
868 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 5, MAY 2016

An Efficient SVD-Based Method
for Image Denoising

Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu

Abstract— Nonlocal self-similarity of images has attracted
considerable interest in the field of image processing and has
led to several state-of-the-art image denoising algorithms, such as
block matching and 3-D, principal component analysis with local
pixel grouping, patch-based locally optimal wiener, and spatially
adaptive iterative singular-value thresholding. In this paper, we
propose a computationally simple denoising algorithm using the
nonlocal self-similarity and the low-rank approximation (LRA).
The proposed method consists of three basic steps. First, our
method classifies similar image patches by the block-matching
technique to form the similar patch groups, which results in the
similar patch groups to be low rank. Next, each group of similar
patches is factorized by singular value decomposition (SVD)
and estimated by taking only a few largest singular values
and corresponding singular vectors. Finally, an initial denoised
image is generated by aggregating all processed patches. For
low-rank matrices, SVD can provide the optimal energy
compaction in the least square sense. The proposed method
exploits the optimal energy compaction property of SVD to
lead an LRA of similar patch groups. Unlike other SVD-
based methods, the LRA in SVD domain avoids learning the
local basis for representing image patches, which usually is
computationally expensive. The experimental results demonstrate
that the proposed method can effectively reduce noise and be
competitive with the current state-of-the-art denoising algorithms
in terms of both quantitative metrics and subjective visual quality.

Index Terms— Back projection, image denoising, low-rank
approximation (LRA), patch grouping, self-similarity, singular
value decomposition (SVD).
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I. INTRODUCTION

DURING acquisition and transmission, images are
inevitably contaminated by noise. As an essential and

important step to improve the accuracy of the possible
subsequent processing, image denoising is highly desirable for
numerous applications, such as visual enhancement, feature
extraction, and object recognition [1], [2].

The purpose of denoising is to reconstruct the original
image from its noisy observation as accurately as possible,
while preserving important detail features such as edges and
textures in the denoised image. To achieve this goal, over the
past several decades, image denoising has been extensively
studied in the signal processing community, and numerous
denoising techniques have been proposed in the literature.
In general, denoising algorithms can be roughly classified
into three categories: 1) spatial domain methods; 2) transform
domain methods; and 3) hybrid methods [3], [4]. The first class
utilizes the spatial correlation of pixels to smooth the noisy
image, the second one exploits the sparsity of representation
coefficients of the signal to distinguish the signal and noise,
and the third one takes advantage of spatial correlation and
sparse representation to suppress noise.

Spatial domain methods, also called spatial filters, estimate
each pixel of the image by performing a weighted average
of its local/nonlocal neighbors, in which the weights can be
determined by their similarities and higher weights are given to
similar pixels. Therefore, spatial filters can be further divided
into local filters and nonlocal filters. Smith and Brady [5]
proposed a structure preserving local filter called SUSAN,
which uses the intensity distance as a quantitative measure
of the similarity between pixels. Tomasi and Manduchi [6]
proposed bilateral filtering by generalizing the SUSAN filter,
in which both the intensity and spatial distances are used to
measure the similarity between pixels. Although these local
filters are effective for preserving edges, they cannot perform
very well when the noise level is high. The reason is that the
severe noise destroys the correlations of pixels within local
regions [7]. To overcome this disadvantage of local filters,
Buades et al. [8] proposed the nonlocal mean (NLM) filter,
which estimates each pixel by a nonlocal averaging of all the
pixels in the image. The amount of weighting for a pixel is
based on the Euclidean distance between the patch centered
around the pixel being denoised and the one centered around a
given neighboring pixel. In essence, NLM uses the structural
redundancy, namely, self-similarity that is inherent in natural
images, to estimate each pixel. NLM can be considered as
an extension of the bilateral filter by the means of replacing
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pointwise photometric distances with patch distances. Several
variants of NLM have been proposed to improve the adaptivity
of the nonlocal filter [9], [10]. Talebi et al. [3] proposed
a spatially adaptive iterative filtering (SAIF) to improve the
performance of NLM. Recently, there has been a growing
interest in exploiting the self-similarity of images to
suppress noise. Chatterjee and Milanfar [11], [12] proposed
a patch-based locally optimal wiener (PLOW) filter, which
also exploits the structural redundancy for image denoising
and achieves the near optimal performance in the minimum
mean-squared error (MMSE) sense. Zhang et al. [13] proposed
a two-direction nonlocal (TDNL) variational model for image
denoising using the horizontal and vertical similarities in
the matrix formed by similar image patches. SAIF, PLOW,
and TDNL are currently considered to be state of the art in
spatial domain denoising methods.

Transform domain methods assume that the image can
be sparsely represented by some representation basis, such
as wavelet basis and its directional extensions. Due to the
sparsity of representation coefficients, noise is uniformly
spread throughout the coefficients in the transform domain,
while most of image information is concentrated on the
few largest ones. Therefore, noise can be effectively
distinguished by different coefficient shrinkage strategies,
including BayesShrink [14], ProbShrink [15], BiShrink [16],
MultiShrink [17], and SUREShrink [18], [19]. Despite its
remarkable success in dealing with point and line singularities,
the fixed wavelet transform fails to provide an adaptive sparse
representation for the image containing complex singularities.
To overcome the problems caused using the fixed transforms,
Aharon et al. [20] proposed an adaptive representation tech-
nique using K-means and singular value decomposition (called
K-SVD), which uses a greedy algorithm to learn an overcom-
plete dictionary for image representation and denoising. Under
the assumption that each image patch can be represented
by the learned dictionary, Elad and Aharon [21] proposed
a K-SVD based denoising algorithm, in which each image
patch can be expressed as a linear combination of few
atoms of the dictionary. Although the dictionary-based
methods are more robust to noise, they are computationally
expensive.

Spatial-based filters and transform-based filters have
achieved great success in image denoising. Their overall
performance, however, does not generally surpass the hybrid
methods. Due to its impressive performance, the most
well-known hybrid method for image denoising is the
block-matching and 3-D (BM3D) filtering reported in [22],
which groups similar patches into 3-D arrays and deals with
these arrays by sparse collaborative filtering. To the best of
the authors’ knowledge, it is the first one that utilizes both
nonlocal self-similarity and sparsity for image denoising.
However, the fixed 3-D transform is not able to deliver a
sparse representation for image patches containing edges,
singularities, or textures. Thus, BM3D may introduce visual
artifacts. Dabov et al. [23] proposed an improved BM3D filter
(called BM3D-SAPCA) that exploits adaptive-shape
patches and principal component analysis (PCA). Although
BM3D-SAPCA achieves state-of-the-art denoising results,

its computational cost is very high (Table III). Zhang et al. [24]
proposed an adaptive image denoising scheme using PCA
with local pixel grouping (LPG-PCA). This method uses block
matching to group the pixels with similar local structures,
transforms each group of pixels using locally learned
PCA basis, and shrinks PCA transformation coefficients
using the linear MMSE estimation technique. Both LPG-PCA
and BM3D-SAPCA use the PCA basis to represent image
patches. A key difference between them is that LPG-PCA
applies PCA on 2-D groups of fixed-size image patches, while
BM3D-SAPCA applies PCA on 3-D groups of adaptive-
shape image patches. He et al. [25] presented an adaptive
hybrid method called ASVD, which uses SVD to learn
the local basis for representing image patches. Another
SVD-based denoising method is called spatially adaptive
iterative singular-value thresholding (SAIST) [26]. This
method uses SVD as a sparse representation of image
patches and reduces noise in images by iteratively shrinking
the singular values with BayesShrink. BM3D-SAPCA and
SAIST are considered to be the current state of the art in
image denoising.

In this paper, we propose a simple and efficient denoising
method by combining patch grouping with SVD. The proposed
method first groups image patches by a classification algorithm
to achieve many groups of similar patches. Then each group
of similar patches is estimated by the low-rank approximation
(LRA) in SVD domain. The denoised image is finally obtained
by aggregating all processed patches. The SVD is a very
suitable tool for estimating each group because it provides the
optimal energy compaction in the least square sense [27]. This
implies that we can achieve a good estimation of the group by
taking only a few largest singular values and corresponding
singular vectors. While ASVD uses SVD to learn a set of
local basis for representing image patches and SAIST uses
SVD as a sparse representation of image patches, the pro-
posed method exploits the optimal energy compaction property
of SVD to lead an LRA of image patches. Experiments
indicate that the proposed method achieves highly competitive
performance in visual quality, and it also has a lower
computational cost than most of existing state-of-the-art
denoising algorithms.

The rest of this paper is organized as follows. In
Section II, we briefly review image representation tools for
the sake of completeness. We present the proposed algo-
rithm in detail in Section III, which fuses the nonlocal self-
similarity and the LRA using patch clustering and SVD.
In Section IV, we report the experimental results of our method
to validate its efficacy and compare it with the state-of-the-art
methods. In Section V, we discuss the differences between
our method and other state-of-the-art methods. Finally,
we conclude this paper with some possible future work
in Section VI.

II. LINEAR IMAGE REPRESENTATION

Let X be a grayscale image. The basic principle of
linear image representation is that the signal of interest
can be decomposed into a weighted sum of a given
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representation basis. Thus, X can be represented as

X =
N∑

i=1

aiφi (1)

where ai (i = 1, . . . , N) are the representation coefficients of
the image X in terms of the basis functions φi (i = 1, . . . , N).
φi can either be chosen as a prespecified basis, such as
wavelet [28], curvelet [29], contourlet [30], shearlet [31], and
other directional basis, or designed by adapting its content to
fit a given set of images. In general, an adaptive basis has
better performance than the prespecified one.

Aharon et al. [20] proposed a learning method to achieve
a set of adaptive basis (also called dictionary). This method
extracts all the

√
m × √m patches from the image X to

form a data matrix S = (s1, s2, . . . , sn) ∈ Rm×n , where
m is the number of pixels in each patch, si (i = 1, . . . , n)
are the image patches ordered as columns of S and n is the
number of patches. Then the dictionary is learned by solving
the following optimization problem:

min
�,A

n∑

i=1

‖si −�ai‖22 s.t. ‖ai‖0 ≤ β (2)

where � ∈ Rm×p is the dictionary of p column atoms,
A = (a1, a2, . . . , an) ∈ Rp×n is a matrix of coefficients,
β indicates the desired sparsity level of the solution, and the
notation ‖ai‖0 stands for the count of the nonzero entries in ai .
Based on the learned dictionary �, S can be represented as

S = �A. (3)

Another method for image representation with adaptive
basis selection is PCA [32], which determines the basis from
the covariance statistics of the data matrix S. The principal
components transform of S is calculated as [33]

A = �T (S− E(S)) (4)

with � defined by

�S = ���T (5)

where E(S) is the matrix of mean vectors, �S is the
covariance matrix of S, � is the eigenvector matrix, and
� = diag(λ1, . . . , λm) is the diagonal eigenvalue matrix with

λ1 ≥ λ2 ≥, · · · ,≥ λm . (6)

It can easily be derived that the covariance matrix �A of the
matrix A equals

�A = �T �S� = � (7)

which implies that the entries of A are uncorrelated. This
property of PCA can be used to distinguish between the signal
and noise. It is because the energy of noise is generally spread
over the whole transform coefficients, while the energy of a
signal is concentrated on a small amount of coefficients.

One major shortcoming of the adaptive dictionary and
PCA is that they impose a very high computational burden.

An alternative method for adaptive basis selection is SVD. The
SVD of the data matrix S is a decomposition of the form [34]

S = U�VT =
n∑

i=1

σi ui vT
i (8)

where U = (u1, . . . , un) ∈ Rm×n and V = (v1, . . . , vn) ∈
Rn×n are the matrices with orthonormal columns,
UT U = VT V = I, and where the diagonal matrix � =
diag(σ1, . . . , σn) has nonnegative diagonal elements appearing
in nonincreasing order such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (9)

The diagonal entries σi of � are called the singular values
of S, while the vectors ui and vi are the left and right singular
vectors of S, respectively. The product ui vT

i in (8) can be
considered as an adaptive basis, and σi as the representation
coefficient.

In fact, SVD and PCA are intimately related. PCA can
be performed by calculating the SVD of the data matrix
(1/
√

n)ST (refer to [35] for more details). In addition, if a
matrix is low rank, we can easily estimate it from its noisy
version by the LRA in SVD domain. Thus, we propose a new
denoising method using SVD instead of PCA in the following
section, which has a low computational complexity.

III. PROPOSED METHOD

Based on the analysis of SVD in Section II, we propose an
efficient method to estimate the noise-free image by combining
patch grouping with the LRA of SVD, which leads to an
improvement of denoising performance. The main motivation
to use SVD in our method is that it provides the optimal energy
compaction in the least square sense, which implies that the
signal and noise can be better distinguished in SVD domain.
Fig. 1 shows a block diagram of the proposed approach.
Concretely, the patch grouping step identifies similar image
patches by the Euclidean-distance-based similarity metric.
Once the similar patches are identified, they can be estimated
by the LRA in the SVD-based denoising step. In the aggre-
gation step, all processed patches are aggregated to form the
denoised image. The back projection step uses the residual
image to further improve the denoised result.

For ease of presentation, let Y denote a noisy image
defined by

Y = X+ E (10)

where X is the noise-free image, and E represents the additive
white Gaussian noise (AWGN) with the standard deviation τ
that, in practice, can usually be estimated by various methods
such as median absolute deviation (MAD) [36], SVD-based
estimation algorithm [37], and block-based ones [38], [39].
In this paper, we use a vectorized version of the model (10)

y = x + e. (11)

Given a noisy observation y, our aim is to estimate x as
accurately as possible.
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Fig. 1. Block diagram of the proposed denoising algorithm.

As similarly done in BM3D and LPG-PCA, the proposed
method also has two stages: 1) the first stage produces
an initial estimation of the image x and 2) the second
stage further improves the result of the first stage. Differ-
ent from them, our method adopts the LRA to estimate
image patches and uses the back projection to avoid loss
of detailed information of the image. Each stage contains
three steps: 1) patch grouping; 2) SVD-based denoising; and
3) aggregation. In the first stage, the noisy image y is first
divided into M overlapping patches denoted by {yi }Mi=1, where
yi is a vectorized format of the i th image patch. For each
patch y j , its similar patch group is formed by searching
similar patches from {yi}Mi=1. Next, each similar patch group
is denoised by the low-rank approximation in SVD domain.
Third, the denoised image x̂0 is achieved by aggregating all
denoised patches. In the second stage, the final denoised image
is obtained by applying the processing steps described above
on the image ỹ produced by the back projection process. In the
rest of this section, the procedures of our proposed method will
be described in detail.

A. Patch Grouping

Grouping similar patches, as a classification problem, is an
important and fundamental issue in image and video process-
ing with a wide range of applications. While there exist
many classification algorithms available in [40], e.g., block
matching, K -means clustering, nearest neighbor clustering,
and others, we exploit the block-matching method for image
patch grouping due to its simplicity.

For each given reference patch y j with size
√

m×√m, the
block-matching method finds its similar patches from {yi}Mi=1
by a similarity metric. In [22], the Euclidean distance from
the transform coefficients is used to identify the similar square
patches. A shape-adaptive version of this similarity metric is
presented in [23], whereas it leads to a high computational
cost. The simplest measure of similarity between two patches
is the Euclidean distance directly in the spatial domain. Thus,
we employ the spatial Euclidean distance as our similarity
metric, which is defined by

S(y j , yc) = ‖y j − yc‖22 (12)

where ‖ · ‖2 denotes the Euclidean distance and yc is a
candidate patch. The smaller S(y j , yc) is, the more similar

y j and yc are. The reference patch y j and its L-most similar
patches denoted by {yc,i }Li=1 are chosen to construct a group
matrix using each similar patch as a column of the group
matrix, and its corresponding group matrix P j is formed by

P j = [y j , yc,1, . . . , yc,L]. (13)

Due to P j being made up of the noisy patches, it can be
represented as

P j = Q j + N j (14)

where Q j and N j denote the noise-free group matrix and the
noise matrix, respectively.

In general, the number L of similar patches in the group
matrix cannot be too small. Too small L leads to too
few patches within each group matrix, which makes the
SVD-based denosing less robust. On the contrary, too large
one leads to dissimilar patches being grouped together, which
results in an incorrect estimation of P j . Similarly, the patch
size
√

m×√m also has an impact on the performance of our
method. We will discuss the influence of L and the patch size
in Section IV-C.

B. SVD-Based Denoising

For simplicity of description, we will use Q and P instead
of Q j and P j by a slight abuse of notation. Now our
task is to estimate the noise-free group matrix Q from its
noisy version P as accurately as possible. Ideally, the
estimate Q̂ should satisfy

‖P − Q̂‖2F = τ 2 (15)

where ‖ · ‖F is the Frobenius norm1 and τ is the standard
deviation of noise.

The similarity between patches within the noise-free
image x leads to a high correlation between them, which
means that Q is a low-rank matrix. Fig. 2 shows the
low-rank property of Q by displaying the singular values of
group matrices of Lena image with different noise levels,
where each point is the average i th singular value over all
group matrices. The estimate of Q can be obtained by the

1For an m × n matrix A with elements ai j (i = 1, . . . , m, j = 1, . . . , n),
the Frobenius norm is defined as the square root of the sum of the absolute
squares of its elements, i.e., ‖A‖F =

√∑m
i=1

∑n
j=1 a2

i j .
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Fig. 2. Singular values of group matrices of Lena image with different noise
levels.

LRA in the least square sense. Therefore, we can estimate
Q from P by solving the following optimization problem:

Q̂ = arg min
Z
‖P − Z‖2F s.t. rank(Z) = k (16)

where rank(·) denotes the rank of matrix Z.
In SVD domain, P can be represented as

P = U�VT. (17)

Let

Pk = U�kVT (18)

where �k is obtained from the matrix � by setting the
diagonal elements to zeros but the first k singular values

�k = diag(σ1, . . . , σk, 0, . . . , 0). (19)

Pk is the solution of (16), which is a classical result given by
the Eckart–Young–Mirsky theorem [41], [42].

Theorem 1 (Eckart–Young–Mirsky): For any real matrix P,
if the matrix Q is of rank k, then

‖P −Q‖2F ≥
n∑

i=k+1

σ 2
i (20)

where σi (i = 1, . . . , n) are the singular values of P, and
equality is attained when Q = Pk is defined by (18).

This theorem shows that Pk is the optimal solution for (16)
in the Frobenius norms sense. Thus, we have

Q̂ = Pk . (21)

The key issue for this method is to determine the value of k.
By comparing (15) with (20), we can find that Pk is the ideal
estimate of P when

∑n
i=k+1 σ 2

i is equal to τ 2. Therefore,
k can be determined by the following criterion:

n∑

i=k

σ 2
i > τ 2 ≥

n∑

i=k+1

σ 2
i . (22)

C. Aggregation

Till now, we have estimated each group matrix by applying
the LRA defined by (21). Then the denoised patches can
be obtained by rearranging column vectors of each denoised
group matrix. As a result of taking the L nearest neighbors of
each patch to construct a group matrix, a single patch might
belong to several groups, and multiple estimates of this patch
can be obtained. Thus, we aggregate different estimates of this
patch to obtain its denoised version by the following averaging
process:

x̂i = 1

n

n∑

j=1

x̂i, j (23)

where x̂i is the denoised version of a patch yi , and
x̂i, j ( j = 1, . . . , n) denote n different estimates of yi .

The next step is to synthesize the denoised image from
the denoised patches. Since the patches are sampled with
overlapping regions for avoiding block artifacts at the bound-
aries of patches, multiple estimates are obtained for each
pixel. Thus, these estimates of each pixel in the image need
to be aggregated to reconstruct the final denoised image.
The common method of combining such multiple estimates
is to perform a weighted averaging of them. Meanwhile,
the weighted averaging procedure can suppress noise further.
The simplest form of aggregation is the uniformly weighted
averaging that assigns the same weight to all estimates.
However, the uniform weights will lead to an oversmoothened
result. In general, the adaptive weights derived from various
biased and unbiased estimators, such as variance-based
weights, SURE-based weights, and exponential weights [10],
can lead to better results. Different from these adaptive
weights, in this paper, we exploit the weights depending on
the rank k of each group matrix due to its simplicity. For the
j th group matrix Q̂ j , our weight is defined by

w j =
{

1− k
L+1 , k < L + 1

1
L+1 , k = L + 1.

(24)

If k < L + 1, it means that patches in the group matrix
are linearly correlated. The higher the degree of correlation of
patches is, the smaller the rank k of the group matrix is. The
estimate of patches yielded from the LRA is better. Thus, this
estimate needs to be assigned a high weight. If k = L + 1,
there exists no correlation among patches. The simplest uni-
form weight is used. Based on the weights defined in (24),
the denoised estimate for the i th pixel of the image can be
expressed as

x̂i = 1

W

∑

j∈�(xi)

w j x̂i, j (25)

where W is a normalizing factor defined by

W =
∑

j

w j . (26)

�(xi ) denotes the index set of all similar group matrices
containing the pixel xi , which is described as

�(xi ) = { j |xi ∈ Q j , j = 1, . . . , C} (27)
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and x̂i, j denotes the denoised estimate of the i th pixel in the
j th similar group matrix Q̂ j . Once all pixels are estimated
by (25), the final denoised image can be obtained by reshaping
the estimates of all pixels.

D. Back Projection

Although most of noise can be removed using the denoising
procedures described before, there still exists a small amount
of noise residual in the denoised image. The noise residual
stems from the fact that noise in the original noisy image
affects the accuracy of the patch grouping, which leads to
an inaccurate group. The grouping errors in turn affect the
SVD-based denoising. In addition, there exists another
reason for noise residual. Ideally, based on the discussion
in Section III-B, the optimal estimate Q̂ satisfies

‖P − Q̂‖2F = ‖P −Q‖2F �⇒ ‖P − Q̂‖2F = ‖N‖2F
�⇒

n∑

i=k+1

σ 2
i = τ 2. (28)

Unfortunately, the left side of (28) is not usually equal to the
right side. In most cases, it is that τ 2 >

∑n
i=k+1 σ 2

i . Therefore,
we need to further improve the denoising performance of our
method.

The commonly used way to further improve the
performance of a denoising method, as used by the clustering-
based denoising method using locally learned dictionaries
(named K-LLD) [43] and SAIST, is to develop an iterative ver-
sion for the basic denoising method. While the iterative strat-
egy for image denoising has been widely used in the literature,
it has a very high computational cost, which limits the scope
of applications. An alternative way exploited by BM3D and
LPG-PCA is the two-stage approach, in which the basic
estimate of the noisy image yielded by the denoising method
is used as a reference image to perform improved grouping
and parameter estimation.

In this paper, unlike the iteration-based or the reference-
based strategies, we make use of the two-stage strategy with
a back projection step to further suppress the noise residual.
Back projection is an efficient method that uses the residual
image to improve the denoised result [44], [45]. In fact, the
use of the residuals in improving estimates can date at least
back to [46], in which this idea is termed twicing. This concept
is also known by several names, such as Bregman iterations,
l2-boosting, and biased diffusion. Milanfar [47] provides a
good overview of these methods. The basic idea of back
projection is to generate a new noisy image by adding filtered
noise back to the denoised image

ỹ = x̂0 + δ(y − x̂0) (29)

where δ ∈ (0, 1) is a constant projection parameter and x̂0 is
the denoised result produced by the first stage. Note that when
δ → 0, ỹ → x̂0. On the contrary, if δ → 1, ỹ → y. For
simplicity, in our experiments, we set δ = 0.5, which is a
tradeoff between 1 and 0.

Now we can achieve an improved result of x̂0 by
denoising ỹ with the proposed three processing steps
in Sections III-A–III-C, i.e., patch grouping, SVD-based

Algorithm 1 Proposed Denoising Algorithm
Input: Noisy image y
Output: Denoised image x̂
1: τ ← Estimate noise standard deviation by computing the

median absolute deviation (MAD) of the finest wavelet
coefficients as described in [36];

2: {P j }Cj=1 ← Group image patches with the similarity
metric defined by Eq. (12) and form group matrices;

3: for each j ∈ [1, C] do
4: Q̂ j ← Calculate the LRA of P j via Eq. (21);
5: w j ← Compute the weight for Q̂ j via Eq. (24);
6: end for
7: x̂i ← For each patch existing multiple different estimates,

aggregate its estimates via Eq. (23).
8: x̂0← Aggregate all Q̂ j via Eq. (25);
9: τ̃ ← Update the noise standard deviation τ via Eq. (30);

10: ỹ← Generate a new noisy image via the back projection
described by Eq. (29);

11: x̂← Obtain the final denoised image by performing Step
2 to Step 8 for ỹ.

denoising, and aggregation, respectively. It is necessary to
point out that the noise variance of ỹ, denoted by τ̃ 2, needs to
be updated in the SVD-based denoising step. We employ the
estimator presented in [26] to determine τ̃ 2, which is written as

τ̃ = γ

√
τ 2 − ‖y − x̂0‖2F (30)

where γ is a scaling factor.
To summarize, the complete procedure of our proposed

method is algorithmically described in Algorithm 1.

IV. EXPERIMENTAL RESULTS

To demonstrate the efficacy of the proposed denoising
algorithm, in this section, we give our experimental
results concerning simulations that have been conducted on
ten natural grayscale images with size 512×512. These images
have been commonly used to validate many state-of-the-art
denoising methods. The noisy images are generated by adding
zero mean white Gaussian noise with different levels to the test
images. The noise level τ is from 10 to 50, and the intensity
value for each pixel of the images ranges from 0 to 255.

A. Evaluation Criteria

Two objective criteria, namely, peak signal-to-noise
ratio (PSNR) and feature-similarity (FSIM) index [48], are
adopted to provide quantitative quality evaluations of the
denoising results. PSNR is the mostly widely used quality
measure in the literature, even though it is often inconsistent
with human eye perception. FSIM measures the similarity
between two images by combining the phase congruency
feature and the gradient magnitude feature, which is based on
the fact that human visual system understands an image mainly
according to its low-level features. The aforementioned criteria
can comprehensively reflect the performance of the denoising
methods.
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TABLE I

COMPARISON OF THE PSNR (dB) AND FSIM RESULTS OF DIFFERENT DENOISING METHODS ON TEST IMAGES

WITH DIFFERENT NOISE LEVELS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

B. Denoising Performance

To quantitatively evaluate the denoising performance
of our method, we compare it with five state-of-the-art
image denoising methods: 1) PLOW [11]; 2) K-SVD [21];
3) LPG-PCA [24]; 4) SAIST [26]; and 5) BM3D-SAPCA [23].
All of these denoising methods utilize the self-similarity of
natural images to suppress noise. These denoising algorithms
contain some control parameters, which should be tuned
according to the noise level of the image. In our experiments,

we use the default parameters settings suggested by the
respective authors. The source codes of these denoising
methods can be downloaded from the respective authors’
websites. In addition, the proposed method was implemented
in MATLAB programming language due to its simplicity.2

In our experiments, we empirically set L = 85, δ = 0.5,
and γ = 0.65 for all noise levels. Depending on the amount

2A demo will be available at http://qguo.weebly.com when this paper is
published.
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Fig. 3. Visual comparisons of denoising results on Lena image corrupted by AWGN with standard deviation 30. (a) Original image. (b) Noisy image.
(c) PLOW [11]. (d) K-SVD [21]. (e) LPG-PCA [24]. (f) SAIST [26]. (g) BM3D-SAPCA [23]. (h) Proposed method.

Fig. 4. Visual comparisons of denoising results on Barbara image corrupted by AWGN with standard deviation 30. (a) Original image. (b) Noisy image.
(c) PLOW [11]. (d) K-SVD [21]. (e) LPG-PCA [24]. (f) SAIST [26]. (g) BM3D-SAPCA [23]. (h) Proposed method.

of noise present in the image, we set the patch size 9 × 9
if τ < 20, 10 × 10 if 20 ≤ τ < 40, and 11 × 11 if
τ ≥ 40. The influence of different parameters will be
evaluated in Section IV-C.

In Table I, we quantify the performances of six competing
algorithms for the test images with different noise levels in
terms of PSNR and FSIM. From Table I we can observe that
BM3D-SAPCA, which is considered to be the state of the
art in image denoising, achieves the highest PSNR values on
average, and slightly outperforms our method. However, our
method performs better on images with high repeating patterns
such as Elaine, Zelda, and Barbara. It is because our method
sufficiently exploits the nonlocal redundancies in these images

by the patch grouping procedure described in Section III-A.
For example, for Elaine image, on average, our method is
superior to BM3D-SAPCA by 0.14 dB, to SAIST by 0.28 dB,
to LPG-PCA by 0.58 dB, to PLOW by 0.47 dB, and to
K-SVD by 0.43 dB, respectively. The FSIM results of different
algorithms are also tabulated in Table I. It can be observed that
our method has higher FSIM measures than other methods
except BM3D-SAPCA. In a word, the quantitative results by
our method are competitive with BM3D-SAPCA and SAIST,
and clearly superior to LPG-PCA, PLOW, and K-SVD.

In terms of visual quality, our method also is comparable
and even superior to the state-of-the-art denoising methods.
Fig. 3 shows the denoising results of Lena image with a
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Fig. 5. Zoomed absolute difference between the original Barbara image and the denoised version. (a) PLOW [11] (MAE = 4.73).
(b) K-SVD [21] (MAE = 5.31). (c) LPG-PCA [24] (MAE = 5.23). (d) SAIST [26] (MAE = 4.75). (e) BM3D-SAPCA [23] (MAE = 4.44). (f) Proposed
method (MAE = 4.35).

noise level of τ = 30. As can be seen from it, the
results by the proposed method are visually close to SAIST
and LPG-PCA, and better than BM3D-SAPCA, PLOW,
and K-SVD, especially in the edge and texture regions. The
visual comparisons are further illustrated in Fig. 4, which
shows the zoomed-in denoising results of the noisy image
Barbara by different methods. It can be observed that the
denoised images by SAIST, LPG-PCA, and the proposed
method are very similar in real visual perception, in which
some edges and textures are better preserved, and fewer arti-
facts are introduced. We note that although BM3D-SAPCA has
higher PSNR and FSIM measures than our method, denoised
results by BM3D-SAPCA contain more noticeable artifacts
around edges and in smooth regions than our results. The
main reason is that BM3D-SAPCA exploits the orthogonal
transform to represent similar image patches and reduces
noise by thresholding representation coefficients, in which
significantly visible artifacts are produced. (This phenomenon
also was discussed in [49].)

As shown in Fig. 5, we also calculated the absolute
difference images between the original Barbara image and
the denoised versions of six denoising algorithms. The mean
absolute error (MAE) values of PLOW, K-SVD, LPG-PCA,
SAIST, BM3D-SAPCA, and our method are 4.73, 5.31,
5.23, 4.75, 4.44, and 4.35, respectively. The MAE value
produced by our method is lower than those by other denosing
algorithms. To further demonstrate our performance, we
apply the proposed method to some real noisy images.3

Fig. 6 displays the denoised images yielded by PLOW and

3Available at http://users.soe.ucsc.edu/%7epriyam/PLOW/. In our experi-
ments, we use their grayscale versions.

our method. Our method can reduce the noise effectively,
while preserving the finer features. In short, our denoising
results are both quantitatively and visually comparable with
the state of the art.

C. Influence of Parameters

In our method, there are four tuning parameters: 1) patch
size; 2) number of similar patches in each group matrix L;
3) projection factor δ; and 4) scaling factor γ . The patch size
plays an important role in the proposed denoising algorithm.
On the one hand, a too large patch size can capture the
varying local geometry and also lead to a high computational
cost. On the other hand, a too small patch size can reduce
the denoising performance of the proposed method. To study
the influence of the patch size, we set L = 85, δ = 0.5,
γ = 0.65, and perform our method on Barbara image with
different patch sizes and noise levels. The PSNR results are
listed in Table II. It can be observed that choosing the patch
size from 9× 9 to 11× 11 in our experiments is a reasonable
tradeoff between accuracy and speed.

The projection parameter δ controls the amount of residual
image added to the output of the first stage. To analyze the
effect of this parameter, we run our algorithm with different
values, δ = 0.1, 0.2, . . . , 0.9. Fig. 7(a) shows the denoising
performance of the proposed algorithm applied to the noisy
image Barbara (τ = 30) as a function of the parameter δ.
As can be seen, the highest PSNR is reached when δ = 0.5.
Similar curves for γ and L are shown in Fig. 7(b) and (c),
respectively. The best denoising result is obtained with
γ = 0.65. In addition, we find that our algorithm is insensitive
to L in the range [70, 100]. Thus, we choose L = 85 as a
tradeoff between accuracy and speed.
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Fig. 6. Visual comparisons of denoising results on real noisy images with unknown noise characteristics.

TABLE II

PSNR (dB) RESULTS OF THE PROPOSED DENOISING METHOD ON Barbara IMAGE WITH DIFFERENT PATCH SIZES AND NOISE LEVELS

Fig. 7. PSNR results on Barbara image (τ = 30) as a function of (a) varying δ with a patch size of 10 × 10, L = 85, and γ = 0.65, (b) varying γ with a
patch size of 10 × 10, δ = 0.5, and L = 85, and (c) varying L with a patch size of 10 × 10, δ = 0.5, and γ = 0.65.

D. Analysis of Iterative Denoising
Since the noise reduces the accuracy of the patch grouping,

the grouping errors make the residual image of the first
stage contain a lot of visual edge or texture details. In the
second denoising stage, the new noisy image produced by back
projection contains more structural details than the denoised
image of the first stage and has a lower noise level than the
original noisy image, which improves the accuracy of the patch
grouping and reduces the error of the LRA in SVD domain.
Therefore, a better result can be reached at the end of the

second denoising round. The previously mentioned experimen-
tal results demonstrate that the two-stage denoising scheme
based on back projection is very effective in suppressing noise.

Intuitively, the denoised results might be further improved
if the proposed denoising scheme is iterated more than twice.
Fig. 8 shows the evolution of the PSNR during the itera-
tions. Here, we note that further iterations cannot significantly
improve the denoising performance. In theory, the truncated
SVD shrinkage used in our method guarantees an optimal
approximation of the noisy group matrix in the least square
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TABLE III

COMPARISON OF THE COMPUTATIONAL TIME AND THE IMPLEMENTATION LANGUAGE OF DIFFERENT DENOISING METHODS

Fig. 8. Evolution of the PSNR with iterations for different images (τ = 30).

sense, which makes most of the noise be suppressed in the
first two iterations.

E. Computational Cost

To evaluate the computational cost of six denoising
methods, we compare the running time on the ten test images
with different noise levels. We have run all the source codes
by default throughout all experiments performed on a platform
of an Intel Core i7-870 CPU 2.93 GHz with 4-GB memory.
Denoising a 512 × 512 grayscale image, SAIST, K-SVD,
BM3D-SAPCA, LPG-PCA, and PLOW take, on average,
roughly 197, 393, 925, 997, and 1875 s, respectively. The
computational cost of the proposed method is quite low in
comparison with the denoising algorithms above. For the test
images, our MATLAB implementation requires only 77 s on
average. There are two main computational components of
our algorithm, one is grouping similar patches to form group
matrices and the other is the calculation of SVD for each group
matrix. In general, the patch grouping step takes approximately
23% of the execution time, whereas 75% of the time is spent
in estimating group matrices by the LRA in SVD domain.
The execution time of the various algorithms are presented in
Table III. It can be seen that the proposed method provides
the fastest running speed among the six denoising algorithms.

V. DISCUSSION

The nonlocal self-similarity of natural images plays an
important role in image denoising. The most well-known
denoising method based on the nonlocal self-similarity
is BM3D, which often produces state-of-the-art denoising
results. BM3D-SAPCA is an improved version of BM3D
by exploiting PCA and shape-adaptive image patches, which
achieves remarkable performance. Our method utilizes the
nonlocal self-similarity to construct low-rank group matrices
that can be easily estimated by the LRA.

The main differences between these methods are threefold.

1) The basis functions of image representations are
different. BM3D uses the fixed 3-D basis functions
(joint wavelets and cosine bases) that are less adapted
to the edges and textures. To improve the denoising
performance, BM3D-SAPCA applies PCA to the shape-
adaptive patch group, whereas it leads to a high compu-
tational cost. Our method uses an adaptive basis derived
by SVD, which outperforms BM3D and BM3D-SAPCA
by better preserving the local geometric structure.

2) BM3D uses the Euclidean distance from the transform
coefficients to identify the similar square patches, which
can improve the robustness of the block matching.
In BM3D-SAPCA, the usual square patches are replaced
by the shape-adaptive patches for block matching,
whereas it leads to a complex aggregation process with
a high computational cost. Different from BM3D and
BM3D-SAPCA, the proposed method calculates the
similarity metric based on the Euclidean distance
directly in the spatial domain due to its simplicity.

3) In BM3D and BM3D-SAPCA, the second denoising
stage is directly applied on the original noisy image
that is grouped into 3-D data arrays based on the
patch similarities from the denoised image in the first
stage. However, the denoising for the first stage might
contain grouping errors due to the effect of noise, which
yields an incorrect basic estimate of the noisy image.
Therefore, using this basic estimate as the pilot signal
is not very ideal because it would decay the accu-
racy of the second denoising stage. Unlike BM3D and
BM3D-SAPCA, the second denoising stage in our
method is applied on a new noisy image obtained by
adding a part of residual image to the basic estimate,
i.e., back projection. The new noisy image contains more
structural details than the output of the first stage, which
improves the accuracy of the patch grouping and the
LRA in SVD domain.

Besides, the existing methods based on the adaptive repre-
sentation, such as K-SVD and ASVD, often need to learn a
set of adaptive basis using the given training images. Unfor-
tunately, the learning process is computationally expensive.
The proposed method is intrinsically simpler than K-SVD and
ASVD. And it does not need to be trained for each image
separately or for a given training data set, which avoids a
high computational cost for the training process.

VI. CONCLUSION

In this paper, we have presented a simple and effi-
cient method for image denoising, which takes advan-
tage of the nonlocal redundancy and the LRA to
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attenuate noise. The nonlocal redundancy is implicitly used
by the block-matching technique to construct low-rank group
matrices. After factorizing by SVD, each group matrix is
efficiently approximated by preserving only a few largest
singular values and corresponding singular vectors. This is
due to the optimal energy compaction property of SVD.
In fact, the small singular values have little effect on the
approximation of the group matrix when it has a low-rank
structure. The experimental results demonstrate the advantages
of the proposed method in comparison with current state-of-
the-art denoising methods.

The computational complexity of the proposed algorithm is
lower than that of most of the existing state-of-the-art denois-
ing algorithms, but higher than BM3D. The fixed transform
used by BM3D is less complex than SVD, whereas it is
less adapted to edges and textures. The main computational
cost of our algorithm is the calculation of SVD for each
patch group matrix. As each group matrix could potentially
be processed independently in parallel, our method is suitable
for parallel processing. Therefore, in practice, we can use
a parallel implementation to speed it up, which will make
it feasible for real-time or near real-time image denoising.
In addition, while developed for grayscale images, our method
can be extended to shape-adaptive color image and video
denoising by taking into account the shape-adaptive patches
and the temporal redundancy across color components and
frames. This further work will be studied in the future.
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