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A Survey of Content-Aware Video
Analysis for Sports

Huang-Chia Shih, Member, IEEE

Abstract— Sports data analysis is becoming increasingly large
scale, diversified, and shared, but difficulty persists in rapidly
accessing the most crucial information. Previous surveys have
focused on the methodologies of sports video analysis from the
spatiotemporal viewpoint instead of a content-based viewpoint,
and few of these studies have considered semantics. This paper
develops a deeper interpretation of content-aware sports video
analysis by examining the insight offered by research into the
structure of content under different scenarios. On the basis of
this insight, we provide an overview of the themes particularly
relevant to the research on content-aware systems for broadcast
sports. Specifically, we focus on the video content analysis
techniques applied in sportscasts over the past decade from
the perspectives of fundamentals and general review, a content
hierarchical model, and trends and challenges. Content-aware
analysis methods are discussed with respect to object-, event-,
and context-oriented groups. In each group, the gap between
sensation and content excitement must be bridged using proper
strategies. In this regard, a content-aware approach is required
to determine user demands. Finally, this paper summarizes the
future trends and challenges for sports video analysis. We believe
that our findings can advance the field of research on content-
aware video analysis for broadcast sports.

Index Terms— Action recognition, content-aware system,
content-based video analysis, event detection, semantic analysis,
sports video analysis, survey.

I. INTRODUCTION

RESEARCH interest in sports content analysis has sub-
stantially increased in recent decades, because of the

rapid growth of video transmission over the Internet and the
demand for digital broadcasting applications. The massive
commercial appeal of sports programs has become a dominant
focus in the field of entertainment. Research on big data
analytics has attracted much attention to machine learning and
artificial intelligence techniques. Accordingly, content analysis
of sports media data has garnered attention from various
studies in the last decade. Sports data analysis is becoming
large scale, diversified, and shared. The most pressing problem
currently is how to access the most important information in
a short time. Because of the massive demand for sports video
broadcasting, many enterprises such as Bloomberg, SAP, and
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Vizart employ sports content analytics. Content analysis with
big data has used become a major emerging industry. In offline
service, historical records can be used to analyze video con-
tent through machine learning. In online service, discovered
latent knowledge can be for real-time tactic recommendation.
In recent years, many books have contributed to the content
analysis of statistics for baseball [1]–[3] and basketball [4]–[6].
At present, several sports intelligence systems and content
analytics have been developed and applied.

1) Panasonic incorporated SAP SE to develop a video-
based sports analytics and tracking system. Match
Insights is an analytics prototype SAP developed with
the German Football Association for the soccer World
Cup 2014 in Brazil [7].

2) Vizrt, short for visualization (in) real time, is a
Norwegian company that provides content production,
management, and distribution tools for the digital media
industry. Its products include applications for creating
real-time 3D graphics and maps, visualizing sports
analyses, managing media assets, and obtaining single
workflow solutions for the digital broadcast industry.
Vizrt has a customer base in more than 100 countries and
approximately 600 employees distributed at 40 offices
worldwide [8], [9].

3) PITCHf/x data set is a public resource presented by
MLBAM [10] and Sportvision [11]. Brooks Base-
ball [12] makes systematic changes to this data set to
improve its quality and usability. They manually review
the Pitch Info using several parameters of each pitch’s
trajectory and validate the parameters against several
other sources such as video evidence (e.g., pitcher grip
and catcher signs) and direct communication with on-
field personnel (e.g., pitching coaches, catchers, and the
pitchers themselves). The default values of the trajectory
data are slightly altered to align them more closely with
the real values.

4) Sportradar [13], a Swiss company, focuses on collecting
and analyzing data related to sports results by collab-
orating with bookmakers, national soccer associations,
and international soccer associations. Their operating
activities include the collection, processing, monitoring,
and commercialization of sports data, which result in a
diverse portfolio of sports-related live data and digital
content.

A. Surveys and Taxonomies

Since 2000, sports video analysis has continually drawn
research attention, leading to a rapid increase in published
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work and surveys in this field. In [14], a preliminary sur-
vey of sports video analysis was conducted to examine
diverse research topics such as tactic summarization, highlight
extraction, computer-assisted referral, and content insertion.
Kokaram et al. [15] demonstrated the development trends in
the topics of sports-related indexing and retrieval. They iden-
tified two broad classes of sports, court and table sports and
field sports. However, this was not a favorable classification
for content analysis. An alternative classification criterion, the
time- or point-driven structure in the progress of a game,
was then considered. Sports such as baseball and soccer are
time driven because the high-excitement events occur sparsely
and randomly. Conversely, point-driven sports consist of reg-
ular events and constructs within a domain-specific scenario.
In these types of sports, such as tennis and snooker, highlight
events yield particular points in the game structure. Different
from the viewpoint of Kokaram et al. [15], Santiago et al. [16]
focused on the application of team tracking techniques to
sports games. They categorized the reviewed systems into two
classes, intrusive and nonintrusive. In intrusive systems, tags or
sensors are placed on the targets, whereas nonintrusive systems
introduce no extra objects to the game environment, instead
using vision as the main sensory source and employing image
processing techniques to perform player and team tracking.
Intrusive systems are typically not considered highly mature
in providing high-level information. A domain-specific survey
of soccer video analysis was presented in [17]. The authors
reviewed studies on soccer video analysis at three semantic
levels of interpretation: video summarization, provision of
augmented information, and high-level analysis. In addition,
the computational problems at these three semantic levels were
discussed. First, the two main tasks of video summarization
include extracting the most interesting parts of the video and
omitting the less interesting parts. Studies on event detection
and highlight extraction were reviewed from the viewpoints of
features, models, and classifiers. Second, studies on provisions
of augmented information for presenting the game status
to viewers were discussed. Third, extension of the level of
video summarization was proposed. Considering the interac-
tions between objects, more complex analyses, such as team
statistical analysis and real-time event analysis, can be con-
ducted. Specifically, an overview of automatic event detection
in soccer games was presented [18]; this overview involved
simply classifying approaches into a hierarchical structure on
the basis of their analysis levels (i.e., low, middle, and high).
Similarly, Rehman and Saba [19] reviewed feature extraction
for soccer video semantic analysis. In addition, audio and
video feature extraction methods and their combination with
textual methods have been investigated. The data sources,
methodologies, detected events, and summarization applica-
tions used in event-oriented soccer video summarization have
been compared. Table I shows a comparison of previous
surveys.

In summary, previous surveys have focused on the
methodologies of sports video analysis from the spatiotem-
poral viewpoint instead of a content-based viewpoint. Few
of these studies considered semantics. The current study
adopted a different framework, developing a proper and

TABLE I

KEY ISSUES OF PREVIOUS SURVEYS

deeper interpretation of content-aware sports video analysis.
Specifically, we present the insight offered by research into
the structure of content under different scenarios. On the basis
of this insight, we provide an overview of the themes partic-
ularly relevant to the research on content-aware systems for
sports.

B. Scope and Organization of This Paper

A video analysis system can be viewed as a content rea-
soning system. In this paper, we review the developments in
sports video analysis, focusing on content-aware techniques
that involve understanding and arranging the video content
on the basis of intrinsic and semantic concepts. We focus
on the video content analysis applied in sportscasts over the
past decade from three aspects—fundamentals and general
review, a content hierarchical model, and challenges and future
directions.

1) We introduce the fundamentals of content analysis,
namely, the concept of the content pyramid, sports genre
classification, and the overall status of sports video
analytics.

2) We review state-of-the-art studies conducted in this
decade on the content hierarchical model (i.e., content
pyramid). The information used to represent high-level
semantic knowledge can be divided into three groups:
object-, event-, and context-oriented groups.

3) We review the prominent challenges identified in the
literature and suggest the promising directions for future
research on sports video content analysis.

The remainder of this paper is organized as follows.
In Section II, we discuss the fundamentals of content-aware
video analysis for sports. A systematic and detailed review of
state-of-the-art studies according to three content awareness
levels is presented in Section III. In Section IV, we present
the challenges and promising future directions regarding to
the content-aware sports video analysis for expert users.
A conclusion is drawn in Section V.
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Fig. 1. Content Pyramid: a hierarchical content model.

II. FUNDAMENTALS OF CONTENT-AWARE

SPORTS VIDEO ANALYSIS

A. Content Pyramid

In developing a content-aware retrieval system, the retrieval
process must be designed according to users’ intention. Several
sports video analysis systems have focused on managing visual
features in the spatial domain. For example, Han et al. [20]
introduced a general framework for analyzing broadcast court-
net sports videos from the viewpoints of the pixel, object,
and scene levels. Using this framework, a group of prede-
fined events at different levels can be identified in advance.
According to the semantic significance, the video content was
divided into four layers (Fig. 1): 1) video; 2) object; 3) action;
and 4) conclusion layers [21], [22]. The volume of the layer
denotes the quantity of the implied concepts. The compactness
of information decases from the top down. The concept of
the content pyramid is used to analyze context concerns for
a video entity. Each layer of the content hierarchy represents
various key components for characterizing the video content.
The video layer consists of video clip frames, each of which
consists of a video clip tag and raw video data. The object
class layer consists of object frames, which represent the key
objects in the video. In each object frame, an object tag
and pointers link each key object to the corresponding video
clips. An object that has a particular posture or movement
or interacts with other objects yields an action or interaction
tag. The event class layer consists of event frames, which
represent the action of the key object. Actions combined with
scene information construct an event tag. Each event frame
consists of an event tag and an object tag, representing the
related action or interaction among multiple objects. The top
layer is the conclusion layer, which consists of conclusion
frames representing the semantic summarization of the video
sequence. Each conclusion frame consists of the event tags and
corresponding results. A game summary is drafted according
to transcripts and outcomes from events.

B. Sports Genre Categorization

Recently, the proliferation and tremendous commercial
potential of sports videos have strongly indicated the need
for relevant applications. The technique of genre classification
has become a common preliminary task for managing sports
media. Fig. 2 shows a tree structure of sports genre classifica-
tions, presenting the reviewed papers by year of publication.
The sports typically broadcasted on TV can be classified into

three categories: field, posture, and racket. As Fig. 2 shows,
more than 80% of papers addressed baseball, basketball,
soccer, and tennis. Fig. 2 shows only papers that focused on
fewer than four types of sports; other papers are included in
a general category. Typically, golf is considered both a field
sport and a posture sport. Some track-and-field sports such as
the long jump and pole vaulting are posture sports, whereas
other sports such as the hammer throw and javelin throw
are classified as racket sports. The remainder of this section
focuses on reviewing methods for sports genre classification.

Brezeale and Cook [23] reviewed studies on video
classification and identified the use of features in three modal-
ities: 1) text; 2) audio; and 3) visual. Videos can be classified
according to genres, such as movies, news, commercials,
sports, and music, and subgenres. In the last decade, various
sports genre classification methods based on different clas-
sifiers, such as hidden Markov models (HMMs) [24]–[26],
naïve Bayesian classifiers (NBCs) [26], decision trees [27],
and support vector machines (SVMs) [28], [29], have been
presented. Schemes combining different classifiers have also
been considered. You et al. [30] combined NBC and HMM
algorithms to classify ball match video genres and detect
events in football, basketball, and volleyball. Duan et al. [31]
combined an NBC and SVM to categorize game videos into
five typical ball sports, namely, tennis, basketball, volleyball,
soccer, and table tennis. Zhang et al. [32] adopted the bag-of-
visual-words (BoW) model with k-nearest neighbor classifiers
to identify video genres. In their method, to achieve a generic
framework for analyzing sports videos, an unsupervised prob-
abilistic latent semantic analysis-based approach was used to
characterize each frame of a video sequence into one of the
following four groups: 1) close-up view; 2) midview; 3) long
view; and 4) outer-field view.

For mobile video application, Cricri et al. [33] used a
multimodal approach with four auxiliary data sets—sensor-
embedded mobile devices, spatial and spatiotemporal visual
information, and audio data, for confirming the sports type.
To integrate all possible modality combinations in fusion
models, the auxiliary input data can be used for video type
classification. For home video application, Sugano et al. [34]
extracted the salient low-level features from unedited video.
The random forest [35] and the bagging [36] algorithms were
used to classify the home videos into five genres, namely,
sports, travel, family and pets, event, and entertainment.

C. Overview of Sports Video Analysis

Sports video analysis aims to extract critical information
from video content. Fig. 3 provides an overview of sports
video analysis. The general procedure of a content-aware
video analysis system includes feature extraction, information
reasoning, and knowledge arrangement. Based on the concept
of the content pyramid, content-aware video analysis can
be performed using different level approaches. Information
reasoning is used to understand low-level, midlevel, and high-
level video data. Using model analytics, the information can
be converted to knowledge. In other words, model analytics
entails transforming data in the feature domain to knowl-
edge in the application domain. The methodologies of model
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Fig. 2. Types of sports classification.

Fig. 3. Paradigm of content-aware video analysis.

analytics can be categorized into two classes: top-down
and bottom-up. The top-down methodology assumes that
the structure of the model is given, whereas the bottom-up
methodology starts with visual salience information treated as
source features through machine learning to obtain high-level
knowledge.

III. SURVEYS OF CONTENT-AWARE VIDEO

ANALYSIS WITH SEMANTIC LEVELS

According to the structure of the content pyramid, we sur-
veyed state-of-the-art techniques from the aspect of semantic
level, namely, highlight detection and event recognition, object
detection and action recognition, and contextual inference and
semantic analysis. The surveyed techniques are categorized
in Fig. 4.

A. Object Detection and Action Recognition

Object-oriented sports content analysis is one of the most
active research domains. This approach has been success-
fully applied for action recognition using intra-object posture

analysis and inter-object event determination. For single-object
application, an accurate body posture and accurate movement
are required to obtain the desired performance in sports such
as diving, tumbling, skating, ballet, golf, and track-and-field
games. For two-object application, the desired performance in
sports such as boxing, sumo, wrestling, tennis, table tennis,
and badminton is obtained using between-object interactions
and that in sports such as soccer, rugby, hockey, basketball,
baseball, and volleyball is obtained using between-group inter-
actions. For multiple-object application, many studies focus on
the group-to-group interaction for recognizing team tactics.

1) Extracting Objects: In sports videos, the foreground
object plays a crucial role in the event scenario. Its actions
and interaction with other objects can form a particular event.
The objects in a video frame, such as auxiliary blobs, figures,
and texts, can be either moving or stationary and either natural
or superimposed. To convert low-level media features to high-
level semantic labels, Naphade et al. [37] created a termi-
nology named probabilistic multimedia objects (Multijects).
To verify the dependence between intra-frame and inter-frame
semantics, Multijects are combined with a graphical network
that captures the co-occurrence probabilities of Multijects,
named Multinet. A robust automatic video object (VO) extrac-
tion technique was presented in [38]. Luo et al. [38] reported
that the dynamic Bayesian network (DBN) framework can
facilitate attaining a more detailed description of VO char-
acteristics compared with an HMM.

In a soccer game, the player and ball positions constitute the
most critical information. Pallavi et al. [39] proposed a hybrid
technique for detecting the ball position in soccer videos. This
technique first classifies a shot as a medium or long shot,
and motion- and trajectory-based approaches are then used for
detecting medium and long shots, respectively. This method



1216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 5, MAY 2018

Fig. 4. Taxonomy of surveys with different semantic level applications.

does not require any preprocessing of the videos and is rather
efficient. A framework based on the probabilistic analysis of
salient regions was introduced in [40]. Player detection and
tracking in broadcast tennis videos were presented in [41].
In [42], for a baseball game, an object segmentation algorithm
was first used to retrieve the pitcher’s body, and a star skeleton
of the pitcher was then used to recognize the pitching style.
The authors presented automatic generation of game infor-
mation and video annotation through a pitching style recog-
nition approach. Similarly, an algorithm for pitch-by-pitch
video extraction proposed in [43] incorporated a pitcher local-
ization technique, a pitch speed recognition scheme, and a
motion degree measurement scheme for accurately identifying
pitches.

However, there is a difficulty in extracting objects perfectly.
A scene normally includes multiple objects in the playfield.
The objects can partially or completely occlude each other or
self-occlude because of the capturing angle. Hamid et al. [44]
used multiple cameras to detect objects. In addition, 3D infor-
mation has been used to estimate player and ball positions in
broadcast soccer videos [45], [46]. This enabled the authors to
measure the aerial positions without referencing the heights of
other objects. Moreover, using the Viterbi decoding algorithm,
they could determine the most likely ball path by considering
consecutive frames. Recently, Li et al. [47] introduced the
object bank for representing an image using a high-level image
representation to encode object appearance and spatial location
information.

Furthermore, studies have developed processes for quan-
tifying the importance of VOs using the object attention
model [48] and visual attention model [49], [50]. On the basis
of such processes, the importance score of an object can be
used to infer the importance of a frame and even a video clip.
If a frame contains more high-attention objects with a high-
interest contextual description, it is highly probable that the
frame has higher excitement score. Regarding an event-based
analysis scenario, the score of each frame is derived on the

basis of the relevant key frames that are located in an identical
event.

2) Tracking Objects: Object tracking is a crucial technique
in sports content analysis. It aims to localize the objects in
a video sequence and provides diverse applications in video
surveillance, HCI, and visual indexing. In sports, the object
tracking technique is used to observe the continuing activities
of objects (e.g., players and ball) in the playfield. However, the
camera motion is a major limitation in detecting and tracking
objects. Khatoonabadi and Rahmati [51] applied a region-
based detection algorithm for eliminating fast camera motion
effects in goal scenes and tracking soccer players. When
the region-based algorithm is used to track players, either
the template matching method or split-and-merge approach
is applied for occlusion reasoning between players. However,
players’ positions can be misdetected in the split-and-merge
approach. Liu et al. [52] presented a method for detecting
multiple players, unsupervised labeling, and efficient tracking
in broadcast soccer videos. The framework involves a two-
pass video scan, which first learns the color of the video frame
and then tests the appearance of the players. The method is
generally effective, except for cases involving video blur and
sudden motion. Kristan et al. [53] presented an algorithm for
tracking multiple players in an indoor sporting environment.
Considering a semicontrolled environment with certain closed-
world assumptions, the algorithm relies on a particle filter.
The multiplayer tracking process involves background elimi-
nation, local smoothing, and management of multiple targets
by jointly inferring the players’ closed worlds. In addition,
Sha et al. [54] presented an automatic approach for swimmer
localization and tracking. The approach enables large-scale
analysis of a swimmer across many videos. A swimming race
is divided into six states: 1) start; 2) dive; 3) underwater;
4) swim; 5) turn; and 6) end. A multimodal approach is
employed to modify the individual detectors and tune to each
race state. However, the location information cannot present
more detailed context of the game. To solve this problem,
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long-term observation is required for tracking object
movement.

a) Trajectory finding: A trajectory is the path along
which a moving object passes through space as a function
of time. Robust solutions to trajectory-based techniques have
applications in domains such as event reasoning and tactic
analysis. Chakraborty and Meher [55] presented a real-time
trajectory-based ball detection and tracking framework for
basketball videos. Liu et al. [56] proposed a computer vision
system that tracks high-speed nonrigid skaters over a large
area. The input video sequence is fed into a registration
subsystem and a tracking subsystem, and the results from
both subsystems are used to determine the spatiotemporal
trajectory, which can be used for event detection and sports
expert analysis. However, tracking performance is lacking
when skaters move in groups during long and continual
complete occlusions. A possible solution was presented by
Miura et al. [57]. They attempted to estimate ball routes and
movements by tracking overlaps with players and lines in
order to recognize certain scenes. When an overlap occurs, the
spatiotemporal relationship between the ball and the object is
examined. Ball existence near each route candidate is then
examined to eliminate potential routes and determine the
most likely route. Similarly, Liu et al. [58] presented context-
conditioned motion models incorporating complex inter-object
dependencies to track multiple players in team sports over long
periods. Yan et al. [59], [60] have presented a robust tennis ball
tracking method based on a multilayered data association with
graph-theoretic formulation. More recently, Zhou et al. [61]
proposed a two-layered data association approach for ten-
nis ball tracking that was identical to Yan et al.’s method,
but did not consider Yan’s tracklet linkage, which may
cause tracking failure. For addressing short-term misdetection,
Wang et al. [62], [63] introduced a more efficient dense
trajectory. They combined trajectory shape, appearance, and
motion information to compute motion boundary descriptors
along dense trajectories.

b) Tactic analysis via tracking data: For tactic analysis,
Niu et al. [64] proposed a framework for systematically
analyzing soccer tactics through the detection and tracking
of field lines. The identified trajectory ultimately enables ana-
lyzing and improving soccer tactics. Comparably, the player
trajectory was used for recognizing tactic patterns in basket-
ball videos [65]. This type of framework was developed for
directing focus to an open three-point attempt in a basket-
ball game [66]. The trajectories of objects have frequently
been used in event recognition [67], [68]. By employing a
motion model for home and away team behaviors in soccer,
Bialkowski et al. [69] visually summarized a soccer com-
petition and provided indications of dominance and tactics.
Recently, Zheng [70] conducted a survey on trajectory data
mining, offering a thorough understanding of the field. More
recently, a smart coaching assistant (SAETA) designed for pro-
fessional volleyball training was introduced in [71]. SAETA
relies on a sensing infrastructure that monitors both players
and their environment and provides real-time automatic feed-
back for aerobic and technical-tactical training in a team-sports
environment.

c) Tracking via camera networks: Another critical objec-
tive is determining how to combine multiple cameras to obtain
a more accurate tracking result. Choi and Seo [72] reviewed
problems regarding automatic initialization of player positions.
Using SVMs, prior knowledge on the features of players
can be retrieved, and depending on soccer match conditions,
automatic initialization is often successful. However, reinitial-
ization on tracking failure and guaranteeing a minimum time
for initialization remain challenging. Yu et al. [73] presented
an automatic camera calibration algorithm for broadcast tennis
videos, evaluating problems regarding distortion, errors, and
fluctuating camera parameters. The algorithm generates accu-
rate camera matrices for each frame by processing the clips
through the following four steps: 1) ground-feature extraction;
2) camera matrix computation; 3) camera matrix refinement;
and 4) clip-wise refinement. Figueroa et al. [74] used four
cameras to observe the positions of all players on the soccer
field at all times over the entire game. Their algorithm uses
paths in a graph filled with blobs, representing segmented
players, and analyzes different components of the blobs, such
as the area and trajectory. Ren et al. [75] presented a technique
for estimating the trajectory of a soccer ball using multiple
fixed cameras, despite constant movement and occlusion lead-
ing to size and shape discrepancies among the cameras over
time. With a combination of motion information, expected
appearance modeling, occlusion reasoning, and backtracking,
the ball trajectory can be accurately tracked without velocity
information.

3) Naming Objects: By taking advantage of state-of-the-
art methods, detecting, tracking, and recognizing objects are
feasible at present. However, the most difficult problem is
identifying the detected object and the position of the athlete
mentioned in subtitles. Most previous studies have focused on
news videos because they are straightforward. For example,
Satoh et al. [76] presented a system that identifies faces by
associating the faces of the image with names in the cap-
tions. Everingham et al. [77] proposed a system that enables
labeling the names of actors in TV episodes and movies.
The framework integrates two procedures: 1) time-stamped
character annotation by aligning subtitles and transcripts and
2) face tracking and speaker detection. An enhanced method
was presented by Ramanathan et al. [78], who applied a
bidirectional model to simultaneously assign names to the
trajectories in the video and mentioned in the text. Normally,
the naming process for news and movies videos is easier than
that for sports videos, because stable face images and subtitles
can be obtained easily. Lu et al. [79] used a conditional random
field model to generate joint probability inferences regarding
basketball player identities. A deformable part model detector
was used to locate basketball players, and a Kalman-filter-
based tracking-by-detection approach was employed to extract
tracklets of players. Similarly, in [80], a large-scale spa-
tiotemporal data analysis on role discovery and overall team
formation for an entire season of soccer player tracking data
is presented; the entropy of a set of player role distributions
was minimized, and an EM approach was used to assign
players to roles throughout a match. Their work can be applied
future for identifying strategic patterns that team’s exhibit.
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Nitta et al. [81] focused on identifying the structure of a sports
game using linguistic cues and domain knowledge to extract
actors, actions, and events from a sports video and integrating
the caption text and image stream. The system identifies actors
who are performing an action and the action that they are
performing.

However, face information is not observable at all times
because the athletes usually run along an unpredictable path
in 3D space. An alternative approach for name assignment to
objects is based on the text or numbers printed on athletes’
clothes using the video OCR [82] and scene text recognition
techniques [83], [84]. To identify and track multiple players,
Yamamoto et al. [85] proposed a tracking method that asso-
ciates tracklets of identical players according to the results
of player number recognition. Using a multicamera system,
Pnevmatikakis et al. [86] and Patrikakis et al. [87] introduced
a system that enables athlete tracking in different camera
views and generates metadata such as locations and identities.
Combining scene location, motion outliers, faces, and clothes
enables tracking body hypotheses over time. For personalizing
sports video broadcasts, Messelodi and Modena [88] pre-
sented an athlete identification module that applies scene text
recognition to the embedded text from images. By applying
their module to undirected and directed videos, precision rates
of 98.9% and 88.7%, respectively, can be achieved. A method
for soccer jersey number recognition using a deep convolu-
tion neural network (CNN) was recently presented in [89].
Two feature vector construction models, with the first treating
every number as an individual class and the second treating
each digit as a class, were employed and compared. With data
augmentation and without dropout, the highest recognition rate
achieved was 83%.

4) Action Recognition: Action recognition has been exten-
sively studied in recent years. Various approaches have been
proposed for obtaining an accurate human body posture
and movement estimate. Comparative explorations of recent
developments in action recognition have described video-
based [90]–[92] and image-based [93] approaches. However,
only a few descriptions focus on the sports genre. Action
recognition in sports can typically be classified into three
categories: 1) individuals; 2) between objects; and c) between
groups. The individual class requires an accurate human body
posture with articulated parts and motion parameters for evalu-
ating the global and local gesture performance. In the between-
objects class, a player interacts with the competitor in winning
the match or game. Here, the players hold a racket; thus, sports
in this class are called racket sports. Sports in the between-
groups class are called team sports. Almost all such sports are
field sports. The members of a team work together to compete
with the other team. Moreover, by combining the action class
and field information, the event class can be determined.

Large-scale sports video analytics with deep learning is an
emerging research area in many application domains. One of
the most prevalent trends is to learn features using a deep
discriminatively trained neural network for action recognition.
For example, Wang et al. [94] aggregated a hand-crafted
feature [95] and feature determined through deep learning [96],
using deep architectures to develop more effective descriptors.

Fig. 5. Learned strength of connectivity between activities, human poses, and
objects. Thicker lines indicate stronger connections, originally shown in [98].

a) Posture and movement: Regardless of the type of
sport, the human body posture and movement of play-
ers have attracted much research attention. For example,
Chen et al. [42] presented automatic generation of game
information and video annotation through a pitching style
recognition approach. In this approach, an object segmentation
algorithm is first used to detect the pitcher’s body. A star
skeleton is then used to model the pitcher and recognize the
pitching style. Yao and Fei-Fei [97] applied a conditional
random field model for action analysis. They modeled the
mutual context of objects and human poses in human–object
interaction activities. In their extended study [98], instead
of modeling the human–object interactions for each activity
individually, they ascertained overall relationships among dif-
ferent activities, objects, and human poses. As illustrated in
Fig. 5, they modeled the mutual context between objects and
human poses in human–object interaction activities so that
one can facilitate the recognition of the other. Specifically,
two pieces of contextual information are considered in the
mutual context model. The co-occurrence context models the
co-occurrence statistics between objects and specific types of
human poses within each activity. The types of human poses,
termed “atomic poses” (shown in the center of Fig. 5), can
be considered a dictionary of human poses where the human
poses represented by the same atomic pose correspond to sim-
ilar body part configurations. In addition, they considered the
spatial context, which models the spatial relationship between
objects and different human body parts. Pecev et al. [99]
shifted the focus from players to referees. Educational software
that enables predicting the movement of basketball referees
using a multilayered perceptron neural network is beneficial
in training young basketball referees.

Rather than depending on the vision-based method,
Ghasemzadeh and Jafari [100] introduced a sensor-based
method for tracking a baseball player’s swing movements
using a wearable platform that yields multidimensional phys-
iological data collected from a body sensor network. A semi-
supervised clustering technique is implemented to construct
basic movement patterns, which can be used for detecting
common mistakes and producing feedback. Schmidt [101]
used detailed features such as angle displacements and veloc-
ities of kinematic chain articulations to analyze the movement
patterns of free-throw shooters at different skill levels in a
basketball video. In the experiments, several highly different
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movement organizations and their associated particular func-
tionality were observed. The individual imprint on the move-
ment pattern was shown to be related to its own, evidently
appropriate functionality, which fit well with the personal
constraints of the athlete in question.

Miyamori and Iisaku [102] focused on a problem in which
recognition easily becomes unstable because of partial tracking
errors or lack of necessary information. They incorporated
human behavior analysis and specific domain knowledge with
conventional methods, developing an integrated reasoning
module for robust recognition. The system was designed for
tennis videos, and four typical video segments were used for
reasoning object action: player behavior, ball position, player
position, and curt-net lines. Kazemi et al. [103] addressed
the problem of human pose estimation for football players,
given images obtained from multiple calibrated cameras. With
a bodypart-based appearance model, they used a random forest
classifier to capture the variation in appearance of body parts
in 2D images. The results of these 2D part detectors were then
aggregated among views to produce consistent 3D hypotheses
for the parts. Burenius et al. [104] also presented a framework
for 3D pictorial structures that can be used for multiple-view
articulated pose estimation. Swears et al. [105] proposed a
modeling approach, called Granger constraints DBN, which
enables modeling interactions between multiple co-occurring
objects with complex activity. To simplify the measurement of
temporal dependence, they used the Adaboost feature selection
scheme to discriminatively constrain the temporal links of
a DBN.

b) Feature representation: Regarding action recognition,
two critical learning phases are highly required: feature
representation and classifier learning. Feature representation
extracts and ranks useful 2D or 3D features such as Gabor
features [106], histograms of oriented gradients (HOGs) [107],
gradient location-orientation histograms [108], motion his-
tory images [109], motion history volumes [110], 3D gradi-
ents [111], and other volumetric (voxel) data [112]–[115]. The
common strategy is based on a predefined articulate model for
matching human body parts [116]–[118].

c) Classifier learning: When feature vectors are
extracted, a classification framework is used to recognize
the types of actions. For instance, Zhang et al. [119]
proposed an effective action recognition method based on
the recently proposed overcomplete independent components
analysis (ICA) model. Instead of using a pretrained classifier,
they adopted the response properties of overcomplete ICA to
perform classification. In this approach, a set of overcomplete
ICA basis functions are learned from 3D patches from
training videos for each action. The test video can be
labeled as the action class whose basis functions can
reconstruct the video with the smallest error. Similar to
Zhang et al.’s method, Le et al. [120] presented a hierarchical
invariant spatiotemporal feature learning framework based
on independent subspace analysis. For modeling movement
patterns, a structured codebook-based method with an
SVM classifier was proposed in [121]. For modeling the
temporal transition of postures, Li et al. [122] presented a
continuous HMM with a left–right topology. In addition,

TABLE II

BENCHMARK DATA SETS AVAILABLE FOR SPORTS VIDEO ANALYSIS; IN
THE “TASKS” COLUMN, “ Ar ,” “ Al ,” “P ,” AND “C ,” RESPECTIVELY,

REPRESENT “ACTION RECOGNITION,” “ACTION LOCALIZATION,”
“POSE ESTIMATION,” AND “SPORTS TYPE CLASSIFICATION”

6

4

Taylor et al. [123] extended the gated restricted Boltzmann
machine (GRBM) [124] from 2D images to 3D videos for
learning spatiotemporal features and named the extension the
convolutional GRBM method.

d) Data sets: Unlike [125], the current survey focused on
reporting sports action data sets that do not explicitly consider
comprehensive action data sets. Here, we reported seven sports
action data sets. Two of these data sets presented the image
source with action markers, and the remaining five comprised
a collection of video clips. A comprehensive list of action
data sets for sports with corresponding details is provided
in Table II.

The UCF sports data set [126] contains 150 video sequences
with a resolution of 720 × 480 concerning ten disciplines,
namely, diving, golf swinging, kicking, lifting, horseback
riding, running, skating, baseball swinging (split into around
high bars and on the pommel or floor), and walking. All
video clips were collected from sports broadcasts by networks
such as ESPN and the BBC. The data set exhibits high
intra-class similarity between videos and large variation in
inter-class viewpoint changes and noise. It was presented by
Rodriguez et al. [126] and is available on the Internet [127].
Since the release of this data set in 2008, the average recogni-
tion rate has increased, being 85.6% in 2009 [128], 87.3%
in 2010 [129], 86.8% in 2011 [120], 95% in 2012 (used
extra training data) [130], and 89.7% in 2014 [121]. This
data set is the most widely used among the six sports action
data sets.

A tennis data set called ACASVA, published by de
Campos et al. [131], was used to compare the BoW and
space–time–shape approaches for action recognition in videos.
The tennis game videos were reproduced from TV broadcasts
in standard resolution, and Yan et al.’s ball tracker [60] was
used to detect relevant instances. The data set and MATLAB
software package [132] are available in [133].

The KTH Multiview Football data set [103] is a 3D data
set containing 2400 images of football players obtained from
three views at 800 time frames with 14 annotated body joints
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and 5907 images with the annotated 2D pose of the player.
The data set is available in [134].

Wang et al. [135] presented a data set containing ten labels
in figure skating clusters, seven labels in baseball clusters, and
eight labels in basketball clusters. The data set can be acquired
from [136].

Karpathy et al. [137] constructed an immense data set
named Sports-1M, which consists of greater than 1.1 million
annotated YouTube videos for 487 sports. The data set is
available in the GitHub repository [138]. Compared with the
UCF sports data set, Sports-1M entails greater difficulty in
feature recognition. The highest recognition rate is approxi-
mately 74.4% with a two-stream CNN and temporal feature
pooling [139].

The fifth set is an Olympic sports data set [140] containing
50 videos from each of the following 16 classes: high jump,
long jump, triple jump, pole vault, discus throw, hammer
throw, javelin throw, shot put, basketball layup, bowling,
tennis serve, diving (split into platform and springboard),
weightlifting (split into snatch and clean and jerk), and vault
(gymnastics). This data set is available in [141].

A more recently introduced data set, sports videos in the
wild (SVW) [142], contains 4200 videos covering 30 sports
categories and 44 actions. The videos in this data set were
captured by users of the leading sports training mobile app
Coach’s Eye while practicing a sport or watching a game.
This data set is available in [143].

B. Highlight Detection and Event Recognition

Because an increasing amount of research is focused on
large-scale content-based multimedia mining, there is a lack
of systematic surveys specifically designed for sports videos.
This section mainly reviews the event-oriented state-of-the-
art studies according to the type of data source, methodology,
sports genre, desired event, and application field. The reviewed
articles are listed in Table III.

1) Scene Change Detection: An event is composed of a
group of video scenes or shots. The shot boundary detection
technique aims to divide a long video sequence into video
segments. Gong et al. [144] proposed temporal segmentation
for partitioning a video sequence into camera shots. Each
shot contains identical semantic concepts. Several studies
have used scene change detection to perform event classifi-
cation. The simplest approach to detecting transitions of shots
is seeking discontinuities in the visual content of a video
sequence. For instance, Sadlier et al. [145], Liang et al. [146],
Chang et al. [147], and Poppe et al. [148] have proposed
color-based shot boundary detection schemes for segmenting
a video. Poppe et al. [148] used color histogram differences
for detecting scene changes. During the broadcast of baseball
games, multiple broadcast cameras were mounted at fixed
locations in the stadium. Chang et al. [147] first built sta-
tistical models for each type of scene shot with histogram
products. In addition, Sadlier and O’Connor [149] employed
their own algorithm to solve the problem caused by the high-
tempo nature of field sports; during live action segments, the
broadcast director has little opportunity to use shot transition
types other than hard shot cuts. In [150], an event-based

segmentation method was presented and a motion entropy
criterion was employed to characterize the level of inten-
sity of relevant object motion in individual frames. Because
global motion usually changes largely in shot boundaries,
Wu et al. [151] detected abrupt augmentations of the magni-
tude of accelerations in the frame sequence and marked them
as semantic clip boundaries.

2) Play-and-Break Analysis: Designing a generic model
for analyzing all types of sports videos is difficult, because
the event is a domain-dependent concept. Nevertheless, a
compromised approach, called play-and-break analysis, has
been presented. This analysis roughly models sports games.
Li and Sezan [152] used both deterministic and probabilistic
approaches to detect critical events, called plays. An iterative
algorithm was used to detect plays until a nonplay shot was
identified. On the basis of this play information, games could
be summarized. Xie et al. [153] applied statistical techniques
for analyzing the structure of soccer videos. Plays and breaks
(i.e., nonplay) are two mutually exclusive states of soccer
videos. First, experimental observations were used to create
a salient feature set. HMMs and dynamic programming algo-
rithms were then applied for classification and segmentation.
Tjondronegoro and Chen [154] pioneered the use of a play–
break segment as a universal scope of detection and a standard
set of features that can be applied to different sports. Specially,
a racket sports game consists of many play and break events.
In [155], the play event in the racket sports, which has a
unique structure characteristic, was referred to as “rally.” That
study segmented a racket sports video into rally and break
events and ranked the rally events according to their degrees
of excitement.

3) Keyframe Determination: Keyframe detection is a crucial
operation performed after the retrieval of shot boundaries.
A keyframe is used to represent the status of each seg-
ment [144], [146]. Liang et al. [146] proposed a framework
for detecting data changes in superimposed captions and
employing rule-based decisions to detect meaningful events
in a baseball video. They considered only the number of
outs, number of scores, and base-occupation situation, and
thus, they could simply select any frame as the representative
shot (segment) if the caption information remained unchanged.
In addition, numerous studies have focused on scoreboard
detection [156]–[158]. First, a scoreboard subimage was
located using the difference in consecutive frames and the
gradient information of each frame. Subsequently, the changed
pixels in the scoreboard subimage were evaluated [156].
Nepal et al. [157] used the displayed scoreboard as the second
key event, and developed temporal models based on the pattern
of occurrence of the key events observed during the course
of the game. Regarding the structure of a baseball video,
the critical events conventionally occur between pitch scene
blocks [146], [152], [158].

4) Highlight Detection: Highlights are critical events in
a sports game that must be extracted. Highlight extraction
requires specific features and analyzers. A video consists
of audio and visual features. Several previously proposed
frameworks have applied audio features instead of classifiers,
such as SVMs [148], [155], [159], HMMs [160], Bayesian
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TABLE III

COMPARISONS OF THE WORK BEING DONE IN THE DOMAIN OF SPORTS EVENT ANALYSIS
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belief networks (BBNs) [161]–[163], DBNs [164], [165],
maximum entropy models [166], and multilevel semantic
networks, which are an extension of the BBN. For instance,
Petkovic et al. [164] proposed a robust audiovisual feature
extraction scheme and a text detection method, and used classi-
fiers for integrating multimodal evidence from different media
sources to determine the highlight events of a Formula 1 race.

In sports, visual features for highlight detection can be
classified into six groups: 1) captions and text; 2) playfields;
3) camera motion; 4) ball positions; 5) player positions; and
6) replays. First, an algorithm addressing text detection [167]
and scoreboard recognition was presented in [168], which
employed an overlay model to identify the event frame.
Second, given a “playfield” frame, the region of the image
that represents the playfield was roughly identified from grass
color information using color histogram analysis [169]. Unlike
grass field regions, audience regions have different textures.
Therefore, Chao et al. [165] used edge density information to
detect audience regions. Third, Lazarescu and Venkatesh [170]
used camera motion parameters, including the number of
stages in camera motion, tilt motion, and camera angle, in a
method for detecting seven types of American football plays.
A more recently presented system [171] identifies the type
of camera view for each frame in a video. The system was
designed for football games, and salient events such as goals,
fouls, corners, substitutions can be distinctly tagged on the
timeline.

Generally speaking, balls and players play the main roles
in a sports competition. Thus, ball and player tracking
techniques have typical features in sports video analysis.
Kobayashi et al. [172] input vector time-series data consisting
of player, referee, and ball positions into a data-driven stick
breaking hidden Markov model for predicting key activities
and dominance conditions in a soccer game. In addition,
Chen et al. [173] addressed the obstacles and complexities
involved in volleyball video analysis by developing a physics-
based scheme that uses motion characteristics to extract the
ball trajectory, despite the presence of numerous moving
objects. In [174], temporal and spatiotemporal regions of inter-
est were used to detect the scoring event and scoring attempts
in basketball mobile videos. Furthermore, Lu et al. [175]
used a panning, titling, and zooming camera to automatically
track multiple players while detecting their action. The sys-
tem involves using HOGs, a boosted particle filter, and the
combination of HOG descriptions with pure multiclass sparse
classifiers. Finally, slow motion replays were modeled using an
HMM, which emphasizes highlights and critical events [176].
These visual cues are summarized in Table IV. In addition,
Shyu et al. [177] proposed a subspace-based multimedia
data mining scheme for event detection and used a decision
tree for training event detectors. Zhu et al. [178] presented
a multimodal approach for organizing racket sports video
highlights through human behavior analysis. Support vector
regression constructs a nonlinear highlight ranking model.
Furthermore, some previous studies have focused on not only
highlight extraction but also highlight ranking [155], [168].

5) Use of Domain Knowledge: Sports events are typically
composed of several video shots that appear in a certain

TABLE IV

VISUAL FEATURES FOR CONTENT ANALYSIS

temporal order. Using shot boundary detection techniques,
the video can be segmented into scenes. Domain knowledge
(i.e., paradigm) can be used to determine the type of video
shot. Xie et al. [153] employed domain knowledge to perform
event recognition. Huang et al. [179] proposed a temporal
intervening network for modeling the temporal actions of
particular events in a soccer game, such as goal, card, and
penalty events. In [180], a Bayesian network-based model
was used for event detection and summarization applications
in a soccer video, whose structure was estimated using the
Chow–Liu tree [181], and the joint distributions of random
variables were modeled using the Clayton copula [182].

Temporal video patterns typically vary depending on the
type of sport. In other words, sports video analysis is a
domain-specific problem. Several extant systems analyze only
sports that involve an identical game structure [15], [20],
such as court-net sports including tennis, badminton, and
volleyball, to obtain a comprised result. Many state-of-the-
art frameworks have added domain knowledge to increase
the accuracy. For example, Zhong and Chang [183] presented
a generic domain-independent model with spatiotemporal
properties of segmented regions for identifying high-level
events, such as strokes, net plays, and baseline plays. Sim-
ilarly, analyzing the temporal relationships among video shots
enables automatic headline detection in TV sports news [184].
Chen et al. [185] introduced an HMM-based ball hitting event
exploration system for baseball videos. A rule-based model
might require domain knowledge and employ the decision-
tree learning method to calculate rules and apply them to low-
level image features [186]. The investigation of decision tree
algorithms and multimodal data mining schemes was the main
contribution of [187].

Zhu et al. [188] focused on tactical analysis, extracting
tactical information from attack events in broadcast soc-
cer videos to assist coaches and professionals. In soccer,
a goal event must be preceded by the offense events that
were considered in [189] and [190]. D’Orazio et al. [189]
used four high frame rate cameras placed on the two
sides of the goal lines. Snoek and Worring [191] presented
the time interval maximum entropy (TIME) framework for
combatting multimodal indexing problems regarding represen-
tation, inclusion of contextual information, and synchroniza-
tion of the heterogeneous information sources involved. The
TIME framework proved to be successful, evidently reducing
the viewing time of soccer videos. Regarding application,
Nichols et al. [192] attempted to summarize events using only
Twitter status updates. In addition, Babaguchi et al. [193]
proposed an event-based video indexing method that involves
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using time spans where events are likely to occur and key-
words from the closed caption stream. Chen et al. [187]
emphasized the framework of mining event patterns. Using
a group of audiovisual features and domain knowledge, they
applied temporal pattern analysis for semantic event mining.
Gupta et al. [194] applied an AND–OR graph as a representa-
tion mechanism for storyline models and learned the structure
and parameters of the graph from roughly labeled videos using
linguistic annotations and visual data. They showed a storyline
through the instantiation of AND–OR graph for a baseball
game broadcast from news videos.

The temporal patterns of video shots reveal critical clues
for accessing video content. Event recognition can be directly
achieved using a temporal pattern. For instance, the goal event
in soccer, comprising the occurrences of gate appearance, a
close-up view, and replays, follows certain rules of causality.
After the gate appears, the mid-distance view is shown for a
short duration. The scorer celebrates with the other teammates.
Afterward, the scene transitions rapidly and the first replay
video is shot in slow motion. Other replay shots with different
views, as well as scenes of the gate and net, follow. Finally, the
scoreboard appears, the goal event concludes, and the bird’s
eye view of the entire field signals continuation of the match.
If audio information is supplied, the loud cheering sound from
the audience can serve as a useful clue for detecting the
occurrence of a goal event.

For a home-run event in a baseball game, the scene begins
with a typical moment before the pitch. The players are
positioned in the designated locations, and thus, this scene
is simple to identify by matching the color layout. If an audio
signal is detected, the announcer sounds surprised after the
pitch. To track the ball, the scene moves very rapidly. If the
remaining time is sufficient, the auditorium is presented. Half
of the audience and half of the fielder who is the closest to the
outfield wall are captured, and the batter running the bases and
the pitcher are shown in close-ups. Subsequently, a cheering
fan is inserted into the frame. Next, several replay shots in slow
motion at different angles are captured. Sometimes, the hit is
caught by a high-speed camera. After the replay, the camera
shoots the player who returns to home plate and captures a
close-up shot of teammates clapping. When the next batter
walks toward home plate, the video frame returns to the initial
scene.

In a basketball game, there are fewer regular temporal pat-
terns for event classification. The scoreboard is conventionally
used to determine whether the shooter scores a two- or three-
point shot. When the scoreboard changes, a close-up of the
scorer is shown. Offense and defense exchange and pass the
ball from the baseline. Events can be identified by players’
trajectories and the path of ball passing. For example, pick
and roll is a frequently used tactic in basketball games. During
the game, the offense is arranged in pairs with the defense.
When a pick-and-roll event occurs, the ball keeper faces the
defense first. Another offensive player moves close to the
ball keeper, obstructing the defense’s path. Players’ movement
paths become discontinuous, and only the ball keeper can
move freely. Finally, the ball keeper suddenly moves to the
free-throw lane and passes the ball to the shooter, and shooter

Fig. 6. Examples of unusual situation of the game. (a) Transcoding errors.
(b) Animal invasion. (c) Drops result from the strong wind. (d) Arguments
between the referee and coach. (e) Streaker interruption. (f) Players fighting.

shoots the ball toward the basket. Accordingly, to determine
the event category in more detail, the object trajectory must be
tracked precisely and motion analysis must be performed. The
framework of 3D camera modeling has also been applied for
event classification efficiently. Su and Hsieh [195] upgraded
the feature extraction part for event classification from the
image domain to the real-world domain. The real-world posi-
tions of objects (i.e., athletes) could be determined using
an automatic 3D camera calibration method. At the scene
level, combining a Bayesian modeling approach with player
segmentation and tracking and playing-field knowledge, the
system could classify events such as service, net approaches,
and baseline rallies.

In summary, domain knowledge enables a reasoning system
to obtain a compromised result. However, uncertainty occur-
ring in the playfield, such as a moving bird, a strong wind,
and transcoding problems, cannot be avoided, as shown in
Fig. 6(a)–(c). Unpredictable interruptions caused by streakers,
arguments between the referee and coach, and players fighting
are shown in Fig. 6(d)–(b). These extraordinary activities are
rare. Nevertheless, context-based semantic analysis can be
adopted to assess unusual events.

C. Contextual Inference and Semantic Analysis

In sports, the context is composed of event outcomes and
match summaries. The semantic meanings of the context are
critical for the game. The context can typically be obtained
from captions or visual cues. Comparisons of recent context-
oriented studies are shown in Table V.

1) Context Extraction:
a) Context from captions: In a broadcast sports video,

a superimposed caption box (SCB) embedded in the frame
is a typical means for quickly conveying the ongoing game
status to viewers. To detect the SCB and read captions,
Guo et al. [196] applied SIFT point matching and
Tang et al. [197] used a fuzzy-clustering neural network
classifier. Moreover, Su et al. [195] presented a cap-
tion model for identifying the meanings of the captions.
Zhang et al. [198] used a set of modules including caption
box localization, segmentation, and a Zernike feature com-
bined with temporal transitional graph models to recognize
superimposed text. Sung and Chun [199] developed a
knowledge-based numeric caption recognition system to
recover valuable information from an enhanced binary image
using a multilayer perceptron neural network. Overall, most
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TABLE V

COMPARISONS OF CONTEXT-ORIENTED APPROACHES

caption recognition systems focus on recognizing the text
through optical character recognition [200], [201] and employ-
ing a template matching algorithm [202], [203] to confirm
the caption according to either numbers or text. However,
recognizing symbol captions remains challenging, and thus,
caption interpretation has emerged as a critical research topic.
Lie et al. [204] applied visual feature analysis to develop
a system that can classify baseball events into 11 seman-
tic categories, which include hitting and nonhitting as well
as infield and outfield events. Shih and Huang [205] per-
formed caption interpretation to analyze the SCB in sports
videos. They divided the captions into three categories:
1) proportion; 2) inverse; and 3) specific types. Similarly,
Shih and Huang [206] presented a method that interprets the
SCB where the SCB template cannot be determined a priori.
A framework designed for golf videos was proposed in [207].

b) Context from visual cues: Contextual annotation val-
idates essential insight into the video content while pro-
viding access to its semantic meanings. For sports video
analysis, the extraction of external metadata from closed
captions has been employed in many applications such as
video indexing, retrieval, and summarization. In comparison
with visual features, contextual information presents a seman-
tic inference regarding the video content. Steinmetz [208]
conducted comprehensive research using a context model to
perform semantic analysis of video metadata. The research
involved multiple knowledge bases. In the semantic inference
process, the context is produced dynamically, considering
the characteristics of the video metadata and the confidence
values. The research findings can be applied in analyzing
textual information originating from different sources and
verifying different characteristics. Growing evidence indicates
that, by examining the semantic context, video analysis can

be effectively used to improve content-based video processing
procedures such as keyframe extraction [209], [210], sports
video resizing [211], concept-based video indexing [212], and
video search [48], [213]. In addition, a mapping mechanism
between the context and content designed for baseball videos
was presented by Chiu et al. [214]. The mechanism focuses
on aligning the webcast text and video content. They proposed
an unsupervised clustering method called hierarchical agglom-
erative clustering for detecting the pitch segment in baseball
videos. In addition, they applied a modified genetic algorithm
to align the context of webcast text and video content.

Most notably, the trend for reading text in images and
videos has shifted to the use of advanced learning techniques.
For example, Jaderberg et al. [215] presented a word detec-
tion and recognition system and used a multiway classifi-
cation model with a deep CNN. Li et al. [216] employed
a fine-tuned deep CNN to extract visual features, and fed
these features into recurrent neural networks (RNNs) to gen-
erate representative descriptions for video clips. Similarly,
Venugopalan et al. [217] proposed a video-to-text generator
that uses deep RNNs for the entire pipeline from pixels to
sentences.

2) Text Analytics: For text analysis, Chen and Yuille [218]
used the AdaBoost algorithm to generate a strong classifier
and detect texts. Lyu et al. [219] presented a multilingual video
text detection, localization, and extraction method, specifically
for English and Chinese. Xi et al. [220] proposed a text
information extraction system for news videos. For detecting
and tracking the text, multiframe averaging and binarization
were applied for recognition. Lienhart and Wernicke [221]
presented a method for text localization and segmentation for
images and videos, and for extracting information used for
semantic indexing. Noll et al. [222] revealed the effective
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combination of local (the measures are derived from the local
attributes of the features, e.g., the angles of a corner) and
context similarities for object recognition. A Hough-based
matching algorithm was introduced for analyzing corner fea-
ture similarities. More recently, Wang et al. [223] transformed
an event detection problem into a synchronization problem.
They annotated soccer video events using match reports with
inexact timestamps. The game start time was first detected for
a crawled match report, and the NBC was applied to identify
the optimal match event.

3) Semantic Event Extraction: For semantic event extrac-
tion, conventionally, parse trees are first used to extract
semantic events and then hierarchically arranged to provide
input for a logic processing engine to generate a sum-
mary [224]. Zhang et al. [225] employed a multimodal
framework to extract semantic events in basketball videos.
They combined text analysis, video analysis, and text or
video alignment for semantics extraction, event moment detec-
tion, and event boundary detection. Zhang and Chang [226]
developed a system for baseball video event detection and
summarization using superimposed caption text detection and
recognition. Chen and Chen [227] extracted semantic events
from sports webcast text using an unsupervised scheme.
A filtering technique is implemented to remove unrelated
words, and the remaining words are sorted into categories
where keyword extraction is executed to recognize crucial
text events. Similarly, a system capable of analyzing and
aligning webcast text and broadcast video for semantic event
detection was introduced for the automatic clustering of text
events and extraction of keywords from webcast text [228].
Nitta et al. [229] proposed a method for automatically gener-
ating both dynamic and static video abstracts from broadcast
sports videos. The method relies on metadata for seman-
tic content and player influence and user preferences for
personalization.

IV. CHALLENGES AND FUTURE DIRECTIONS

In the past decade, many research achievements in sports
video content analysis have been witnessed and have highly
influenced the direction of prospective research. In this
section, we highlight the prominent challenges identified in
the literature and categorize the potential directions in sports
video content analysis for future research into three classes:
1) sports video content analysis in the media cloud: 2) large-
scale learning techniques for deeper context discovery; and
3) robust visual feature extraction for precise human action
recognition.

A. Sport Video Content Analysis in Media Cloud

Recently, many portable devices for video recording, such as
the camera handset, personal video recorder, and tablet, have
been developed. Consequently, a user device can be a content
producer. Users are interested in sharing their videos through
social networks, and this has become a cultural phenomenon.
Currently, the focus of major research efforts in sports video
content analysis such as sports type classification [33] and
salient event detection [174] has shifted to mobile videos.
According to [230], content delivery networks will carry 62%

of Internet traffic worldwide by 2019. The number of devices
connected to Internet protocol networks will be three times
as high as the global population in 2019. Therefore, research
on video caching, transcoding, and adaptive delivery in the
media cloud is urgently required [231]. The major challenge is
minimizing the overall operational cost regarding the usage of
buffering, computing, and bandwidth resources. For example,
a mobile video–audio mash-up system called MoVieUp [232]
was presented for collating videos shared by client users.
It operates in the cloud to aggregate recordings captured by
multiple devices from different view angles and different time
slices into a single montage. This system was designated for
concert recordings. Sports videos do not have a continuous
and smooth audio stream for stitching together a video–audio
mash-up. In sports applications, the mobile devices normally
serve as transceivers to avoid tasks with high computational
cost. How to combine sports recordings captured by multi-
ple mobile devices remains an open question. The trend of
crowd sourcing raises substantial challenges to cloud service
providers. In the future, a synthetic 3D montage of the current
sports field could be constructed using breakthrough object and
scene alignment and synthesis techniques.

Scalability is among the most crucial challenges for cloud
mobile media networks [233]. Previous studies have generally
addressed the scalability in temporal motion smoothness and
spatial resolution instead of content-aware scalability. Client
users demand to receive the status of a desired sports com-
petition. Fine-grained video content transcoding is configured
under different channel conditions associated with the band-
width resources and end devices. The client users receive
various details on the sports content at varying degrees of
precision such as score statistics, audio broadcasts, player
portraits, highlight images, an edited video segment, and an
entire video broadcast. Another future objective is to combine
semantic Web tools and technologies [234] to overcome the
aforementioned challenges [235].

B. Large-Scale Machine Learning Techniques
for Deeper Information Discovery

With the proliferation of media devices, the media content
that we access conceals extremely valuable information and
knowledge. The era of big data is considerably changing what
we know and how we know it in the information world.
Big data analytics enables discovering the latent semantic
concepts embedded in video content. Sports data analysis is
becoming large scale and diversified. Advanced developments
in machine learning lead to solutions to real-world large-scale
problems.

Since 2006, with the surge of deep learning, research
on visual understanding under the paradigm of data-driven
learning reached a new height [236]. Deep learning methods
such as CNNs, restricted Boltzmann machines, autoencoder,
and sparse coding have been adopted and demonstrated
to be successful for various computer vision applications.
One of the most salient achievements is action and activity
recognition through deep learning, which has been performed
widely in recent years [94], [96]. Several studies focused
on sports video analysis have employed deep learning. For
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example, CNNs have demonstrated superiority in modeling
high-level visual semantics [89], [215], and RNNs have
exhibited promise in modeling temporal dynamics in
videos [216], [217].

Nevertheless, there is substantial room for development
in sports video analysis with deep learning. Different sports
have domain-specific semantic concepts, structures, and fea-
tures. The challenge of autoencoding and transforming the
domain-specific features and models to bridge the semantic
gap for sports videos has yet to be overcome. The problem
of knowledge interpolation between domains, called domain
adaptation (DA), is an emerging research area in the field of
machine learning. In brief, training and testing data may come
from different domains. Determining how to solve the target-
transfer learning problem remains challenging. Numerous
approaches to DA have been presented [237], [238], [239]. The
research paradigm in sports video analysis will face the same
problem in the future. Learning with exchangeable information
from different types of sports videos is very challenging and
represents a promising research direction. For example, does
a model trained using the previous year’s data remain valid
for adapting to a new season? Furthermore, despite the sports
belonging to different categories, do the tactics in a soccer
game remain valid for a baseball game? In addition, given the
similarity in game rule, can the offense or defense in a table
tennis game be applied to a tennis game?

C. Robust Visual Feature Extracting for
Precise Human Action Recognition

With the invention of high-precision sensors and vision-
based action acquisition techniques, precise body features can
be obtained for modeling key human objects using an effective
and high-accuracy scheme. Currently, action recognition has
been a mainstream research topic not only in sports [94],
[137], [240], but also in movies [241], healthcare [92], video
surveillance [242], and building monitoring [243]. A direction
for research extension is to develop a robust visual feature
extraction scheme for understanding human actions in detail.
A sports action video typically depicts multiple human actions
simultaneously. To interpret a complex video, an appropriate
approach is to adopt multiple dense detailed labels, instead
of a single description [240]. Using robust feature extraction
approaches, researchers can accurately analyze the context of
a sport. Regarding video dynamics, Li et al. [248] encoded
dynamics of deep features for action recognition. They found
that explicit modeling of long-range dynamics is more impor-
tant than short- and medium-range ones for action recognition.

Recently, several contributions have focused on extracting
precise trajectories of objects, such as dense trajectories [63],
improved trajectories [95], and multiobject trajectory using
spatiotemporal convolution kernels [244] to determine human
actions in detail. Ma et al. [249] used rich feature hierarchies
of CNNs as target object representations and learned a linear
correlation filter on each CNN layer to improve tracking
accuracy and robustness. When these methods are used in
tracking VOs, an intelligent system is required to perform
deeper information discovery and to determine the relation-
ships between trajectory data and actions. A recent review

article [245] reported the impact of revamped deep neural
networks on action recognition. For sports applications, deep
learning was used to analyze basketball trajectories and predict
whether a three-point shot is successful [246]. In addition,
deep neural networks were used to construct classifiers that
can recognize NBA offensive plays [247].

Although we have already seen numerous examples of
successful applications of feature extraction and action recog-
nition methods, many open problems remain because of the
diversity of game structures among sports domains. Devel-
oping a unified framework that enables processing data from
diverse sports is still challenging. The tradeoff between com-
monality and robustness must be overcome. Ultimately, the
prospective goal of action recognition in sports is to develop
a machine that can read, write, listen to, and speak a voice-
over to broadcast sports videos directly.

V. CONCLUSION

We conducted a comprehensive survey of existing
approaches on sports content analysis. Several approaches
were reviewed from the viewpoint of content-aware scalability.
First, we introduced the fundamentals of content analysis, such
as the concept of the content pyramid, the categorization of
the sports genre, and an overview of the sports video analytics.
Second, we reviewed the state-of-the-art studies conducted in
this decade according to the content hierarchical model. The
methods of content-aware analysis were discussed with respect
to object-, event-, and context-oriented groups. Finally, we
reported the prominent challenges identified in the literature
and categorized the potential future directions in sports video
content analysis. We believe that our survey can advance the
field of research on content-aware video analysis for sports.
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diction and analysis of movement of basketball referees,” Multimedia
Tools Appl., vol. 75, no. 23, pp. 16389–16416, 2016.

[100] H. Ghasemzadeh and R. Jafari, “Coordination analysis of human
movements with body sensor networks: A signal processing model to
evaluate baseball swings,” IEEE Sensors J., vol. 11, no. 3, pp. 603–610,
Mar. 2011.

[101] A. Schmidt, “Movement pattern recognition in basketball free-throw
shooting,” Human Movement Sci., vol. 31, no. 2, pp. 360–382,
Apr. 2012.

[102] H. Miyamori and S. I. Iisaku, “Video annotation for content-based
retrieval using human behavior analysis and domain knowledge,” in
Proc. IEEE Int. Conf. Automat. Face Gesture Recognit., Jun. 2000,
pp. 320–325.

[103] V. Kazemi, M. Burenius, H. Azizpour, and J. Sullivan, “Multi-view
body part recognition with random forest,” in Proc. BMVC, 2013,
Sep. 2013.

[104] M. Burenius, J. Sullivan, and S. Carlsson, “3D pictorial structures for
multiple view articulated pose estimation,” in Proc. IEEE Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 3618–3625.

[105] E. Swears, A. Hoogs, J. Qiang, and K. Boyer, “Complex activity recog-
nition using granger constrained DBN (GCDBN) in sports and surveil-
lance video,” in Proc. IEEE Comput. Vis. Pattern Recogn., Jun. 2014,
pp. 788–795.

[106] D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant
analysis and Gabor features for gait recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715, Oct. 2007.



SHIH: SURVEY ON CONTENT-AWARE VIDEO ANALYSIS 1229

[107] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Int. Conf. Pattern Recogn., Jun. 2005,
pp. 886–893.

[108] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[109] M. A. R. Ahad, J. K. Tan, H. Kim, and S. Ishikawa, “Motion history
image: Its variants and applications,” Mach. Vis. Appl., vol. 23, no. 2,
pp. 255–281, 2012.

[110] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recog-
nition using motion history volumes,” Comput. Vis. Image Understand.,
vol. 104, no. 2, pp. 249–257, 2006.

[111] A. Klaser, M. Marszalek, and C. Schmid, “A spatio-temporal descriptor
based on 3D gradients,” in Proc. Brit. Mach. Vis. Assoc., 2008,
pp. 995–1004.
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