
SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

Joint Semantic Preserving Sparse Hashing for
Cross-Modal Retrieval

Zhikai Hu, Yiu-ming Cheung*, Fellow, IEEE, Mengke Li, Weichao Lan, Donglin Zhang, Qiang Liu, Senior
member, IEEE

Abstract—Supervised cross-modal hashing has received wide
attention in recent years. However, existing methods primarily rely
on sample-wise semantic relationships to evaluate the semantic
similarity between samples, overlooking the impact of label
distribution on enhancing retrieval performance. Moreover, the
limited representation capability of traditional dense hash codes
hinders the preservation of semantic relationship. To overcome
these challenges, we propose a new method, Joint Semantic
Preserving Sparse Hashing (JSPSH). Specifically, we introduce a
new concept of cluster-wise semantic relationship, which leverages
label distribution to indicate which samples are more suitable for
clustering. Then, we jointly utilize sample-wise and cluster-wise
semantic relationships to supervise the learning of hash codes. In
this way, JSPSH preserves both kinds of semantic relationships
to ensure that more samples with similar semantics are clustered
together, thereby achieving better retrieval results. Furthermore,
we utilize high-dimensional sparse hash codes that offer stronger
representation capability to preserve such more complex semantics.
Finally, an interaction term is introduced in hash functions
learning stage to further narrow the gap between modalities.
Experimental results on three large-scale datasets demonstrate the
effectiveness of JSPSH in achieving superior retrieval performance.
Codes are available at https://github.com/hutt94/JSPSH.

I. INTRODUCTION

IN the past decade, the growing availability of multimedia
data on the Internet has made cross-modal retrieval become

a research hotspot. Cross-modal retrieval [1]–[7] refers to the
task of retrieving data across different modalities, such as using
a piece of text to retrieve the corresponding image, video, or
audio, etc. To cope with the large amount of multimedia data
and improve retrieval efficiency, hashing technology [8], [9] has
been widely used in the field of cross-modal retrieval, resulting
in the development of cross-modal hashing methods [10]–[15].
These methods map data of different modalities into a shared
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Fig. 1. When disregarding the distribution of labels, the sample-wise semantic
similarity between A and B and that between A and C are identical. However,
given that there are more samples affiliated with label C, it is desirable for A
to be more akin to C than B, to produce more correct retrieval outcomes. This
relationship is referred to as cluster-wise semantic relationship in this paper.

Hamming subspace, enabling fast retrieval of multi-modal data
through the simple XOR operation.

In general, cross-modal hashing methods can be broadly
classified into unsupervised [11], [13], [14], [16], [17] and
supervised methods [18]–[21]. Supervised cross-modal hashing
methods, which make use of label information, can more effec-
tively mine the semantic relationships between multi-modal data
and often achieve better retrieval results. Nevertheless, since
the widely used logical labels are relatively rough supervision
information, how to use them more efficiently to mine the
relationships between multi-modal data and supervise the
learning of corresponding hash codes is still an open problem.
To the best of our knowledge, existing methods [21]–[25]
typically estimate the similarity between samples based on the
cosine distance or inner product of their corresponding labels,
capturing the sample-wise semantic relationship. However,
these approaches ignore the fact that the distribution of labels
can be highly diverse across different datasets, and such
information is crucial to further improving retrieval quality. For
example, let us consider a scenario where there are three labels
A [0,0,1,1], B [1,0,0,1], and C [0,1,1,0], and their corresponding
sample sizes are 1, 10, and 100, respectively, as shown in Fig. 1.
The similarity between A and B and that between A and C,
calculated by the cosine distance of their labels, are both 1/2.
However, since there are more samples corresponding to label
C, we may expect that more correct samples can be retrieved
during the retrieval phase if A is closer to C. Therefore, in
addition to the sample-wise semantic relationship, we can also
consider a cluster-wise semantic relationship. In this context,
the cluster-wise similarity between A and C is a measure of
how well they belong to the same cluster of samples, compared
to A and B. Obviously, considering the cluster-wise semantic
relationships of labels in supervised cross-modal hashing can
potentially lead to more accurate retrieval results.

Furthermore, the representation capability of traditional
dense hash codes commonly used in cross-modal hashing
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is limited. Traditional hash encoding scheme map multi-
modal data into dense -1 and 1 codes, requiring long hash
codes to achieve better retrieval performance [26]–[28]. This
results in additional storage space burden and lower retrieval
efficiency. Meanwhile, there is also a similarity mismatch
between dense hash codes and labels. Specifically, as labels
consist of binary values 0 and 1, their similarity range is
SL ∈ [0, 1], where SL = 0 represents semantic irrelevance
(negative relationship), and SL > 0 represents semantic
relevance (positive relationship). However, the similarity range
of traditional dense hash codes is SB ∈ [−1, 1], where SB ≤ 0
represents negative relationships, and SB > 0 represents
positive relationships. To bridge the mismatch in value range,
some methods [24], [29] use 2SL−1 to estimate SB . However,
in this case, positive relations in SL (0 < SL < 0.5) will be
incorrectly estimated as negative relations. In addition, most
of the current two-stage cross-modal hashing methods [12],
[24], [25], [28], [29] learn the hash function separately for
each modality, which leads to a lack of interaction between
modalities, ultimately hindering the capability to bridge the
heterogeneous gap.

In this paper, we propose a framework based on sparse
hashing to address the aforementioned problems, which is
referred to as Joint Semantic Preserving Sparse Hashing
(JSPSH). Specifically, we propose a joint learning scheme that
incorporates both of the commonly used sample-wise semantic
relationship and a newly introduced cluster-wise semantic
relationship obtained through label clustering. We utilize these
relationships simultaneously to supervise the learning of hash
codes. Furthermore, we leverage the representation capability
of high-dimension sparse hash codes, which have been shown
to be effective in encoding multi-modal data [25], [30]. With
sparse hash codes, there is no issue of mismatching similarity
value domains, as the values of sparse hash codes are 0 or
1, which is the same as labels. Finally, to further narrow the
heterogeneous gap between modalities during the hash function
stage, we introduce a new interaction term to increase the
interaction between them. The main contributions of this paper
are summarized as follows:

• We propose a novel approach called Joint Semantic
Preserving Sparse Hashing, which leverages both sample-
wise and cluster-wise semantic similarity to guide the
learning of hash codes. By introducing cluster-wise seman-
tic relationships, JSPSH ensures that samples with similar
semantics can be clustered together more appropriately to
achieve better retrieval performance.

• To enable effective learning of these joint semantic corre-
lations, we adopt more expressive high-dimension sparse
hash codes for encoding multi-modal data. Compared
with traditional dense hash codes, it can better preserve
complex semantic relationships.

• We introduce a new interaction term in the hash function
learning stage, which ensures better alignment between
modalities. This further improves the retrieval performance
of JSPSH by strengthening the relationship between the
different modalities.

• The proposed method was evaluated on three commonly

used public datasets, and the experimental results demon-
strate that our method outperforms existing methods, both
dense and sparse hashing ones.

The remainder of this paper is organized as follows. Sec-
tion II makes an overview of some related works. Section III
presents the details of the proposed JSPSH. Then, Section IV
provides the experiment results and analyses. Finally, a con-
clusion is drawn in Section V.

II. RELATED WORK

In this section, we briefly classify existing cross-modal
hashing methods based on their encoding method into two
categories: traditional dense hashing and high-dimension sparse
hashing methods.

A. Dense Cross-Modal Hashing

By default, cross-modal hashing usually refers to dense
cross-modal hashing, which encodes multi-modal data into
dense hash codes where each bit in the k-bit hash code must
be 1 or -1. Depending on whether supervised information is
utilized or not, these methods can be further classified into
unsupervised and supervised methods. Unsupervised cross-
modal hashing methods learn hash codes for multi-modal data
without the use of any explicit supervision. They typically
exploit the pairwise information between different modalities
or the underlying manifold structure of data within each
modality to learn the hash codes. A variety of unsupervised
cross-modal hashing methods have been proposed in the
literature. For example, Inter-Media Hashing (IMH) [10] learns
linear hash functions to map multi-modal data into a common
Hamming space by exploring the inter-modal and intra-modal
correlation of different modalities. Collective Matrix Factoriza-
tion Hashing (CMFH) [11] utilizes the pairwise information
between different modalities and introduces collective matrix
factorization to learn unified hash codes. Same as CMFH,
Latent Semantic Sparse Hashing (LSSH) [31] learns unified
hash codes for all modalities by utilizing the sparse coding and
matrix factorization techniques. Besides, Composite Correlation
Quantization (CCQ) [32] jointly map both multi-modal data
into an isomorphic latent space and learn corresponding hash
codes by composite quantization. Fusion Similarity Hashing
(FSH) [33] employs a fusion strategy to learn hash codes by
constructing an un-directed graph among different modalities.
Collective Reconstructive Embedding (CRE) [34] also learn
unified binary codes by reconstructing embedding of multi-
modal data collectively. More recently, Robust Unsupervised
Cross-Modal Hashing (RUCMH) [35] further improves the
robustness of cross-modal hashing by exploring the relation
between modalities with only partial or even no pairwise
information.

Supervised cross-modal hashing methods utilize the ad-
ditional information provided by labels or annotations to
learn hash codes. For example, Semantics Preserving Hashing
(SePH) [18] uses labels to learn a similarity distribution,
with the objective of maximizing the similarity between the
learned hash codes and the given distribution. Generalized
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Semantics Preserving Hashing (GSPH) [23] propose a cross-
modal hashing algorithm that can seamlessly handle multi-
label and single-label, paired data, and unpaired data scenarios,
making it applicable to a wide range of real-world scenarios.
Besides, Discriminative Cross-modal Hashing (DCH) [36]
uses labels to learn a classifier, with the aim of generating
more discriminative hash codes. To further reduce quantization
error, DCH employs the Discrete Cyclic Coordinate (DCC)
[37] descent method to discretely update the learned hash
code. Label Consistent Matrix Factorization Hashing (LCMFH)
[38] and Scalable disCRete mATrix faCtorization Hashing
(SCRATCH) [12] simultaneously leverage heterogeneous multi-
modal data and labels to learn consistent hash codes that
preserve semantic similarity as much as possible. Matrix Tri-
Factorization Hashing (MTFH) [22] is the first cross-modal
hashing method that attempts to represent different modal
data with hash codes of different lengths, which can help
capture more information from each modality. Fast Cross-
Modal Hashing (FCMH) [24], on the other hand, emphasizes
both global and local similarity preservation in the process of
learning hash codes, and proposes a discrete update framework
to optimize the objective function. To make better use of label
information, Adaptive Label correlation based asymmEtric
Cross-modal Hashing (ALECH) [29] uses more adaptive labels
to supervise the learning of hash codes.

Thanks to the impressive performance of deep learning on
various tasks [39]–[42], deep cross-modal hashing methods
[27], [43]–[53] have recently gained significant attention and
have shown promising results. These methods utilize the latest
deep learning techniques, such as knowledge distillation and
contrastive learning, to learn feature representations from
multiple modalities and use these representations to gener-
ate compact hash codes. However, they are typically more
computationally expensive and hard to be optimized under the
discrete constraint.

B. High-Dimension Sparse Hashing

High-dimensional sparse hashing is a technique in which
data is mapped into a higher-dimensional Hamming space,
with only a small subset of bits containing information. This
approach contrasts with dense hashing, where all bits in the
hash code must be either 1 or -1. In high-dimensional sparse
hashing, the number of bits carrying information is significantly
smaller than the total number of bits, resulting in a sparse
representation that is more efficient in terms of storage and
computation. The first high-dimensional sparse hashing work,
Fly-Hash [54], was inspired by the biological fruit fly olfactory
circuit and modified Locally Sensitive Hashing (LSH) [55],
originally dense hashing, into a high-dimensional sparse version.
The key characteristic of this approach is that it uses a hash
function to project the data into a high-dimension Hamming
space, where only a small number of bits contain information.
Specifically, a winner-takes-all strategy is employed, that is,
the largest r elements of the output of hash function are set
to 1 and the rest are set to 0. In Fly-Hash, the hash mapping
function is randomly generated, so it cannot make use of the
inherent information of data. In order to address this issue,

some data-driven methods have been proposed, such as Bio-
Inspired Hashing (Bio-Hash) [56] and Optimal Sparse Lifting
Hashing (OSLHash) [57]. Although the performance has been
significantly improved, these methods are still limited to single
modality retrieval tasks.

More recently, high-dimensional sparse hashing has been
firstly introduced in cross-modal hashing by High-dimension
Sparse Cross-modal Hashing (HSCH) [25]. HSCH maps
multi-modal data into a high-dimensional sparse Hamming
space, where only a small number of bits contain information.
Compared with dense hashing, high-dimensional sparse hashing
has been shown to have more efficient expression ability and
better retrieval performance. Later, an online version of HSCH
has also been proposed [30]. However, to date, there are still
only a small number of cross-modal hashing methods based
on high-dimensional sparse hashing.

III. PROPOSED METHOD

A. Notations

Assume that there are n piece of multi-modal data XI ∈
Rd1×n and XT ∈ Rd2×n that represent image and text data,
respectively, where d1 and d2 indicate the dimensions of image
and text data, respectively. Their corresponding label matrix
is denoted as L ∈ {0, 1}c×n, where c represents the number
of data categories. Lij = 1 if the j-th sample, either image or
text, belongs to the i-th category; otherwise, it is 0. The aim
is to simultaneously map XI and XT to a high-dimensional
Hamming space and obtain a unified hash code B ∈ {0, 1}k×n,
where k denotes the dimension of the Hamming space. Unlike
traditional dense hash codes, only r elements in each hash
code of B are assigned a value of 1, and the rest are all 0.
Thus, in this paper, r is utilized to indicate the length of the
sparse hash code, while the sparse rate of the hash code is
represented as τ = r/k.

The other symbols used in this paper are defined as follows:
||·||F represents the Frobenius norm of a matrix. ||·||2 represents
the 2-norm of a vector. tr(·) represents the trace of a matrix.
1m represents an m-dimensional all-ones column vector. Im
represents an m×m identity matrix.

The proposed JSPSH is a two-stage model that consists of
three main parts: semantic relationship exploring, hash codes
learning, and hash functions learning. The overall framework
of JSPSH is depicted in Fig. 2.

B. Semantic Relationship Exploring

1) Sample-wise Semantic Relationship: We first leverage
the label information to capture the sample-wise semantic
relationship Sc. In this semantic relationship, each sample is
treated as an independent entity, and the similarity between each
pair of entities is calculated based on their corresponding labels.
One of the most commonly used metrics is to compute the
cosine similarity between the samples, resulting in an n-by-n
similarity matrix Ss = cos(L,L). However, if we directly use
Ss in the subsequent optimization process, the time complexity
of the solution will be at least O(n2), making it challenging for
the algorithm to be applied to large-scale datasets. To address
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Fig. 2. The proposed JSPSH framework is a two-stage approach for learning hash codes. In the first stage, both sample-wise and cluster-wise semantic
relationships are simultaneously extracted using label information. The sample-wise semantic relationship is obtained by computing the cosine distance
between labels. To obtain different levels of cluster-wise semantic relationships, various cluster numbers are selected for clustering. Then, we compute the final
cluster-wise semantic relationship as a weighted average of the cluster-wise semantic relationships at various levels. Finally, the sample-wise and cluster-wise
semantic relationships are jointly used to train high-dimensional sparse hash codes. In the second stage, hash functions are learned for the different modalities
using the learned hash codes. To reduce the heterogeneous gap between the modalities, a constraint is added between the different hash functions to enhance
their interaction.

this issue, we are inspired by [58] to decompose the cosine
similarity calculation into a more efficient operation

Ss = L̄⊤L̄, (1)

where each column of L̄ is a normalized vector, i.e., L̄∗j =
L∗j/||L∗j ||. Since the dimension of L̄ is c×n, we can prioritize
left-side matrix multiplication in the subsequent optimization
process to avoid generating an n × n matrix. This will help
reduce both the time and space complexity.

It is evident that the value range of Ss in Eq. (1) falls within
the interval [0,1]. However, in traditional dense cross-modal
methods, since the dense hash code values are either -1 or
1, their similarity values are limited to the range of [-1,1].
To rectify this incompatibility, some methods [24], [29], [58]
incorporate an offset term as follow

S
′

s = 2L̄⊤L̄− 11⊤,S
′

s ∈ [−1, 1]n×n. (2)

Although the value ranges are aligned in Eq. (2), offset
correction will lead to misclassification of positive samples in
Ss (0 < Ss < 0.5) as negative samples (−1 < S

′

s < 0). This
problem arises because the traditional dense hash code has
the ability to finely describe the relationship between negative
sample pairs, i.e., it can calculate the specific value in the
range [-1, 0] for the relationship between negative sample
pairs. However, the similarity Ss obtained from labels usually
marks the relationship between all negative sample pairs as 0.
Therefore, simple offset correction does not fully resolve the
inherent contradiction between the dense hash code and the
similarity based on label construction.

In this paper, the use of high-dimensional sparse hashing al-
lows for a perfect circumvention of this problem. The similarity
calculated based on the sparse hash code B ∈ {0, 1}k×n also
indicates the relationship between all negative sample pairs
as 0, just like Ss, resulting in a natural alignment with Ss.
Moreover, the powerful representation ability of sparse hash
codes enables better mining of the relationship between all
positive sample pairs.

2) Cluster-wise Semantic Relationship: While the sample-
wise semantic relationship has been widely used and shown
satisfactory performance [22], [23], [29], [30], [58], it overlooks
the overall distribution of labels that may play a critical role in
further improving retrieval results. For instance, in the example
illustrated in Fig. 1, if the sample-wise semantic similarity
between label A and other labels is the same, we desire it to
be closer to the label that contains more samples, which could
ensure that more correct results can be retrieved. To this end,
we introduce cluster-wise semantic relationship to capture this
similarity tendency. Specifically, we hope to further enhance
the retrieval results by exploring which labels should be closer
or clustered together based on the distribution of labels.

To obtain the cluster-wise semantic relationship, we treat
each label in L as a feature and use k-means algorithm to cluster
L. Based on the clustering results, we define the cluster-wise
semantic similarity between two samples as follow:

Sij =

{
1, if C(i, j) = 1
0, otherwise

, (3)

where C(i, j) = 1 indicates that the i-th label and j-th label
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belong to the same cluster.
As Eq. (3) shows, S is an n× n matrix, which would also

result in an O(n2) time complexity as analyzed previously.
To avoid this problem, we propose assigning new labels to
samples based on the clustering results. Specifically, we treat
all samples within the same cluster as the same class and
assign the same one-hot label to them. Then, we obtain a new
label matrix L̃ ∈ {0, 1}p×n, where p is the number of clusters
specified in the clustering algorithm. With these new labels,
we can calculate the cluster-wise semantic similarity of the
data using the following formula:

S̃c = L̃⊤L̃. (4)

Same as Eq. (1), the time complexity O(n2) can be avoided
by prioritizing left-side matrix multiplication.

During the clustering of labels, a thorny issue is determining
the optimal number of clusters p. Given that label distribution
varies across datasets, it is challenging to set the most
appropriate p for each dataset. Fortunately, as clustering is
not the ultimate objective of our proposed approach, we could
focus less on the selection of p. Our goal is just to extract
cluster-wise semantic information between samples through
clustering. Consequently, we can instead extract different levels
of cluster-wise semantic information by varying the value
of p. Specifically, we can choose m different numbers of
clusters, denoted as {pi}mi=1. With different pi, we can obtain
different clustering results and corresponding new labels L̃(i).
Furthermore, this enables us to obtain a series of cluster-wise
semantic similarity matrices

S̃(i)
c = L̃(i)⊤L̃(i), i = 1, 2, ...,m. (5)

To leverage cluster-wise semantic relationships across dif-
ferent levels simultaneously, we compute the final cluster-wise
semantic similarity Sc as a weighted average of the cluster-
wise semantic similarities S̃

(i)
c obtained at different numbers

of clusters pi. Specifically, we use different weights wi to
adjust the contribution of each level of clustering to the final
cluster-wise semantic similarity, that is,

Sc =
m∑
i=1

wiS̃
(i)
c =

m∑
i=1

wiL̃
(i)⊤L̃(i), s.t.

m∑
i

wi = 1. (6)

Considering that a larger number of clusters pi will result in
stronger correlations between samples belonging to the same
cluster, we believe the corresponding relationship S̃

(i)
c to be

more informative. Therefore, we set the weights wi in Eq. (6)
proportional to pi. Then, the weights are computed as follows:

wi =
pi∑m
i=1 pi

, i = 1, 2, ...,m. (7)

Remark. Why can clustered results provide effective cluster-
wise semantic relationship which benefits the retrieval results?
On one hand, clustering labels that are semantically similar
enhances the sample-wise semantic relationship. In other words,
it helps identify which sample-wise semantic relationships need
to be highlighted. On the other hand, when the sample-wise
semantic relationship between labels is the same, clustering
results can provide better ranking. For instance, in Fig. 3,

cluster1
cluster2

centoid1
centoid2

𝑑4
𝑑3

𝑑1 𝑑2

𝑑1 = 𝑑2 𝑑3 < 𝑑4

10 samples 100 samplessingle sample

AB

C

Fig. 3. When the sample-wise semantic relationship between C and B and
that between C and A are the same, i.e., d1 = d2, k-means algorithm will
cluster C with A because there are more samples corresponding to label A.
By preserving this cluster-wise semantic relationship, it can be guaranteed that
more semantically similar samples are clustered around C in the retrieval set.

assume that the sample-wise semantic relationship between C
and B, and C and A is the same, i.e., d1 = d2. Since there
are more samples corresponding to label A, the center point
of cluster 2 will be closer to A. Therefore, in the clustering
process, C will be closer to the center point of cluster 2, i.e.,
d3 < d4, and C will be clustered with A. This cluster-wise
semantic relationship tends to make C and A closer to ensure
that more semantically similar samples are gathered around.
This decision is more advantageous when A and B are negative
samples of each other. For instance, suppose that the labels
A,B, and C correspond to 001, 100, and 101, respectively. In
this case, it is better to make C closer to A because it can
ensure more accurate retrieval results.

C. Hash Codes Learning

After obtaining the sample-wise and cluster-wise semantic
relationships, we will use them to jointly learn unified hash
codes B. The learned hash codes B should ideally preserve
the semantic information at both the sample and cluster levels.
To this end, we define following object function:

min
B

||B⊤B− rSs||2F + α||B⊤B− rSc||2F ,

s.t. B ∈ {0, 1}k×n,B⊤1k = r1n,
(8)

where hyper-parameter α is used to balance the ratio be-
tween the two types of semantic relationships. We have
also introduced two constraints to the function. Specifically,
B ∈ {0, 1}k×n and B⊤1k = r1n ensure binary values and the
sparsity of the learned hash codes B, respectively. However,
they have also made the optimization of the object function
Eq. (8) into an NP-Hard problem. To address this challenge,
we adopt an asymmetric hashing strategy [59] and introduce
an intermediate variable H ∈ Rk×n. Specifically, we remove
the discrete constraints of one B in the matrix multiplication
and transform it into a continuous variable H. We then add a
constraint item between B and H to reduce quantitative losses.
Additionally, to minimize redundancy among different bits of
the hash codes, we further apply an orthogonal constraint on H.
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As a result, Eq. (8) is transformed into the following problem:

min
H,B

||H⊤B− rSs||2F + α||H⊤B− rSc||2F + β||B−H||2F ,

s.t. B ∈ {0, 1}k×n,B⊤1k = r1n,HH⊤ = nr/kIk.
(9)

Then, we can disassemble the solution of Eq. (9) into two
steps of H-Step and B-Step to optimize them alternately.
H-Step: Fix B, Eq. (9) can be reformulated into the

following sub-problem:

max
H

tr((rBSs + αrBSc + βB)H⊤),

s.t. HH⊤ = nr/kIk.
(10)

We use V = rBSs+αrBSc+βB. According to [30], [60],
the optimal solution of Eq. (10) is given by

H =
√
nr/k[Q, Q̄][T, T̄]⊤, (11)

where the matrix Q is obtained from the eigen-decomposition
of matrix VV⊤. Define

VV⊤ = [Q, Q̃]

[
Σ 0
0 0

]
[Q, Q̃]⊤, (12)

where Σ ∈ Rk′×k′
is the diagonal positive eigenvalue matrix,

and k′ is the rank of VV⊤. Matrix Q ∈ Rk×k′
consists of

corresponding eigenvectors of positive eigenvalues and Q̃ ∈
Rk×(k−k′) consists of k−k′ eigenvectors of eigenvalue 0. Then,
Q̄ ∈ Rk×(k−k′) can be obtained by performing the Gram-
Schmidt process on Q̃. Matrix T = V⊤QΣ−1/2 ∈ Rn×k′

and T̄ ∈ Rn×(k−k′) is a random orthogonal matrix.
Considering that the calculation of V involves the matrix

multiplication of S, which can result in a time complexity of
O(n2), we propose to calculate V using the following formula

V = r(BL̄⊤)L̄+ αr

m∑
i=1

wi(BL̃(i)⊤)L̃(i) + βB. (13)

As a result, by prioritizing left-side matrix multiplication,
the time complexity of V decreases from O(kn2) to O(ckn),
where c, k ≪ n. Section III-F gives a detailed analysis.

B-Step: Fix H, Eq. (9) can be reformulated into the
following sub-problem:

max
B

tr((rHSs + αrHSc + βH)B⊤),

s.t. B ∈ {0, 1}k×n, B⊤1k = r1n.
(14)

The optimal solution is given by

B = signr(rHSs + αrHSc + βH)

= signr(r(HL̄⊤)L̄+ αr

m∑
i=1

wi(HL̃(i)⊤)L̃(i) + βH),

(15)

where signr is a function that transforms a real-number vector
x into a string of sparse hash code and is defined as follow:

signr(x) =

{
1, if x is the top-r largest elements
0, otherwise

.

(16)
The winner-takes-all strategy is adopted by the signr(x).

This strategy activates only the largest r-bit elements in x and
leaves the rest to 0.

B BP𝐼X𝐼

(a) (b)

P𝑇X𝑇 P𝐼X𝐼

P𝑇X𝑇

Fig. 4. When hash codes of different modalities are not aligned, two different
situations can arise: (a) both PIXI and PTXT have small distances to
B but in different directions, and (b) both PIXI and PTXT have small
distances to B and in the same direction.

D. Hash Functions Learning

After obtaining the hash codes, it is necessary to learn the
hash functions that map the data of different modalities to
the hash codes. One conventional approach is to use a linear
classification model, that is,

min
P∗

||B−P∗X∗||2F , ∗ = {I, T}, (17)

where P∗ denotes the hash functions to be learned. This
approach considers each bit of data mapping to a hash code as
a distinct binary classification problem. Nevertheless, since B
is strictly binary and P∗X∗ is continuous, there will inevitably
be a residual distance between them, and its direction will be
uncontrollable. These errors affect the validity of the generated
hash codes, especially due to the winner-takes-all strategy
used to generate high-dimension sparse hash codes during
the retrieval phase. To address this issue, [30] has proposed
introducing an error correction term and using sample-wise
semantic information to enhance the constraints on the mapping
function as follow

min
P∗

||B−P∗X∗||2F + γ||rSc −B⊤(P∗X∗)||2F , ∗ = {I, T},
(18)

where γ is generally a hyper-parameter with a small value to
control the degree of error correction.

However, the aforementioned two methods have a limitation:
there is a lack of interaction between modalities during the hash
function learning process, which can result in misalignment
of the hash codes of different modalities. In the hash function
learning stage, it is assumed that data of different modalities
share the same hash code B = BI = BT , where BI and BT

represent the hash codes of image data XI and text data XT ,
respectively. However, Eq. (17) and Eq. (18) essentially use
BI and BT independently to learn hash functions for different
modalities, which weakens the assumption BI = BT . This can
cause misalignment of the hash codes of different modalities,
as shown in Fig. 4. Although both distances from PIXI and
PTXT to B are small, the directions are different. Ideally, we
would like to achieve the effect in Fig. 4(b). To address this,
we introduce an interaction term PIXI −PTXT in the hash
function learning stage, which re-emphasizes the assumption
BI = BT . Consequently, the overall optimization function
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becomes

min
PI ,PT

||B−PIXI ||2F + γ||rSc −B⊤(PIXI)||2F

+||B−PTXT ||2F + γ||rSc −B⊤(PTXT )||2F
+µ||PIXI −PTXT ||2F + λR(PI ,PT ),

(19)

where µ and λ are two hyper-parameters and R(PI ,PT ) =
||PI ||2F+||PT ||2F represents the regularization term imposed on
PI and PT . In Eq. (19), we use only the sample-wise semantic
relationship for error correction. There are two reasons for this
decision. Firstly, we believe that hash codes B have effectively
integrated both sample-wise and cluster-wise semantic informa-
tion in the hash codes learning stage. Secondly, using multiple
standards for error correction, i.e., using both sample-wise
and cluster-wise semantic relationships simultaneously, may
introduce contradictions and be counterproductive for learning
hash functions.

Finally, we can alternately solve PI and PT to optimize
Eq. (19) as follows

PI =((1 + λ)Ik + γBB⊤)−1(BX⊤
I + µPTXTX

⊤
I +

γr(BL̄⊤)(L̄X⊤
I ))(XIX

⊤
I + ωId1

)−1,
(20)

PT =((1 + λ)Ik + γBB⊤)−1(BX⊤
T + µPIXIX

⊤
T+

γr(BL̄⊤)(L̄X⊤
T ))(XTX

⊤
T + ωId2

)−1,
(21)

where ωId1 and ωId2 are two small items (ω = 0.01) to avoid
the singularity of matrix X∗X

⊤
∗ .

Compared to previous methods [28]–[30], [61] that only
involve data from the corresponding modalities in training hash
functions, our proposed optimization process simultaneously
involves data from all modalities in the training process. For
example, when solving PI , both XI and XT are involved,
which enhances the interaction between different modalities.
This interaction not only narrows the heterogeneous gap but
also allows for the use of information from multiple modalities
to learn a better hash function P∗.

The whole training process of JSPSH including semantic
relationship exploring, hash codes learning, and hash functions
learning is summarized in Algorithm 1.

E. Proof of Convergence

In this section, we analyze the convergence of JSPSH. During
the hash code learning stage, all variables B and H have
closed-form solutions to their corresponding sub-problems. Let
L(B,H) denote the value of the object function Eq. (9), and we
have L(Bt+1,Ht+1) ≤ L(Bt+1,Ht) ≤ L(Bt,Ht), where t is
the number of iterations. According to the bounded monotone
convergence theory [62], the algorithm will converge to a
stable solution. Similarly, during the hash functions learning
stage, all variables PI and PT have closed-form solutions
to their corresponding sub-problems. Using L(PI ,PT ) to
denote the value of the object function Eq. (19), we have
L(Pt+1

I ,Pt+1
T ) ≤ L(Pt+1

I ,Pt
T ) ≤ L(Pt

I ,P
t
T ). In summary,

the convergence of the JSPSH algorithm can be guaranteed.

Algorithm 1: JSPSH
Input: Cluster number {pi}mi=1, Image data XI , text

data XT , and corresponding labels L;
Output: Unified hash codes B, image hash function

PI , and text hash function PT ;
1 Semantic relationship exploring:
2 for i = 1 to m do
3 Use k-means algorithm to cluster L into pi clusters;
4 Assign new label L̃(i) to data based on the

clustering results;
5 end
6 Hash codes learning:
7 Randomly initialize B and H with a standard normal

distribution;
8 for iter = 1 to max iteration do
9 Update H by Eq. (11);

10 Update B by Eq. (15);
11 end
12 Hash functions learning:
13 for iter = 1 to max iteration do
14 Update PI by Eq. (20);
15 Update PT by Eq. (21);
16 end

F. Complexity Analysis

The JSPSH algorithm involves three main components: label
clustering, hash code learning, and hash function learning. The
time complexity of the label clustering stage is O(

∑m
i tcpin),

where t is the maximum iteration. It is important to note that
this stage is performed only once, and the results are saved
and utilized for subsequent calculations. Therefore, the time
complexity of this stage is not counted. In the hash codes
learning stage, the time complexity of solving H and B in
each round are O(ckn +

∑m
i kpin + kn + k2n + k3) and

O(ckn+
∑m

i kpin+kn+nk log2 r), respectively. In the hash
functions learning stage, the time complexities of solving P1

and P2 in each round are O(k2(k + n + 1) + kn(d1 + d2 +
c) + cd1(n+ k) + kd1 + d21(n+ d1 + 1) + kd1(k + d1)) and
O(k2(k + n + 1) + kn(d1 + d2 + c) + cd2(n + k) + kd2 +
d22(n+ d2 + 1) + kd2(k+ d2)), respectively. As k, c, r, d1, d2,
and pi are all constants and much smaller than n, the time
complexity of the JSPSH algorithm can be considered linear
to the size of the training set n, i.e., O(n). Therefore, it can
efficiently process large-scale datasets.

IV. EXPERIMENT

A. Experimental Settings

1) Datasets: To measure the retrieval ability of JSPSH, we
conducted experiments on three commonly used large-scale
datasets, including MIRFlickr [63], IAPR TC-12 [64] and
NUS-WIDE [65].

MIRFlickr is a dataset that comprises 25,000 image-text
pairs, divided into 24 categories. Each image is represented by
a 512-dimensional GIST feature, and each text is represented by
a 1,386-dimensional bag-of-words vector. To ensure effective

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3307608

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

TABLE I
THE MAP RESULTS (MAP@50) OF THE PROPOSED JSPSH AND OTHER COMPARED BASELINES ON THREE DATASETS. THE BEST RESULTS ARE IN BOLDFACE.

Task Methods MIRFlickr NUS-WIDE IAPR TC-12
2bits 4bits 8bits 16bits 32bits 2bits 4bits 8bits 16bits 32bits 2bits 4bits 8bits 16bits 32bits

I2T

DCH 0.6725 0.7131 0.7186 0.7267 0.7517 0.5717 0.6151 0.6865 0.7113 0.6817 0.4058 0.5514 0.6146 0.6359 0.6416
SCRATCH 0.5404 0.7065 0.7667 0.7709 0.7910 0.5618 0.5956 0.6777 0.6663 0.6772 0.2639 0.3489 0.4317 0.4940 0.5313
DLFH 0.5817 0.7624 0.8003 0.8548 0.8539 0.3823 0.6014 0.8024 0.8087 0.8621 0.3645 0.4845 0.5542 0.6555 0.7016
LFMH 0.6474 0.6553 0.7570 0.8051 0.8197 0.4901 0.5642 0.5645 0.6954 0.7786 0.4327 0.4845 0.5443 0.5694 0.6310
BATCH 0.6585 0.7127 0.8030 0.8263 0.8470 0.5615 0.6900 0.7498 0.7983 0.7984 0.4215 0.4261 0.5193 0.6270 0.6818
WATCH 0.6968 0.6852 0.7436 0.7670 0.7846 0.5573 0.6241 0.6790 0.7481 0.7724 0.4069 0.4086 0.4586 0.5736 0.6837
ALECH 0.6727 0.7257 0.7792 0.8202 0.8487 0.6015 0.7084 0.7486 0.7728 0.7890 0.4190 0.4505 0.5331 0.6222 0.6793
HSCH 0.7736 0.8765 0.8668 0.8654 0.8796 0.6908 0.6809 0.7221 0.7474 0.7839 0.6327 0.6878 0.7110 0.7341 0.7482
JSPSH 0.7901 0.8421 0.8858 0.8973 0.8989 0.7284 0.7472 0.7857 0.8089 0.8268 0.6384 0.7175 0.7393 0.7576 0.7733

T2I

DCH 0.6986 0.7719 0.8517 0.8701 0.8787 0.6454 0.7420 0.8058 0.8511 0.8331 0.4347 0.5913 0.7310 0.7864 0.8142
SCRATCH 0.5400 0.7391 0.8020 0.8096 0.7804 0.5601 0.6079 0.7792 0.7594 0.7647 0.2562 0.3711 0.5385 0.6778 0.7396
DLFH 0.5817 0.7894 0.8504 0.8898 0.9085 0.3918 0.7309 0.8340 0.8625 0.9161 0.3655 0.5762 0.5810 0.6906 0.7598
LFMH 0.6936 0.7678 0.8561 0.9004 0.9101 0.5601 0.6634 0.7516 0.8331 0.8770 0.4403 0.5066 0.6524 0.7471 0.8291
BATCH 0.7601 0.8225 0.8761 0.8923 0.8969 0.7315 0.7880 0.8440 0.8705 0.8773 0.4427 0.5364 0.6501 0.7918 0.8412
WATCH 0.7535 0.7962 0.8454 0.8744 0.8829 0.6664 0.7239 0.8191 0.8459 0.8655 0.4351 0.4507 0.5539 0.7083 0.8371
ALECH 0.7516 0.8271 0.8740 0.8972 0.8938 0.6738 0.8089 0.8572 0.8537 0.8617 0.4654 0.5729 0.6683 0.7809 0.8466
HSCH 0.8673 0.9174 0.9218 0.9233 0.9230 0.8345 0.8550 0.8723 0.8759 0.8879 0.7766 0.8503 0.8737 0.8918 0.8956
JSPSH 0.8861 0.9213 0.9348 0.9415 0.9423 0.8617 0.8683 0.8803 0.8905 0.8950 0.8137 0.8627 0.8881 0.8945 0.9064
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Fig. 5. The PR curves of JSPSH and compared baselines on MIRFlickr.

training, we eliminated data with textual tags less than 20 and
selected 20,015 pairs of valid data. From the remaining data,
we randomly selected 2,000 data points as the query set and
used the rest for retrieval and training sets.

IAPR TC-12 dataset consists of 20,000 image-text pairs
with a total of 255 different classes. Each piece of data is
labeled with at least one of these categories. Each image is
represented by a 512-dimensional GIST feature, and each text
is represented by a 2,912-dimensional bag-of-words vector.
Following the setting in [30], we randomly selected 2000 data
points as the query set, and used the remaining data points for
retrieval and training.

NUS-WIDE is a larger dataset compared to the previous two
datasets, consisting of 269,648 image-text pairs and 81 different
categories. Following the settings in [43], for the experiments
conducted in this paper, only the 10 most frequently occurring
categories of samples, totaling 186,577 pairs, were used. Each
image is represented by a 500-dimensional SIFT feature, while

the corresponding text is represented by a 1,000-dimensional
binary tagging vector representation. We randomly selected
2,000 pieces of data as the query set, while the remaining
samples were used as the retrieval and training sets.

2) Evaluation Metrics: In this paper, we conducted two
cross-modal retrieval tasks: I2T, which retrieves images based
on text queries, and T2I, which retrieves text based on image
queries. We employed three commonly used metrics to evaluate
the performance of JSPSH and all compared methods, namely
mean average precision (mAP), precision-recall (PR) curve,
and top-K precision curve. A higher mAP and top-K precision
value as well as a larger area under the PR curve indicate
better retrieval performance. When calculating precision, we
considered a search result to be correct if it shares at least one
label with the query.

3) Baselines and Implementation Details: To verify the
effectiveness of the proposed JSPSH, we compared it with
nine state-of-the-art cross-modal hashing methods, including
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Fig. 6. The top-K precision curves of JSPSH and compared baselines on MIRFlickr

DCH [36], SCRATCH [12], DLFH [66], LFMH [67], BATCH
[68], WATCH [28], ALECH [29] and HSCH [30]. Among
these methods, HSCH is the only high-dimensional sparse
cross-modal hashing method, while the remaining methods are
traditional dense hashing methods. The codes for all comparison
methods are kindly provided by their authors, and all parameters
follow the settings in the corresponding papers. All experiments
are conducted on the server equipped with Intel i7-12700KF
CPU@ 3.7 GHZ and 64 GB RAM.

4) Parameters Setting: The parameters used in JSPSH are
set as follows: α = 1, β = 10, µ = 3, γ = 0.01, λ = 0.01, and
τ = 0.05 for all datasets. However, since the label distribution
varies across datasets, we set different clustering parameters
{pi}mi=1 for each dataset. Specifically, we set clustering pa-
rameters to {100, 200, 500} for MIRFlickr and IAPR TC-12
datasets, whereas for the larger scale NUS-WIDE dataset, we
set clustering parameters to {50, 100, 200, 500, 1000}.

B. Retrieval Performance
In this section, we analyze the retrieval performance of the

proposed JSPSH and compare it with other methods from
three aspects. Table I presents the mAP results of all methods
on the three datasets. Moreover, Fig. 5 and Fig. 6 illustrate
the PR curve and top-K precision curve of all methods on
the MIRFlickr dataset, respectively, with hash code lengths
varying from 2 to 32 bits. Based on these results, we draw the
following conclusions:

• The superiority of high-dimensional sparse hashing meth-
ods, JSPSH and HSCH, over traditional dense hashing
algorithm is evident from the mAP results presented
in Table I. In particular, JSPSH and HSCH exhibit
robustness in low-dimensional scenarios, such as r = 2
or 4, thereby demonstrating their potential in encoding
abundant information using a fewer number of hash
bits. This highlights the representation capability of high-
dimensional sparse hash codes, thereby proving their
efficacy in the field of retrieval tasks.

• JSPSH consistently outperforms HSCH in terms of
retrieval performance, which highlights the efficacy of
cluster-wise semantic relationships. Both JSPSH and
HSCH leverage high-dimensional sparse hash codes to
encode information, with the main difference being that
HSCH only uses sample-wise semantic relationships in
hash code learning while JSPSH utilizes both sample-wise
and cluster-wise semantic relationships. The supervised
learning of hash codes with the help of cluster-wise
semantic relationships provides more precise information
based on label distribution to determine which hash codes
should be closer in Hamming space, resulting in better
grouping of semantically similar samples and superior
retrieval performance.

The PR curve and top-K precision curve depicted in Fig. 5
and Fig. 6 further support these analyses. It is evident that
the gap between traditional dense hashing methods and high-
dimensional sparse hashing methods is substantial, particularly
when the dimension of hash codes is low, such as r = 2 and 4.
When comparing JSPSH and HSCH, it is observed that JSPSH
consistently outperforms HSCH in terms of retrieval precision,
under the same recall rate. Furthermore, JSPSH always ensures
that a higher number of relevant samples appear within the
top-K retrieved results, except when r = 4. These observations
suggest that JSPSH is better suited to ensure that semantically
similar samples are distributed around the query. In other words,
with the help of cluster-wise semantic information, JSPSH can
ensure that samples are more appropriately clustered in the
retrieval set.

C. Efficiency Analyses

In Section III-F, we presented a theoretical analysis showing
that the time complexity of JSPSH is linearly related to the
size of the training set. To validate these analyses, we provide
experimental data on the training time complexity, training time,
and retrieval time of all methods on the MIRFlickr dataset.
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TABLE II
THE TRAIN TIME COMPLEXITY, TRAINING TIME (SECONDS), AND RETRIEVAL TIME (SECONDS) OF THE PROPOSED JSPSH AND OTHER COMPARED

BASELINES ON MIRFLICKR DATASET.

Methods Train Time Training Time Retrieval Time
Complexity 2bits 4bits 8bits 16bits 32bits 2bits 4bits 8bits 16bits 32bits

DCH O(n2) 91.3000 91.7000 95.7600 103.6200 116.7200 0.0213 0.0227 0.0241 0.0256 0.0306
SCRATCH O(n) 0.1450 0.1404 0.1699 0.2123 0.2769 0.0212 0.0217 0.0232 0.0242 0.0296
DLFH O(n) 0.4440 0.5070 1.2300 3.1100 8.4690 0.0220 0.0222 0.0241 0.0242 0.0301
LFMH O(n) 11.5430 11.5262 12.2425 12.3298 12.7813 0.0210 0.0218 0.0233 0.0237 0.0292
BATCH O(n) 0.1463 0.1630 0.1762 0.2043 0.2450 0.0203 0.0214 0.0231 0.0230 0.0283
WATCH O(n) 1.0581 1.0670 1.1542 1.1940 1.4222 0.0205 0.0212 0.0228 0.0236 0.0286
ALECH O(n) 0.3759 0.3668 0.4246 0.4980 0.5246 0.0212 0.0226 0.0235 0.0249 0.0298
HSCH O(n) 0.9629 1.2864 1.8052 3.0035 5.7168 0.0220 0.0220 0.0228 0.0252 0.0325
JSPSH O(n) 1.3120 1.5303 1.8770 2.8482 4.4943 0.0245 0.0248 0.0244 0.0277 0.0320

TABLE III
THE MAP RESULTS (MAP@50) OF JSPSH AND ITS FOUR VARIANTS ON MIRFLICKR AND IAPR TC-12 DATASETS. THE BEST RESULTS ARE IN BOLDFACE.

Task Methods MIRFlickr IAPR TC-12
2bits 4bits 8bits 16bits 32bits 2bits 4bits 8bits 16bits 32bits

I2T

JSPSH-1 0.7787 0.8614 0.8667 0.8760 0.8877 0.6074 0.6943 0.7152 0.7442 0.7487
JSPSH-2 0.7887 0.8704 0.8538 0.8870 0.8958 0.6315 0.6816 0.7029 0.7366 0.7665
JSPSH-3 0.7739 0.8408 0.8735 0.8871 0.8936 0.6441 0.7073 0.7265 0.7643 0.7659
JSPSH-4 0.7842 0.8362 0.8762 0.8914 0.8983 0.6297 0.7116 0.7313 0.7439 0.7627
JSPSH-5 0.7227 0.7600 0.7829 0.7917 0.8403 0.4359 0.5406 0.6219 0.6498 0.6729
JSPSH 0.7901 0.8421 0.8858 0.8973 0.8989 0.6384 0.7175 0.7393 0.7576 0.7733

T2I

JSPSH-1 0.8754 0.9157 0.9275 0.9359 0.9387 0.7732 0.8565 0.8753 0.8863 0.9027
JSPSH-2 0.8807 0.9184 0.9187 0.9373 0.9410 0.7880 0.8265 0.8559 0.8793 0.8954
JSPSH-3 0.8773 0.9140 0.9290 0.9378 0.9418 0.8101 0.8615 0.8794 0.8951 0.9048
JSPSH-4 0.8844 0.9156 0.9288 0.9385 0.9397 0.8110 0.8617 0.8833 0.8894 0.9038
JSPSH-5 0.7887 0.8509 0.8758 0.8812 0.9154 0.4633 0.5962 0.7385 0.8011 0.8410
JSPSH 0.8861 0.9213 0.9348 0.9415 0.9423 0.8137 0.8627 0.8881 0.8945 0.9064

TABLE IV
THE DIFFERENCES BETWEEN VARIANTS OF JSPSH IN ABLATION STUDY.

Methods Semantic Relationships Hash Interaction
Ss Sc #cluster term

JSPSH-1 ✓ sparse ✓
JSPSH-2 ✓ ✓ 100 sparse ✓
JSPSH-3 ✓ ✓ 500 sparse ✓
JSPSH-4 ✓ ✓ {100,200,500} sparse
JSPSH-5 ✓ ✓ {100,200,500} dense ✓
JSPSH ✓ ✓ {100,200,500} sparse ✓

The results are presented in Table II. Regarding the training
time, while the time complexity of most methods is O(n),
there are variations in the actual time required due to different
coefficients such as c2k and k3 in time complexity. Since they
are significantly smaller than n, they are disregarded when
calculating the time complexity. Generally, the training time of
JSPSH is comparable to other methods. We believe that a slight
increase in training time is a reasonable trade-off considering
the significant improvement in retrieval performance offered by
JSPSH. As for the retrieval time, all methods achieve similar
performance with the same hash code length. This indicates that
sparse hash codes do not impose an additional computational
burden during the retrieval phase.

D. Ablation Study

In JSPSH, we made three key contributions. First, we intro-
duced the concept of cluster-wise semantic relationships and

used it in conjunction with sample-wise semantic relationships
to jointly supervise the learning of hash codes. Second, we
replaced traditional dense hash codes with high-dimensional
sparse hash codes, whose effectiveness has already been
validated in Section IV-B. Third, we introduced an interaction
term during the hash function learning process to narrow the
heterogeneous gap. To validate the effectiveness of the first
and third contributions, we conducted ablation experiments
on four variants of JSPSH. Specifically, JSPSH-1 used only
sample-wise semantic relations to train hash codes. JSPSH-
2 and JSPSH-3 used both semantic relations to jointly train
hash codes, but only used p = 100 and p = 500 for the
cluster-wise semantic relationship obtained from clustering
results, respectively. JSPSH-4 used both semantic relations
to jointly train hash codes and {pi} = {100, 200, 500}, but
removed the interaction term during hash functions learning
stage. Finally, JSPSH-5 replaces the high-dimension sparse hash
codes in JSPSH with dense hash codes, keeping other settings
unchanged. The specific differences between all variants are
summarized in Table IV. The results are reported in Table III.

By comparing JSPSH-1, JSPSH-2, JSPSH-3, and JSPSH,
we can verify the role of the cluster-wise semantic relationship.
The results lead to the following conclusions:

• The introduction of cluster-wise semantic information,
irrespective of its level, proves beneficial to the final
retrieval performance. In most cases, JSPSH-2, JSPSH-3,
and JSPSH perform better than JSPSH-1, which only uses
sample-wise semantic information to learn hash codes.
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Fig. 7. Parameters analyses of JSPSH on MIRFlickr dataset.
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Fig. 8. The convergence curves on MIRFlickr and IAPR TC-12 datasets.

• The cluster-wise semantic relationship required by dif-
ferent data sets varies. Specifically, for the MIRFlickr
data set, the results obtained by JSPSH-2 (p = 100) and
JSPSH-3 (p = 500) are comparable. However, for the
IAPR TC-12 data and above, the results of JSPSH-3 are
significantly better than those of JSPSH-2. Theoretically,
the larger the value of p, the more accurate the cluster-
wise semantic information is, which is more conducive to
the learning of hash codes. However, the validity of this
information also depends on the distribution of the label
itself, which requires further investigation.

• The cluster-wise semantic relationship that is adapted to
hash codes with different representation capabilities varies.
When the representation ability of the hash code is limited,
that is when r is small, too complex semantic information
may not be beneficial to the learning of the hash code.
For instance, when r = 4, the I2T results of JSPSH-2
on the MIRFlickr dataset are significantly higher than
those of other variants. Conversely, when the hash code
representation ability is adequate, that is when r is larger,
more appropriate semantic information can stimulate its
representation potential. For instance, when r = 16, the
results of JSPSH-3 outperform all other variants on the
IAPR TC-12 dataset.

Through the above analysis, it can be concluded that finding
suitable cluster-wise semantic relations as supervisory informa-
tion for different datasets is a challenging task. To address this
issue, we adopt the strategy of weighted average, which helps
to mitigate the different requirements to a certain extent. The
results demonstrate that JSPSH performs better than JSPSH-2

and JSPSH-3 in most cases.
Furthermore, the effectiveness of the interaction term in

the hash function learning phase can be demonstrated by
comparing JSPSH-4 and JSPSH. It can be seen that the
retrieval performance of JSPSH has always been better than
that of JSPSH-4. This proves that the interaction term we
proposed can effectively strengthen the interaction between
modalities, further narrow the heterogeneous gap, and achieve
better retrieval results. Besides, the performance of JSPSH
significantly outperforms that of JSPSH-5, indicating that high-
dimensional sparse hash codes possess a stronger representation
capability compared to traditional dense hash codes, given the
same number of hash bits.

E. Further Analyses

1) Parameter Sensitive: We conducted experiments on the
MIRFlickr dataset to analyze the sensitivity of parameters α,
β, γ, and µ. Parameter α adjusts the proportion of sample-wise
and cluster-wise semantic relationships, while parameters β, γ,
and µ are weights of three different auxiliary terms, namely
quantization error term, error correction term, and interaction
term. Figure 1 shows the corresponding mAP performance.
Our observations are as follows:

• Parameter α: When a is small (α < 10), its impact on
the retrieval performance is relatively slight. However,
when a is large (α > 10), the retrieval performance drops
significantly. This is because the cluster-wise semantic
relationship should be an auxiliary to the sample-wise
semantic relationship in JSPSH. When a is excessively
large, the cluster-wise semantic relationship dominates,
subverting the primary and secondary relationship, and
leading to a decline in retrieval performance.

• Parameters β, γ, and µ: These parameters correspond to
auxiliary terms and the performance of JSPSH is not so
sensitive to them. Only when their values are too large,
such as µ = 1000, does the retrieval performance drop
significantly.

2) Convergence Analysis: In Section III-E, we provide a
theoretical analysis of the convergence of JSPSH. To gain
a deeper understanding, we conduct additional experiments
on MIRFlickr and IAPR TC-12 datasets to further analyze
the convergence empirically. Fig. 8 presents the convergence
results, where we normalize the objective function value for
ease of observation. It is worth noting that after a single
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TABLE V
THE MAP RESULTS OF THE PROPOSED JSPSH AND OTHER DEEP BASELINES

ON MIRFLICKR DATASET.

Methods I2T T2I
4bits 16bits 64bits 4bits 16bits 64bits

DCMH 0.7021 0.7410 0.7485 0.7324 0.7827 0.7932
SSAH 0.7410 0.7820 0.8000 0.7424 0.7910 0.7950
EDGH 0.7104 0.7569 0.7959 0.7225 0.7787 0.7985
MLCAH - 0.7960 0.8150 - 0.7940 0.8050
DADH 0.7521 0.8020 0.8179 0.7442 0.7920 0.8064
CPAH - 0.7950 0.7960 - 0.7780 0.7850
MLSPH 0.7445 0.8076 0.8337 0.7335 0.7852 0.8146
DMFH - 0.7802 0.7946 - 0.7978 0.8101
MDCH - 0.8063 0.8232 - 0.8048 0.8337
JSPSH 0.8498 0.8821 0.8909 0.8265 0.8567 0.8633

iteration, we observe a sharp drop in the objective value
and the model consistently converges after five iterations.
These findings provide additional evidence of the efficient
and effective convergence of our proposed model.

3) Comparison With Deep Hashing Methods: To further val-
idate the efficacy of JSPSH, we conducted a comparison study
with some state-of-the-art deep cross-modal hashing methods,
including DCMH [43], SSAH [44], EDGH [45], MLCAH
[69], DADH [70], CPAH [71], MLSPH [72], DMFH [51],
and MDCH [73], on the MIRFlickr dataset. To ensure a fair
comparison, same as [12], [29], [30], we replaced the shallow
features used in the prior experiment with 4096-dimensional
CNN features that were extracted using the pre-trained CNN-F
network [74] on ImageNet [75]. Table V represents the mAP
results, and for all baselines, we directly report the results
from the original papers. As demonstrated, JSPSH consistently
outperforms all the baselines. A plausible reason may be that
deep hashing methods tend to relax the discrete constraints of
hash codes and optimize the objective function in batches. In
contrast, JSPSH can effectively guarantee the quality of the hash
codes by designing a discrete update algorithm and updating it
in a global manner. Besides, when the dense hash code length
is reduced, there is a notable decline in the performance of
these deep hashing methods. Conversely, JSPSH still achieves
stable performance under the same circumstances. Furthermore,
even with a hash code length of 4 bits, JSPSH surpasses the
majority of deep methods, highlighting the expressive capability
of sparse hash codes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach Joint
Semantic Preserving Sparse Hashing (JSPSH) for cross-modal
retrieval. It overcomes the limitations of existing methods that
only consider sample-wise semantic relationships. We have
proposed a new concept of cluster-wise semantic relationships
that takes into account the distribution of labels to identify
which samples should be closer to each other. By preserving
both sample-wise and cluster-wise semantic relationships,
JSPSH is able to learn more efficient hash codes. Additionally,
to capture more precise semantic information, we have utilized
high-dimensional sparse hash codes that are more expressive
for multi-modal data representation than traditional dense
hash codes. To further bridge the gap between heterogeneous

modalities, we have proposed an interaction term during hash
functions learning to align the hash codes of different modalities.
The experimental results demonstrate that the proposed JSPSH
outperforms existing state-of-the-art methods.

Although the effectiveness of the proposed cluster-wise
semantic relationship has been demonstrated in improving
retrieval performance, the k-means clustering algorithm used
in this paper still has some limitations in capturing this
relationship. Specifically, since the number of clusters for
the labels is unknown, we adopt a compromise strategy that
involves selecting different numbers of clusters and performing
a weighted average on the results. However, as shown in Section
IV-D, this strategy is not always the optimal solution. In future
work, we plan to explore new methods to obtain more effective
cluster-wise semantic information, thereby further improving
retrieval performance.
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