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Incremental Learning With Saliency Map for
Moving Object Detection

Yanwei Pang, Senior Member, IEEE, Li Ye, Xuelong Li, Fellow, IEEE, and Jing Pan

Abstract— Moving object detection is a key to intelligent video
analysis. On the one hand, what moves are not only interesting
objects but also noise and cluttered background. On the other
hand, moving objects without rich texture are prone to not
be detected. Therefore, there are undesirable false alarms and
missed alarms in the results of many algorithms of moving object
detection. To reduce the false alarms and missed alarms, in
this paper we propose to incorporate a saliency map into an
incremental subspace analysis framework in which the saliency
map makes the estimated background have less of a chance
than the foreground (i.e., moving objects) to contain salient
objects. The proposed objective function systematically takes into
account the properties of sparsity, low rank, connectivity, and
saliency. An alternative minimization algorithm is proposed to
seek the optimal solutions. The experimental results on both the
Perception Test Images Sequences data set and Wallflower data
set demonstrate that the proposed method is effective in reducing
false alarms and missed alarms.

Index Terms— Motion,
subspace analysis.

object detection, saliency map,

I. INTRODUCTION

BJECT detection is the basis of intelligent video analy-
Osis. Generally, object recognition, action and behavior
recognition, and tracking rely on the detected objects. In a
sequence of images there are both moving and static objects. In
this paper the focus is on detecting moving objects in a video.

Moving object detection is related to but different from
class-specific object detection and general salient object detec-
tion. Pedestrian detection [1], [2], face detection, motion
blur detection [3], [4], and hand detection are instances of
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class-specific object detection. The task of moving object
detection is to detect semantically meaningful moving objects.
Predefined classes of moving objects should be detected
by a moving object detection algorithm. Moreover, other
semantically meaningful objects should also be detected even
though their classes are not predefined. Except for the seman-
tically meaningful moving objects, the meaningless moving
objects should not be detected. Examples of meaningless
moving objects include water ripples, waving trees (leaves),
shadows, noisy data, and the one caused by variations of
illumination. However, the moving object detection algorithm
relying merely on motion information is prone to incorrectly
classify such meaningless moving objects as meaningful ones.
The corresponding error is called false alarms. However,
a salient object detection algorithm tends to correctly discard
the meaningless objects. Hence, in this paper we propose to
incorporate the output (i.e., saliency map) of a salient object
algorithm into a subspace-analysis-based objective function so
that the problem of false alarms can be alleviated.

It is noted that our method is also capable of alleviating
the problem of missed alarms. Existing moving object detec-
tion algorithms tend to classify flat regions (i.e., textureless
regions) inside an object and moving regions with a similar
appearance (texture) as background and thus such regions
may be missed. The state-of-the-art salient object detection
algorithm can an output large value of saliency map at such
regions. Utilizing the saliency map, our method has the ability
to classify such regions as foreground.

In summary, we present an objective function that unifies
the subspace analysis of background and saliency map. The
objective function consists of four terms: 1) saliency map;
2) sparsity; 3) connectivity; and 4) low rank. An alternative
minimization algorithm is proposed to find the optimal solu-
tion. The significant advantage compared with the previous
subspace-based approaches is that saliency map is used to
guide the results to have less false and missed alarms. The
proposed method is named moving object detection with
saliency map (MODSM). It is natural that an ideal saliency
map [see the bottom of Fig. 1(a) and (b)] is desirable for
the proposed method. However, even a relatively unsatisfying
saliency map [see the bottom of Fig. 1(c) and (d)] can also play
a positive role in the proposed MODSM method. Of course,
a completely bad saliency map has a negative influence on
moving object detection. Fortunately, great progress of salient
object detection has been achieved [5]-[7] and their fruits can
be borrowed for moving object detection.
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Fig. 1. Images (top) and their saliency maps (bottom).

It is noted that in our method the elements of the foreground
vector to be optimized are constrained in the range of [0, 1]
instead of in the binary set {0, 1}. Generally, the computational
cost of optimizing the real foreground vector is much smaller
than that of binary foreground vector. A time-consuming graph
cut algorithm is usually required to solve the binary foreground
vector (see [8], [9]). By contrast, there exists a close form
for optimizing the real foreground because the corresponding
objective function is a quadratic function. Moreover, setting
the foreground vector between 0 and 1 instead of a binary
value is able to result in better detection accuracy.

Several video saliency detection or segmentation methods
that use the motion information to improve the results have
been developed [10], [11]. Despite the initial success, their
performance cannot arrive at the level of state-of-the-art low-
rank-based and subspace-based methods [8], [12]-[19].

The rest of this paper is organized as follows. We review
related work in Section II. The proposed method is
given in Section III. The experimental results are provided
in Section IV. We then conclude this paper in Section V.

II. RELATED WORK

The methods of moving object detection can be
divided into four categories [20]: 1) detecting followed by
tracking [21]-[23] and subtracting frames [24]-[26]; 2) mod-
eling background by a density function [14], [27]-[30];
3) modeling background by subspace [13], [15], [19],
[31], [32]; and 4) modeling background by a low-rank
matrix [8]. The last two categories dominate the state-of-the-
art methods and are closely related to our work. Note that
moving object detection methods can also be divided into
incremental methods and batch methods. Our method belongs
to an incremental one.

A. Subtracting Frames

These kinds of methods detect moving objects based on the
differences between adjacent frames [24]-[26]. However, these
methods were proved not robust to illumination variations,
changing background, camera motion, and noise.

B. Modeling Background by Density Function

This strategy assumes that the background is stationary
and can be modeled by Gaussian, mixture of Gaussians,

or Dirichlet process mixture models [14], [27]-[29]. The fore-
ground (moving regions) can then be obtained by subtracting
the current frame with the background model.

C. Modeling Background by Subspace

Instead of using a density function, subspace-based methods
model the background as a linear combination of the bases of a
subspace [13], [15], [19], [31], [32]. Because the subspace can
be updated in an incremental (online) manner, its efficiency is
much higher. These kinds of subspace-based algorithms need
to impose constraints on the foreground in order to obtain
valid solutions. Foreground sparsity is one of the widely used
constraints, which implies that the area of moving objects is
small relative to the background. Principal component pur-
suit (PCP) [33] is a classical subspace method for background
modeling. Because of its close relationship to our method,
we briefly describe it. Mathematically, let O € R™"™ be the
observation matrix containing m frames. Each column of O
corresponds to a vectorized frame that has n pixels. Generally,
O can be decomposed as O = B + F, where B € R"*" is the
low rank matrix (background) and F € R"™ ™ is the sparse
matrix (foreground). The PCP method can be formulated as
the following minimization problem:

min ||B|« + A||F |1
st. B+F =0 (1)

where the nuclear norm ||B]|, is used to estimate the rank of
B and the /1 norm of F is used to measure the sparsity of
the foreground F. The constraint B + F = O makes that the
minimization of rank of the background and the sparsity of
the foreground are meaningful in the sense of the sum of the
background and the foreground approaches to the observation.
Without this constraint, traditional robust subspace methods
can deal only with noise and outliers [34]-[37]. The method
[38] improves PCP by taking the foreground connectivity
(i.e., foreground structure) into account. RFDSA [13] takes
smoothness and arbitrariness constraints into account.

However, REDSA [13], PCP [33], and the method [38] are
batch algorithms. Their detection speed cannot arrive at real-
time level. Therefore, incremental (online) subspace methods
are crucial for real-time detection [39]. He et al. [15] proposed
an online subspace tracking algorithm called Grassmannian
robust adaptive subspace tracking algorithm (GRASTA).
Similar to PCP, GRASTA also explores /; norm for imposing
sparsity on foreground. However, the GRASTA algorithm
does not utilize any connectivity (also known as smoothness)
property of foreground. The A Grassmannian online subspace
updates with structured sparsity (GOSUS) algorithm [19]
imposes a connectivity constraint on the objective function by
grouping the pixels with a superpixel method and encouraging
sparsity of the groups. Because of the large computational cost
of the superpixel algorithm [40], GOSUS is not as efficient as
GRASTA.

D. Modeling Background by Low-Rank Matrix

Low-rank modeling is effective in video representation [18].
A sequence of vectorized images is represented as a matrix
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and the matrix is approximated by the sum of matrices
of vectorized foreground, background, and noise [8]. It is
rational to assume that the background matrix is low rank.
Detecting contiguous outliers in the low-rank representa-
tion (DECOLOR) [8] is considered as one of the most
successful low-rank-based algorithms. In DECOLOR, both
foreground sparsity and contiguity (connectivity) are taken into
account. It can be interpreted as a penalty regularized RPCA.
However, the matrix computation can be started only if all
the predefined numbers of successive images are available.
Obviously, such a batch method is not suitable for real-
time video analysis due to its low efficiency. ISC [9] blue
(incremental, sparsity, and connectivity) and COROLA [17]
are incremental versions of DECOLOR. ISC and COROLA
transform a low-rank method to a subspace one. Our method
differs from ISC in introducing saliency map into a unified
objective function. In addition to the term of saliency map,
the constraint on the foreground vector is different from the
ISC method. The foreground vector in [9] is a binary vector
with its element x; € {0, 1}, whereas in our method, the
foreground vector (its negative vector is called the background
vector in our method) is generalized to a vector with its
element 0 < x; < 1. This difference makes our method much
more robust than ISC (See Section IV-B). Because of the
difference mentioned above, the optimization algorithm of the
foreground vector (and its corresponding background vector)
of our method is completely different from that of ISC. In ISC,
the graph cut algorithm [41], [42] is used for optimization,
whereas our method formulates it as a quadratic function and
finding the optimal solution by computing its derivative. Our
algorithm is more efficient than the graph cut algorithm.

The low-rank methods and subspace methods impose spar-
sity and connectivity (also known as smoothness) on fore-
ground and impose low-rank or principal components on
background. In addition to such properties, in this paper, we
propose to impose saliency map on background. Because the
background and foreground are nonoverlapping, exclusive, and
complementary, imposing the saliency map on the background
is equivalent to imposing the saliency map on the foreground.

III. PROPOSED METHOD

The proposed method belongs to an incremental-subspace-
based moving object detection method. The main novelty of
the proposed method lies in employing a saliency map to form
a new objective function, resulting in fewer false and missed
alarms.

A. Input and Output

The input of our algorithm is a sequence of frames (images)
from o5 to 0,. Denote 0 € RV*! the current image and
denote o; the i-th pixel of o. There are N pixels in an
image. The goal is to find the locations of the moving objects
(i.e., foreground) in the current image o. The foreground
locations are represented by a foreground indicator vector
f € {0, 1} The ith element f; of f is equal to either zero or
one

0 if pixel i is classified as background
fi= { P £ @)

1 if pixel i is classified as foreground.

The foreground indicator vector f is obtained by binarizing
the background vector b € RV*! with a threshold ¢

0 if b; >t
p— - 3
/i {1 if b; <t )

where b; € [0, 1] is the ith element of b. The possibility
of pixel i being background increases with the value of b;
and the possibility of pixel i being foreground decreases with
the increasing value of b;. For the sake of completeness
and clarity, we define a foreground vector f. The foreground
indicator vector f is a binary version of the foreground
vector f. The negative of the background vector b is identical
to the foreground vector f (i.e., f =1 —b).

B. Problem Formulation

As stated above [see (2) and (3)], the foreground indicator
vector can be obtained by the binarizing background vector b.
The problem is how to compute b once a frame (image) o is
given. In this paper, we formulate the problem of computing
b as the following minimization problem:

Y
;nl}nv - |:§bi(UiV —0,)" + B(1 —by)

i=1
—abi(1 _Si)i| + A|IDb||;. (4)

We first describe the meaning of each variable in (4)
and then explain the roles of the four terms of (4). In (4),
U € RV*™ is a subspace matrix whose columns are ortho-
normal and m is the number of columns of U, and U; stands
for the ith row of U. The coefficient vector v € R”*! is
the low-dimensional representation of the image o in the
subspace spanned by the rows of U. s; € [0, 1] is the ith
element of the vector s € RV*! of a saliency map obtained
by some salient object detection algorithms such as those
in [43]. The value of s; reflects the confidence that the pixel
i belongs to a salient object. The matrix D € R*M*N is a
difference matrix, D = [Dy, D,]*, where D;, and D, [13]
are forward finite-difference operators in the horizontal and
vertical directions, respectively. The weights a, f, and 4 are
used for balancing the four terms of (4), which are to be
discussed in the following paragraph.

The four terms b; (U;v — 0;)%, (1 — b;), —b;(1 — s;), and
IDb||; are called the background reconstruction term, fore-
ground sparsity term, object saliency term, and connectivity
term, respectively. The main novelty of the proposed method
lies in the object saliency term.

1) Background Reconstruction Term: In the background
reconstruction term b; (U;y — oi)z, U;v is the reconstruction
of the background [15], [19]. Therefore, U;v — 0; measures
how well U;v approaches o;. It is noted that the element b;
of the background vector makes the estimation focus on the
background region.

2) Foreground Sparsity Term: It is well known that the
foreground is small and sparse relative to the background.
Consequently, minimizing the sum of the foreground term
(1 — b;) makes the estimated foreground much sparser than
the background.
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3) Connectivity Term: It is reasonably assumed that if a
pixel belongs to background (or foreground), then its neigh-
bors also belong to background (or foreground). Therefore,
minimizing the connectivity term ||[Db|; makes the estimated
background and foreground smooth as far as possible.

4) Object Saliency Term: Minimizing the term —b; (1 — s;)
makes the estimated background b have less chance than the
foreground to contain salient objects. Moving objects such
as pedestrian, car, and dog are indeed salient objects in a
video. Therefore, the proposed method is capable of making
the estimated foreground to have high-level semantic objects
and fewer false alarms. The saliency map term —b;(1 — s;) is
the main novelty of this paper.

An empirical method for setting the weights a, £, and 1 is
given in Table III.

C. Problem Solution

We first discuss that there exists a solution to minimization
problem (4) and then describe how to find the solution.

The minimization problem expressed as (4) consists of three
unknown variables. We adopt an alternating minimization
algorithm to seek the optimal variables b, U, and v in turn.
In deriving how to seek each optimal variable, theoretical
analysis is given to guarantee the existence of the solution.

Because the last term ||[Db|| of (4) is the one norm of the
multiplication of the difference matrix D and the background
vector b, it is difficult to directly seek the optimal solution
of b. To circumvent the difficulty, we let w = b and ¢ = Dw.
Accordingly, the minimization problem can be equivalently
expressed as

N
min Z I:%bi(Uiv —0)? + B(1 — b))

—abi(l _Si)i| + Allell (5)

st.w=>b, c¢=Dw. (6)

With the technique of Lagrangian multiplier, the constrained
minimum problem expressed as (5) and (6) can be converted
into the following unconstrained problem:

N

> [%bi Uiy —01)* + (1 — by)
i

i=

min
b.Uy.c,w,

—abi(1 - sz-)} + Allelh + %nw —b|?
+ 2" =)+ Slle = Dwl +3" (€ ~Dw). ()

The terms u/2|w — b||% and x” (w — b) in (7) are obtained by
transforming the constraint w = b in (6) into the unconstrained
optimization function with the technique of the Lagrangian
multiplier. It is noted that x” (w —b) is the term of the
Lagarangian function with the vector x being the Largrangian
multiplier. The term wu/2|w —b||% is the penalty term (or
called regularization term), which is used for guaranteeing
that a meaning solution can be obtained. Similarly, the terms
w/2|le — Dw||% and y” (¢ — Dw) in (7) are obtained by trans-
forming the constraint ¢ = Dw in (6) into the unconstrained

optimization function with the technique of the Lagrangian
multiplier, where y” (¢ — Dw) and u/2|jc — Dw||% are the term
of the Lagrangian function and the penalty term, respectively.

Optimization problem (7) is easier to be solved than original
optimization problem (4). The alternating manner of solv-
ing (7) is given as follows:

1) b-Step: The goal is to seek the optimal b when U, v,
¢, w, x, and y are fixed. In this situation, (7) is a quadratic
function with respect to b, which is differential because of the
continuous nature of b. Therefore, there is a unique solution
to (7) in the sense of variable b. Computing the derivative of
the sum of the terms of (7) and letting the result be zero yield

Pt pwitxi — 53U —0)? +a(l —s;)

u

The influence of the saliency map s; on the background
b; is intuitive: b; decreases with increasing of s;. Hence, the
proposed method tends to let the estimated background not
contain moving and salient objects; meanwhile, it tends to let
the estimated foreground contain moving and salient objects.

2) c-Step: The goal is to seek the optimal ¢ when b, U, v,
w, x, and y are fixed. Omitting irrelevant terms, it is reduced
to the following traditional optimization problem:

bi )

¢ = argmin |}, + 5 e =Dwl3 +y" c =Dw)  ©)

. j. 1 2
= argmin — |lc|l; + = llc —m|3 (10)
c u 2
where
y
m=Dw — =—. (11)
u

Equation (10) is a standard minimization problem [44]
that is guaranteed to have unique solution. According
to [13] and [44], the solution is given by

c=3S5. (Dw—z)
1 U

with the soft-thresholding (shrinkage) operator S (x) being

12)

X—¢g, Xx>¢
Se(x) = sgn(x) max(|x| —&,0)=3x+¢, x <—¢& (13)
0 else.

Equation (12) means that if the value of Dw —y/u is larger
than A/u, then the value of ¢ is equal to Dw —y/u — A/u.
Otherwise, the value of ¢ is equal to Dw —y/u + A/u.

3) w-Step: The goal is to seek the optimal w when b, U, v,
¢, x, and y are fixed. Omitting irrelevant terms, it is reduced
to the following minimization problem:

w:argmin%Hw —b||% +xT(w—b)
w

+§||c —Dw|3 +y" (c — Dw). (14)

It can be seen that the objective function in (14) is a
quadratic function of w. Hence, the unique solution exists and
can be obtained by computing the derivative of (14) and letting
the result be zero. Specifically, the optimal w is calculated by

w=(I+D'D)"! [DT (c n X) +b— f] (15)
u u
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4) x,y-Step: The goal is to seek the optimal x and y when b,
U, v, c, and w are fixed. Computing the derivative of the sum
of the terms of (7) with respect to x and y and then letting the
result be zero yield the following updating rule:

x < x+uw-—>) (16)
y < y+ u(c—Dw). (17)

It is noted that the coefficient x4 is updated by
u<—ap (18)

where a is a parameter and its empirical value is 1.25.

5) U-Step: The goal is to seek the optimal U when b, v,
¢, w, x, and y are fixed. The problem of minimizing (7) with
respect to U becomes

. 1
U = argml}n Z Eb,-(U,-v — 0,-)2, s.t. UUT =1 (19)
I

where I is the identity matrix. It is known that orthogonal
matrices representing linear subspaces of the Euclidean space
can be represented as points on the Grassmann manifolds [45].
Therefore, subspace estimation can be equivalently formulated
as an optimization problem on the Grassmann manifolds [45].
Defining

1 1
Ly 2 EXb(Uv —op'U = E Ebi(Uiv —0,)"  (20)
i

the optimization can be performed by using the gradient
0L y/0U on the Euclidean space and the gradient VL s of the
Grassmannian [46]. In (20), X € RV*V which is a diagonal
matrix generated by b. The gradient of L s is given by

oLy

U = Xp(Uv — o’ 21
and
aLf
VL; =1 -UU") =L
=1 ) 3U
= (I —UUDX,(Uv —op”
= -0U"w" (22)
where the residual vector r is defined as
r2 X, (Uv —o. (23)
The solution on the Grassmannian manifolds is [15], [19]
T
Uarrow = U + (cos(on) — HNU——
vl vl
. r v
— sin(on)——. 24)
Il vl

6) v-Step: The low-dimensional representation (v) of o can
be simply calculated by

y=U"o. (25)

Algorithm 1 summarizes the above steps. The initialization
of the parameters a, f, i, 4, and 7 can be found from
Table III, which is to be described in Section IV-B. The matrix
U can be initialized by the result of any subspace method such
as singular value decomposition (SVD). In our experiments,

Algorithm 1 Proposed Method of Moving Object Detection
Input:
A sequence of frames (images) from o5 to o, and the
current image is 0. Each image has N pixels.
QOutput:
Foreground indicator vector f corresponding to the current

image o.
1: Initialization
2: Initialize parameters a, f, u, 4, and 7.
3: Initialize U, b, ¢, w, x, and y.
4: for o = o5 to 0; do
5. Applying some salient object detection algorithm on o
and get the corresponding saliency map s.
6 v=Ulo
7. Iteration
8 b=bi=x5=y,U=U
9: b — Step:b; = B+pwi+xi—3 Uiv—0i)*+a(l—si)

U
10: ¢ — Step:c = S, (Dw — %)
"

11: w — Step:w = (I + DTD)™! [DT (c—i—%)—i—b—/%]
12: x,y — Step:Assign a small number 0.1 to u. Update
x and y by running the following formulas: x < % +
uw—=>b),y <3+ ulc—Dw), u < 1.25u.
13:  until ||b — bl|2 < 7]|b]]2
14: U — Step: Assign a small number 5x 1073 to p
[47]. Update U by running the following formulas:
r=Xp(Uv —0,U <= U + (cos(an) — l)ﬁ”:—uﬁ -
sin(an)ﬁ”:—u.
15:  Compute foreground indicator vector, f is obtained by
binarizing background vector:
- |0ifb; =1,
fi= 1if b; <t.
16: end for

SVD is used for initializing the matrix U. Specifically, we
choose the first m (m = 50 in our experiments) frames to
form a matrix J € R™, where n is the number of pixels
in an image (frame). The matrix U can be initialized by the
singular vectors of SVD of the matrix J corresponding to
the first few (five in our experiments) large singular values.
The initial values of the vectors b, ¢, x, and y can be zero
or any random number. In our experiments, zero is used for
initializing the vectors. A good initialization of the elements
of wis 1.

IV. EXPERIMENTAL RESULTS

We describe intermediate results followed by a comparison
with state-of-the-art methods on the Perception Test Images
Sequences data set [29] and the Wallflower data set [50].

Though there are a lot of methods for obtaining saliency
map, in our experiments, the saliency maps are obtained by
the method developed in [43]. There are several reasons for
us to choose the method in [43].

1) The method is accurate because of elegantly formulating
the problem of salient object detection. Instead of heuris-
tically integrating multiple low-level cues for salient
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TABLE I
METHOD USED FOR INTERMEDIATE RESULTS

Method Objective Function
BAL Ly = min & [$0:(Uiv = 0)2 + 81 — b))]
b,U,v;=1!2
N
y . 1 2 P
ACO Le = 5b; (U;v — o, B(1 — b; A ||Db
o= i, 2 [30:(U5v = 0p)? + 801~ by)] +21IDBIy
N
i 1 2

ASMO Ls = min :Z: [30:(Uiv =02 +8(1 = by) — abi(1 — s)]

=1
Ny 2
MODSM L= min 5 [36:(Uiv — 02 + 801 = by) — ab; (1 — 5;)]+

U, v
A Dby

object detection, the cost function of the method [43]
is defined to directly and optimally achieve the goal of
salient object detection.

2) The method is efficient because all the constraints are
in linear form and thus the optimal saliency map can be
solved by an efficient least-square optimization.

3) We have evaluated several methods of saliency map and
we found that this method is effective indeed for the task
of moving object detection in the proposed framework.

A. Intermediate Results

We give intermediate results to show the role of the saliency
map term —b; (1 — s;) and the connectivity term ||Db||;.

For notation simplicity, in Table I, we list the objective func-
tions of four methods (configurations) baseline (BAL), add
connectivity only (ACO), add saliency map only (ASMO), and
our MODSM method. The objective function of our method is
the weighted sum of the objective functions of BAL, ACO, and
ASMO. In our method, sparsity, low rank, connectivity, and
saliency map are taken into account. Specifically, the objective
function of the proposed method is

N
1
L =min > | =bi(Uw —01)* + (1 — b;
brfll}g}i:l [2 iWUiv—0;) + p( i)

—ab;(1 —s,-)i| -+ A||Db||;. (26)

BAL is the method whose objective function L, (27)
consists of the first two terms of L (26)

N
. 1
Ly = min Zl [Eb,-(v,-v —0)* +p(1 - b,-)}. 27)

In addition to the reconstruction term, the BAL method
merely makes use of the sparsity term (1 —b;). The objective
function of the BAL is similar to but slightly different from
that of GRASTA [15].

Compared with L, (27), the objective function L. (28) of
ACO has an additional connectivity term A|Db||

N
1
L. = '2 —b;(U;v — 0;)* 1 —b; 2|\Db;.
¢ ”r?’}g,-zl[z WUiv —0;)" + p( )}Jr 1241
(28)

The objective function of BAL is similar to but different
from that of ISC [9]. See [9] for the difference.
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TABLE II

F1-SCORES OF THE BAL METHOD AND THE METHODS THAT ADD
DIFFERENT TERMS (SEE TABLE I). THE PROPOSED METHOD
IS THE METHOD OF ADDING BOTH CONNECTIVITY
AND SALIENCY MAP TERMS TO BAL

Method ws Cur Fou Hal SM Lob Esc BS Cam mean
BAL 8717 8477 2952 6695 6978 5607 3864 6531 1281 5678
ACO 8835 8942 8230 L6833 6912 4609 7410 6799 5500 7118
ASMO 8907 8112 6220 6583 6765 4812 5521 6844 4424 6466
MODSM 9404 9098 8205 6859 7362 5762 7553 7280 7876 7711

Fig. 2. Two examples of the influence of adding connectivity and saliency
map to the objective function. (a) Input image. (b) Ground truth. (c) BAL.
(d) ACO. (e) MODSM.

@ ©

Fig. 3.  Other two examples of the influence of adding connectivity and
saliency map to the objective function. (a) Input image. (b) Ground truth.
(c) BAL. (d) ACO. (e) MODSM.

The objective function Ly of ASMO is

N
Ly = ZT‘&TLE Bb,-(v,-v —0,) + (1 —b;) —abi(1 — m} :
(29)

One can see from Table II the contribution of different
terms. The average F1-scores of BAL, ACO, ASMO, and our
MODSM are 56.78%, 71.18%, 64.66%, and 77.11%, respec-
tively. Both ACO and ASMO are capable of improving the
detection result of BAL, showing the importance of indepen-
dently introducing the connectivity term and the saliency map
term. Adding the saliency map term gives 64.66%—56.78%
= 7.88% improvement over BAL. By incorporating both
the saliency map term and the connectivity term, the pro-
posed method gives 77.11%—56.78% = 20.33% improvement
over BAL.

Several frames of Perception Test Image Sequences [29] are
used for analyzing the intermediate results. Some examples
are shown in Figs. 2 and 3. Fig. 2(a) shows two input
frames with water surface background for the top one and
indoor environment for the bottom one. The ground truths of
the moving objects are given in Fig. 2(b). Fig. 2(c) shows
the detected results of BAL from which one can see that the
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Fig. 4. (b) and (d) Saliency maps of (a) and (c), respectively.

-
-
.

(a) (b) © (d (®

Fig. 5. Input image and the background vector obtained in different iterations
of ACO (top) and MODSM (i.e., adding both saliency map and connec-
tivity to BAL) (bottom). (a) Input image. (b) iteration #1. (c) iteration #3.
(d) iteration #6. (e) iteration #10.

detected object is smaller than the ground truth. The top of
Fig. 2(c) shows that the feet and some portions of the shanks
are missed by the BAL method. The bottom of Fig. 2(c) shows
that the middle of the person is missed by the BAL method.

As can be seen from Fig. 2(d), with the help of connectivity
term, the ACO is able to detect the missed parts [see the feet
and legs on the top of Fig. 2(c) and the middle part of the
person on the bottom of Fig. 2(c)] of the persons. However,
one can also see that there are many false alarms in Fig. 2(d).
False alarms are the by-product of add connectivity. Fig. 2(e) is
the result of the proposed method (i.e., by adding both saliency
map and connectivity to BAL). Obviously, introducing the
saliency map successfully discards the false alarms existing
in Fig. 2(d).

The results given in Fig. 3(e) demonstrate that adding
saliency map into the objective function is capable of sup-
pressing many false alarms when the size of moving objects
[a person on the top of Fig. 3(a) and a car on the bottom of
Fig. 3(a)] is small, whereas the background is large, complex,
and dynamic. Fig. 3(d) shows that adding connectivity into
the objective function not only enlarges the area of the
objects detected by BAL but also incorrectly classifies moving
leafs and shadows as semantic objects. Adding saliency map
[Fig. 3(e)] plays a role of overcoming the drawbacks of adding
connectivity.

The saliency maps of the top and bottom of Fig. 3(a) are
shown in Fig. 4(b) and (d), respectively. Though the saliency
maps are not ideal, they provide a useful clue for the proposed
method (i.e., by adding both saliency map and connectivity
to BAL).

The proposed algorithm (i.e., adding both saliency map and
connectivity to BAL) (see Algorithm 1) and the ACO algo-
rithm update the background vector b iteratively. Figs. 5 and 6
show how the background vector b varies with iterations.
Fig. 5(a) shows the input image identical to the top of Fig. 3(a).
The top and bottom of Fig. 5 correspond to the iteration results

p > ip e e
b | L N E 9 E 9
= LY s e

(b) © (d) (e)

Fig. 6. Input image and the background vector b obtained in different
iterations of ACO (top) and MODSM (i.e., adding both saliency map
and connectivity to BAL) (bottom). (a) Input image. (b) iteration #I.
(c) iteration #3. (d) iteration #6. (e) iteration #10.
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Fig. 7. Convergence of the proposed method (i.e., adding both saliency map
and connectivity to the BAL). (a) For the input image shown in Fig. 5(a).
(b) For the input image shown in Fig. 6(a).
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Fig. 8. Reconstructed background updates from the first frame to
the 34th frame. (a) r = 1. (b) r =4. (c) t =9. (d) t = 15. (e) t = 20. (f) t = 27.
(g) t =34.

of the ACO algorithm and the proposed MODSM algorithm,
respectively. One can see from the top of Fig. 5 that the
background vector obtained by ACO contains more regions of
waving leafs as the iteration proceeds. However, one can see
from the bottom of Fig. 5 that the background vector obtained
by the proposed method excludes more regions of waving
leafs as the iteration proceeds and hence the foreground vector
focuses on the true meaningful moving person.

Similar to Fig. 5, the bottom of Fig. 6 also demonstrates that
adding the saliency map into the objective function makes the
estimated background vector iteratively exclude the influence
of moving leafs.

Fig. 7 shows the convergence property of the proposed
algorithm. Generally, the value of the objective function L
decreases drastically at the first five iterations and becomes
stable after iteration # 8. To further show the convergence
of the background of the first few frames, the bottom of
Fig. 8 shows the reconstructed backgrounds corresponding to
the first, fourth, ninth, 15th, 20th, 27th, and 34th frame of the
Shopping Mall (SM) video. We can find that the reconstructed
background improves gradually as more frames are available.
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TABLE III
PARAMETERS OF THE MODSM METHOD

TABLE IV

F1-SCORES OF DIFFERENT METHODS ON PERCEPTION
TEST IMAGES SEQUENCES

m 8 A a n -
5 B = max($8,4.56%) 58  min ([54“"2—] G5m, 6.5 [3) 0.1 10— 6 Method WS Cur Fou Hal N Lob Esc BS Cam | mean
m —SM

For example, the reconstructed background corresponding to
the first frame [see the bottom of Fig. 8(a)] contains obvi-
ous artifacts caused by moving objects. However, when the
model updates to 20th frame or 34th frame, the reconstructed
backgrounds [see the bottom of Fig. 8(e) and (g)] are mainly
dominated by true backgrounds and the influence of the
moving objects is negligible.

B. Comparison With the State-of-the-Art Methods on
Perception Test Images Sequences

The Perception Test Images Sequences data set [29] is
also used for comparison with the state-of-the-art methods.
The data set consists of nine videos captured in a variety of
indoor and outdoor environments, including offices, campuses,
sidewalks, and other private and public sites.

The weather conditions when collecting the data cover
sunny, cloudy, and rainy weather. The videos with static
background are named Bootstrap (BS), SM, and Hall (Hal).
The videos with dynamic background are called Fountain
(Fou), Escalator (Esc), Water Surface (WS), Curtain (Cur),
and Campus (Cam). The Lobby (Lob) video is captured when
there are drastic variations in illumination. The sizes (widths
and heights) of the frames include [160, 130], [160, 128], [176,
144], [160, 120], [160, 128], and [320, 256].

We compare the proposed MODSM algorithm with
DECOLOR [8], ISC [9], RFDSA [13], Dirichlet process
Gaussian mixture model (DP-GMM) [14], GRASTA [15],
PCP [33], GMM [48], and SOBS [49]. PCP, GRASTA, and
RFDSA are the state-of-the-art subspace-based algorithms.
DP-GMM is the state-of-the-art density-based algorithm and
DECOLOR is the state-of-the-art low-rank-based algorithm.
DP-GMM and GRASTA are incremental algorithms, whereas
PCP, DECOLOR, and RFDSA are batch algorithms. As stated
in Section II, ISC can be considered as an incremental version
of DECOLOR. Note that GRASTA randomly samples a frac-
tion of pixels in an image for subspace modeling and object
detecting. Its detection accuracy increases with the fraction.
To reduce randomness and get its best accuracy, 100% pixels
are used in our experiments.

The parameters (7) of the MODSM method are given in
Table III, where m is the number of columns (basis vectors)
of the matrix U. The parameter S balances the sparsity term
and other terms. In the training stage, f is updated frame by
frame according to f = max(% f,4.562). For the first frame,
p is set to be the variance of the first frame. The schemes
of setting f and A are the same as those in [8]. In Table III,
62 is given by

2|9| Z 1Oy — o3 (30)

GMM 7948 7580 6854 3335 5363 6519 1388 3838 0757 4842

SOBS 8247 8178 6554 .5943 6677 6489 5770 6019 6960 6760

DP-GMM 9090 .8203 7049 5484 6522 5794 5055 6024 7567 6754

PCP 4137 6193 5679 5917 7234 6989 6728 6582 .3406 5874

DECOLOR 8866 8255 8598 6424 6525 6149 6994 5869 8096 7308

GRASTRA 7310 6591 3786 5817 7142 .5550 4697 6146 2504 .5505

ISC 7176 2919 7112 6560 7487 5715 6751 6787 2897 5933

RFDSA 8796 8976 7544 6673 7407 8029 6353 6841 6779 7489

MODSM 9404 9098 .8205 6859 7362 5762 7553 7280 7876 7711

where Q and |Q| are the set and the number of training
images, respectively. s,, is the ratio of the number of pixels
whose saliency is larger than the mean of the saliency maps
of training images

2.5 Z;\;l I(si —sm)

= 31
Sm = N|Q| 3D
with
Zs Z =15
= 32
sM o= NIQ| (32)
and
1 0
=1 "~ (33)
x <0.

Note that the [x] in Table III stands for the floor function
of x.

We have evaluated many formulas for setting o and the
experimental results show that the formula in Table III is the
best.

Table III gives a general rule for parameter setting. However,
the detection performance can be significantly improved if
video-specific parameters are utilized.

The Fj-score, the harmonic mean of precision and recall,
is used for objective evaluation

precision x recall

Fi =2 (34)

precision + recall’

The Fj-score results of the different methods are given in
Table IV. Among the nine videos, the proposed MODSM,
RFDSA, DECOLOR, and ISC get the best performance on
five (i.e., WS, Cur, Hal, Esc, and BS), one (i.e., Lob), two (i.e.,
Fou and Cam), and one (i.e., SM) different videos, respectively.
The average Fi-score of the proposed MODSM is the largest.
However, our method does not work well for the Lob video.
The main reason is that the performance of the method [43]
of creating saliency map on the Lob video degraded signifi-
cantly. If the Lob video was excluded, the average Fj-score
of MODSM grows from 0.7711 to 0.7955, whereas that of
RFDSA decreases from 0.7489 to 0.7421. It is expected that
the performance of MODSM increases with the performance
of saliency map. Table IV also shows that if proper prior
information (i.e., connectivity, saliency map, and sparsity)
is employed, then the incremental algorithm MODSM can
outperform the batch algorithms DECOLOR and RFDSA.
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Fig. 10. Detected objects for a frame of the Cur video. (a) Input image.
(b) Ground truth. (c) MODSM. (d) RFDSA. (e) DECOLOR.

Fig. 9.

(@)

Moreover, the proposed MODSM is remarkably superior to the
incremental algorithm ISC. The average Fl-score of ISC [9]
is 59.33%, whereas the average Fl-score of our method is
as large as 77.11%. The proposed MODSM method gives an
average of 17.78% over the ISC method. The benefit of our
method comes not only from introducing saliency map into a
unified objective function but also from employing continuous
foreground vector instead of a binary one.

The ROC curves of the MODSM and RFDSA on the WS,
Esc, Fou, and Cam videos are shown in Fig. 9, where the
superiority of the MODSM can be observed. Take the Fou
video as an example. The true positive rates (i.e., recall) of
MODSM and RFDSA are, respectively, 0.99 and 0.935 when
the false positive rate is 0.05. Note that the DOCOLOR and
ISC methods cannot generate the ROC curves because of their
binary values of the estimated foreground and background.

Several specific results of MODSM, RFDSA, and
DECOLOR are visualized in Figs. 10-13(a)—(e) as the cur-
rent input frame, ground truth of the moving objects, and
the detected results of MODSM, RFDSA, and DECOLOR,
respectively.

Fig. 10(a) shows a frame of the Cur video. Fig. 10(d)
shows that RFDSA incorrectly regards the variation caused
by motion of the curtain as moving objects and RFDSA
results in incomplete neck of the person. Fig. 10(e) shows that
DECOLOR gives rise to even more false alarms. Investigating
Fig. 10(b) and (c), one can find that the result of MODSM is
much closer to that of the ground truth.

(@) b) ©

Fig. 11. Detected objects for a frame of the Cam video. (a) Input image.
(b) Ground truth. (c) MODSM. (d) RFDSA. (e) DECOLOR.

Fig. 12. Detected objects for a frame of the Esc video. (a) Input image.
(b) Ground truth. (c) MODSM. (d) RFDSA. (e) DECOLOR.

(d

Fig. 13. Detected objects for a frame of the SM video. (a) Input image.
(b) Ground truth. (c) MODSM. (d) RFDSA. (e) DECOLOR.
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Fig. 14. Average Fl1-score versus the average FPSs on Perception Test Images
Sequences.

Fig. 11(a) shows a frame of the Cam video. Fig. 11(d)
shows that RFDSA incorrectly classifies many waving leafs as
meaningful moving objects. Fig. 11(e) tells that DECOLOR
cannot detect the left small person and the head of the
right large person is also mistakenly classified as background.
Fig. 11(c) shows that the proposed method is powerful for
classifying the waving leafs as background and detecting both
of the persons.

Fig. 12(a) shows a frame of the Esc video. Fig. 12(d) shows
that RFDSA classifies the moving escalator as semantically
meaningful moving objects. Because of using the information
of saliency map, the proposed MODSM [Fig. 12(c)] avoids
the errors of RFDSA. Fig. 12(e) shows that DECOLOR has
almost not missed alarms but has many false alarms. The result
[Fig. 12(c)] of MODSM is the best among the three methods.

Fig. 13(a) shows a frame of the SM video. It can be seen that
MODSM is comparable and even slightly better than RFDSA
and DECOLOR.

Fig. 14 shows the average Fl-score versus average frames
per second (FPSs) of GRASTA, DECOLOR, RFDSA, ISC,
and the proposed MODSM method. Three conclusions can be
drawn from Fig. 14.
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Fig. 15. Detected result for a frame of the Lob video. (a) Previous frame.
(b) Current frame. (c) Saliency map. (d) Detected result.

TABLE V

F1-SCORES ON THE WS VIDEO AND THE Cam VIDEO VERSUS THE
SALIENCY MAPS WITH DIFFERENT VARIANCES
OF THE GAUSSIAN NOISE

0.05 | 0.1
.9378| .9382
1758|7750

0.15 | 0.2
9315| .9276
7701|7612

0.25 | 0.3
9255 .9204
7584|7442

0.35
9178
7403

Variance| 0
WS .9404
7876

Cam

1) The proposed MODSM method is
DECOLOR and is comparable to RFDSA.

2) The proposed MODSM method is able to obtain the best
F1-score.

3) The proposed MODSM method is capable of getting a
good tradeoff between the Fl-score and the computa-
tional speed.

faster than

Nevertheless, there is space to improve the efficiency of the
proposed method. One way is to speed up the computation of
the saliency map.

As can be seen from Table IV, the proposed method
MODSM results in unsatisfying results on the Lob video.
Fig. 15 attempts to explain the reasons. On the one hand,
switching from light ON [Fig. 15(a)] to light OFF [Fig. 15(b)]
gives rise to large variation, which is difficult for the basis
vectors U to capture. On the other hand, the saliency map is
not satisfying on the regions of the moving object (person).
In this case, introducing the bad saliency map [Fig. 15(c)] has
a negative influence on the task of moving object detection.
The research progress of salient object detection is helpful for
improving the performance of the propose method.

We also investigate how the quality of the saliency map
influences the detection accuracy (Fl-score). The Gaussian
noise with different variances and the salt-and-pepper noise
with different density are added into the saliency maps of
the WS video and the Cam video, respectively. The detection
results corresponding to the Gaussian noise are given in
Table V and the detection results corresponding to the salt-and-
pepper noise are given in Table VI. It is observed from Table V
that the loss of F1-score is negligible when the variance of the
Gaussian noise increases to 0.05, 0.1, and 0.15. The decrease
in Fl-score is relatively large only when the variance is very
large. The phenomenon can also be seen from Table VI.

Fig. 16 visualizes the detection results when the Gaussian
noise with variances 0, 0.05, 0.15, and 0.35 is added to the
saliency map. As can be seen from Fig. 16, the person can
be detected even when the saliency map contains significant
noise. Of course, when the noise is too heavy that the saliency
map is severely corrupted and is completely immersed in the
noise, the detection accuracy will drop inevitably.

TABLE VI

F1-SCORES ON THE WS VIDEO AND THE Cam VIDEO VERSUS THE
SALIENCY MAPS WITH DIFFERENT DENSITIES OF
THE SALT-AND-PEPPER NOISE

Density | 0 0.05 | 0.1 0.15 | 0.2 0.25 | 0.3 0.35
WS .9404| .9392| .9379| .9341| .9323| .9267| .9223| .9145
Cam J1876| .7832| .7746| .7705| .7647| .7502| .7462| .7389

(2) (b) © (d (e)

Fig. 16. Detection result on the WS video when the Gaussian noise
with different variances is added to the saliency map. (a) Input image.
(b) var = 0. (c) var = 0.05. (d) var = 0.15. (e) var = 0.35.

TABLE VII

F1-SCORES OF DIFFERENT METHODS ON THE WALLFLOWER DATA SET
Method CF | FA LS BS TOD| WT | mean
DECOLOR| .4009| 0 .8199| 05869 .8519| .9402| .6004
RFDSA 9162| .5800| .3897| .6841| .1605| .5090| .5399
GRASTRA| .2494| .3091| .2267| .6146| .1205| .4685| .3314
ISC .6969| .4091| .2679| .6787| .1261| .4685| .4412
MODSM | .9618| .6148| .7824| .7280| .3966| .9502| .7389

C. Comparison With the State-of-the-Art Methods
on the Wallflower Data Set

In this section, experimental results are given on the
Wallflower data set [50]. The Wallflower data set con-
sists of seven different test sequences. The scenarios of
the data set are Moved Object, Time of Day (TOD), Light
Switch (LS), Waving Trees (WT), Camouflage (CF), BS, and
Foreground Aperture (FA).

The proposed method is compared with two representative
incremental methods (i.e., ISC [9] and GRASTA [15]) and
two representative batch methods (i.e., DECOLOR [8] and
RFDSA [13]). The source codes of the four methods are
publicly available.

The strategy of setting parameters for the proposed
MODSM method is the same as Table III.

Table VII gives the Fl-scores of DECOLOR, RFDSA,
GRASTA, ISC, and the proposed MODSM method. The
average scores of DECOLOR, RFDSA, GRASTA, ISC,
and our method MODSM are 60.04%, 53.99%, 33.14%,
44.12%, and 73.89%, respectively. The proposed method is
the best among the five methods. Specially, our method gives
an average 13.85%, 19.90%, 40.75%, 29.77% improvement
over DECOLOR, RFDSA, GRASTA, and ISC, respectively.
Therefore, the superiority of the proposed method is very
significant. The results demonstrate the important role of
introducing saliency map into the objective function.
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Fig. 17. Detection results for frames of the CF video, LS video, and WT video
of the Wallflower data set. (a) Input image. (b) Ground truth. (¢c) MODSM.
(d) RFDSA. (e) DECOLOR. (f) ISC.
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In addition to the above quantitative comparison, we show
in Fig. 17 several detection examples. The input images shown
on the top, middle, and the bottom of Fig. 17(a) are sampled
from the CF video, LS video, and WT video, respectively.
The ground truth is shown in Fig. 17(b). Fig. 17(c)—(f) shows
the detection results of MODSM, RFDSA, DECOLOR, and
ISC, respectively. Among the five methods, the results of our
MODSM are the best in the sense of approximating the ground
truths.

The experimental results on both the Perception Test Images
Sequences data set and the Wallflower data set demonstrate the
effectiveness of the proposed method.

V. CONCLUSION

In this paper, we have presented a moving object detec-
tion method. The method makes use of a saliency map by
incorporating it into a unified objective function for which
the properties of sparsity, low rank, connectivity, and saliency
are integrated. The manner of using a saliency map yields a
smaller number of false alarms and missed alarms. Our future
work will apply the idea of using a saliency map to other state-
of-the-art incremental and batch methods of moving object
detection. Moreover, we will investigate other state-of-the-art
methods of generating a saliency map.
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