT-3V sequences using 3D-HEVC for coding with four
different quantization parameters (QPs) according to JCT-3V’s
test conditions [25], but using the SSD of depth for mode
selection in coding to avoid a potential bias. Then, we pooled
results of each sequence in two vectors—one for method M
and one for the rendering approach R. Finally, we computed
the correlation coefficient between the vectors, i.e., we divided
their covariance by the product of their variances.

Results in Table III(a) show that when sender and receiver
use the RM, the distortions match perfectly as targeted. The
correlation decreases the more R deviates from the RM: to
96% for 1D-Fast and to 89% for VSRS.

Kim’s method and the VSD show a constant correlation of
about 82% and 73%, respectively. However, as discussed in
Section V-A, the RM’s extended setup complexity is increased
by a factor of at least 5.5 compared with SSD. Factors for
Kim’s method and the VSD are only about 1.5–1, respectively,
as it can easily be deduced from [9] and [12]. In summary,
the RM performs also well when the receiver uses a different
rendering algorithm and outperforms the existing estimation
methods. However, increased correlation comes at increased
computational complexity.

3) Comparison to View Synthesis Methods: The RM’s pri-
mary objective is SVDC calculation. The calculated SVDC
should correlate with the actual SVDC at a receiver-side
renderer even when this differs from the RM. For this, the

Fig. 10. Originals and pictures rendered from two IVs at stereo distance. Top-
left: Undodancer (undistorted). Top-right: Kendo (imperfect original depth).
Bottom: Gtfly (strongly coded texture and depth).

RM only uses basic techniques that are commonly applied.
Those techniques should render geometrically correct with
sufficient quality when using undistorted depth. The Undo-
dancer pictures in Fig. 10 verify this: the picture rendered
with the RM is very similar to the original captured picture.
For further evaluation, we rendered SV textures using the
JCT-3V sequences and compared them to original textures.
Results for rendering from original IV data are given in
Table III(b) and show that the RM, 1D-Fast, and VSRS perform
similarly.

To evaluate the RM for strongly distorted IVs, we coded
the JCT-3V sequences with 3D-HEVC using JCT-3V’s test
conditions [25] and the lowest rate point defined there, but
using depth SSD for mode selection to avoid a bias to the RM.
Results in Table III(c), which are averaged over the sequences,
indicate still a similar performance. However, we observed that

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1285

VSRS and 1D-Fast outperform the RM at strongly distorted
edges, as shown in Fig. 10 for the Gtfly sequence. Reason for
this is a boundary noise removal tool, which is not part of the
RM and that can conceal SVDs due to distorted depth.

In summary, the RM renders geometrically correct with
sufficient quality as targeted. In case of strongly distorted
depth, its rendering quality could be improved by boundary
noise removal tools. For this, the JCT-3V uses the RM for
encoding while applying the 1D-Fast at the receiver [25].

The RM design primarily targets low complexity for partial
re-rendering. However, for completeness, we measured run
times for rendering of whole SV textures using the RM
(without functionalities for partial re-rendering and SVDC
calculation) and available software implementations [22], [28]
of the other methods on the PC system also used for results in
Table II. Results averaged over the JCT-3V sequences show
that the RM, 1D-Fast, and VSRS require 0.34, 0.68, and 1.16 s
to render a full HD picture with 4 : 2 : 0 chroma sampling.
Results indicate that the RM enables also rendering of whole
SV textures with low complexity.

VI. APPLICATION SCENARIOS

In Section VII, we analyzed how the RM can be imple-
mented, which complexity is introduced and which SV quality
is reached. What these results mean in different DPAs and how
they can use the RM is discussed in this section.

A. Encoding

The RM can be used by a depth encoder to select coding
modes based on the SVDC [5]. This is done by the 3D-HEVC
reference software encoder [22], which uses the RM’s full
setup. By default [25], the SVDC is computed in six SVs using
reference textures s′

Ref rendered from original texture and
depth, so that the SVD and thus the SVDC are the distortion
introduced by coding only. This ensures a proper quality in
the whole viewing range [6], and saves about 19% of the total
bit rate compared with conventional encoding using the SSD
of the depth for mode selection.

However, rate savings come at the expense of higher
computational complexity related to: 1) the full setup of
the RM; 2) the depth candidate’s characteristics (which is
limited, as the wB is not less than 4 and depth changes are
small in predictive coding); 3) additional SET operations; and
4) the six SVs. This increased complexity is addressed by
two modifications. First, coding modes are preselected using
the VSD [29] before selecting finally based on the SVDC.
Second, re-rendering is skipped when a change in the SV is
unlikely [30]. With these and other modifications [23], the
encoding time increases in average by 46% compared with
using the SSD of the depth in mode selection. When averaging
over sequences coded with the lowest and highest QP, the
increase is about 40% and 50%, respectively. Main reason
is the RM’s complexity dependence from the magnitude of
the depth change, which decreases with lower QPs. Further
results for compression are provided in our prior works with
respect to different receiver-side renderers [5] and to different
RM setups and SV positions [6]. A comparison to the SVD
is given in [29].

B. Depth Filtering

A depth filter [4] can identify and remove irrelevant infor-
mation from depth maps by calculating the SVDC using
reference textures s′

Re f rendered with initial depth. Alterna-
tively, it can refine a depth map by calculating the SVDC
using a recorded texture as reference s′

Re f , so that the SVDC
would be related to the SVD caused by the initial depth.
When filtering adaptively, the depth change is generally small,
and therefore, the overhead due to its magnitude is minor.
For approaches working on small windows, the overhead for
partial re-rendering becomes significant.

C. Depth Estimation

Depth estimation is usually based on matching regions in
different IVs [3]. The SVDC of an SV texture extrapolated
to the position of a recorded reference texture can be an
additional term of matching cost. However, NT increases with
the magnitude of depth change and thus in depth estimation
with the search region. For this, initial light weight matching
would be beneficial, before refinement steps using the SVDC.

D. Interactive Depth Editing Tools

The RM can provide an SV as feedback to a human user of
a depth editing tool by applying a SET operation. Typically,
users interact with low frequency and changes affect a fraction
of the depth map only. Therefore, even for large depth changes,
re-rendering with the RM requires minimal computational
resources.

VII. CONCLUSION

DPAs can be improved by regarding the SVDC obtained
by partial depth image-based re-rendering. For re-rendering,
we proposed a fast algorithm—the RM—which operates on
a single IV depth sample basis, so that only the related SV
interval can be re-rendered. To start re-rendering at a random
access position, we extended the RM by a recovery process.
Moreover, we analyzed the changed SV region to determine
where rendering can be stopped in the IV and modified the
RM based on our findings. This way, only the fraction of the
SV that is affected by the depth change is re-rendered.

Such partial re-rendering—the RM’s main feature—reduces
complexity significantly. On top of this, other optimizations
(i.e., intervalwise processing, GET mode, and fast interpola-
tion) reduce the number of operation and memory accesses
to about 20% compared with an unoptimized re-rendering
variant. Compared with SSD calculation, the RM’s complexity
is increased by a factor of 3–9 (depending on its setup).
It increases further for large depth changes or small IV region.

The RM provides an exact measure for the introduced SVD
when the receiver also uses the RM’s rendering algorithm. For
other rendering methods, the RM achieves a high correlation
(≥89%), which still outperforms the evaluated SVD estimation
methods. However, compared with the estimation methods, the
computational complexity increases by a factor of about 5.5.

As receiver-side renderer—its secondary use case—the RM
renders geometrically correct with a sufficient quality. For
distorted depth, a higher quality can be achieved with method

1286 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 6, JUNE 2018

supporting boundary noise removal. A comparison to the
available software of other methods shows that rendering time
is reduced by factors of about 2 and 4.

For SVDC calculation, the RM has proved its applicability
in rate-distortion optimization of the 3D-HEVC reference
software encoder and can also improve other DPAs, such as
depth editing, filtering, or estimation. It is thus a valuable
tool in systems with autostereoscopic displays to improve
compression and quality of 3D video.

APPENDIX

We show that an IV sample shifted from the IV position
x −n, with n > 0, is occluded in the SV when f(x −n) ≥ f(x)
is true. We assume that a left IV is processed to render an SV
on its right and that background samples on the left of an
FG object in the IV do not appear in a hole at the right-hand
side of the FG object in the SV. The same is shown in [27]
differently.

Proof:

f(x − n) ≥ f(x)

⇔ x − n − s�(x − n) ≥ x − s�(x) with (1)

⇒ s�(x − n) < s�(x)

⇔ sZ (x − n) > sZ (x) with (3).

This means, the sample at IV position x is located closer to
the camera than the sample at IV position x − n. Therefore,
the sample from IV position x − n is shifted behind an FG
object and thus occluded in the SV.

Consequently, when processing the IV from right to left,
a rendered SV sample will never be occluded by any SV
sample rendered later and can thus be regarded as final [27].

REFERENCES

[1] A. Smolic, K. Müller, P. Merkle, P. Kauff, and T. Wiegand, “An overview
of available and emerging 3D video formats and depth enhanced stereo
as efficient generic solution,” in Proc. Picture Coding Symp. (PCS),
Chicago, IL, USA, May 2009, pp. 1–4.

[2] C. Fehn, “Depth-image-based rendering (DIBR), compression, and
transmission for a new approach on 3D-TV,” Proc. SPIE, vol. 5291,
pp. 93–104, May 2004.

[3] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” in Proc. IEEE
Workshop Stereo Multi-Baseline Vis., Kauai, HI, USA, Dec. 2001,
pp. 131–140.

[4] S. Smirnov, A. Gotchev, and K. Egiazarian, “Methods for depth-map
filtering in view-plus-depth 3D video representation,” EURASIP J. Adv.
Signal Process., vol. 2012, no. 1, pp. 1–21, Dec. 2012.

[5] G. Tech, H. Schwarz, K. Müller, and T. Wiegand, “3D video coding
using the synthesized view distortion change,” in Proc. Picture Coding
Symp. (PCS), Kraków, Poland, May 2012, pp. 25–28.

[6] G. Tech, H. Schwarz, K. Müller, and T. Wiegand, “Synthesized view
distortion based 3D video coding for extrapolation and interpolation of
views,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Melbourne,
VIC, Australia, Jul. 2012, pp. 634–639.

[7] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila, “Depth map
distortion analysis for view rendering and depth coding,” in Proc.
16th IEEE Int. Conf. Image Process. (ICIP), Cairo, Egypt, Nov. 2009,
pp. 721–724.

[8] H. Yuan, S. Kwong, J. Liu, and J. Sun, “A novel distortion model and
Lagrangian multiplier for depth maps coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 24, no. 3, pp. 443–451, Mar. 2014.

[9] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila, “Depth map cod-
ing with distortion estimation of rendered view,” Proc. SPIE, vol. 7543,
p. 75430B, Jan. 2010.

[10] W.-S. Kim, A. Ortega, P. Lai, and D. Tian, “Depth map coding
optimization using rendered view distortion for 3D video coding,” IEEE
Trans. Image Process., vol. 24, no. 11, pp. 3534–3545, Nov. 2015.

[11] R. Ma, N.-M. Cheung, O. C. Au, and D. Tian, “Novel distortion metric
for depth coding of 3D video,” in Proc. 20th IEEE Int. Conf. Image
Process. (ICIP), Melbourne, VIC, Australia, Sep. 2013, pp. 1714–1718.

[12] B. T. Oh, J. Lee, and D.-S. Park, “Depth map coding based on
synthesized view distortion function,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 7, pp. 1344–1352, Nov. 2011.

[13] L. Wang and L. Yu, “Rate-distortion optimization for depth map coding
with distortion estimation of synthesized view,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Beijing, China, May 2013, pp. 17–20.

[14] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View
generation with 3D warping using depth information for FTV,” Signal
Process., Image Commun., vol. 24, nos. 1–2, pp. 65–72, 2009.

[15] Y. Zhao, C. Zhu, Z. Chen, D. Tian, and L. Yu, “Boundary artifact
reduction in view synthesis of 3D video: From perspective of texture-
depth alignment,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 510–522,
Jun. 2011.

[16] P. Ndjiki-Nya et al., “Depth image-based rendering with advanced
texture synthesis for 3-D video,” IEEE Trans. Multimedia, vol. 13, no. 3,
pp. 453–465, Jun. 2011.

[17] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for real-
time HD1080p view synthesis engine,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 9, pp. 1329–1340, Sep. 2011.

[18] P.-K. Tsung, P.-C. Lin, L.-F. Ding, S.-Y. Chien, and L.-G. Chen, “Single
iteration view interpolation for multiview video applications,” in Proc.
3DTV Conf., True Vis.-Capture, Transmiss. Display 3D Video, Potsdam,
Germany, May 2009, pp. 1–4.

[19] R.-P. M. Berretty, F. J. Peters, and G. T. G. Volleberg, “Real-time ren-
dering for multiview autostereoscopic displays,” Proc. SPIE, vol. 6055,
p. 60550N, Jan. 2006.

[20] D. Tian, P.-L. Lai, P. Lopez, and C. Gomila, “View synthesis techniques
for 3D video,” Proc. SPIE, vol. 7443, p. 74430T, Sep. 2009.

[21] G. Tech, K. Müller, and T. Wiegand, “Evaluation of view synthesis
algorithms for mobile 3DTV,” in Proc. 3DTV Conf., True Vis.-Capture,
Transmiss. Display 3D Video, Antalya, Turkey, May 2011, pp. 1–4.

[22] JCT-3V. (Mar. 2016). 3D-HEVC Reference Software, HTM-16.1.
[Online]. Available: https://hevc.hhi.fraunhofer.de/svn/svn_
3DVCSoftware/tags/HTM-16.1

[23] Y. Chen, G. Tech, K. Wegner, and S. Yea, Test Model 11 of 3D-HEVC
and MV-HEVC, document JCT3V-K1003, Joint Collaborative Team on
3D Video Coding Extension Development, Feb. 2015.

[24] H. Schwarz et al., Description of 3D Video Coding Technology
Proposal by Fraunhofer HHI, document MPEG11/M22570, ISO/IEC
JTC1/SC29/WG11, 2011.

[25] K. Müller and A. Vetro, Common Test Conditions of 3DV Core Experi-
ments, document JCT3V-G1100, Joint Collaborative Team on 3D Video
Coding Extension Development, Jan. 2014.

[26] Report on Experimental Framework for 3D Video Coding,
document MPEG/N11631, ISO/IEC JTC1/SC29/WG11, 2010.

[27] R.-P. Berretty and F. Ernst, “High quality images from 2.5D video,” in
Proc. Eurographics, 2003, pp. 255–262.

[28] MPEG. (Nov. 2013). View Synthesis Reference Software (VSRS) 3.5.
[Online]. Available: http://wg11.sc29.org/svn/repos/MPEG-
4/test/trunk/3D/view_synthesis/VSRS

[29] B. T. Oh and K.-J. Oh, “View synthesis distortion estimation for AVC-
and HEVC-compatible 3-D video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 24, no. 6, pp. 1006–1015, Jun. 2014.

[30] S. Ma, S. Wang, and W. Gao, “Low complexity adaptive view syn-
thesis optimization in HEVC based 3D video coding,” IEEE Trans.
Multimedia, vol. 16, no. 1, pp. 266–271, Jan. 2014.

Gerhard Tech received the Dipl.-Ing. degree
in electrical engineering from RWTH Aachen
University, Aachen, Germany, in 2007.

He has been with Fraunhofer Institute for
Telecommunications, Heinrich Hertz Institute,
Berlin, Germany, since 2008. His current research
interests include video coding and processing,
including 3D representations.

Mr. Tech co-chaired several JCT-3V ad hoc
groups during the development of the multiview
and 3D extensions of H.265/HEVC. He has been

an Editor of both extensions, and Software Coordinator of the 3D-HEVC
and MV-HEVC reference software.

TECH et al.: PARTIAL DEPTH IMAGE BASED RE-RENDERING FOR SVD COMPUTATION 1287

Karsten Müller (M’98–SM’07) received the Dipl.-
Ing. and Dr.-Ing. degrees in electrical engineering
from Technical University of Berlin, Berlin, Ger-
many, in 1997 and 2006, respectively.

Since 1997, he has been with Fraunhofer Insti-
tute for Telecommunications, Heinrich Hertz Insti-
tut, Berlin, where he is currently a Project Man-
ager of 3D video projects. His research interests
include representation, coding and reconstruction
of 3D scenes in free viewpoint video scenarios
and coding, multiview applications and combined

2D/3D similarity analysis. He has been involved in ISO/IEC MPEG activities
on multiview, multitexture, and 3-D video coding.

Heiko Schwarz received the Dipl.-Ing. degree
in electrical engineering and the Dr.-Ing. degree
from University of Rostock, Rostock, Germany,
in 1996 and 2000, respectively.

In 1999, he joined the Image and Video Coding
Group, Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute, Berlin, Germany. Since
1999, he has contributed successfully to the stan-
dardization activities of the ITU-T Video Coding
Experts Group (ITU-T SG16/Q.6-VCEG) and the
ISO/IEC Moving Pictures Experts Group (ISO/IEC

JTC 1/SC 29/WG 11-MPEG). During the development of the scalable video
coding extension of H.264/AVC.

Mr. Schwarz co-chaired several ad hoc groups of the Joint Video Team
of ITU-T VCEG and ISO/IEC MPEG investigating particular aspects of
the scalable video coding design. He has been appointed as a Co-Editor of
ITU-T H.264 and ISO/IEC 14496-10 and as a Software Coordinator for the
SVC reference software.

Thomas Wiegand (M’05–SM’08–F’11) received
the Dipl.-Ing. degree in electrical engineering
from Technical University of Hamburg-Harburg,
Germany, in 1995 and the Dr.-Ing. degree from
University of Erlangen-Nuremberg, Bavaria,
Germany, in 2000.

He was a Visiting Researcher with Kobe
University, Kobe, Japan; University of California
at Santa Barbara, Santa Barbara, CA, USA; and
Stanford University, Stanford, CA, where he also
returned as a Visiting Professor. He served as a

Consultant to several start-up ventures. He is currently a Consultant with
Vidyo, Inc., Hackensack, NJ, USA. He has been an active participant
in standardization for video coding multimedia with many successful
submissions to ITU-T and ISO/IEC. He is an Associated Rapporteur of
ITU-T VCEG. He is currently a Professor with the Department of Electrical
Engineering and Computer Science, Technical University of Berlin, Berlin,
Germany, and is jointly heading the Fraunhofer Heinrich Hertz Institute,
Berlin.

Mr. Wiegand was a recipient of the ITU150 Award. The projects that he
co-chaired for the development of the H.264/MPEGAVC standard have been
recognized by the ATAS Primetime Emmy Engineering Award and a pair
of NATAS Technology & Engineering Emmy Awards. For his research in
video coding and transmission, he received numerous awards, including the
Vodafone Innovations Award, the EURASIP Group Technical Achievement
Award, the Eduard Rhein Technology Award, the Karl Heinz Beckurts Award,
the IEEE Masaru Ibuka Technical Field Award, and the IMTC Leadership
Award. He received multiple Best Paper Awards for his publications. Since
2014, Thomson Reuters named him in their list of The World’s Most
Influential Scientific Minds as one of the most cited researchers in his field.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

