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Multi-Tracker Partition Fusion
ObaidUllah Khalid, Juan Carlos SanMiguel, and Andrea Cavallaro

Abstract— We propose a decision-level approach to fuse the
output of multiple trackers based on their estimated individual
performance. The proposed approach is composed of three main
steps. First, we group trackers into clusters based on the spa-
tiotemporal pair-wise correlation of their short-term trajectories.
Then, we evaluate performance based on reverse-time analysis
with an adaptive reference frame and define the cluster with
trackers that appear to be successfully following the target as the
on-target cluster. Finally, the state estimations produced by
trackers in the on-target cluster are fused to obtain the target
state. The proposed fusion approach uses standard tracker
outputs and can therefore combine various types of trackers.
We tested the proposed approach with several combinations of
state-of-the-art trackers and also compared it with individual
trackers and other fusion approaches. The results show that the
proposed approach improves the state estimation accuracy under
multiple tracking challenges.

Index Terms— Decision Fusion, online performance evaluation,
tracker correlation, visual tracking.

I. INTRODUCTION

V ISUAL tracking is widely used in applications such
as video surveillance, human–computer interaction,

activity recognition, and video indexing. A tracker faces
several challenges such as occlusions, clutter, changes in target
scale, and appearance and variations in scene illumination.
Because no individual tracker can still provide accurate results
for all challenges [1], fusing complementary trackers whose
expected failures are uncorrelated can increase robustness.

Fusion can be performed at a feature or decision level [2].
Feature-based approaches fuse multiple features in a single
tracking framework to adapt to appearance changes [2]–[6].
When the features have variable dimensionality and range,
adaptation methods are needed to integrate new features [7].
Decision-level fusion combines the output of multiple track-
ers [7]–[14]. Fusion can happen sequentially [11], [15], [16]
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using the outputs from specific trackers [8] or employing
likelihood-based fusion [13], in parallel [17] or with a hybrid
approach [18].

The online evaluation of the quality of current tracking
results uses current and past information only, and may help
the fusion process [19]. In order to weight trackers or features
prior to fusion, online performance evaluation identifies the
trackers that follow the target and estimate the accuracy of
their outputs at run time [20]. Fusion approaches estimate per-
formance using target velocity [21], democratic integration [6],
filter uncertainty [22], likelihood [13], and tracker correla-
tion [17]. Existing performance evaluators provide different
score ranges for each tracker [2], require specific trackers [20],
or are computationally expensive [23].

In this paper, we propose a decision-level fusion framework
that combines the outputs of selected trackers over time
based on the spatiotemporal relationships of their results. The
main novelties of the proposed approach are a method to
identify the trackers that are expected to be on the correct
target and the definition of an adaptive reference frame for
online performance analysis. We group trackers hierarchically
based on their agreement in estimating the target state in
terms of spatial location and direction of movement. Using
this spatiotemporal agreement, we determine which groups
(clusters) of trackers are in the same region and identify the
one that is on-target. This identification is achieved using an
adaptive time-reversed performance evaluation. This evalua-
tion compares the results of trackers running in the reverse
temporal direction with the results of the fused output at a
specific frame. This specific frame is adaptively determined
via online performance evaluation and motion analysis. The
final output is then generated by fusing the outputs of trackers
within the on-target cluster and the selected on-target cluster
is propagated over time until a split or merge is detected.

This paper is organized as follows. Section II discusses
the related work. The overview of the proposed framework
is given in Section III, while the tracker clustering and the
reverse-analysis evaluation are described in Section IV and
Section V, respectively. The experimental results are presented
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

In this section, we discuss methods for online evaluation of
trackers and features, and their combination.

Tracker performance can be evaluated using trajectories,
observation likelihood, or the spatial uncertainty of the
target hypotheses. Comparing target state properties such
as target velocity [21] to empirical thresholds limits the
approach to specific data. By the reversibility property of
Markov chains [23], tracker performance is evaluated using
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another tracker running in the reverse temporal direction
until a reference frame in which the tracker under evaluation
(forward) is assumed to be correct. Then, reverse–forward
results are compared using the Mahalanobis distance at the
reference frame [23]. However, this reverse analysis consider-
ably increases the computational cost. The tracker likelihood
can also be used as performance indicator [13]. However,
distractors (i.e., objects with similar features to those of
the target) may produce a high likelihood, thus generating
misleading measurements.

Performance measures can take advantage of multihypoth-
esis trackers, such as the spatial uncertainty of the hypotheses
(particles) of the particle filter (PF) to weight feature con-
tributions [2], to compute a feature rejection probability [5],
or to be employed jointly with reverse analysis [20]. When
multiple trackers or features are used, performance weights can
be estimated as the distance to the fused output [6], [24], the
average change of multiple features [25], or correlation among
point trajectories [26]. Such a weighting often requires multi-
ple features whose average result is assumed to be accurate.

Fusion at the feature level considers multiple visual features
to be combined in a single-tracker framework. An example is
the sum of feature likelihoods (color histograms and intensity
gradients) [27]. Results can be improved using a performance-
based feature weighting, such as in democratic integration
where the weight is computed as the distance between the
fused and feature output [6], [24]. Appearance models based
on sparse coding [28] have also been used for feature-level
fusion, where the weighting is determined by the contribution
of the feature template to track the target [29], while other
approaches discard features that are far away from the target
model [30].

Decision-level fusion combines the output of multiple track-
ers in cascade or in parallel. A cascade for fusion defines
an execution order where each tracker output is used by
the next tracker. Examples include the combination of the
sequential execution of the template-based mean shift (MS)
and appearance-based trackers [11], two trackers (region
and shape) and two detectors (head and motion for people
tracking) [15], and the integration of three PFs and one
Kalman filter (KF) [16]. Moreover, trackers can be inte-
grated within the framework of another tracker [8], [9]. For
instance, a head tracker uses MS to improve the PF tracker
predictions [8].

In parallel tracker fusion, two trackers may be com-
bined using probability density functions (PDFs) [7] or target
motion [21]. Moreover, tracker performance within a parallel
framework can be measured as the disagreement with other
trackers [17], [31] or can be used to select the best tracker [32].
Other approaches may use tracker correlation to improve
the overall tracking performance by correcting PFs [18] and
KFs [26]. These approaches determine the accuracy as the
spatial uncertainty of hypotheses whose value may vary across
trackers, thus making tracker fusion difficult.

Learning-based methods have also been proposed [33],
where labels (foreground/background) are assigned to image
patches. A Bayesian approach is employed for fusion where
tracker accuracy is the distance between the fused output

TABLE I

DECISION-LEVEL FUSION APPROACHES. KEY C : CASCADE,
P : PARALLEL, S : SPATIAL, T : TEMPORAL, GLAD:

GENERATIVE MODEL OF LABELS, ABILITIES,
AND DIFFICULTIES [34]

and the output of each tracker. Using likelihood as the per-
formance estimator within tracker interaction and sampling-
based approaches, the tracker with the highest likelihood
is chosen [12]. Similarly, multiple motion and appearance
models can be used to form a single compound tracker [13].

Decision-level fusion approaches are summarized in Table I
and compared with the proposed approach.

III. OVERVIEW

We propose a framework to cluster trackers over time and
to select the best performing ones for fusion to improve
the overall accuracy of target state estimation. The proposed
approach is inspired by the test and select framework [36]
for ensemble combination where accurate classifiers are fused
assuming that their errors are diverse. Considering trackers
as classifiers, we extend this framework to video tracking
by introducing spatiotemporal correlation and adaptive online
performance evaluation (Fig. 1).

Let I = {It }T
t=1 be a video sequence of T frames and

F = {Fk}K
k=1 be a set of K trackers. Let the target state xk

t
be a bounding box, defined by a 4D vector (uk

t , v
k
t , w

k
t , hk

t ),
where uk

t and vk
t are the target positions and wk

t and hk
t are

its width and height, respectively. Each tracker Fk uses the
observation zk

t and the target model at frame It−1, φk
t−1, to

estimate the target state at time t

xk
t = Fk(xk

t−1, zk
t , φ

k
t−1

)
(1)

where xk
t−1 is the state estimate (i.e., the tracker output) at the

previous time step.
Let on-target and off-target be the labels that indicate

whether a tracker successfully follows the target. The goal
is to identify the successful trackers for the given outputs xk

t
by labeling them as

xk
t →lk

t ∈ {on-target, off-target}. (2)

We determine lk
t by recognizing groups of trackers (clusters)

following the same region in the frame and identifying the
cluster with the on-target trackers C∗

t ={Fn}N
n=1 ⊆F (N ≤ K ).
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Fig. 1. Block diagram of the proposed approach to fuse the output of K trackers.

Fig. 2. Block diagram of the reverse evaluation that identifies the on-target
cluster C∗

t .

Assuming that all the trackers are initialized with a ground
truth, the approach starts with a single on-target cluster. When
trackers fail, they split into different clusters, of which only
one (i.e., C∗

t ) or none successfully tracks the target. For
each frame It , we compute

(K
2

)
scores Ri, j

�t1
to determine

the spatiotemporal relationships between the pairs of trackers,
measured as similarity of spatial location and direction of
movement of short-term trajectories (tracklet correlation) over
a temporal window �t1. These spatiotemporal scores are
then employed to generate partition hypotheses {Pp,t }K

p=1 to

divide the K trackers into clusters. After validating the best
partition P∗

t by exploring the correlations among tracklet data,
the on-target cluster C∗

t is determined by online performance
evaluation of the trackers that are expected to be following
the target. Such an evaluation uses reverse tracking [23] over a
sliding temporal window �t2 (Fig. 2), which requires standard
tracker outputs (e.g., bounding boxes), thus providing a generic
evaluator across trackers.

The proposed approach employs two temporal win-
dows �t1 and �t2 (Fig. 3), to buffer data from
future and past time instants, respectively. The temporal
window used for tracklet correlation makes the proposed
approach suitable for applications that can tolerate a short
latency �t1.

C∗
t is propagated until the detection of a split or a merge,

which happens when trackers leave or join the cluster C
∗
t ,

respectively. A split or merge indicates that some or all of the
on-target trackers may have failed. When such changes occur,
all trackers are reevaluated to determine the new on-target
cluster C∗

t in the partition P∗
t .

Only the trackers belonging to the on-target cluster C∗
t are

used to compute the final target state x∗
t

x∗
t = 1

N

N∑

n=1

xn
t . (3)

Fig. 3. Temporal windows �t1 and �t2 employed by the proposed approach
to account for forward and backward data, respectively. Forward data are
used to determine the relationships among trackers via their trajectories
(Section IV). Backward data are used to check tracker performance via a
time-reversed evaluator (Section V).

The proposed clustering (PC) helps to reduce the computa-
tional load by avoiding the application of reverse evaluation
over all trackers when they maintain their spatiotemporal
relationships over time.

IV. TRACKER CLUSTERING

A. Tracklet Correlation

We combine the spatial and temporal features of the short-
term trackers’ trajectories (tracklets) to obtain a set of pair-
wise correlation scores Ri, j

�t1
, for 1 ≤ i and j ≤ K with i �= j ,

for pairs of trackers Fi and F j over a temporal window �t1.
The spatial agreement for Fi and F j is based on their outputs
xi

t and x j
t at frame It

Oi, j
t = 2

∣
∣Ai

t
⋂

A j
t

∣
∣

∣∣Ai
t

∣∣ + ∣∣A j
t

∣∣
(4)

where Ai
t and A j

t are the sets containing the pixels of the
bounding boxes generated by trackers Fi and F j , respectively,
and | .| is the cardinality of a set. Oi, j

t ∈ [0, 1] and a value
of 1 (0) represents a full agreement (disagreement). The spatial
agreement over time is computed by averaging Oi, j

t over �t1

Oi, j
�t1

= 1

�t1

t+�t1∑

t

Oi, j
t . (5)

In order to estimate the agreement for motion direction, we
compute a score r i, j

�t1
using the directional feature �dk of each

Fk [37] over �t1 that encodes the trajectory direction

�dk
t = (

uk
t+�t1 − uk

t , v
k
t+�t1 − vk

t

)
. (6)

The directional similarity score r i, j
�t1

is computed between
Fi and F j using the cosine similarity

r i, j
�t1

= cos
(( �di

t · �
d j

t
)/(∣∣ �di

t

∣
∣ · ∣

∣ �
d j

t

∣
∣)) (7)

where r i, j
�t1

∈ [−1, 1] and the negative values represent
(estimated) targets moving in opposite directions.
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Fig. 4. Weighting function ψ (top) and weighted directional score

r̂ i, j
�t1

(bottom) for directional feature normalization using λ = 10.

The desired correlation score Ri, j
�t1

is obtained by combining

Oi, j
�t1

and r i, j
�t1

after normalization of r i, j
�t1

to [0, 1]. Since we

are interested in agreement on the direction of motion, we
seek values r i, j

�t1
∈ [0, 1] and define a weighted directional

similarity score r̂ i, j
�t1

as

r̂ i, j
�t1

= ψ
(
λ, r i, j

�t1

) · r i, j
�t1

(8)

where r̂ i, j
�t1

∈ [0, 1] and ψ ∈ [−1, 1] is a weighting func-

tion that assigns a constant weight to r i, j
�t1

∈ [0, 1], while

r i, j
�t1

∈ [−1, 0] are given low weights. Such a function is

defined as

ψ
(
λ, r i, j

�t1

) =
{

1, if 0 ≤ r i, j
�t1

≤ 1

−e
λ·ri, j

�t1 , if − 1 ≤ r i, j
�t1

< 0
(9)

where λ ∈ (0,∞) is the decay rate of ψ . Values of λ close
to zero give smooth transitions for ψ ∈ [−1, 0] turning into
high r̂ i, j

�t1
values when r i, j

�t1
∈ [−1, 0]. High values of λ give

abrupt transitions for ψ turning into r̂ i, j
�t1

values close to zero.

Fig. 4 shows the relations between r i, j
�t1

and r̂ i, j
�t1

for λ = 10

[Fig. 4 (bottom)] and between r i, j
�t1

and ψ [Fig. 4 (top)].

Ri, j
�t1

is finally computed as

Ri, j
�t1

= ω · Oi, j
�t1

+ (1 − ω) · r̂ i, j
�t1

(10)

where ω ∈ [0, 1]. High (low) values of ω prioritize the
spatial overlap (trajectory direction), which can be useful for
short (long) �t1.

B. Partition Generation

A single partition Pp,t of F is a collection of nonempty
clusters C

a
p,t (a = 1, . . . , |Pp,t |) such that each tracker in F is

in exactly one Ca
p,t , i.e., all Ca

p,t are mutually disjoint.
At each time step, K trackers can be grouped into

clusters Ca
p,t , forming a single partition Pp,t , where

|Pp,t | ∈ [1, K ]. Let [.] represent a partition. For example,
[{F1, . . . . . . , Fk}] means that all trackers are clustered
together (|Pp,t | = 1, initial condition) and [{F1}, . . . . . . , {Fk}]
means that each tracker is a single cluster (|Pp,t | = K ).

Fig. 5. (a) Tracking results for frame 9 of the MCTTR0205a sequence
(TRECVID)— F1 (red rectangle), F2 (blue rectangle), F3 (turquoise
rectangle), and F4 (black rectangle). (b) Dendrogram obtained by HC.
(c) Pair-wise tracker correlations scores. (d) Hypothesized partitions and
cluster scores, where P3,t has the highest score.

Our aim is to hypothesize a set of partitions {Pp,t }B
p=1

to cluster the trackers. All possible partitions Pp,t can be
systematically enumerated with an exhaustive search [38].
The set size is given by the Bell number B [39], which
exponentially increases with K . For example, with K = 8
trackers B = 4140 partitions are generated.

To reduce the computational complexity, we use a greedy
search that determines the most plausible partitions for a
given number of clusters. Since the optimum number and
composition of clusters is unknown, we take advantage of the
hierarchical structure of the tracker relationships to generate a
set of partitions whose cardinality ranges from 1 (i.e., a single
cluster) to K (i.e., each tracker is a cluster), with K 
 B.

We use hierarchical clustering (HC) [40] to determine
the relationships between trackers based on the pair-wise
tracker correlation scores Ri, j

�t1
. Based on the distance between

the trackers’ outputs, we obtain a dendrogram, which is
inspected by a divisive (top-down) approach to determine each
partition Pp,t . The search starts with the partition that groups
all trackers into one cluster P1,t . Recursively moving down
the tree, a different Pp,t is generated at each level, with the
final partition having each tracker in a separated cluster PK ,t .
A partition Pp,t is obtained as

Pp,t = f (β∗(p)) (11)

where p = 1, . . . , K and f (β∗) is an HC-based function
that provides a cluster partition given an optimal distance
threshold β∗, which is computed as

β∗(p) = arg min
β

{| f (β)| − p} (12)

where β = 0, . . . ,max{Ri, j
�t1

}.
The proposed greedy search has a linear relationship

between the size of {Pp,t}K
p=1 and K , which significantly

speeds up the search. Fig. 5(a) and (c) shows an example
for four trackers and the scores for their spatiotemporal rela-
tions, which are used to compute the dendrogram illustrated
in Fig. 5(b).
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C. Partition Validation

After generating the set of partitions {Pp,t}K
p=1, the objective

is to select the partition P
∗
t that best represents the spa-

tiotemporal relations among trackers. We therefore define the
score S(Pp,t ) as

S(Pp,t ) = 1

|Pp,t |
|Pp,t |∑

a=1

Q
(
C

a
p,t

)
(13)

where Q(Ca
p,t ) is the score for a single cluster Ca

p,t ∈ Pp,t .
S(Pp,t ) determines the partition P∗

t as

P
∗
t = argmax

p
{S(Pp,t )} (14)

where p = 1, . . . , K and Q(Ca
p,t ) is dependent on the

pair-wise relationship score between trackers Fi and F j

in Ca
p,t , which is obtained in the tracklet correlation block

(Section IV-A).
The score Q(Ca

p,t ) is computed as

Q
(
C

a
p,t

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

ν

∣
∣Ca

p,t

∣
∣

∑

i=1

∣
∣Ca

p,t

∣
∣

∑

j=1
Ri, j
�t1
, if

∣
∣Ca

p,t

∣
∣>1

1 − max
b∈1,...,|Pp,t |

(
Q

(
Ca

p,t
⋃

Cb
p,t

))
, if

∣∣Ca
p,t

∣∣=1

(15)

where ν = (|Ca
p,t |
2

)
is the total number of tracker-pair com-

binations within the cluster. Since a pair-wise score for a
single tracker in a cluster, |Ca

p,t | = 1, cannot be obtained, we
compute its pair-wise scores with trackers in other clusters.
Therefore, Ca

p,t
⋃

Cb
p,t indicates the hypothetical case where

the tracker in Ca
p,t becomes part of the cluster Cb

p,t and b is

any of the remaining clusters within Pp,t (b �= a).
When each tracker is a single cluster, i.e., |Pp,t | = K , each

cluster score Q(Ca
p,t ) is computed as

Q
(
C

a
p,t

) = 1 − Q
(
C

b
p,t

)
(16)

where Cb
p,t is the cluster containing all the trackers. Fig. 5(d)

shows the computed cluster and partition scores, where P3,t
achieves the highest score.

D. Split–Merge Detection

After determining P∗
t , the split–merge detection step iden-

tifies changes between P∗
t and the previous partition P

∗
t−1.

Such changes may occur due to trackers leaving or joining
the on-target cluster in the previous time step C∗

t−1 ∈ P∗
t−1,

hence modifying the structure of P
∗
t−1. Thus, C

∗
t−1 cannot

be propagated to the current time and the reverse evaluation
is required to identify the current C∗

t . We apply the reverse
evaluation over a set of trackers Yt , selected as

Yt =
{

C
∗
t−1 if P

∗
t−1 ≡ P∗

t

P∗
t otherwise

(17)

where the condition P∗
t−1 ≡ P∗

t checks the similarity between
the number of clusters and their members (i.e., trackers).
When this condition is satisfied, an existing cluster Ca

t ∈ P∗
t

equivalent to C∗
t−1 is used at the current time. However, when

a split or merge occurs, all the trackers in P∗
t are evaluated.

V. ON-TARGET CLUSTER IDENTIFICATION

We evaluate the performance of each tracker in the set Yt

(tracker selection block in Fig. 2). This performance evalu-
ation either determines the on-target cluster C∗

t of the valid
partition P∗

t or validates the on-target cluster from the previous
time step C∗

t−1. We cast this problem as an online tracker
evaluation and use the time reversibility of target motion to
assess the performance of the trackers. We first review reverse-
based evaluation methods and then we present our proposed
improvements.

A. Reverse-Based Online Evaluation

Reverse-based evaluation [23] measures the performance
of a tracker during runtime using the generated results.
For each frame where we evaluate the tracker, a reversed
tracker (i.e., the same tracker operating in reverse time) is
applied. Using the tracker output xk

t as the reverse-tracker
initialization xk,−

t , the reverse tracker obtains its output as

xk,−
t−1 = Fk(xk,−

t , zk
t , φ

k
t

)
(18)

where xk,−
t−1 is the reverse-tracker output at time t − 1. Then

the result of the reverse tracker and that of the tracker are
compared to obtain a similarity score θ k

t by means of the
Mahalanobis distance between the likelihood distributions of
the forward and reverse target estimations. This comparison is
performed at a certain time instant tref , that is associated to
the reference frame Iref . Iref is a frame where the tracker is
known to be on-target and it is usually Iref = I1 [23], i.e., the
frame where the target is initialized.

This approach has two major limitations. First, the forward–
reverse similarity uses the Mahalanobis distance that returns
unbounded scores θ k

t ∈ [0,+∞), which can have a different
range of values depending on the trackers employed in the
fusion framework. Hence, θ k

t may be inappropriate to compare
the trackers to be combined. Second, running the reverse
tracker until the first frame implies a considerable growth
in computational time as the sequence progresses. A faster
approximation is proposed where Iref is moved ahead in time.
However, tracker errors may accumulate over time by the
reverse tracker, thus leading to drift [41]. For example, if the
tracker loses the target and gets locked on the background, the
forward–reverse similarity may give high scores θ k

t , since the
reverse tracker is incorrectly initialized by the wrong tracker
estimations.

We address these shortcomings for reverse-tracking evalua-
tion as described next.

B. Performance Score and Reference Frame Update

To address the limitation associated to the unbounded θ k
t

scores, we compare the reverse-tracker and fused outputs to
obtain a θ k

t ∈ [0, 1]
θ k

t = G
(
xk,−

ref , x∗
ref

)
(19)

where xk,−
ref and x∗

ref are the reverse-tracker and fused
outputs at Iref , respectively, and G defines the output similarity
that is computed using (4), where Ai

t and A j
t are replaced
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by Ax∗
ref and Ak,−

ref , respectively. Ax∗
ref and Ak,−

ref are the sets
containing the pixels of the bounding boxes of x∗

ref and xk,−
ref ,

respectively.
To limit the growth of computational time when Iref = 1, we

update Iref over time so that the computational cost is bounded
and the reverse evaluation can be applied to long sequences.
We implement such an update assuming that the fused output
is on-target and that the target has changed position from
Iref to the current frame, thus making the motion information
useful for reverse analysis.

The motion of bounding boxes is minimal when the tracker
is on-target and the target is static or when the tracker
drifts from the target and gets locked onto a background
region. Because it is difficult to differentiate between these
two situations, we analyze significant motion changes of the
trackers compared with their average motion. The maximum
motion Mk is computed over temporal window �t2 using Fk

trajectory (Fig. 3), and the top-left (uk
1,t , v

k
1,t ) and bottom-right

(uk
2,t , v

k
2,t ) coordinates of the bounding box. The motion for

uk
1 over �t2 is computed as

Muk
1

= 1

�t2

t∑

t ′=t−�t2

(
Muk

1,t ′
− Muk

1,t ′−1

)
. (20)

The motion for vk
1,t , uk

2,t , and vk
2,t is computed using (20),

where Muk
1

is replaced by Mvk
1
, Muk

2
, and Mvk

2
, respectively.

Mk = max(Muk
1
,Mvk

1
,Muk

2
,Mvk

2
) returns the maximum

motion for Fk . Mx∗ = (1/�t2)
∑t

t ′=1(Mx∗
t ′ − Mx∗

t ′−1
) deter-

mines the motion of the fused output, which is used as a
common threshold to compare the motion of all the trackers
in the framework.

The performance of each tracker is computed using (19).
To determine a single Iref for all the trackers, we use max(Mk)
and max(θ k

t ) to select the best performing tracker for that
temporal window.

We adaptively estimate and update Iref by combining the
motion analysis and performance of the tracker as

Iref =
{

It−�t2, if max(Mk)≥ Mx∗
and max

(
θ k

t

)≥ τ1

Iref , otherwise
(21)

where τ1 = 0.5 is the minimum tracker accuracy [1].

C. On-Target Cluster Selection/Update

Reverse evaluation identifies the on-target trackers using the
individual performance scores θ k

t of trackers in Yt . Trackers
with θ k

t ≥ τ1 are labeled on-target, enabling the method to
select C∗

t as the cluster Ca
t with all on-target trackers

C
∗
t = {

C
a
t ∈ P

∗
t : lk

t = on-target ∀Fk
t ∈ C

a
t

}
. (22)

VI. EXPERIMENTAL RESULTS

A. Setup

1) Data Set: For evaluating the proposed approach, multi-
tracker partition fusion (TPF), we consider the following data

TABLE II

SEQUENCES USED IN THE EXPERIMENTS. KEY BC: BACKGROUND
CLUTTER, P : POSE CHANGES, O : OCCLUSIONS, I : ILLUMINATION

CHANGES, S : SCALE CHANGES, M : MOTION CHANGES,
BS: BACKGROUND SIMILARITY

sets: Students,1 CAVIAR,2 PETS (20093 and 2001),4 LTDT,5

TRECVID2009,6 MIT Traffic,7 David,8 and AVSS2007.9

We have selected 22 sequences (3580 frames) to cover indoor
and outdoor scenarios containing tracking challenges such as
occlusions, background clutter, pose, motion, and illumina-
tion changes. Table II describes the selected sequences and
Fig. 6 shows the target initializations.

2) Trackers: We apply the proposed TPF to combinations
of up to eight trackers using publicly available authors’ imple-
mentations.

The first tracker is the sparse-features-based tracker
(ST) [42], which is PF-based and uses sparse (intensity) fea-
tures to generate the target appearance model. The maximum
a posteriori criterion is employed to estimate the target state.
The second tracker is the adaptive fragments-based tracker
(AFT) [43] that models the target appearance with various
fragments. Fragment reliability is based on color similarity
between the current and previous fragments, to integrate highly
reliable fragments within a PF framework. The third tracker
is the locally orderless tracker (LOT) [44] that divides the

1http://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
3http://www.cvg.reading.ac.uk/PETS2009
4http://www.cvg.reading.ac.uk/slides/pets.html
5http://www.micc.unifi.it/LTDT2014
6http://trecvid.nist.gov/trecvid.data.html#tv09
7http://www.ee.cuhk.edu.hk/~xgwang/HBM.html
8http://www.cs.toronto.edu/~dross/ivt/
9http://www.avss2007.org/
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Fig. 6. Target initializations. Top-left to bottom-right: the order along the
rows corresponds to the row order in Table II.

target into superpixels using the HSV color space and employs
a PF to track the target. The fourth tracker is the incremental
visual tracker (IVT) [45] that performs online updating to
account for appearance changes and uses a PF to track the
target over time. The fifth tracker is the scale and orientation
adaptive MS tracker (AMS) [46] that estimates the changes in
scale and orientation of the target using the MS framework
by employing Gaussian kernels and image moments. The
sixth tracker is the fast compressive tracker (FCT) [47] that
projects the original image to a low-dimensional space. The
projected features are then used to formulate tracking as a
binary classification task via a naive Bayesian classifier. The
seventh tracker is the L1 Tracker (L1T) [48], which is based
on PF and models the target by sparse linear combinations
of target and trivial templates (set of unit vectors). Assuming
an affine motion model, tracking is performed by solving the
L1 minimization problem. The eighth tracker is the least soft-
threshold squares tracker (LSST) [49], which is based on PF
and performs linear regression via least soft-threshold squares
distance between the observation and the target model.

We have implemented six TPF configurations: TPF3
(ST, AFT, and LOT), TPF4 (ST, AFT, LOT, and IVT), TPF5
(ST, AFT, LOT, IVT, and FCT), TPF6 (ST, AFT, LOT, IVT,
FCT, and AMS), TPF7 (ST, AFT, LOT, IVT, FCT, AMS,
and L1T), and TPF8 (ST, AFT, LOT, IVT, FCT, AMS, L1T,
and LSST). We use TPF3 for Sections VI-C and VI-D, while
Sections VI-E–VI-G use all six configurations.

We compare TPF with the eight selected trackers, two
recent trackers (the kernelized correlation filter (KCF) [3]
and STRUCK (STR) [50]) and three state-of-the-art (SOA)
decision-level fusion approaches: average fusion (AvgF),
visual tracker sampler (VTS) [13], and symbiotic

tracker (SymT) [17]. STRUCK [50] is a tracking-by-
detection approach using SVMs with Gaussian kernels. Three
features have been tested (Haar, raw pixels, and intensity
histograms) and we report the results for histograms as they
outperformed Haar features and raw pixels. KCF [3] employs
correlation among filters based on histograms of oriented
gradients features. AvgF combines the eight trackers by
assigning equal weights to each tracker. SymT estimates the
trackers’ relationships based on their spatial agreement only,
and the tracker performance is based on the displacements
between consecutive frames. SymT has been reimplemented
as described in [17]. VTS combines two motion and four
appearance models to get eight trackers, using a likelihood-
based tracker performance measure. For STRUCK, KCF and
VTS we use the authors’ implementation.

3) Parameters of the Proposed Approach: For TPF, the
temporal window for the reverse analysis is initially set to
�t2 = 10 since it provides a good speed–accuracy trade-
off as shown in [23]. This value is updated if the motion
or the performance of the trackers is below the thresholds
(see Section V-B). The temporal window for tracklet cor-
relation is set to �t1 = 10 to keep an initial forward–
backward symmetry for analysis, since no prior information
is available to define the importance of one analysis over
the other. ω = 0.5 ensures equal weighting for the features.
For (8), we heuristically found that λ ∈ [5, 15] gives the
desired ψ behavior, so we used λ = 10. Finally, τ1 = τ2 = 0.5
as previously set [1].

B. Evaluation Measures

We measure the deviation from ground-truth (GT) data as
the overlap score Ok,GT

t between the output of tracker Fk

and GT annotation using (4). Ai
t and A j

t are replaced
by AGT

t and Ak
t , the sets of pixels contained in the GT and Fk

target estimations, respectively. Values close to 1 (0) indicate
high (low) tracking performance. The mean of Ok,GT

t is
computed for each sequence.

We also measure the performance of TPF when assigning
the on-target and off-target labels to trackers and clusters from
the valid partition P∗

t . GT information is used to compute the
overlap score for each cluster OCa ,GT

t by taking the average
of Ok,GT

t for the trackers within the cluster. The on-target
trackers are defined for Ok,GT

t ≥ τ2 and OCa,GT
t ≥ τ2

corresponds to the on-target cluster C
∗
t . To simplify the

notation in the remaining sections, we denote the mean GT
overlap Ok,GT

t for each sequence as OG .
Using nTP, nFP, nTN, and nFN as number of true

positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN), we compute the precision,
Pr = nTP/(nTP + nFP), the recall, Re = nTP/(nTP + nFN),
and F-score = 2 · (Pr · Re/Pr + Re) [1]. Values for the
F-score close to 1 (0) indicate high (low) accuracy. nTP (nFP)
and nTN (nFN) are the number of clusters or trackers correctly
(incorrectly) labeled on-target and off-target, respectively.

C. Tracker Clustering
We evaluate the performance of the partition generation

approach and the features employed to cluster the trackers.
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Fig. 7. Comparison of the proposed clustering (PC) with exhaustive
search (ES) to generate partitions {Pp,t }B

p=1 of K trackers. With ES, B grows
exponentially, while the PC is bounded by B = K .

TABLE III

COMPARISON OF FEATURE COMBINATIONS FOR THE
PROPOSED APPROACH. THE RESULTS SHOW THE

F -SCORE AT THE TRACKER LEVEL AND

CLUSTER LEVEL, WITH DIFFERENT

FEATURE WEIGHTS ω IN (10)

1) Comparison of the Proposed Clustering (PC) With
Exhaustive Search (ES): Fig. 7 compares the generated set
of partitions {Pp,t }B

p=1 with an increasing number of trackers
K for both approaches. The accuracy of their results is equal
as the PC and ES select the same valid partition. However,
the size grows exponentially for ES with an increasing K,
whereas PC keeps the size of {Pp,t }B

p=1 bounded with respect
to B = K .

2) Performance Analysis of Features: TPF combines the
features Oi, j

�t1
and r̂ i, j

�t1
to get Ri, j

�t1
. An accuracy comparison

at the cluster level and tracker level is presented in Table III.
The results indicate that combining both features outperforms
using single features. At the tracker level, using both features
improves the F-score by 5% (7%) compared with using only
the overlap (direction) feature. Similarly at the cluster level,
an improvement of 6% (7%) is observed in comparison with
the overlap (direction) feature.

Fig. 8. Tracker accuracy OG using individual features (ω = 1 for overlap
and ω = 0 for direction) and their equal combination (ω = 0.5).

TABLE IV

F -SCORE WITH (TPF) AND WITHOUT (TPF’) MOTION ANALYSIS FOR
THE THREE FUSED TRACKERS WITH THE REFERENCE FRAME Iref

UPDATED USING MOTION ANALYSIS (SECTION V)

Fig. 8 shows the tracking accuracy OG for the three features,
where ω = 0.5 improves the results globally in 60% of
the sequences. Individual features do not always increase the
performance since no feature is optimal for all situations.

D. On-Target Cluster Identification
1) Performance Analysis for Motion: Table IV compares

the proposed approach with and without motion analysis
(TPF and TPF’, respectively) to update Iref , in terms of the
F-score for selecting the on-target trackers. The results for
P4–P7 indicate the case when trackers might lose the target
due to background clutter and get locked on the background.
Since TPF’ is unable to detect this situation in P4, it deter-
mines the trackers to be always on-target. TPF improves TPF’
by 10%, 22%, and 25% for ST, AFT, and LOT, respectively
(19% mean improvement). For P5, P6, and P7, TPF improves
the performance by 8%, 20%, and 20%, respectively.
P12 remains occluded between frames 29–39 where ST loses
the target and becomes locked on to foreground objects being
labeled on-target by TPF’, whereas AFT and LOT are labeled
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TABLE V

MEAN OVERLAP SCORE COMPARISON IN TERMS OF OG (TEN INDEPENDENT RUNS). KEY: ST [42], AFT [43], LOT [44], IVT [45], FCT [47],
AMS: MS TRACKER [46], L1T [48], LSST [49], AvgF, SymT [17], VTS [13], STR: STRUCK [50], AND KCF [3]

Fig. 9. Comparison of Iref selected by the proposed approach and the original
approach based on fixed temporal windows �W = 5, 10, 20.

off-target. Using motion, TPF improves by 44%, 8%, and 85%
(40% mean improvement). For P18, ST loses the target at
frame 7 due to a similar background. TPF’ assumes ST to be
on-target, while AFT and LOT are labeled off-target. TPF uses
motion to correctly label AFT and LOT on-target achieving
an overall improvement of 420% in comparison with TPF.’
ST remains on-target for the first six frames of the sequence,
where TPF incorrectly labels it off-target in five out of the
six frames, hence resulting in lower values of TPF. For P17, the
target does not move for most of the sequences. ST and AFT
lose the target at frame 45 due to a similar background and
form a cluster. Due to the stationary target, TPF assumes the
ST-AFT cluster to be on-target resulting in incorrect labels
for all trackers, hence decreasing the performance by 35%.
Globally, TPF improves TPF’ by 2%, 4%, and 5% for ST, FT,
and LOT, respectively.

2) Evaluation of Fast Approximation: Fig. 9 compares
the proposed update for the reference frame Iref with the

original approach [23]. The average result for three trackers
(ST, AFT, and LOT) is presented in terms of the overlap
score OG between the GT and the existing forward estima-
tion in Iref obtained by the tracker in [23] and TPF. TPF
improves [23] in 16 out of 22 sequences. Iref is updated
only when tracker(s) are found to be on-target. For instance,
all three trackers fail between frames 95–110 for P4. TPF
detects and does not update Iref after frame 110, whereas the
tracker in [23] keeps moving Iref forward, thus accumulating
tracker errors. For P14–P16, TPF achieves tracking accuracy
similar to the tracker in [23], while for P9 and P21, the
three trackers are able to track the target throughout the
sequences.

E. Combining Trackers

Performance comparisons are based on the overlap
score OG to measure the area overlap between the final target
estimate and the GT data.

Table V compares the six TPF configurations
(TPF3, . . . ,TPF8), showing that TPF3 is the best and
the average tracking accuracy decreases with the increasing
number of trackers. There are two main reasons for this
accuracy drop. First, low-performing trackers in the on-target
cluster decrease the overall tracking accuracy when fused
using the average. This is indicated by the results for P7,
P9, and P15, where all trackers are on-target for most of the
sequences. This can be further validated by a comparison of
results with AvgF (Table V) for these sequences. Second,
the number of splitting and merging of clusters naturally
increases as we include more trackers, thus increasing the
chances of wrong reverse-analysis evaluations. For P1,
the target undergoes occlusions between frames 75–95.



1536 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 10. OG scores for trackers and TPF configurations under analysis for selected sequences. (a) Students-P2, (b) CAVIAR-P4, (c) MITTraffic-P21. Top
row: Trackers; : ST; : AFT; : LOT; : IVT; : AMS; : FCT; : L1T; : LSST. Bottom row: TPF configurations; : T P F3; : T P F4;

: T P F5; : T P F6; : T P F7; : T P F8.

FCT, L1T, and LSST lose the target due to occlusion;
however, FCT (a deterministic tracker) achieves the best
performance score during this interval, reducing the overall
accuracy. The results for TPF5 and TPF8 indicate this
scenario. Similarly for P10, a drop in accuracy of TPF5,
TPF6, and TPF7 occurs when the target undergoes occlusions
between frames 20–35. All trackers lose the target at frame 20.
However, LOT and AMS regain the target. The target remains
stationary from frame 45 till the end of the sequence.
This scenario allows failed trackers to achieve a higher
performance score during reverse analysis, hence reducing
the tracking accuracy. TPF removes low-performing trackers
to improve the overall tracking accuracy. The results for P3,
P10, P13, P18, and P19 indicate that TPF outperforms all
the trackers. Furthermore, TPF has a performance similar
to the best performing tracker(s) for the other sequences
except for P6, P12, P17, and P22. TPF3 achieves an overall
improvement of 23%, 15%, 8%, 23%, 21%, 27%, 13%, and
17% in OG in comparison with the individual trackers ST,
AFT, LOT, IVT, FCT, AMS, L1T, and LSST, respectively.
Moreover, all other TPF configurations (TPF4, . . . ,TPF8)
also achieve better results compared with the eight
trackers.

Fig. 10 compares the tracker accuracy using OG values
for selected sequences. The target in P2 changes its
pose, causing AMS and L1T to lose the target between
frames 80–90. Both failing trackers at this point are discarded
by TPF. The performance of FCT and LSST drops gradually
after frame 130 due to background clutter. The performance
of TPF7 drops at frame 140, where the output is corrupted by
low-performing trackers (FCT and LSST), which are incor-
rectly labelled as on-target, while other TPF configurations
make use of the best performing trackers. For P4, all trackers
lose the target between frames 60–110. All TPF configurations
identify and achieve accuracy close to the best performing
tracker (AFT). However, TPF fails when all trackers are
off-target. P21 undergoes scale changes as it moves
away from the camera. OG for all TPF configurations

drops after frame 80, since all trackers remain on-target
and form a single cluster. After frame 130, OG for
ST and IVT drops significantly since the trackers can-
not handle scale changes. However, these trackers are
discarded by TPF, while the performance for TPF7 further
improves as a better performing tracker (L1T) is added to the
framework.

F. Comparison With the State-of-the-Art Approaches

Table V compares the TPF configurations and the
related SOA. AvgF and SymT have been tested using the
eight trackers. STRUCK is the best for P1 and P10, achieving
the best average results among the selected SOA approaches.
KCF achieves the best results for P2, P3, P4, P5, P17,
and P20. However, it is unable to handle occlusions as
shown for P10, P12, and P22. SymT fails to determine a
low-performing tracker, hence reducing the overall tracking
accuracy. SymT achieves good performance when most of the
trackers are accurate as indicated by the results for P7 and P15.
TPF, on the other hand, is able to use the best performing
trackers and the overall accuracy is not dependent on the
percentage of successful trackers. VTS performs relatively
well and shows the best results for P8, P9, and P21. How-
ever, it fails for P1 and P10 due to occlusions and for P17
and P22 due to similarly colored background. Although the
SOA approaches outperform some employed trackers (ST,
IVT, FCT, and AMS; see Table V), TPF3 shows an overall
improvement of 23%, 15%, 13%, 11%, and 15% in OG

in comparison with AvgF, SymT, VTS, STRUCK and KCF,
respectively.

Sample tracking results are shown in Figs. 11 and 12, where
it can be seen that TPF correctly discards wrong trackers as
they start failing. For clarity, we present only comparisons
between TPF3 and the SOA. Examples in Fig. 11 show that
all the trackers correctly follow the target at the beginning
of the sequence. As target occlusions are more frequent, only
STRUCK is able to perform similarly to TPF3, as seen in
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TABLE VI

COMPUTATIONAL COST OF THE TRACKERS AND THE PROPOSED APPROACH (TPF) MEASURED IN FRAMES PER SECOND

Fig. 11. Sample tracking results for Students-P1 (left column) and PETS-P10
(right column). : TPF; : STRUCK; : VTS; : SymT; : AvgF;

: KCF.

frame 230 for P1 and frame 145 for P10. The right column of
Fig. 12 (right) depicts the situation where only TPF3 is able
to adapt to changes in target scale and occlusions, whereas all
the compared trackers fail, as seen in frame 85. Fig. 12(left)
shows an example where none of the trackers obtain accurate
position estimations after an illumination change (frames 117
and 192) and the best trackers (KCF, STRUCK, and TPF3)
achieve low accuracy.

G. Computational Cost

Fig. 13 presents the cost for the trackers, tracker clustering
(Section IV), and on-target cluster identification (Section V)
in terms of average computational time. The cost of the
fusion stage is negligible and therefore ignored. The cost
of the trackers considers running in parallel the trackers
to fuse and depends on the employed approaches, being
heavily influenced by the slowest tracker (LOT). The com-
putational time for tracker clustering slightly increases with
the number of trackers. Since on-target cluster identifica-
tion uses reverse analysis, the computational time becomes
dependent on the trackers in the on-target cluster C

∗
t and

the tracking challenges present in the sequence. This trend

Fig. 12. Sample tracking results for CAVIAR-P4 (left column) and PETS-
P12 (right column). : TPF; : STRUCK; : VTS; : SymT; : AvgF;

: KCF.

Fig. 13. Average computational time for the stages of the proposed approach.
For each configuration, the average is computed over the complete data set
and the total number of trackers.

is also highlighted by the overall cost for the TPF configura-
tions presented in Table VI, where TPF3 achieves the best
computational cost. Fig. 14 shows the average number of
trackers used by TPF, highlighting its advantage to cluster
trackers, and using only the ones on-target for the various TPF
combinations.



1538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 14. Percentage of trackers used by the proposed approach for different
tracker combinations.

VII. CONCLUSION

We presented an approach to dynamically select and com-
bine the results of successful (i.e., on-target) trackers in
a decision-level fusion framework. The proposed approach
determines the relationships between trackers by analyzing
the position and direction of movement of their estimated
states. These spatiotemporal features are combined to estimate
pair-wise tracker correlation scores that determine clusters of
similarly performing trackers over time. An adaptive online
evaluator identifies the trackers that are on-target and prop-
agates them over time until a split or merge of this group
(cluster) of trackers is detected. The final target state is
estimated by fusing the outputs from the trackers that are in
the on-target cluster. The experimental results show that the
proposed approach outperforms state-of-the-art methods and
the combined trackers. Moreover, the proposed time-reversed
evaluation improves the original approach using motion analy-
sis and tracker performance to temporally update the reference
frame.

As future work, we will include the performance weight of
each tracker in the fusion stage.

REFERENCES

[1] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah, “Visual tracking: An experimental survey,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468,
Jul. 2014.

[2] J. Wu, S. Hu, and Y. Wang, “Adaptive multifeature visual tracking in
a probability-hypothesis-density filtering framework,” Signal Process.,
vol. 93, no. 11, pp. 2915–2926, Nov. 2013.

[3] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[4] E. Erdem, S. Dubuisson, and I. Bloch, “Visual tracking by fusing
multiple cues with context-sensitive reliabilities,” Pattern Recognit.,
vol. 45, no. 5, pp. 1948–1959, May 2012.

[5] V. Badrinarayanan, P. Perez, F. Le Clerc, and L. Oisel, “Probabilistic
color and adaptive multi-feature tracking with dynamically switched
priority between cues,” in Proc. IEEE 11th Int. Conf. Comput. Vis.,
Oct. 2007, pp. 1–8.

[6] M. Spengler and B. Schiele, “Towards robust multi-cue integration for
visual tracking,” Mach. Vis. Appl., vol. 14, no. 1, pp. 50–58, Apr. 2003.

[7] I. Leichter, M. Lindenbaum, and E. Rivlin, “A general framework for
combining visual trackers—The ‘black boxes’ approach,” Int. J. Comput.
Vis., vol. 67, no. 3, pp. 343–363, May 2006.

[8] X. Zhang, W. Hu, H. Bao, and S. Maybank, “Robust head tracking based
on multiple cues fusion in the kernel-Bayesian framework,” IEEE Trans.
Circuits Syst. Video Technol., vol. 23, no. 7, pp. 1197–1208, Jul. 2013.

[9] E. Maggio and A. Cavallaro, “Hybrid particle filter and mean shift
tracker with adaptive transition model,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 2. Mar. 2005, pp. 221–224.

[10] C. Chang, R. Ansari, and A. Khokhar, “Multiple object tracking
with kernel particle filter,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., vol. 1. Jun. 2005, pp. 566–573.

[11] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST:
Parallel robust online simple tracking,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2010, pp. 723–730.

[12] J. H. Yoon, D. Y. Kim, and K.-J. Yoon, “Visual tracking via adaptive
tracker selection with multiple features,” in Proc. 12th Eur. Conf.
Comput. Vis., Oct. 2012, pp. 28–41.

[13] J. Kwon and K. M. Lee, “Tracking by sampling and integrating multiple
trackers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7,
pp. 1428–1441, Jul. 2014.

[14] M. Heber, M. Godec, M. Rüther, P. M. Roth, and H. Bischof,
“Segmentation-based tracking by support fusion,” Comput. Vis. Image
Understand., vol. 117, no. 6, pp. 573–586, Jun. 2013.

[15] N. T. Siebel and S. J. Maybank, “Fusion of multiple tracking algorithms
for robust people tracking,” in Proc. 7th Eur. Conf. Comput. Vis.,
May 2002, pp. 373–387.

[16] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras, “Dependent multiple
cue integration for robust tracking,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 4, pp. 670–685, Apr. 2008.

[17] Y. Gao, R. Ji, L. Zhang, and A. Hauptmann, “Symbiotic tracker
ensemble toward a unified tracking framework,” IEEE Trans. Circuits
Syst. Video Technol., vol. 24, no. 7, pp. 1122–1131, Jul. 2014.

[18] T. A. Biresaw, A. Cavallaro, and C. S. Regazzoni, “Tracker-level fusion
for robust Bayesian visual tracking,” IEEE Trans. Circuits Syst. Video
Technol., vol. 25, no. 5, pp. 776–789, May 2015.

[19] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-
mark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2411–2418.

[20] J. C. SanMiguel, A. Cavallaro, and J. M. Martínez, “Adaptive online
performance evaluation of video trackers,” IEEE Trans. Image Process.,
vol. 21, no. 5, pp. 2812–2823, May 2012.

[21] K. Shearer, K. D. Wong, and S. Venkatesh, “Combining multiple track-
ing algorithms for improved general performance,” Pattern Recognit.,
vol. 34, no. 6, pp. 1257–1269, Jun. 2001.

[22] E. Maggio, F. Smerladi, and A. Cavallaro, “Adaptive multifeature
tracking in a particle filtering framework,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 10, pp. 1348–1359, Oct. 2007.

[23] H. Wu, A. C. Sankaranarayanan, and R. Chellappa, “Online empirical
evaluation of tracking algorithms,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 8, pp. 1443–1458, Aug. 2010.

[24] J. Triesch and C. Malsburg, “Democratic integration: Self-organized
integration of adaptive cues,” Neural Comput., vol. 13, no. 9,
pp. 2049–2074, Sep. 2001.

[25] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error:
Automatic detection of tracking failures,” in Proc. 20th Int. Conf. Pattern
Recognit., Aug. 2010, pp. 2756–2759.

[26] T. A. Biresaw, A. Cavallaro, and C. S. Regazzoni, “Correlation-based
self-correcting tracking,” Neurocomputing, vol. 152, no. 1, pp. 345–358,
Mar. 2015.

[27] S. Birchfield, “Elliptical head tracking using intensity gradients and color
histograms,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 1998, pp. 232–237.

[28] S. Zhang, H. Yao, X. Sun, and X. Lu, “Sparse coding based visual
tracking: Review and experimental comparison,” Pattern Recognit.,
vol. 46, no. 7, pp. 1772–1788, Jul. 2013.

[29] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking
via multi-task sparse learning,” in Proc. IEEE Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 2042–2049.

[30] Z. Hong, X. Mei, D. Prokhorov, and D. Tao, “Tracking via robust multi-
task multi-view joint sparse representation,” in Proc. Int. Conf. Comput.
Vis., Dec. 2013, pp. 649–656.

[31] Q. Li, X. Wang, W. Wang, Y. Jiang, Z.-H. Zhou, and Z. Tu,
“Disagreement-based multi-system tracking,” in Proc. Asian Conf.
Comput. Vis., vol. 7729. Nov. 2012, pp. 320–334.

[32] B. Stenger, T. Woodley, and R. Cipolla, “Learning to track with
multiple observers,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2009, pp. 2647–2654.

[33] B. Zhong, H. Yao, S. Chen, R. Ji, T.-J. Chin, and H. Wang,
“Visual tracking via weakly supervised learning from multiple imper-
fect oracles,” Pattern Recognit., vol. 47, no. 3, pp. 1395–1410,
Mar. 2014.



KHALID et al.: MULTI-TRACKER PARTITION FUSION 1539

[34] J. Whitehill, T.-F. Wu, J. Bergsma, J. R. Movellan, and P. Ruvolo,
“Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise,” in Proc. Adv. Neural Inf. Process. Syst.,
Dec. 2009, pp. 2035–2043.

[35] C. Bailer, A. Pagani, and D. Stricker, “A superior tracking approach:
Building a strong tracker through fusion,” in Proc. 13th Eur. Conf.
Comput. Vis., vol. 8695. Sep. 2014, pp. 170–185.

[36] A. J. C. Sharkey, N. E. Sharkey, U. Gerecke, and G. O. Chandroth,
“The ‘test and select’ approach to ensemble combination,” in Multiple
Classifier Systems, vol. 1857. Heidelberg, Germany: Springer Berlin
Heidelberg, Jun. 2000, pp. 30–44.

[37] N. Anjum and A. Cavallaro, “Multifeature object trajectory clustering
for video analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 18,
no. 11, pp. 1555–1564, Nov. 2008.

[38] J. F. Lucas, Introduction to Abstract Mathematics. Lanham, MD, USA:
Rowman and Littlefield, 1990.

[39] J. H. Conway and R. K. Guy, The Book of Numbers. New York, NY,
USA: Springer, 1996.

[40] F. Jiang, Y. Wu, and A. K. Katsaggelos, “A dynamic hierarchical
clustering method for trajectory-based unusual video event detection,”
IEEE Trans. Image Process., vol. 18, no. 4, pp. 907–913, Apr. 2009.

[41] M. Yang, Y. Wu, and G. Hua, “Context-aware visual tracking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 7, pp. 1195–1209,
Jul. 2009.

[42] D. Wang, H. Lu, and M.-H. Yang, “Online object tracking with sparse
prototypes,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 314–325,
Jan. 2013.

[43] E. Erdem, S. Dubuisson, and I. Bloch, “Fragments based tracking with
adaptive cue integration,” Comput. Vis. Image Understand., vol. 116,
no. 7, pp. 827–841, Jul. 2012.

[44] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless
tracking,” Int. J. Comput. Vis., vol. 111, no. 2, pp. 213–228, Jan. 2014.

[45] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” Int. J. Comput. Vis., vol. 77, nos. 1–3,
pp. 125–141, May 2008.

[46] J. Ning, L. Zhang, D. Zhang, and C. Wu, “Scale and orientation
adaptive mean shift tracking,” IET Comput. Vis., vol. 6, no. 1, pp. 52–61,
Jan. 2012.

[47] K. Zhang, L. Zhang, and M. Yang, “Fast compressive tracking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10, pp. 2002–2015,
Oct. 2014.

[48] X. Mei and H. Ling, “Robust visual tracking and vehicle classification
via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 11, pp. 2259–2272, Nov. 2011.

[49] D. Wang, H. Lu, and M.-H. Yang, “Least soft-threshold squares track-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2013, pp. 2371–2378.

[50] S. Hare, A. Saffari, and P. H. S. Torr, “Struck: Structured output
tracking with kernels,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 263–270.

ObaidUllah Khalid received the B.S. degree in
computer engineering from Sir Syed University of
Engineering and Technology, Karachi, Pakistan, in
2004, and the M.S. degree in network engineering
from Illinois Institute of Technology, Chicago, IL,
USA, in 2008.

He served as a Lecturer with National Uni-
versity of Sciences and Technology (NUST),
Karachi. Since 2012, he has been with Queen
Mary University of London, London, U.K., and
Alpen-Adria Universität Klagenfurt, Klagenfurt,

Austria, as a Ph.D. Researcher, under the supervision of Prof. A. Cavallaro
and Prof. B. Rinner. His research interests include tracker-level fusion, online
performance evaluation, and video tracking.

Mr. Khalid received the NUST Scholarship for his M.S. studies and the
Erasmus Mundus Fellowship for his double doctorate in interactive and
cognitive environments.

Juan Carlos SanMiguel received the Ph.D. degree
in computer science and telecommunication from
University Autonoma of Madrid, Madrid, Spain,
in 2011.

He was a Post-Doctoral Researcher with
Queen Mary University of London, London,
U.K., from 2013 to 2014, under a Marie Curie
IAPP Fellowship. He is currently an Assistant
Professor with University Autonoma of Madrid
and a Researcher with the Video Processing and
Understanding Laboratory. His research interests

include computer vision with a focus on online performance evaluation and
multicamera activity understanding for video segmentation and tracking.

Andrea Cavallaro received the Ph.D. degree in
electrical engineering from Swiss Federal Institute
of Technology, Lausanne, Switzerland, in 2002.

He was a Research Fellow with BT Group
PLC, London, U.K., in 2004. He is currently
a Professor of Multimedia Signal Processing
and the Director of the Centre for Intelligent
Sensing at Queen Mary University of London,
London. He has authored over 160 journal and
conference papers, one monograph on video track-
ing (Wiley, 2011), and three edited books entitled

Multi-Camera Networks (Elsevier, 2009), Analysis, Retrieval and Delivery of
Multimedia Content (Springer, 2012), and Intelligent Multimedia Surveillance
(Springer, 2013).

Dr. Cavallaro received the Royal Academy of Engineering Teaching Prize in
2007; three student paper awards on target tracking and perceptually sensitive
coding at the IEEE International Conference on Acoustics, Speech, and Signal
Processing in 2005, 2007, and 2009; and the best paper award at the IEEE
Advanced Video and Signal Based Surveillance Conference in 2009. He is
an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY and a member of the Editorial Board of IEEE
Multimedia. He was an Area Editor of IEEE Signal Processing Magazine
and an Associate Editor of IEEE TRANSACTIONS ON IMAGE PROCESSING,
IEEE TRANSACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS ON SIGNAL

PROCESSING, and IEEE Signal Processing Magazine.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


