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Abstract— The growing rate of public space closed-circuit tele-
vision (CCTV) installations has generated a need for automated
methods for exploiting video surveillance data, including scene
understanding, query, behavior annotation, and summarization.
For this reason, extensive research has been performed on
surveillance scene understanding and analysis. However, most
studies have considered single scenes or groups of adjacent scenes.
The semantic similarity between different but related scenes
(e.g., many different traffic scenes of a similar layout) is not
generally exploited to improve any automated surveillance tasks
and reduce manual effort. Exploiting commonality and sharing
any supervised annotations between different scenes is, however,
challenging due to the following reason: some scenes are totally
unrelated and thus any information sharing between them would
be detrimental, whereas others may share only a subset of com-
mon activities and thus information sharing is only useful if it is
selective. Moreover, semantically similar activities that should be
modeled together and shared across scenes may have quite differ-
ent pixel-level appearances in each scene. To address these issues,
we develop a new framework for distributed multiple-scene global
understanding that clusters surveillance scenes by their ability to
explain each other’s behaviors and further discovers which subset
of activities are shared versus scene specific within each cluster.
We show how to use this structured representation of multiple
scenes to improve common surveillance tasks, including scene
activity understanding, cross-scene query-by-example, behavior
classification with reduced supervised labeling requirements,
and video summarization. In each case, we demonstrate how
our multiscene model improves on a collection of standard
single-scene models and a flat model of all scenes.

Index Terms— Scene understanding, transfer learning, video
summarization, visual surveillance.

I. INTRODUCTION

THE widespread use of public space closed-circuit
television (CCTV) camera systems has generated

unprecedented amounts of data that can easily overwhelm
human operators due to the sheer length of the surveillance
videos and the large number of surveillance videos cap-
tured at different locations concurrently. This has motivated
numerous studies into automated means to model, understand,
and exploit these data. Some of the key tasks addressed by
automated surveillance video understanding are as follows:
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Fig. 1. Example of a multicamera surveillance network with camera views
distributed across different locations.

1) behavior profiling/scene understanding to reveal what
are the typical activities and behaviors in the surveilled
space [1]–[5];

2) behavior query-by-example, allowing the operator to
search for similar occurrences to a specified example
behavior [1];

3) supervised learning to classify/annotate activities or
behaviors if events of interest are annotated in a training
data set [2];

4) summarization to give an operator a semantic overview
of a long video in a short period of time [6];

5) anomaly detection to highlight to an operator the most
unusual events in a recording period [1]–[3].

So far, all of these tasks have generally been addressed within
a single scene (single video captured by a static camera) or a
group of adjacent scenes.

Compared with single-scene recordings, the multicamera
surveillance network (cameras distributed over different loca-
tions) is a more realistic scenario in surveillance applications
and thus of more interest to end users. An example of a
multicamera surveillance network is given in Fig. 1, where
surveillance videos mostly capture traffic scenes with various
layouts and motion patterns. In such a multiscene context, new
surveillance tasks arise. For behavior profiling/scene under-
standing, human operators would like to see which scenes
within the network are semantically similar to each other
(e.g., similar scene layout and motion patterns), which activ-
ities are in common, and which are unique across a group
of scenes, and how activities group into behaviors. Here,
activity refers to a spatiotemporally compact motion pattern
due to the action of a single or small group of objects
(e.g., vehicles making a turn) and behavior refers to the
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Fig. 2. Illustration of the proposed framework.

interaction between multiple activities within a short temporal
segment (e.g., horizontal traffic flow with vehicles going east
and west and making a turn). For query-by-example, searching
for a specified example behavior should be carried out not only
within a scene but also across multiple scenes. For behavior
classification, annotating training examples in every scene
exhaustively is not scalable. However, multiscene modeling
potentially addresses this by allowing labels to be propagated
from one scene to another. For summarization, generating a
summary video for multiple scenes by exploiting cross-scene
redundancy can provide the user who monitors a set of cam-
eras with an overview of all the distinctive behaviors that have
occurred in a set of scenes. Multiscene summarization can
reduce the summary length and achieve higher compression
than single-scene summarization. Combined with query-by-
example (find more instances of a behavior in a summary),
a flexible exploration of scenes at multiple scales is available.

Despite the clear potential benefits of exploiting multiscene
surveillance, it cannot be achieved with existing single-scene
models [1]–[5]. These approaches learn an independent model
for each scene and do not discover corresponding activities or
behaviors across scenes, even if they share the same semantic
meaning. This makes any cross-scene reasoning about
activities or behaviors impossible. In order to synergistically
exploit multiple scenes in surveillance, a multiscene model
with the following capabilities is required: 1) learning an
activity representation that can be shared across scenes;
2) model behaviors with the shared representation so that
they are comparable across scenes; and 3) generalizing
surveillance tasks to the multiscene case, including behavior
profiling/scene understanding, cross-scene query-by-example,
cross-scene classification, and multiscene summarization.
However, this is intrinsically challenging for three reasons.

1) Computing Scene Relatedness: Determining the relat-
edness of scenes is critical for multiscene modeling
because naive information sharing between insuffi-
ciently related scenes can easily result in negative
transfer [7], [8]. However, the relatedness of scenes is
hard to estimate because the appearance of elements
in a scene (e.g., buildings and road surface markings)
is visually diverse and strongly affected by camera
view, making appearance-based similarity measurement
unreliable. Similarity measurement based on motion is
less prone to visual noise in surveillance applications.
However, most studies focus only on discovering the
similarity in activity level [8], [9]. Thus, how to measure
scene-level relatedness is still an open question.

2) Selective Sharing of Information: Large multicamera
surveillance networks cover various types of scenes.
Some scenes are totally unrelated, which means they
convey different semantic meanings to a human.
However, more subtly, even between similar scenes,
there may be some activities in common and other
activities that are unique to each. Learning a large
universal model in this situation is prone to overfitting
due to the high model complexity. Hence, a model
that discovers (un)relatedness of scenes and selectively
shares activities between them is necessary.

3) Constructing a Shared Representation: Within related
scenes, a shared representation needs to be discovered in
order to exploit their similarity for cross-scene query-by-
example and multiscene summarization. Both common
and unique activities should be preserved in this process
to ensure the ability of discovering not only the com-
monality but also the distinctiveness between scenes.

To address these challenges, we develop a new framework
illustrated in Fig. 2. We first learn local representations for
each scene separately. Then related scenes are discovered by
clustering. A shared semantic representation is constructed
to represent activities and behaviors within each group of
related scenes. Specifically, we first represent each scene with
a low-dimensional semantic (rather than pixel-level) represen-
tation through learning a fast unsupervised topic model for
each.1 Using a topic-based representation allows us to reduce
the impact of pixel noise in discovering activity and scene
similarity. We next group semantically related scenes into a
scene cluster by exploiting the correspondence of activities
between different scenes. Finally, scenes within each cluster
are projected to a shared representational space by not only
computing a shared activity topic basis (STB), shared among
all scenes, but also allowing each scene to have unique topics if
supported by the data. Behaviors in each scene are represented
with the learned STB.

In addition to profiling, for revealing the multiscene
activity structure across all scenes, we use this structured
representation to support cross-scene query, label
propagation for classification, and multiscene summarization.
Cross-scene query-by-example is enabled because within each
cluster, the semantic representation is shared, so an example
in one scene can retrieve related examples in every other
scene in the cluster. Behavior classification/annotation in a

1Topics have previously been shown to robustly reveal semantic activities
from cluttered scenes [1], [2].
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new scene without annotations is supported because, once
associated with a scene cluster, it can borrow the label space
and classifier from that cluster. Finally, we define a novel
multiscene approach to summarization that jointly exploits
the shared representation to compress redundancy both within
and across scenes of each cluster.

II. RELATED WORK

A. Surveillance Scene Understanding

Scene understanding is a wide area that is too broad to
review here. However, some relevant studies to this work
include those based on object tracking [3], [10], [11], [12],
which model behaviors, for example, by a hidden Markov
model [3], [10], a Gaussian process [12], clustering [13],
and stochastic context-free grammars [14], and those based
on low-level feature statistics, such as optical flow [1], [2],
[5], [15], that often model behaviors by a probabilistic topic
model (PTM) [1], [2], [4]. The latter category of approaches
are the most related to ours, as we also built on PTMs.
However, all of these studies operate within scene rather than
modeling globally distributed scenes and discovering shared
activities.

B. Multiscene Understanding

We make an explicit distinction to another line of work that
discovers connections and correlations among multiple over-
lapping or nonoverlapping scenes connected by a single cam-
era network covering small areas [16], [17]. This is orthogonal
to our area of interest, which is more similar to multitask learn-
ing [7]—how to share information among multiple scenes,
some of which have semantic similarities but do not neces-
sarily concurrently surveil topologically connected zones.

Fewer approaches have tried to exploit relatedness between
scenes without a topological relationship [8], [9]. To recognize
the same activity from another viewpoint, Khokhar et al. [9]
proposed a geometric-transformation-based method to align
two events, represented as Gaussian mixtures, before com-
puting their similarity. Xu et al. [8] used a trajectory-based
event description and learned motion models from trajectories
observed in a source domain. This model was then used for
cross-domain classification and anomaly detection.

In the context of static image (rather than dynamic scene)
understanding [18], [19], studies have clustered images by
appearance similarity. However, this does not apply directly
to surveillance scenes because the background is no longer
stationary nor uniform, e.g., building and road appearance are
visually salient but can vary significantly between surveillance
scenes at different locations. It is not reliable to relate sur-
veillance scenes based on appearance—the important cue is
activity instead.

C. Video Query and Annotation

Video query has always been an important issue in surveil-
lance applications. A lot of work has been done on semantic
retrieval [1], [20]. Hu et al. [20] used trajectories to learn
an activity model and construct semantic indices for video
databases. Wang et al. [1] represent video clips as topic

profiles and measure the similarity between the query and
candidate clips as relative entropy. Retrieved clips are sorted
according to the distance to the query. However, none of these
techniques take a multiscene scenario into consideration in
which query examples are selected in one scene and candidate
clips can be retrieved from other scenes at different locations.

Related to video query, video behavior annotation/
classification has been addressed in the literature [1],
also in terms of video segmentation [21]. However, these
approaches are typically domain/scene specific, which means
that each scene needs extensive annotation of training data
whereby, ideally, labels should instead be borrowed from
semantically related scenes. Although [9] recognized events
across scenes at the activity level, scene-level behavior clas-
sification, dealing with a heterogeneous database of scenes is
still an open problem.

D. Video Summarization

Video summarization has received much attention in the lit-
erature in recent years due to the need to digest large quantities
of video for efficient review by users. A review can be found
in [22]. There are a variety of approaches to summarization,
varying both in how the summary is represented/composed,
and how the task is formalized in terms of what type of
redundancy should be compressed.

Summaries have been composed of static keyframes, which
represent the summary as a collection of selected key
frames [23], dynamic skimming, which composes a summary
based on a collection of selected clips, and more recently
synopsis. Synopsis [6], [24] temporally reorders (spatially
nonoverlapping) activities from the original video into a
temporally compact summary video by shifting activity tubes
temporally so that they occur more densely. The objective of
summarization can be formalized in various ways: to more
abstractly achieve the highest rating in a user study [23],
to show all foreground activities in the shortest time [24], or
to minimize the reconstruction error between the summary
and the original video, to show at least one example of every
typical behavior.

As the number of scenes grows, multiview summarization
becomes increasingly important to help operators monitor
activities in numerous scenes. However, multiview summariza-
tion is much less studied compared with that of a single view.
Lou et al. [25] adopted multiview video coding to deal with
multiview video compression but did not tackle the more chal-
lenging compression of semantic redundancy. Fu et al. [26]
addressed generating concise multiview video summaries by
multiobjective optimization for generating representative sum-
mary clips. Recently, de Leo and Manjunath [27] proposed a
multicamera video summarization framework that summarizes
at the level of activity motif [28]. Due to the severe occlusion,
far field of view, and high-density activities in surveillance
videos, none of the existing techniques solve the problem of
distributed multiscene surveillance video summarization.

In this paper, we pursue video summarization from the
perspective of selecting the smallest set of representative video
clips that still have good coverage of all the behaviors in the
scene(s). Such multiscene summarization compresses redun-
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dancy across as well as within scenes. This corresponds to an
application scenario in which the user tasked with monitoring
a set of cameras wants an overview of all the behaviors
that occurred in a set of video streams during a recording
period regardless the source of the video recordings, which
typically come from different locations. This perspective on
summarization is attractive because it makes sense of video
content independent of location and local context. This offers
a more holistic conceptual summarization in a global context
compared with a summarization as visualization of a single
scene in a local context such as video synopsis. Interestingly,
combined with our query-by-example, we can take a behavior
of interest shown in the summary as query to search for similar
behaviors in other scenes. Thus, the framework presents both
compact multiscene summarization and a finer scene-specific
zoomed-in view, capable of compressing semantically equiv-
alent examples no matter what scene they occur in.

E. Our Contributions

A system based on our framework can answer questions
such as show me which scenes are similar to this? (scene
clustering), show me which activities are in common and
which are distinct between these scenes? (multiscene profiling)
show me all the distinct behaviors in this group of scenes?
(multiscene summarization), show me other clips from any
scene that are similar to this nominated example? (cross-
scene query), and annotate this newly provided scene with no
labels? (cross-scene classification). Specifically, we make the
following key contributions.

1) Introducing the novel and challenging problems of joint
multiscene modeling and analysis.

2) Developing a framework to solve the proposed problem
by discovering similarity between activities and scenes,
clustering scenes based on semantic similarity, and
learning a shared representation within scene clusters.

3) We show how to exploit this novel structured multiscene
model for practical yet challenging tasks of cross-scene
query-by-example and behavior annotation.

4) We further exploit this model to achieve multiscene
video summarization, achieving compression beyond
standard single-scene approaches.

5) We introduce a large multiscene surveillance data set
containing 27 distinct views from distributed locations to
encourage further investigation into realistic multiscene
visual surveillance applications.

III. LEARNING LOCAL SCENE ACTIVITIES

Given a set of surveillance scenes, we first learn local
activities in each individual scene by using latent Dirichlet
allocation (LDA) [29]. Although there are more sophisticated
single-scene models [1], [2], [4], we use LDA because it
is the simplest, most robust, most generally applicable to
a wide variety of scene types, and the fastest for learning
on large-scale multiscene data. However, it could easily be
replaced by more elaborate topic models (e.g., HDP [1]).
LDA generates a set of topics to explain each scene. Topics
are usually spatially and temporally constrained subvolumes

Fig. 3. Graphical model for LDA.

reflecting the activity of a single or small group of objects.
Following [1] and [2], we use activities to refer to topics
and behaviors to refer to the scene-level state defined by the
coordinated activities of all scene participants.

A. Video Clip Representation

We follow the general approach [1] to construct visual
features for topic models. For each video out of an M scene
data set, we first divide the video frame into Na × Nb cells,
with each cell covering H × H pixels. Within each cell, we
compute optical flow [30], taking the mean flow as the motion
vector in that cell. Then we quantize motion vector into Nm

fixed directions. Note that stationary foreground objects can be
readily added as another cell state, as described in [2] and [31].
Therefore, a codebook V of size Nv = Na × Nb × Nm is
generated by mapping motion vectors to discrete visual words
(from 1 to Nv ). Nd visual documents X = {x j }Nd

j=1 are then
constructed by segmenting the video into nonoverlapping clips
of fixed length, where each clip x j = {xi j }N j

i=1 has N j visual
words xi j . The clip and the document are used interchangeably
here, with both indicating visual words accumulated in a
temporal segment.

B. Learning Local Activities With Topic Model

Learning LDA for scene s discovers the dynamic appear-
ance of k = 1 . . . K typical topics/activities2 (multinomial
parameter βs

k ) and explains each visual word xs
i j in each clip xs

j
by a latent topic ys

i j , specifying which activity generated
it, as shown in Fig. 3. The topic selection ys

i j is drawn
from a multinomial mixture of topics parametrized by θ s

j ,
which is further governed by a Dirchelet distribution with the
parameter αs . In scene s, the joint probability of Nd visual
documents Xs = {xs

j }Nd
j=1, topic selection Ys = {ys

j }Nd
j=1, and

topic mixture θ s = {θ s
j }Nd

j=1 for the given hyperparameters αs

and βs is

p(θ s, Ys , Xs | αs ,βs) =
Nd∏

j=1

p
(
θ s

j | αs)

·
N j∏

i=1

p
(
ys

i j | θ j
)

p
(
xs

i j | ys
i j ,β

s). (1)

Here we introduce an efficient way to infer the LDA model.

2In text analysis, a topic refers to a group of co-occurring words in a
document. Activity refers to a motion pattern, which defines the group of
co-occurring visual words in a video clip. They are used interchangeably in
the following text.
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Fig. 4. Locally learned activities/topics in an example scene. The optical flow is quantized into Nm = 8 directions, as shown in the color wheel.

Algorithm 1 Topic Model Learning for a Single Scene
initialize αk = 1
initialize β = random(Nv , K )
initialize φi j k = 1/K
repeat

E-Step:
for j = 1 → Nd do

for k = 1 → K do
γ j k = αk + ∑N j

i=1 φi j k

for i = 1 → N j do
φi j k = βxi j k exp(�(γ j k))

end for
end for

end for
M-Step:
for v = 1 → Nv do

for k = 1 → K do
βvk = ∑Nd

j=1

∑N j
i=1 φi j k1(xi j = v)

end for
end for

until Converge

1) Model Inference: Exact inference in LDA is intractable
due to the coupling between θ and β [29]. Variational
inference approximates a lower bound of log likelihood by
introducing variational parameters γ and φ. The Dirichlet
parameter γ j is a clip-level topic profile and specifies the
mixture ratio of each activity βk in a clip x j . Thus, each
video clip is represented as a mixture of activities (γ j ).
The variational Expectation-Maximization (EM) procedure for
LDA is given in Algorithm 1 where 1(·) is an indicator
function and �(·) is the first derivative of the log � function.
For efficiency, we apply the sparse updates identified in [32]
for an order of magnitude of speed increase.

After learning all s = 1 . . . M scenes, every clip xs
j is

now represented as a topic profile γ s
j and each scene is now

represented by its constituent activities βs
k (Fig. 4).

IV. MULTILAYER ACTIVITY AND SCENE CLUSTERING

We next address how to discover related scenes and learn
shared topics/activities across scenes. This multilayer process
is illustrated in Fig. 5 for two typical Clusters 3 and 7: at
the scene level, we group related scenes according to activity
correspondence (Section IV-A); within each scene cluster, we
further compute an STB so that all activities within that cluster
are expressed in terms of the same set of topics (Section IV-B).

A. Scene-Level Clustering

In order to group related scenes, we first need to define a
relatedness metric. Related scenes should have more common
activities so that the model learned from them is compact.
Therefore, we assume that the scenes with semantically similar
activities are more likely to be mutually related. We thus define
the relatedness between two (aligned) scenes a and b by the
correspondence of their semantic activities.

1) Alignment: Comparing scenes directly suffers from
cross-scene variance due to the view angle. To reduce this
cross-scene variance, we first align two scenes with a geo-
metrical transformation, including scaling ts and translation
[tx , ty]. Although this is not a strong transform, it is valid
in the typical case that a camera is installed upright, and
with surveillance cameras, there are classic views that can
be simply aligned by scaling and translation. To achieve this,
we first denote the transform matrix for normalizing visual
words in each scene a and b to the origin by Ta

norm and Tb
norm,

respectively, defined as (2). Scaling (ta
s ) and translation (tx , ty)

parameters are estimated by (3)

Ta
norm =

⎡

⎣
ta
s 0 ta

x
0 ta

s ta
y

0 0 1

⎤

⎦ (2)

center = 1

Nd · N j

Nd∑

j=1

N j∑

i=1

xa
i j

ta
s = Nd · N j

∑Nd
j=1

∑N j
i=1

∥∥xa
i j − center

∥∥
2[

ta
x

ta
y

]
= −ta

s · center. (3)

Two scenes can thus be aligned by transforming data from
a to b via Ta2b = Tb−1

norm · Ta
norm. We then denote the kth topic

in scene a by βa
k . Therefore, any topic k in a can be aligned

for comparison with those in b by Ta2b.
We denote the topic transformation procedure by

β ′ = H(β; T). This transformation is applied to topics
in a way similar to the image transform. That is, given that
β is a Na × Nb × Nm matrix and a transform matrix T is
defined as (2), we first estimate the size N ′

a × N ′
b × Nm of

the transformed topic β ′ by N ′
a = Na × ts and N ′

b = Nb × ts .
To obtain the value of each element/pixel of β ′(x ′, y ′, d ′),
we trace back to the position [x, y, d] in the original topic β.
If we only consider scaling and translation, direction d is then
unchanged throughout the procedure, i.e., d ′ = d . Therefore,
x and y are determined by

[x y 1] = [x ′ y ′ 1] · (T−1)T . (4)
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Fig. 5. Illustration of multilayer clustering of scenes and activities. Top: original surveillance video scenes. Middle: related scenes are grouped into clusters
(green dashed boxes) and the local topics/activities are learned in each scene. Bottom: local topics are further grouped into activity clusters (color lines indicate
some examples) and activity clusters are merged to construct an STB.

Fig. 6. Illustration of behavior profiling on STB. Left: visual words are profiled by STB and plotted as colored dots. Note that colors here indicate visual
words belonging to individual activities in the STB instead of motion direction. Profiling γ is also given as bar chart in which the x-axis indexes STB
activities. Right: STB activities where color patches indicate the distribution of motion vectors.

In most cases, x and y are not discrete values because
of the matrix multiplication. In order to obtain the value
of β(x ′, y ′, d ′), we perform interpolation, i.e., we use the
values of adjacent pixels surrounding [x, y, d] to determine
the value of β(x ′, y ′, d ′). This interpolation is related only to
spatial values in a single layer, i.e., d is fixed, and we use
only the adjacent pixels by varying x and y. A number of

standard interpolation techniques can be used for this task,
including linear, bilinear, and bicubic interpolations, and we
use bicubic interpolation here. After interpolation, we compute
the exact value of each element/pixel β(x ′, y ′, d ′). Since this
transformation involves translation, the transformed topic β ′
may extend out of the topic boundary, a Na × Nb rectangle,
defined by the original topic β. To ensure that all topics are
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comparable with the same codebook size, we keep only the
part of β ′ that lies within the Na × Nb rectangle defined by the
original topic β. After the above procedure, the transformed
topic β ′ has the same size as the original β, Na × Nb × Nm .
Finally, we normalize the transformed topic β ′ to obtain a
multinomial distribution as follows:

β ′ = β ′
∑

x=1...Na

∑
y=1...Nb

∑
d=1...Nm

β ′(x, y, d)
. (5)

2) Affinity and Clustering: Given the scene alignment
above, we define the relatedness between scenes a and b by
the percentage of corresponding topic pairs. More specifically,
given K a local topics {βa

ka }K a

ka=1 in scene a and K b local topics

{βb
kb }K b

kb=1 in scene b, the distance between topic βa
ka and topic

βb
kb is defined as DKL in

DKL
(
βa

ka ,βb
kb

) = 1

2

(
KL

(
βa2b

ka || βb
kb

) + KL
(
βb2a

kb || βa
ka

))

KL
(
βa

ka || βb
kb

) = 1

Nv

Nv∑

v=1

βa
kav · log

(
βa

kav

βb
kbv

)
. (6)

Given a threshold τ , the similarity between two topics can be
binarized. Topic pairs with the distance less than a threshold
are counted as inliers, defined by

NumInlier =
∑

ka

1

(
min

kb

(
DKL

(
βa

ka ,βb
kb

))
< τ)

+
∑

kb

1

(
min

ka

(
DKL(βb

kb ,β
a
ka

))
< τ

)
(7)

where 1(·) is the indicator function. The final relatedness
measure D(a, b) between scenes a and b is the percentage
of inlier topic pairs

D(a, b) = NumInlier

K a + K b
. (8)

Since (6) and (7) are symmetric, (8) is also symmetric.
Given this relatedness measure, every scene pair is com-
pared to generate an affinity matrix, and self-tuning spectral
clustering [33] is used to group scenes into c = 1 . . . C
semantically similar scene-level clusters [see Fig. 5 (middle)
for an example].

B. Learning a Shared Activity Topic Basis

Scenes clustered according to Section IV-A are semantically
similar; however, the representation in each is still distinct.
We next show how to establish a shared representation for
every scene in a particular cluster. We denote the set of scenes
in a cluster by C. We first choose the scene with the lowest
distance to all other scenes in the cluster as the reference
scene/coordinate sref . Activities in all scenes s ∈ C can be
projected to the reference coordinates via transform Ts2sref as
stated in

∀s ∈ C ∀k = 1 . . . K : β̃s
k = H

(
βs

k ; Ts2sref
)
. (9)

Once every topic is in the same coordinate system, we create
an affinity matrix for all the transformed topics {β̃s

k }s∈C using
the symmetrical Kullbeck–Leibler Divergence as a distance

metric (6). Hierarchical clustering is then applied to group the

projected activities into K stb clusters {Tk}K stb

k=1 (Tk denotes the
set of activities in a cluster k). The result is that semantically
corresponding activities across scenes are now grouped into
the same cluster. We then take the mean of activities in each
activity cluster Tk as one shared activity topic βstb

k as in (10).
An alternative to this approach is to relearn topics from the
concatenation of visual words of all the scenes in a single
cluster. However, this learning-from-scratch strategy prevents
explicitly identifying shared and unique topics across scenes,
because the trace of local topics from individual scenes to
STB is lost. In contrast, our framework reveals how scenes
are similar or different

∀k = 1 . . . K stb : βstb
k = 1

| Tk |
∑

k′,s ′∈Tk

β̃s ′
k′ . (10)

We denote the set of shared activity topics {βstb
k }K stb

k=1 learned
for the cluster as the STB. The resulting STB captures
both common and unique activities in every scene member
[see Fig. 5 (bottom) for an example]. We can now represent
the behaviors in every scene as STB profiles: By projecting the
STB back to each scene and recomputing the topic profile γ stb

j

now defined on {βstb
k }K stb

k=1 , in contrast to the original scene-
specific representation (γ s

j defined in terms of {βs
k }K

k=1), that
is, rerunning Algorithm 1, but with β fixed to the STB values
obtained from (10). An example of behavior profiling on STB
is illustrated in Fig. 6. Visual words accumulated within a clip
are profiled according to the STB. Thus, each behavior can be
treated as a weighted mixture of multiple activities.

V. CROSS-SCENE QUERY-BY-EXAMPLE

AND CLASSIFICATION

Given the structured multiscene model introduced in the
previous section, we can now describe how cross-scene query
and classification can be achieved.

A. Cross-Scene Query

Activity-based query-by-example aims at retrieving seman-
tically similar clips to a given query clip. In the cross-scene
context, the pool of potential clips to be searched for retrieval
includes clips from every camera in the network. Within a
scene cluster C, we segment each video s into j = 1 . . . Nd

short clips (Section III-A). We represent the j th video clip in
scene s as topic profile γ stb

j s defined on STB βstb
k . A query

clip q represented by STB profile γ stb
qs can now be directly

compared with all other clips in the cluster {γ stb
j s ′ } j,s ′∈C using

L2 distance. In this way, cross-scene query-by-example is
achieved by sorting all clips in the cluster according to the
distance to the query.

B. Cross-Scene Classification

Given an existing annotated database of scenes modeled
with our multilayer framework, classification in a new scene s∗
can now be achieved without further annotation. First s∗ is
associated with a cluster c∗ (Section IV-A). Although s∗ has
no annotation, this reveals a set of semantically corresponding
existing scenes from which annotation can meaningfully be
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Fig. 7. Example frames for our multisurveillance video data set, with each scene assigned a reference number on top of the frame. The color of the bounding
box and the text in the bottom left indicate the assigned cluster.

borrowed. Classification can thus be achieved by any classifier,
using all other scenes/clips and labels from cluster c∗ as the
labeled training set.

It should be noted that our cross-scene classification differs
from [34] and [35] in the following ways.

1) We train on a set of source scenes before testing on a
held-out scene rather than one source to one test scene.
The conventional 1-1 approach requires implicitly the
source and target scenes to be relevant, which must be
identified manually. Our model is able to group relevant
scenes automatically, without requiring the user to know
this as a priori.

2) Our model works in a transductive [7] manner, that
is, it looks at target scene data during scene cluster-
ing but without looking at the target data label. This
weak assumption is more desirable in practice because
surveillance video data are often easy to collect without
any labeling, whereas the effort required for labeling is
the bottleneck.

VI. MULTISCENE SUMMARIZATION

In this section, we present a multiscene video summarization
algorithm that exploits the structure learned in Section IV to
compress cross-scene redundancy. All clips are represented
by their profile on STB. The general objective of multiscene
summarization is to generate a video skim with at least one
example of each distinct behavior in the shortest possible
summary. We generate independent summaries for each scene
cluster (since different scene clusters are semantically dis-
similar) and multiscene summaries within each cluster (since
scenes within a cluster are semantically similar).

k-Center Summaries: The multiscene summary video is of
configurable length Nsum. Longer videos will show more dis-
tinct behaviors or more within-class variability of each behav-
ior. We compose the summary � of Nsum clips {γ stb

j }, j ∈ �
drawn from all scenes in the cluster. The objective is that
all clips in the cluster {γ stb

j s } j,s∈C should be near to at least
one clip in the summary (i.e., the summary is representative).
Formally, this objective is to find the summary set � that
minimizes the cost J in

J = max
j,s∈C

(
max
j ′∈�

Dγ

(
γ stb

j ′ , γ stb
j s

))
(11)

where Dγ is the L2 distance. This is essentially a k-center
problem [36]. Since it is intractable to enumerate all combina-
tions/potential summaries �, we adopt the two-approximation
algorithm [37] to this optimization. The resulting K = Nsum
centers identify the summary clips.

VII. EXPERIMENTS

Data Set: We collected 25 real traffic surveillance videos
from publicly accessible online Web cameras in Budapest,
Hungary. These videos are combined with two surveillance
video data sets Junction and Roundabout [15] for a total
of 27 videos. Sample frames for each scene are illustrated
in Fig. 7(a). We trim each video to 18 000 frames in
10 frames/s, of which 9000 are used to learn the model, and the
remaining 9000 frames are used for testing (query, classifica-
tion, and summarization). For activity learning, we segment
each training video into 25 frame clips, so 360 clips are
generated for each scene. For both query and summarization
applications, we segment test videos into clips with 80 frames,
so 112 clips for query and summarization are generated from
each scene. Thus, we have three types of video clips: 1) clips
for unsupervised training of LDA; 2) clips for training cross-
scene classification, retrieval, and multiscene summarization
(semantic training clips); and 3) clips for testing on the same
classification, retrieval, and summarization tasks (semantic
testing clips). LDA clips are shorter (25 frames) to facilitate
learning more cleanly segmented activities. Semantic clips are
longer (80 frames) as a more human-scale user-friendly unit
for visualization and annotation.

Learning Activities: We computed optical flow [30] for
all videos by quantizing the scenes with 5 × 5 pixel cells
and eight directions. Local activities are learned from each
video independently by using LDA with K = 15 activities
per scene.

Behavior Annotation: Behavior is a clip-level semantic tag
defining the overall scene activity. Due to the semantic gap
between behaviors in the video clip and (potentially task-
dependent) human interpretation, it is difficult to give video a
concise and consistent semantic label (in contrast to event [9]
recognition and human action [34]). Instead of annotating
each video clip explicitly, we give a set of binary activity
tags (each representing the action of some objects within the
scene) to each video clip, as shown in Table I. All the tags
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TABLE I

ORIGINAL ANNOTATION ONTOLOGY AND TWO MERGING SCHEMES
GIVE MULTIPLE GRANULARITIES OF ANNOTATION

associated with vehicles have a sparse or dense option. When
there are fewer than three vehicles traveling in a clip, it is
labeled as sparse; otherwise, it is labeled as dense. Each unique
combination of activities that exists in the labeled clips then
defines a unique scene-level behavior category. We explore this
through multiple sets of annotations: an original annotation
with 19 distinct tags and subsequent coarser label sets derived
by Merge Scheme 1 with 13 distinct tags and Merge Scheme 2
with 10 distinct tags. The activity tags are given in Table I.
We exhaustively annotate video clips in two example scene
clusters (3 and 7, as shown in Fig. 7). Across the two
clusters, there are six scenes with 112 clips per scene annotated
(672 clips in total). In the original annotation case, there are
111 total behaviors identified. The distribution of behaviors
is illustrated in Fig. 8(a). However, this number is more than
necessary in terms of limited distinctiveness of the numerous
entailed behaviors. By merging some activity annotations,
we generate 59 or 31 (Merge Scheme 1 or 2 in Table I)
unique behaviors. It should be noted that the frequency of
behaviors is rather imbalanced, as indicated in Fig. 8(a)–(c).
There is also a very limited overlap of behaviors between
Scene Clusters 3 and 7. To assess annotation consistency
and bias, we invited eight independent annotators to annotate
all the video clips separately. We observe that the additional
annotations are fairly consistent with the original annotation:
with more than 80% agreement (Hamming distance) between
the additional and the original annotations. A detailed analysis
of these additional annotations is given in Supplementary
Information.

A. Multilayer Scene Clustering

The multilayer scene clustering is conducted in two stages.
We first group scenes into clusters and then within each scene
cluster shared activity topics are learned.

1) Scene-Level Clustering: We first group the scenes into
semantically similar clusters by spectral clustering. The sim-
ilarity measurement between scenes is the number of corre-
sponding activities, as defined in Section IV-A. The self-tuning
spectral clustering automatically determines the appropriate
number of clusters, which in the case of our 27-scene data set

Fig. 8. Frequencies of behaviors of each category. (a) Original annotation.
(b) Merge scheme 1. (c) Merge scheme 2.

is 11 clusters. Fig. 7 shows the results in which semantically
similar scenes are indeed grouped (e.g., camera toward one
direction at road junctions in Cluster 3) and unique views are
separated into their own cluster (e.g., Cluster 11).

2) Learning a Shared Activity Topic Representation: Within
each scene cluster, we unify the representation by computing
an STB. We automatically set the number of shared activ-
ities K stb in each scene cluster with Ns scenes as K stb =
coeff× Ns , where coeff is set to 5. The discovered basis from
an example cluster (Scene Cluster 3 shown in Fig. 7) with
four scene members is illustrated in Fig. 9. Fig. 9 reveals both
activities unique to each scene (Topics 1–15) and activities
common among multiple scenes (Topics 16–20). Thus, some
shared activity topics are composed of single local/original
topics and others of multiple local topics.

B. Cross-Scene Query-by-Example and Classification

In this section, we evaluate the ability of our framework to
support two tasks: cross-scene query-by-example and cross-
scene behavior classification. We compare our scene cluster
model (SCM) with a baseline flat model (FM). Our SCM first
groups scenes into scene clusters according to their relatedness
and learns STB for every scene cluster. Video clips in each
scene cluster are thus represented as topic profiles on the STB
of the scene cluster. As with our model, an FM first learns a
local topic model per scene; however, it then learns a single
STB from all labeled scenes (six scenes from two clusters)
without scene level clustering, instead of one STB per cluster.
The only difference between the SCM and the FM is the
absence of scene-level clustering in the FM. Note that the
FM is a special case of our SCM with one scene-level cluster.
Moreover, the individual scenes are also a special case of our
SCM with one cluster per scene.

1) Query-by-Example Evaluation: To quantitatively evalu-
ate query-by-example, we exhaustively take each scene and
each clip in turn as the query, and all other scenes are
considered as the pool. All clips in the pool are ranked
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Fig. 9. Example STB learned from Scene Cluster 3. Shared activity topics may be composed of one or more local/original topics. Original topics are overlaid
on the background frame. The color patches indicate the distribution of motion vectors for a single activity.

Fig. 10. Query-by-example MAP with different number of retrievals.

Fig. 11. Examples of cross-scene query-by-example. Left (Query Clips): six
query clips randomly chosen from six scenes. Right (Retrieved Clips): image
matrix illustrates the retrieved clips from the remaining five scenes, sorted by
distance to query, from left to right in the matrix. Color patches overlaid on
the background indicate the visual words accumulated within a video clip.

according to similarity (L2 distance on the STB profile) to
the query. The performance is evaluated according to how
many clips with the same behavior as the query clip are in
the top T responses. We retrieve the best T = 1 . . . 200 clips
and calculate the Average Precision of each category for
each T . Mean Average Precision (MAP) is computed by taking
the mean value of Average Precision over all categories. The
MAP curve by the top T responses to a query for both SCM
and FM and merge schemes 1 and 2 are plotted in Fig. 10.

TABLE II

CROSS-SCENE CLASSIFICATION ACCURACY WITH

31 AND 59 CATEGORIES FOR BOTH SCM AND FM

It is evident that for Merge Schemes 1 and 2, the proposed
SCM performs consistently better than the FM regardless of
the number of top retrievals T . This is because in the SCM,
the STB learned from this set of scenes is highly relevant to
each scene in the cluster. In contrast, the FM learns a single
STB for all scenes, making the STB less relevant to each
individual scene and hence less informative as a representation
for retrieval.

Qualitative results are also given in Fig. 11 by presenting
six randomly chosen queries and their retrieved clips. Different
types of behaviors are covered by query clips and most
retrieved clips are semantically similar to query clips. The only
exception is in the third row where the query clip indicates
traffic going east and turning from left to up. This is because
there is no corresponding behavior in the other scenes.

2) Classification Evaluation: In this experiment, we quan-
titatively evaluate classification performance where the test
scene has no labels. Successful classification thus depends on
correctly finding semantically related scenes and appropriately
transferring labels from them (Section V). We perform leave-
one-scene-out evaluation by holding out one scene as the
unlabeled testing set and predicting the labels for the test set
clips using the labels in the remaining scenes using the K
Nearest Neighbor (KNN) classifier. The KNN K parameter is
determined by cross validating among the remaining scenes.
Classification performance is evaluated by the accuracy for
each category of behavior, averaged over all held-out scenes.

From Table II, we observe that at either granularity of
annotation (59 or 31 categories), our SCM outperforms the
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TABLE III

SUMMARIZATION SCHEMES FOR CONDITION WC

FM on average. This shows that, again, in order to borrow
labels from other scenes for cross-scene classification, it is
important to select relevant sources, which we achieve via
scene clustering. The FM is easily confused by the wider
variety of scenes to borrow labels from, whereas our SCM
structures similar scenes and borrows labels from only seman-
tically related scenes to avoid negative transfer [7], [8].

C. Multiscene Summarization

In the final experiment, we evaluate our multiscene summa-
rization model against a variety of alternatives. We consider
two conditions: 1) multiscene summarization within a scene
cluster [Condition Within-Cluster Summarization (WC)] and
2) unconstrained multiscene summarization, including videos
spanning multiple-scene clusters [Condition Across-Cluster
Summarization (AC)].

Condition WC: In this experiment, we focus on the
comparison between the multiscene model and the single-
scene model for the given various summarization algorithms.
The multiscene model represents all video clips from different
scenes within a cluster with a single STB learned from the
scene cluster, whereas the single-scene model represents each
video with scene-specific activities, and the overall summary
is the mere concatenation of summaries from each scene.
Specifically, we compare the summarization methods listed
in Table III.

Condition AC: In this experiment, analogous to query and
classification, we focus on the comparison between the FM
and the SCM for the given different summarization algorithms.
The FM learns a single STB from all scenes available without
discrimination, while the SCM learns an STB per scene
cluster. Specifically, we compare the summarization schemes
in Table IV.

Settings: To systematically evaluate summarization
performance, we vary the length of the requested summary.
In Condition WC, the summary varies from eight to 120 clips
(64 s to 16 min) out of the overall 448 video clips (59.7 min)
in Scene Cluster 3 [as shown in Fig. 7(a)] and 224 video
clips (29.9 min) in Scene Cluster 7. In Condition AC, the
summary varies from six to 120 clips (48 s to 16 min) out of
672 video clips (89.7 min), the total of which is a combination

TABLE IV

SUMMARIZATION SCHEMES FOR CONDITION AC

Fig. 12. Video summarization results: coverage of behaviors versus summary
clip length. (a) Condition WC: Scene Cluster 3 (four scenes in total).
(b) Condition WC: Scene Cluster 7 (two scenes in total). (c) Condition AC: all
scenes (six scenes in total).

of Scene Clusters 3 and 7. All video clips for summarization
are represented as topic profile γ . Recall that each local scene
is learned with K = 15 topics and scene clusters with Ns

scenes are learned with K = coeff × Ns topics where coeff is
set to 5. For fair comparison, FM baselines are learned with
the sum of the number of topics for each cluster.

Summarization Evaluation: The performance is evaluated
by the coverage of identified behaviors in the summary,
averaged over 50 independent runs. Fig. 12(a) and (b) shows
the results for multiscene summarization within two example
clusters (Condition WC). Clearly, our multiscene k-center
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algorithm (red curve) outperforms the baselines: both graph
method alternative (purple curve) and single-scene alternative
(dashed line). The performance margin is greater between
the multiscene and single-scene models for the first cluster
because there are four scenes, so greater opportunity to
exploit interscene redundancy. This validates the effective-
ness of jointly exploiting multiple scenes for summarization.
Fig. 12(c) shows the result for multiscene summarization
across both clusters (Condition AC); our SCM builds one sum-
mary for each cluster to exploit the expected greater volume
of within-cluster redundancy. In contrast, the FM builds one
single summary but for a much more diverse group of data,
and the single-scene models have no across-cluster redundancy
to exploit. Even in the flat case, our k-center model (shown by
the green curve) still outperforms all other alternatives (shown
by the purple and magenta curves). It is also worth noting that
the user attention model degenerates severely on our data set
because it is unable to extract semantic meaning from videos
in which pure motion strength is not informative enough
to distinguish semantic behaviors. The qualitative results for
the multiscene summarization are presented in Supplementary
Information.

D. Further Analysis

In this section, we further analyze the robustness of our
framework by varying key parameters and investigate their
impact on the model performance.

1) Generalized Scene Alignment: We assume currently that
cameras are installed upright and only scaling and translational
transforms are applied to the scene alignment. However, under
more generality, rotational transforms may also be considered.
To that end, one can consider a generalized scene alignment
that includes a rotational parameter φ in the transformation.
Recall that in Section IV-A, we estimate the size of trans-
formed topics. We can extend that to N ′

a = Na × ts × cos(φ)
and N ′

b = Nb × ts × sin(φ). The generalized transform
matrix T is then defined as

T =
⎡

⎣
ts · cos(φ) −ts · sin(φ) tx

ts · sin(φ) ts · cos(φ) ty

0 0 1

⎤

⎦. (12)

The procedure to transform a topic under this general-
ized alignment differs from the original alignment only in
the estimation of direction d . To determine d , given d ′,
we represent the quantized optical flow as vector vec′ =
[cos(2πd ′/Nm ), sin(2πd ′/Nm )]T. Then we estimate the orig-
inal flow vector vec = T∗−1vec′, where T∗ is a 2 × 2 matrix
from the first two dimensions of T because translation does not
change motion direction. We determine d by nearest neighbor
as follows:

d̂ = arg min
d=1...Nm

∥∥∥∥vec −
[

cos(2πd/Nm)
sin(2πd/Nm )

]∥∥∥∥. (13)

To align scene A to scene B with this generalized align-
ment, we can estimate parameters by maximizing the mar-
ginal likelihood of target document Xb for the given
source topics βa . Specifically, we denote the transform
operation with specified parameters as H(β|ts, tx , ty, φ).

Fig. 13. Alignment and stability across all pairs of 27 scenes. (a) Absolute
reference value of scaling. (b) Absolute reference value of x translation.
(c) Absolute reference value of y translation. (d) RMSE of scaling. (e) RMSE
of x translation. (f) RMSE of y translation.

Given target document Xb, the marginal likelihood is
p(Xb|αa, H(βa|ts , tx , ty, φ)), where αa is the Dirichlet prior
in scene A. Because scaling and translational parameters are
computed by a closed-form solution (3), we need only to
search φ̂ = argmaxφ p(Xb|αa, H (βa|s, dx, dy, φ)). However,
in our experiments, by applying this generalized alignment
process, we observed many local minima—suggesting that
the rotational transform is underconstrained and not very
repeatable.

2) Scene Alignment Stability: We first evaluate the stability
of scene-level alignment. Recall that given two scenes a and b,
we first normalize each scene with geometrical transformations
Ta

norm and Tb
norm. The scene a to b transform is thus defined

by

Ta2b = Tb−1
norm · Ta

norm =

⎡

⎢⎢⎢⎢⎢⎣

ta
s

tb
s

0
ta
x

tb
s

− tb
x

tb
s

0
ta
s

tb
s

ta
y

tb
s

− tb
y

tb
s

0 0 1

⎤

⎥⎥⎥⎥⎥⎦
. (14)

We denote sa2b = (ta
s /tb

s ), dxa2b = (ta
x /tb

s ) − (tb
x /tb

s ), and
dya2b = (ta

y /tb
s ) − (tb

y /tb
s ). The parameters estimated from

the full data in each scene are denoted by sa2b
ref , dxa2b

ref ,
and dya2b

ref . To evaluate the stability of this alignment, we
randomly sample 50% of the original data from each scene
and estimate again the parameters as sa2b

50 , dxa2b
50 , and dya2b

50 .
We run this process 20 times and calculate the root-mean-
square error (RMSE), defined in (15) for sa2b. RMSEs for dx
and dy are defined in the same way by replacing sa2b with
dxa2b and dya2b, respectively

RMSE(s) =
√√√√ 1

N

N∑

i=1

(
sa2b

50i − sa2b
ref

)2
. (15)

We show both the absolute value of reference parame-
ters and the RMSE when aligning each pair of scenes in
Fig. 13. It is evident that most scene pairs are scaled between
0.7 and 1.5 [Fig. 13(a)]. The worst RMSE(s) among all scene
pairs are 0.0007 [Fig. 13(d)]. The same observations can be
made on variability of x translation and y translation with
the largest RMSE(dx) and RMSE(dy) being 0.035 pixels
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Fig. 14. Examples of scene alignment pairs. Each column indicates one
example alignment. The first row is the target scene, the second row is
the source scene to be aligned/transformed, and the last row is the source
scene after alignment to the target. Both within-scene cluster (first three
columns: Clusters 3 and 7, respectively) and across cluster (fourth column:
Clusters 3 and 7) examples are presented. The overlaid heat map is the spatial
frequency of visual words.

or less, whereas the absolute values of reference x and y
translations are between 0 and 20 pixels. The small values of
these deviations verify that the scene alignment model is robust
and repeatable. Some examples of scene alignment are shown
in Fig. 14. Although the majority of activities are aligned
well, some are less so because of the limitation of a global
rigid transform over a whole scene. Further extension could
exploit individual activity-centered alignment in addition to
the holistic-scene alignment.

3) Scene Cluster Stability: We tested the stability of scene-
level clustering by varying the cell size, number of local topics,
and clustering strategy.

1) We compared visual word quantization with 5 × 5 and
10 × 10 cell sizes.

2) We evaluated from 5 to 30 local topics in each scene by
step of 5. i.e., 5, 10, . . . , 25, 30.

3) We performed self-tuning spectral clustering with two
alternative settings.

The first is that we allowed the model to automatically deter-
mine the number of clusters, and the second is that we fixed the
number of clusters to the same as in the reference clustering,
that is, 15 local topics and 5 × 5 cell size. We measured
the discrepancy between the results from automatic clustering
and the reference clustering using the rand index (RI) [41].
It describes the discrepancy between two set partitions and is
frequently used as the evaluation metric for clustering. The
RI is between 0 and 1, with the higher value indicating more
similarity between two partitions. If two partitions are exactly
the same, the RI is 1. We show the results on the stability test
of scene-level clustering in Fig. 15.

For both cell sizes 5 and 10, automatic cluster selection gen-
erates consistent partitions (high RI). Therefore, the framework
is robust to motion quantization cell size. However, it is also
evident that automatic cluster number selection is less stable
in determining the number of clusters, as indicated by the red
bars in Fig. 15(b) and (d). On the other hand, by fixing the
number of clusters, the partitioning is more stable (consistent
high RI).

Fig. 15. Stability of scene-level clustering. (a) RI cell size = 5. (b) Number
of cluster cell size = 5. (c) RI cell size = 10. (d) Number of cluster cell
size = 10.

Fig. 16. Association of held-out scenes with clusters. Scenes 1–4 are held
out from Cluster 3 and Scenes 5 and 6 are held-out scenes from Cluster 7.
All held-out scenes are associated correctly.

4) Associating New Scenes: Our model is able to group
scenes according to the semantic relatedness if all the recorded
data are available in advance. In addition, the model is capable
of associating new scenes with existing clusters, e.g., given
input from newly installed cameras at different locations,
without the need to completely relearn the model. This is
achieved by comparing the local topics of a new scene with
those of the STB in each scene cluster and choosing the
cluster with the highest relatedness. Only the updated cluster
needs to be relearned to incorporate the new scene. We tested
this approach in Scene Clusters 3 and 7 by: 1) holding out
each scene in turn as the candidate scene to be associated
and learning STB in each cluster with the other scenes;
2) computing the relatedness between the held-out scene and
both clusters using (8); and 3) associating the candidate scene
with the cluster with the highest relatedness. We illustrate
the result of this via the distance (defined as 1− relatedness)
between held-out candidate scenes and clusters in Fig. 16. It is
evident that each held-out scene is closer to its corresponding
cluster, so 100% of scenes are associated correctly. However,
this approach is limited to associating new scenes with existing
scene clusters (scenes). A full online learning multiscene
model is desirable but also challenging and remains to be
developed.

5) STB Stability: Finally, we investigate the stability of
learning the STB with different number of shared topics.
Recall that in Section VII-A1, the number of STB topics for
the SCM and the FM is K = coeff × Ns . Now let us change
coeff from 3 to 10 and evaluate how this affects the cross-
scene classification accuracy for both annotation schemes 1
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Fig. 17. Effect of varying number of topics used. Classification accuracy of
the SCM and the FM.

(59 categories) and 2 (31 categories). The results are shown
in Fig. 17. It is evident that for both 59 and 31 categories,
our SCM is mostly better than the FM over a range of topic
numbers.

VIII. CONCLUSION

In this paper, we introduced a framework for synergistic-
ally modeling multiple-scene data sets captured by multicam-
era surveillance networks. The paper deals with variable and
piecewise interscene relatedness by semantically clustering
scenes according to the correspondence of semantic activities
and selectively shares activities across scenes within clusters.
Besides revealing the commonality and uniqueness of each
scene, multiscene profiling further enables typical surveillance
tasks of query-by-example, behavior classification, and sum-
marization to be generalized to multiple scenes. Importantly,
by discovering related scenes and shared activities, it is
possible to achieve cross-scene query-by-example (in contrast
to a typical within-scene query) and to annotate behavior in
a novel scene without any labels—which is important for
making deployment of surveillance system scale in practice.
Finally, we can provide video summarization capabilities that
uniquely exploit redundancy both within and across scenes by
leveraging our multiscene model.

There are still several limitations to our work, which can be
addressed in the future.

1) In the current framework, scenes that can be grouped
together are usually morphologically similar, which
means that the underlying motion patterns and view
angles are essentially similar. More advanced geomet-
rical registration techniques could be applied, including
similarity and affine transformations, to allow scenes
with more dramatic viewpoint changed to be grouped.

2) In this work, motion information is mostly contributed
by traffic. However, studying pedestrian/crowd behavior
is becoming more interesting [42] due to its wide appli-
cation in crime prevention and public security. However,
compared with traffic, pedestrian crowd behaviors are
less regulated and coherent. Thus, exacting suitable
features and improving the model to deal with this are
nontrivial tasks.

3) Finally, an improved multiscene framework that can
fully and incrementally add new scenes in an online
manner is of interest.
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