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A Real-Time Motion-Feature-Extraction VLSI
Employing Digital-Pixel-Sensor-Based

Parallel Architecture
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Abstract— A very-large-scale integration capable of extracting
motion features from moving images in real time has been
developed employing row-parallel and pixel-parallel architectures
based on the digital pixel sensor technology. Directional edge
filtering of input images is carried out in row-parallel processing
to minimize the chip real estate. To achieve a real-time response
of the system, a fully pixel-parallel architecture has been explored
in adaptive binarization of filtered images for essential feature
extraction as well as in their temporal integration and derivative
operations. As a result, self-speed-adaptive motion feature extrac-
tion has been established. The chip was designed and fabricated
in a 65-nm CMOS technology and used to build an object
detection system. Motion-sensitive target image localization was
demonstrated as an illustrative example.

Index Terms— Block-readout scheme, digital pixel
sensor (DPS), motion feature extraction (MFE), parallel
architecture, vision chip.

I. INTRODUCTION

REAL-TIME motion recognition is becoming increasingly
important in various applications, such as automotive

vehicle control, efficient human–computer interaction [1],
video surveillance [2], remote gesture control [3], sign lan-
guage interpretation [4], [5], surgery support, and so forth.
In automotive vehicle control, for instance, it can be used
for slip detection and in surgery support, monitoring the
behavior of a beating heart would play a crucial role. For
such applications, high-speed image processing employing
high-frame-rate image sensors [about 1000 frames/s] can
significantly provide many details of the motion, which is
very useful for improving the speed and precision of the
recognition. Many applications benefit much from the high-
speed image processing (about 1000 frames/s), such as the
system reported in [74] for counting objects flowing rapidly on
the line, in [75] for microorganisms observation under micro-
scope, and in [76] for object regrasping using a robot hand.
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Therefore, motion recognition systems with a processing
capability of 1000 frames/s have a lot of potential to be
implemented. For building such high-speed systems, motion
feature extraction (MFE), as an important and computationally
heavy process in motion recognition [6], [7], is required to be
processed in less than 1 ms.

The traditional software-based MFE algorithms are com-
putationally very expensive, and building high-speed systems
is quiet difficult even when state-of-the-art multicore general-
purpose processors are utilized [8], [9]. By developing fine-
tuned software exploring the single-instruction multiple-data
operations on modern processors and/or graphics processing
units for particular applications [10], [11], high hardware
costs and large power consumptions are severely limiting such
approaches to be used in portable devices, as well as in
large-scale systems. As a result, high-speed and low-power
architectures for MFE are now highly demanded.

A number of very-large-scale integration (VLSI) processors
with parallel architectures have been developed for perfor-
mance enhancement in image processing algorithms. Image
data processing usually includes some computationally inten-
sive low-level data processing [12], such as image filtering,
which needs be performed repeatedly in every pixel site in the
entire image, or at least in the region of interest. Processors
in [13]–[16] improved the performance and power efficiency
by developing parallel processing circuitries mainly for such
low-level image processing tasks. Processors in [17]–[23]
implemented fine-grain parallel processing architectures by
investigating image processing tasks at all levels (low, middle,
and high levels [12]) in some specific applications. Such
processors have made real-time image processing systems fea-
sible [14], [20]. Therefore, the parallel architecture is impor-
tant for improving the performance of image data processing.
However, all these processors are primarily targeting still
image recognition, and not dealing with motion or action
recognition problems. In addition, the delay caused by data
transfer from image sensors to processors, which is usually
carried out one pixel data per clock cycle, severely limits
the efficiency of image data access, making such a system
unsuitable for time-critical applications, such as automotive
vehicle control. Furthermore, systems composed of multiple
chips including image sensors, processors, and in certain cases,
memories that buffer frame image data are still very power
hungry. In this sense, building system-on-a-chip (SoC) image
processing systems is a very promising approach to achieving
better power efficiency and small latency.
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Computational image sensors, which integrate both image
sensors and processing circuits on the same chip, allow us
to build image processing SoCs. Smart sensors with analog
processing circuits have been developed for image filtering
[24]–[27], edge extraction [28], and motion detection
[28]–[32]. One of the drawbacks of the signal processing in
analog domain is the lack of programmability, which makes
such approaches not suitable for performing the middle-level
and high-level processing in complex algorithms, such as those
used in motion recognition. Furthermore, building analog
processing circuits using more advanced process technologies
requests much harder design efforts to guarantee the same level
of accuracy in processing achieved with more conservative
technologies. In [33] and [34], visual sensor SoCs employing
parallel digital processing elements (PEs) are developed to
process the data at all levels. These works demonstrated the
real-time performance of the image processing SoC concept.
However, regarding the access to analog image data in active
pixel sensors for on-chip digital data processing, it is not very
efficient in these works. In [33], since the image sensor and
processing circuitries are not directly connected, the image
data first need to be buffered in the on-chip memory for the
following computation. In [34], although the image sensor and
row-parallel PEs are directly connected, the processing circuits
need to wait for 256 clock cycles every time they access the
digitized image data in a single row because of the analog-
to-digital conversion (ADC). Two important issues arise in
the direct connection between the image sensor array and
digital processing circuitries. One is the ADC of the captured
image and the storage of the digitized image data. The other
is the scheme for efficient digital image data transfer from the
storage to processing circuitries, in which multiple-row data
access is essential for kernel processing like image filtering.

The digital pixel sensor (DPS), with in-pixel ADC and
digital memories [35], has good compatibility with the digital
processing circuitries. As a result, complex algorithms such
as on-chip image compression can be implemented [36]–[39]
with low-power consumption. In particular, the VLSI
implementation of a spatial temporal movie compression
algorithm [39] has demonstrated that it is very effective for
the DPS-based interframe processing, a fundamental process-
ing employed in most of the motion analysis algorithms.
Therefore, developing DPS-based VLSIs with direct connec-
tion between the image sensor array and digital processing
circuitries provides a promising solution to implementing
high-speed image processing systems. Another advantage of
using DPS-based VLSIs is the employment of digital circuits
not only in each pixel data control, but also in the image
processing circuit modules that are built being separated from
the image sensor array. Digital circuits are easy to scale
down with advanced process technologies, and therefore the
functionality of the chip could be easily enhanced.

In the development of application specific VLSIs, employ-
ing VLSI implementation-friendly algorithms is quite essential
because it allows us to build the system in compact and
power-efficient parallel circuitries. However, the most com-
mon approaches are to translate already available software
tools [40]–[42] into VLSI hardware. This would not be

a very efficient way to take. Intelligent image processing
algorithms, in particular those for motion recognition appli-
cations, are usually very complex, and how to make them
VLSI-implementation friendly has not yet been explored very
extensively, resulting in a large gap between image processing
algorithms and their VLSI implementation. Therefore, it is of
paramount importance to consider the VLSI-implementation
friendliness from the very early stages of algorithm
development.

Recently, many VLSI implementation-friendly algorithms
have been proposed [43]–[46]. For example, in [43],
a human posture recognition algorithm utilizing specific smart
sensors was developed, which can reduce the computa-
tion complexity by five times than the algorithms without
consideration on the hardware friendliness. In [44], a neural
feature extraction algorithm with a particularly developed
scalable architecture for implantable neural signal recording
was proposed, and a 95% reduction of hardware resource was
reported. Such VLSI implementation-friendly algorithms with
optimized VLSI architecture provide an efficient approach
for developing high-speed and low-power image processing
systems.

Mimicking the brain functions provides us with a lot
of inspiration in algorithm development because the brain
has excellent ability in a variety of image processing tasks.
According to the biological discoveries, directional edges are
detected in the primary visual cortex as important clues for
visual recognition [47], [48]. The output signals from the
primary visual cortex are transferred to two different process-
ing pathways: 1) the ventral stream for pattern recognition
and 2) the dorsal stream for motion recognition. From the
inspiration of such biological principles, VLSI-implementation
friendly directional-edge-based image feature representation
algorithms were developed in [49] and [50]. Because of
such algorithms, VLSI chips for directional edge detection
[51]–[53] and those for image recognition [51], [54]–[56] were
developed to achieve real-time performance with low power
consumption. As a result, high-speed image processing sys-
tems have been realized. For example, a still image recognition
system with a processing time of only 906 μs per frame is
reported in [57] using the processor in [52]. Besides the still
image analysis, a directional-edge-based object tracking algo-
rithm is also proposed in [58] with its FPGA implementation
in [59], in which a speed of 150 frames/s was experimentally
demonstrated, and a speed of 900 frames/s was expected if
the algorithm was directly implemented on VLSI with an
on-chip image sensor. The succeeding works [60]–[63] further
developed edge-based motion recognition algorithms in which
the self-speed-adaptive MFE processing is included as one of
the most crucial steps. Although VLSI chips for post-MFE
optical flow detection [64], [65] and pattern recognition [55],
[56], [66]–[68] have been implemented, a VLSI dedicated to
high-speed and low-power MFE has not yet been developed.

In this paper, a VLSI capable of extracting motion features
from moving images in real-time has been developed employ-
ing fine-grain row-parallel and pixel-parallel architectures
based on the DPS technology. The block-readout scheme [69]
is combined with row-parallel bit-serial processing circuitries
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Fig. 1. MSEM generation including LFE, GFE, and logical OR.

to perform 5 × 5-pixel kernel convolution of directional edge
filtering immediately following the ADC. To achieve a real-
time response of the system for moving image processing, a
fully pixel-parallel architecture has been explored in adaptive
binarization of filtered images for essential feature extraction
as well as in their temporal integration and derivative oper-
ations. This allows us to operate the system in a self-speed-
adaptive manner. The chip was developed in a 65-nm CMOS
process to implement the parallel on-chip digital circuits for
DPS with the resolution of 100 × 100. The measurement
results show that this chip can perform MFE within 0.9 ms
after capturing the image when running at 20 MHz at a power
consumption of 9 mW. The directional-edge-based features
generated by this chip can be used for motion recognition
[60]–[63] as well as for still image recognition [49], [50] and
object tracking [58], [59]. An object detecting system is also
developed using the fabricated chip. With the motion features,
the system can localize the images of target objects only when
they are in motion.

The remainder of this paper is organized as follows.
Section II explains the MFE algorithm that we developed for

VLSI implementation in this paper. Section III describes the
VLSI architecture. Section IV presents the experimental results
obtained from the prototype chip, and discussions are given
in Section V. Finally, Section VI concludes this paper.

II. MFE ALGORITHM

This section explains the MFE algorithm that generates self-
speed-adaptive motion features from video sequences. This
algorithm has two steps: the first step that extracts static
features in every frame; the second step that extracts motion
features only from the frames where significant amount of
motion is detected. In the first step, the merged significant
edge map (MSEM) is generated to represent static features,
as described in Section II-A. In the second step, the self-
speed-adaptive motion feature is generated, as described in
Section II-B.

A. MSEM Generation

Fig. 1 shows the MSEM generation. First, four significant
edge maps (SEMs) are generated from an input image based on
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Fig. 2. MFE employing AEM. Movie clip from Weizmann human action dataset [70].

the four-directional edge filtering (horizontal, +45°, vertical,
and −45°), as in [52]. Then, the four SEMs are merged into
a single edge map by taking logical OR, which we call an
MSEM. The four-directional edge filtering is composed of
two main processes: 1) the local feature extraction (LFE) and
2) the global feature extraction (GFE). Fig. 1 shows these two
processes where LFE is shown at the top and GFE is shown in
the middle. In LFE, first, convolutions between a 5 × 5-pixel
local image centered at each pixel site and four 5 × 5-pixel
filtering kernels (one for each direction) are calculated. Then,
based on the four convolution results, the maximum gradient
value is selected to determine the edge direction at the pixel
site, and this convolution value is preserved. According to the
edge direction at each pixel site, an edge flag bit 1 is set
at the corresponding location in the respective binary edge
map. For example, if the direction of a pixel is horizontal,
then this pixel has an edge flag in the horizontal edge map
and no edge flag in the +45°, vertical, or −45° edge map.
Such a process is repeated for every pixel, making the entire
image seamlessly scanned by the four filtering kernels. Four-
directional kernels produce four binary edge maps, which we
call local features. Since each pixel has an edge flag in one of
the four binary edge maps after LFE, local features contain a
lot of redundant information. Therefore, GFE is performed

after LFE to retain only salient features. This is done by
selecting only a predetermined percentage (which we call the
edge detecting threshold) of significant edge flags out of all
pixels that have larger gradient values than the rest. Such a
selection is possible because convolution values obtained from
every pixel site are all preserved. The four edge maps having
only the significant flags after the selection very well represent
global features and we call them the SEMs. Fig. 1 shows the
SEMs in four directions by setting the edge detecting threshold
at 20%. Only the salient features in the original image are
highlighted.

The SEMs are used for both static image recognition
and motion analysis. For static image recognition, a feature
vector representation algorithm called projected principal-
edge distribution [49] or averaged principal-edge distribution
(APED) [50] is employed to transform the four-directional
SEMs into a single 64-D feature vector. For motion analysis,
the four-directional SEMs are merged into one MSEM [60].

B. MFE

The motion features are extracted from the sequence of
MSEMs. The length of the sequence, defined as the number
of frames between the starting frame and the end frame, is
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very important for extracting good motion features. If it is too
short, pixel motion cannot be detected. If it is too long, the
accuracy of local motion detection degrades [60]. Therefore,
an optimum length of the MSEM sequence must be determined
adaptively according to the speed of moving objects. To extract
the motion features in a self-speed-adaptive manner using
MSEMs, an accumulated edge map (AEM) is first produced,
and then need to generate an edge displacement map, which
is the motion feature to be used for motion analysis.

Fig. 2 shows the process of MFE in detail. At the beginning,
an MSEM is generated from the starting frame (Frame 45)
with a predetermined edge detecting threshold and recorded
directly as the kth AEM. From the next frame (Frame 46), the
MSEM is generated with the same edge detecting threshold,
and logical OR is taken between this MSEM and the latest
AEM to update the AEM for this frame. Then, the edge
count in the new AEM is calculated and compared with the
motion detection threshold (this threshold is also given as the
percentage to the total number of pixels). If the edge count
is smaller than the threshold value, it indicates that there has
not been significant motion in the scene. Then, the MSEM
for the following frame (Frame 47) is extracted and merged
with the AEM by taking OR again. Such an accumulation
process continues until the edge count of the AEM becomes
equal or larger than the motion detection threshold, which
indicates that there has been significant motion since the start
of the accumulation. In the example of Fig. 2, Frame 47 is
the frame in which significant motion is detected. Then, the
difference between the AEM at Frame 47 and the MSEM
of Frame 47 is calculated by taking exclusive OR between
them. The edge map produced in this manner is called the
edge displacement map, in which only the edge flags due
to the motion having occurred in the MSEM sequence are
accumulated and remaining. This edge displacement map is
utilized as the motion features for motion analysis.

Then, the same procedure is restarted from the end frame
of the previous MSEM sequence, namely, the MSEM of
Frame 47 is used as the new AEM at k + 1, and accumu-
lation is continued until the next edge displacement map is
obtained. Since the number of edge flags remaining in the
edge displacement map is set to a constant value, [motion
detecting threshold (%)−edge detecting threshold (%)] × total
number of pixels, the length of the MSEM sequence for
generating an edge displacement map is automatically adjusted
as approximately corresponding to the equal amount of motion
occurring in the movie.

III. VLSI ARCHITECTURE

A. Chip Configuration

Fig. 3 shows the chip configuration. This chip extracts
image features, in particular the motion features from moving
images, which is the most computationally expensive process-
ing. A 100 × 100 DPS array captures images, and the LFE
module carries out 5 × 5-pixel kernel convolutions of four-
directional edge filtering in row-parallel processing. The SEM
generation and the MFE are both conducted by the MFE
module in fully pixel-parallel processing.

Fig. 3. Chip configuration for extracting both static and motion features.

B. DPS Pixel

Fig. 4(a) shows the basic concept of the DPS [35]. The
pixel unit consists of a photodiode, a reset transistor, a shutter
transistor, a sampling metal–oxide–semiconductor capacitor,
an analog comparator, 8-bit DRAM cells, and a readout buffer.
In the global reset process, both the reset transistor and the
shutter transistor are turned ON, which forces the voltage V
at the MOS capacitor to Vreset in all pixels. After this, the
reset transistor is turned OFF while the shutter transistor is ON,
then the decrease in the MOS capacitor voltage yields the light
intensity at each pixel. After a certain period of time (photo
integration time), all shutter transistors are turned OFF simul-
taneously and the light intensity in each pixel is converted
into the analog voltage signal V . Then, an analog ramp signal
and 8-bit digital ramp codes that are synchronized to each
other are provided to all pixel units for ADC. The analog
comparator in each pixel compares the voltage V with the
analog ramp. At the beginning of ADC, the analog ramp is
below V , and the comparator output (write enable) is 1. At the
timing when the analog ramp voltage exceeds V , write enable
changes to 0, and the digital code corresponding to V is stored
in the memory, thus the ADC of the pixel data is accomplished.
Since this operation is conducted simultaneously at all pixels,
massively parallel ADC is achieved. Different from the DPS
pixel developed in [35], each bit of memory has a separated
control signal, as shown in Fig. 4(b). The 8-bit control signal,
together with the readout buffer, select which bit in the pixel to
read out. Such a design allows us to perform the block-readout
scheme [69] of DPS, as described in the following.

C. Block-Readout Scheme

Fig. 5(a) shows the block-readout scheme [69] for row-
parallel processing. To seamlessly scan the entire pixel array
with 5 × 5-pixel-size filtering kernels, every four rows are
grouped together and controlled by the same enable signal
generated by block-readout control circuits. In one read cycle,
the same bits of image data in pixels from two consecutive
groups of rows are read out. For example, in Fig. 5(a), the
image data in eight rows (indicated in light gray which contain
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Fig. 4. (a) Circuits in one pixel and (b) 1-bit pixel memory circuit.

Fig. 5. (a) Block-readout scheme of DPS, (b) LFE, and (c) horizontal edge filter.

100 × 8 pixels) are simultaneously read out to 24 LFE circuits
bit serially. Each LFE circuitry receives two 4 × 8 data blocks
from the left and right, which form an 8 × 8 data block. The
data in light gray are sufficient to perform the 5 × 5 kernel
calculations and the maximum gradient selection in the LFE at
all dark gray pixel sites (96 × 4 pixel sites) immediately with
no extra buffer memories. However, to keep the LFE module
rational in the interconnection and chip areas, the kernel
calculation should be performed in a row-parallel manner,
and 24 groups of LFE circuits are employed in this design.
Therefore, for example, the black pixel sites (24 pixel sites in
total) are processed by these LFE circuits simultaneously. The
edge direction and the maximum gradient value are generated
in each LFE, as shown in Fig. 5(b).

Fig. 5(c) shows the horizontal edge filter in detail. In this
filter, 8 × 8-pixel data are input to two 64-input adders via
two 8 × 8 masking circuitries, allowing only necessary data
to go through (indicated in white). The absolute difference of

the adder outputs yields the gradient value. By simultaneously
shifting the data go-through locations (masking patterns) in all
masks for 16 times, kernel convolutions are completed for all
dark gray pixel sites in Fig. 5(a). Thus, LFE at 96 × 96 pixel
sites is accomplished very efficiently without any extra buffer
memories. Here, the masking patterns are generated in the
kernel program control circuits (Fig. 3) using shift register
arrays and broadcast to all groups of LFE circuits. This LFE
architecture was first implemented in a 0.18-μm technology
in [52] for still image recognition with a 68 × 68 DPS array.
The following MFE function has been developed for the first
time in this paper, and all digital circuits are implemented in
a 65-nm technology.

D. MFE Module

Fig. 6 shows the MFE module. The array of memory
columns at the top stores the filtered image data provided
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Fig. 6. Pixel-parallel processing architecture of MFE module.

Fig. 7. PE composed of binary sorting circuits and functional circuits.

from the LFE module. Each memory column has a 13-bit
static RAM (SRAM): 2 bits for the edge direction (maximum
gradient direction) and 11 bits for the gradient value. The array
of 24 × 384 memory columns stores all the filtering results
obtained from the 96 × 96 pixel sites in the 100 × 100 DPS
array. A common signal is provided as the clock for timing
control in pixel-parallel SRAM data access. The memory
array, the array of PEs, and the full parallel adder are fully
connected. The adder’s output is fed back to the PE array via
the comparator. With this configuration, an efficient binary
sorting algorithm, the rank ordering [71] of all 9216 gradi-
ent values, is accomplished in only 11 comparison cycles,
namely, a predetermined number of edge flags (like 20% of all
pixel sites, for instance) having larger gradient values can be
selected and retained in the edge map. In this way, the MSEM
(Fig. 1) is obtained. When combined with the 2-bit direction
data, this MSEM represents the four SEMs.

Fig. 7 illustrates the PE configuration composed of two main
parts: 1) the binary sorting circuits for MSEM generation and
2) the functional circuits for MFE and data output. When the
LFE for all pixel sites finishes, the results have been already
recorded on the memory array. Then, the Thresholding Mode
signal selects the output signal from the binary sorting circuits
to be transferred to the full parallel adder. According to the
rank-order filtering structure, the MSEM can be extracted

Fig. 8. Chip photomicrograph and circuit layout of one pixel.

efficiently [52]. After the binary sorting, the MSEM datum
of each pixel site is always preserved in the Flag Reg. of
the binary sorting circuits. The General Reg. preserves the
AEM datum. Controlled by the Frame Proc. signal and Mode
Select signal, the MSEM datum in the Flag Reg. can be
either copied directly to, or ORed/EORed with the AEM datum.
Controlled by the Thresholding Mode signal, the whole frame
of the binary AEM can be directly transmitted to the full
parallel adder. The summation result is compared with the
motion detecting value by the comparator in Fig. 6, and the
comparison result (feedback signal) is used to indicate whether
there has been significant motion in the scene. Controlled by
the Data Load signal and Mode Select signal, the data in
the 13-bit SRAM can be directly loaded to the General Reg.
Controlled by the Mode Select signal, all General Regs. can
be configured into 24 circulating shift registers to transfer the
stored data outside the chip and restore these data after the
transfer.

In MFE shown in Fig. 2, the MSEM in each frame is
accumulated, i.e., OR is taken among consecutive frames.
Thus, an AEM is generated. If there is no significant motion,
the total number of edge flag bits in the AEM does not change
much, but it does increase when there exists some motion.
Such accumulation is continued until the total edge count in
the AEM exceeds the motion detecting value. Then, the edge
displacement map is generated by taking EOR between the
AEM data in the General Regs. and the present MSEM data
in the Flag Regs. Therefore, the trajectory of moving parts is
highlighted in a self-speed-adaptive manner. At the same time,
the edge flags from stationary background are erased.

IV. EXPERIMENTAL RESULT

A. Chip Fabrication and Measurement Results

Fig. 8 shows the photomicrograph of a fabricated chip. The
chip was designed in a standard 65-nm CMOS technology
with the PD and ADC in each pixel circuitry using 0.18-μm
transistors. Table I shows the specification of this chip. The
maximum operation frequency of the present proof-of-concept
chip was limited to only 20 MHz due to the clock delay in
the interconnects of SRAM module, which was revealed by
the postfabrication chip analysis. It is important to elimi-
nate the polimide layer when designing CMOS image sensors
using such advanced technologies. In this paper, since this
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TABLE I

CHIP SPECIFICATION

Fig. 9. Measured waveforms showing feedback signal from the chip when
thresholding instruction is executed.

Fig. 10. Original photo taken by this VLSI.

layer was not eliminated, the whole chip except the regions
of input/output pads was covered by the polimide, as can be
seen in the photomicrograph. As a result, the sensitivity of
the image sensor is decreased, and the object capturing range
becomes small.

The waveforms in Fig. 9 show the feedback signal (Fig. 6)
measured from the chip when the 9216 1-bit inputs addition
using the full parallel adder was executed at the rising edge of
the control signal Inst. It took about 8 ns for the full parallel
adder to calculate the edge count in the AEM. As shown in
the figure, a common signal is used as the clock signal for the
MFE module.

Fig. 10 shows a photo taken by this chip without any
processing. The photo integration time in this experiment
was 24 ms. There are some noises in this photo because
of the polymide layer. It should be noted that most of these
noises can also be eliminated by the significant edge extraction
processing circuitry on the chip without affecting the total
performance.

Fig. 11. Measurement results of static feature extraction.

Fig. 12. EOR is taken between AEM and essential edge map at Frame 4 to
highlight the moving bar trajectory.

Fig. 11 shows the measurement results when the chip was
performing static image feature extraction. The outputs from
the LFE module are shown at the top: gradient values (far left)
and edge flag maps for four directions. The bottom figures
show the MSEM and four-directional SEMs extracted by the
MFE module. Top 11% (edge detecting threshold) of edge
flags having larger gradient values were left in the MSEM.
This is the result of sorting of 9216 gradient values stored in
the memory column array.

Fig. 12 shows the measurement results demonstrating MFE
from a moving image sequence (four sample frames are
shown). The edge detecting threshold and motion detecting
threshold were set to be 11% and 16.5%, respectively. A bar
was going out from the left-hand side of the scene. In the
AEM, the trajectory of the moving bar is accumulated on
the left side of the frame. In Frame 4, the edge count in
the AEM exceeds the motion detecting value, triggering the
generation of a motion feature. If a derivative operation is
taken at Frame 4, namely EOR is taken between the AEM and
the MSEM at Frame 4, the trajectory of the moving bar can
be highlighted as the motion feature.

Table II summarizes the necessary number of clock cycles
per pixel for performing different functions employed in the
MFE algorithm. The top two functions are performed by the
LFE module in row parallel while the bottom two by the MFE
module in pixel parallel.
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TABLE II

PROCESSING SPEEDS IN CYCLES FOR DIFFERENT FUNCTIONS

Fig. 13. Experimental setup of object recognition system built with fabricated
chip.

TABLE III

SUMMARY OF FPGA PART IN THE SYSTEM

B. Object Detecting System

An experimental object recognition system was built using
a fabricated chip and an FPGA board for demonstration.
The chip was controlled by a pattern generator (Tektronix
TLA715), and a monitor was used to display the results
from the FPGA board. Fig. 13(a) shows a photo of the
packaged chip mounted on socket board. Fig. 13(b) shows a
photo of the demonstration system without the logic analyzer
and the monitor. The socket board is put beneath the lens.
Two 100-W lights are used as light sources. Testing objects
were put about 30 cm above the lens. The chip extracts both
the static features and motion features, and transfers them
to the FPGA, in which feature vector generation (FVG) and
pattern recognition are performed. The DE2-70 FPGA board
from Terasic [72] is used in the system. It contains an Altera
Cyclone II 2C70 FPGA as the main device, as well as some
auxiliary devices including the video graphics array (VGA)
digital-analog convertor (DAC). A summary of the FPGA part
in this system is given in Table III.

Fig. 14 shows the system configuration in detail. The MFE
chip developed in this paper transfers features (both static
and motion features), motion detection results (the feedback

Fig. 14. Configuration of object recognition system built for demonstration.

signal), and clock signal to the FPGA. The clock signal is
supplied to an on-chip phase-locked loop inside the FPGA to
provide three clocks used for data buffering, signal processing,
and display control. Whenever there is a new frame, according
to its motion detection result, the data buffer records the
extracted features into corresponding SRAM in two memories.
One is a video memory for display; the other is a feature
memory for data processing. Considering the resolution of the
on-chip DPS, the size of the identification window is designed
to be 32 × 32. The 64-D APED vector [50] generated from
SEMs is used as the static feature vector. For the motion
feature vector, a 64-D averaged-displaced-edge-distribution
(ADED) vector is proposed in which the 32 × 32 identification
window on the edge displacement map (motion features) is
equally divided into 64 4 × 4 subregions with the total number
of edge flags in each subregion to be one component. A FVG
unit is developed to generate both APED and ADED vectors
for the matching circuitry. The FVG can access feature data
of one row, including both static and motion features, in row
parallel. Therefore, it takes 32 clock cycles to generate one
pair of APED and ADED vectors. Controlled by the Mode
Setting signal, the matching circuitry can run in two operating
modes: 1) the multiobject recognition mode and 2) the moving
object recognition mode. The on-FPGA display controller
generates both the display control/synchronization signals that
are directly transmitted to the display and the video signals
that are transmitted after being converted to analog signals
by the on-board VGA DAC. The operating frequency of the
display controller (108 MHz) is determined by the final display
format, which is the standard VGA video signal format for
1280 × 1024-pixel display operating at a screen refresh rate
of 60 Hz.

Fig. 15 shows the results of two frames when the system was
working in multiobject recognition mode. In the experiment,
a smiling face was used as the target whose APED vector [50]
was extracted as the target vector for pattern recognition. The
system identifies the regions that have similar feature vectors
with the target vector and marks them with red squares. The
successful identification of the target even in case of partial
occlusion demonstrates the robustness of the static features in
still image analysis.

Fig. 16 shows the results of four frames when the system
was working in moving object recognition mode. In the
experiment, several copied images of the target were placed



1796 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 10, OCTOBER 2014

TABLE IV

COMPARISON WITH PREVIOUS DPSs

Fig. 15. Experimental results of object recognition system in multiobject
recognition mode.

in the background, and a single image was being moved in
front. The system identifies the most similar pattern in the
scene using either static features or motion features. When
static features are used, the most similar pattern is identified
indifferent to its motion. With the motion features, however,
only the moving images are identified, as shown in the bottom
row. It should be noted that the stationary background images
are erased fairly well by temporal derivative operation in MFE,
and only the information from moving images is preserved.
Such processing is important in robust moving object tracking
as well as in action recognition, as demonstrated in [60].
The total processing time of this system in both modes for
one frame was 3.5 ms with 2.4 ms consumed in the FPGA
(prototype chip operated at 18 MHz; FPGA at 54 MHz for
pattern matching and 108 MHz for display control).

C. Comparison

Table IV shows the comparison between this paper and
previous DPSs. Except for the pixel developed in [35], this
paper utilizes a smaller pixel size due to the 65-nm process.
Furthermore, the advanced process enables the implemen-
tation of on-chip large-scale digital processing circuitry to
achieve complex functionality. As a result, MFE that employs
interframe image processing can be performed in fully pixel
parallel.

Fig. 16. Experimental results of object recognition system in moving object
recognition mode.

V. DISCUSSION

This paper is originally developed to perform the MFE
algorithm introduced in Section II. However, both LFE and
MFE modules can be improved to implement vision sensor
SoCs for other image processing algorithms.

A. Improvement of LFE Module

In the row-parallel LFE module, eight masks are employed
for directional filtering in four directions according to the LFE
algorithm in Fig. 1(a). Because there are only +1 and −1 in
the filtering kernels in this algorithm, simple binary masks
are used in this paper. These masks are programmable. For
example, the original image in Fig. 10 is taken by activating
only one mask with only one position allowing the corre-
sponding datum in the 8 × 8 data block to pass through. For
applications that need more complex filtering kernels, such as
Gaussian filters or Gabor filters [8], masks with each position
having a corresponding weight can be employed. The number
of masks, eight in this paper, can also be changed accordingly.
The maximum gradient selection circuitry [Fig. 5(b)] can be
enhanced to more general purpose processing circuits for other
low-level image processing tasks.

B. Improvement of MFE Module

The MFE module is developed to extract the edge displace-
ment map for the MFE algorithm introduced in Section II.
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Based on the extracted motion features, motion fields
[64], [65] can be generated in both horizontal and vertical
directions for motion analysis. However, the experimental
results in [60] show that the motions in vertical direction
are more easily detected using the horizontal edges only and
vice versa. By activating two masks for one directional kernel
and blocking all six other masks, this chip can extract motion
features for either horizontal or vertical direction, but not both
at the same time. The architecture of the MFE module can be
enhanced for performing MFE in two directions (or more)
by increasing the number of bits in SRAM columns and
designing circuits in PEs to write the data in General Regs.
back to the SRAM columns in pixel parallel. In this way,
the MFE algorithm introduced in [60], which needs edge
displacement maps in both horizontal and vertical directions,
can be efficiently implemented.

C. Analyzing Images With Moving Backgrounds

The MFE algorithm in Section II works well in
analyzing images that having static backgrounds, which is
quiet important for applications, such as human–computer
interface, video surveillance, and remote gesture control.
However, the VLSI architecture introduced in this paper can
also be used in analyzing images having moving backgrounds.
For example, for the ego-motion analyzing algorithms devel-
oped in [63] and [73], the computationally expensive GFE
procedure can be efficiently carried out using the chip in this
paper. In addition, the self-speed-adaptive (or the so-called
automatic speed adaptation in [63] and [73]) procedure can
be efficiently achieved using the architecture developed in the
MFE module. Such ego-motion information is very helpful for
analyzing images with moving backgrounds.

VI. CONCLUSION

A self-speed-adaptive MFE VLSI has been developed and
implemented in a standard 65-nm CMOS process for a
VLSI-implementation-friendly algorithm. By employing the
DPS, pixel-parallel ADC is achieved. The block-readout
scheme provides a direct connection from the image sensor
to the LFE module, allowing the row-parallel processing.
MFE module has been developed for fully pixel-parallel
feature extraction. As a result, a processing time of 0.9 ms
for the MFE after capturing an image has been achieved when
the chip was running at 20 MHz. The effectiveness of such an
architecture was demonstrated by building an object detecting
system that can localize images of target objects only when
they are in motion.
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