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Abstract—Adaptive live video streaming applications utilize
a predefined collection of bitrate-resolution pairs, known as a
bitrate ladder, for simplicity and efficiency, eliminating the need
for additional run-time to determine the optimal pairs during
the live streaming session. These applications do not incorporate
two-pass encoding methods due to increased latency. However,
an optimized bitrate ladder could result in lower storage and
delivery costs and improved Quality of Experience (QoE). This
paper presents a Just Noticeable Difference (JND)-aware con-
strained Variable Bitrate (cVBR) Two-pass Per-title encoding
Scheme (JTPS) designed specifically for live video streaming.
JTPS predicts a content- and JND-aware bitrate ladder using
low-complexity features based on Discrete Cosine Transform
(DCT) energy and optimizes the constant rate factor (CRF)
for each representation using random forest-based models. The
effectiveness of JTPS is demonstrated using the open source video
encoder x265, with an average bitrate reduction of 18.80% and
32.59% for the same PSNR and VMATF, respectively, compared
to the standard HTTP Live Streaming (HLS) bitrate ladder using
Constant Bitrate (CBR) encoding. The implementation of JTPS
also resulted in a 68.96% reduction in storage space and an
18.58% reduction in encoding time for a JND of six VMAF
points.

Index Terms—Per-title encoding, Live streaming, Two-pass en-
coding, Rate control, CRF prediction, Just Noticeable Difference.

I. INTRODUCTION

ITH the rapid growth of online video consumption,

the need for a streaming method that can adapt to
varying network conditions and device capabilities became
crucial. HTTP Adaptive Streaming (HAS) has emerged as the
solution, allowing viewers to enjoy seamless playback of high-
quality videos regardless of their internet connection speed or
device capabilities [1]. HAS dynamically adjusts the video
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quality in real-time based on the viewer’s context conditions
(e.g., network or/and device characteristics). It breaks down
video content into small segments and serves them through
plain HTTP [2]. Optimizing video encoding in streaming
enhances the Quality of Experience (QoE) for the end-users
and minimizes the costs for service providers, predominantly
in Video on Demand (VoD) scenarios.

In live streaming situations where latency is crucial, video
content typically employs a standardized set of encoding
parameters without considering optimization. Traditionally, a
fixed bitrate ladder is employed for the live streaming session,
such as the HTTP Live Streaming (HLS) bitrate ladder!. How-
ever, due to the wide range of video content characteristics
and network conditions, a content-adaptive approach, known
as per-title encoding is introduced, which can improve QoE
or reduce bitrate, especially for Video-on-Demand (VoD) ser-
vices [3]. Although per-title encoding schemes [3]-[5] improve
the quality of video delivery, they have been only appropriate
for VoD streaming applications because it is computationally
expensive to determine the convex-hull. The biggest problem in
video technology today is live (low latency), according to the
Bitmovin Video Developer Report 20222, Low-latency video
coding optimization strategies are required for live-streaming
applications.

Just Noticeable Difference (JND)-aware bitrate ladder pre-
diction improves streaming by optimizing the allocation of bits
based on the perceptual thresholds of human vision [6], [7].
It ensures that the available bandwidth is utilized efficiently,
focusing on perceptually important areas and reducing bitrate
allocation for imperceptible details [8]. This results in higher
perceptual video quality within the given bitrate, enhancing
the viewing experience and reducing buffering or playback
interruptions [9]. Furthermore, cVBR (Constrained Variable
Bitrate) encoding schemes are better than the state-of-the-art
CBR (Constant Bitrate) schemes used in live streaming, owing
to its ability to adapt the bitrate according to the complexity
of the video content. cVBR maintains a consistent perceptual
quality throughout the stream, resulting in a visually pleasing
experience for viewers [10].

In this light, this paper targets a cVBR two-pass encoding
scheme with a content-adaptive, JND-aware, online bitrate
ladder prediction optimized for adaptive live streaming appli-
cations. The minimum and maximum encoding bitrates (b,

'https://developer.apple.com/documentation/http_live_streaming/
hls_authoring_specification_for_apple_devices, last access: May 30, 2023.
Zhttps://bitmovin.com/video-developer-report, last access: May 30, 2023.
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Fig. 1: The ideal JTPS bitrate ladder targeted in this paper.
The red line represents the envisioned RD curve, while the
green dotted line indicates the maximum quality level ¢,q4-
When the quality level is higher than ¢;,., the encoded video
stream is considered perceptually lossless. gy represents the
target JND function.

and by,4,), the maximum quality level (gy,qz), and the target

average JND function are considered as inputs to the scheme.

Moreover, a priori information, such as the encoder/codec

used and the encoding preset, are input to the scheme to

ensure that the bitrate ladder is generated for the correspond-
ing encoding configuration required by the streaming service
provider. Based on the video complexity features and the input
parameters, bitrate-resolution-CRF triples are predicted. As
shown in Fig. 1, the adjacent points of the bitrate ladder are
envisioned to have a perceptual quality difference of one JND.

Please note that, in this paper, JND is considered a function

of VMAF?. Although reducing the overall storage needed to

store the representations, JTPS is expected to improve the
overall compression efficiency of the bitrate ladder encoding.
In this paper, the main contributions are as follows:

@ A low-latency two-pass encoding scheme termed JTPS
(JND-aware Two-pass Per-Title Encoding Scheme) is
proposed, which includes a content-adaptive, JND-aware,
online bitrate ladder prediction for live video streaming
applications.

@ Optimized CRF is predicted for each representation for
cVBR encoding to achieve the target bitrate with maxi-
mum compression efficiency.

@ Random forest-based models are designed to predict
optimized bitrate-resolution-CRF triples for each video
segment using Discrete Cosine Transform (DCT)-energy-
based low-complexity spatial and temporal features of
every video segment.

@ This paper also presents the extension of our previous
work, OPTE [11] and PPTE [7] CBR encoding, to use
random forest models using spatial and temporal features
to predict perceptual quality and bitrate, instead of linear
regression models. OPTE cVBR encoding scheme is intro-
duced which includes predicting the resolution-CRF pairs
for each target bitrate of the bitrate ladder, which yield the
highest perceptual quality.

30ther functions can be envisioned and are subject to future work.
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Fig. 2: Rate-Distortion (RD) curves of the Constant Bitrate
(CBR) encoding of RushHour_s000 and YachtRide_s000 video
sequences (segments) of VCD dataset [12] encoded at 1080p
and 2160p resolutions using x265 HEVC encoder at ultrafast
preset. Here, VMATF is used as the quality metric.

@ A comprehensive evaluation of JTPS, comparing it with
state-of-the-art encoding methods, is presented.

Paper outline: Section II introduces background and related
work on per-title encoding, just noticeable difference, and two-
pass encoding. In Section III, the proposed scheme (JTPS) is
described in detail. In Section IV, the scheme’s performance
is validated, and the corresponding experimental results are
presented. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Per-title encoding

Most of the state-of-the-art per-title encoding methods is
based on choosing a particular resolution that provides better
visual quality for each title’s bitrate range [11]. An illustration
of this variation in rate-distortion (RD) characteristics can
be seen in Fig. 2 for x265* High Efficiency Video Coding
(HEVC) [16] encoding. For example, the cross-over bitrate
between 1080p and 2160p resolutions for the RushHour_s000
video segment occurs at around 3.4 Mbps, meaning that, for
bitrates lower than 3.4 Mbps, 1080p resolution yields a higher
Video Multimethod Assessment Fusion (VMAF)® score than
2160p. On the contrary, for bitrates higher than 3.4 Mbps,
2160p outperforms 1080p. Conversely, the YachtRide_s000
video segment shows that 1080p resolution provides the best
performance throughout the entire bitrate range, indicating that
1080p should be the resolution of choice for the entire bitrate
ladder.However, The selection of bitrate-resolution pairs from
the convex-hull is a challenging task. To determine the op-
timal per-title bitrate ladder for 7 resolutions and b bitrates,
7 x b test encodings are necessary. The literature describes
several per-title encoding methods that reduce the number of
encodings required to determine the convex-hull®. One such
approach, developed by Katsenou et al. [14], uses machine

“https://www.videolan.org/developers/x265.html, last access: May 30, 2023.
Shttps://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12,
last access: May 30, 2023.

Shttps://bitmovin.com/per-title-encoding-datasheet/, last access: May 30,
2023.
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TABLE I: Comparison of the state-of-the-art per-title encoding methods with JTPS.

Method Target scenario Bitrate ladder estimation method Number of pre-encodings | Encoding type
Bruteforce [3] VoD Bruteforce encoding T X C cVBR
DeepStream [13] VoD Bruteforce encoding T X C cVBR
Katsenou et al. [14] VoD Bruteforce encoding (F—1)x2 CQP
FAUST [15] VoD Low-resolution encoding and prediction using artificial neural networks 1 CBR
Bhat et al. [4] VoD Low-resolution encoding and prediction using random forest models 1 CBR
OPTE [11] Live Prediction using linear regression models 0 CBR
PPTE [7] Live Prediction using linear regression models 0 CBR
JIPS Live Prediction using random forest models 0 cVBR

learning to identify the most effective bitrate range for each
resolution. The method extracts spatiotemporal features and
statistics from sequences at their original resolution and then,
employs machine learning methods to predict the quantization
parameters (QPs) at which the rate-distortion curves across
the different resolutions intersect. Relatively lower number
of encodes needs to be performed in order to determine the
bitrates at which resolutions should be switched. This content-
gnostic approach has been claimed to reduce the number of
encodings required compared to other methods (by 81% -
94%) compared to the bruteforce encoding approach. Another
method proposed by Bhat ef al. [4] uses machine learning to
predict the resolution without requiring multiple encodings.
Features from the low resolution encoding of the first few
frames are used to predict better performing resolution for a
decision period. Zabrovskiy et al. [15] used an artificial neural
network to predict an optimized bitrate ladder for each scene,
optimized based on the YPSNR quality metric.

There are video encoding enhancement solutions proposed
in the literature, which can be used to improve the quality of
video representations (each bitrate-resolution pair) [17] in the
bitrate ladder. Amirpour et al. [13] proposed a content-aware
per-title encoding approach, DeepStream to support CPU-only
and GPU-available end-users. However, it has limitations that:
(i) improvements are observed only for clients with GPU,
(ii) train deep neural networks need to be trained for each
representation which needs significant processing time and (iii)
bruteforce encoding at all resolutions and CRF are needed to
estimate the bitrate ladder, making it unsuitable for real-time
live streaming solutions.

Table I shows the target scenario, the bitrate estimation
method, the number of pre-encodings needed to determine
the convex-hull, and the encoding type of the state-of-the-
art methods. The bruteforce method [3] and DeepStream [13]
needs encoding the video content 7 X ¢ times, where 7
and ¢ denote the number of resolutions supported by the
streaming service provider and number of CRFs supported by
the encoder, respectively. The pre-analysis method proposed in
[14] needs to encode the video (7 — 1) x 2 times. Moreover, it
uses constant quantization parameter (CQP) encodes which are
not used in real-time streaming applications. FAUST [15] and
the method proposed in [4] needs a low-resolution encoding
to extract features which are input to artificial neural network
and random forest models, respectively, to predict the convex-
hull for CBR encoding. As a result, these methods produce
latency significantly higher than the accepted latency in live
streaming. Our previous works OPTE [11], and PPTE [7],
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Fig. 3: RD curve of HLS! CBR encoding of Characters_s000
video sequence (segment) of VCD dataset [12] using x265
HEVC encoder at ultrafast preset. Consequently, there is
significant storage waste when these representations are stored.

predict optimized bitrate ladder for CBR encoding without any
pre-encoding step, hence, no additional latency in streaming.
They use simple linear regression models to predict bitrate-
resolution pairs. There are per-title encoding methods devel-
oped in the industry: from Bitmovin®, Brightcove [18], MUX’,
and CAMBRIA3. However, they are proprietary; hence, infor-
mation about them is limited.

B. Just Noticeable Difference (JND)

Weber’s law [19] introduced the notion of Just Noticeable
Difference (JND) as the change in a threshold value required
to detect a difference [20]. In visual perception, JND refers to
the slightest distinguishable difference between two levels of
sensory stimulus [21]. Additionally, JND represents the maxi-
mum tolerable level of distortion for the Human Visual System
(HVS) when perceiving videos. Research has been conducted
on JND, and several surveys have been published [8], [22]-
[26]. By utilizing JND in video coding, referred to as percep-
tual coding, the encoding bitrate can be reduced while still
guaranteeing a certain level of video quality or minimizing
distortion within a specific bitrate constraint. Furthermore,
removing perceptual redundancy information from JND levels
compared to traditional video coding methods can lead to
additional compression gains [6]. For instance, Fig. 3 shows

"https://www.mux.com/blog/instant-per-title-encoding, last access: May 30,
2023

8https://capellasystems.net/wp-content/uploads/2021/01/CambriaFTC_
SABL.pdf, last access: May 30, 2023
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the selected bitrate-resolution pairs and their VMAF® scores
for the Characters_s000 sequence using the HLS bitrate
ladder. It is seen that there are multiple representations with
the same video quality and some with similar quality at mid-
range bitrates. Choosing representations with similar quality
does not enhance QoE, but it increases storage and bandwidth
expenses [9].

C. Two-pass encoding

Most streaming service providers employ CBR rate-control
mode to encode live videos. CBR’s consistency in achieved
bitrate makes it more dependable for time-sensitive data
delivery, especially in live streaming applications. Bitrate
overshoot, or the encoded bitrate exceeding internet speeds,
is not a concern because CBR-encoded videos are streamed
consistently. However, this method’s dependability sometimes
necessitates sacrificing compression efficiency’. In contrast,
VoD applications utilize Variable Bitrate (VBR), where video
segments are encoded according to their content complexity
to optimize the transmission at the expense of adding a pre-
processing stage to evaluate the content complexity of the
video segments (two-pass encoding). As shown in Fig. 4,
the input data from the video is analyzed (and stored in a
log file) in the first-pass of two-pass encoding. The collected
data from the first-pass is used to achieve the best encoding
compression efficiency in the second-pass. During the second-
pass encoding, bitrate is allocated among segments based
on content complexity such that the average bitrate remains
constant. This fluctuating characteristic makes VBR best suited
for VoD applications [10].

Two-pass encoding had been the de-facto solution proposed
to distribute bits effectively and improve the compression
efficiency in VoD applications. Other than the previously dis-
cussed pre-analysis methods, some schemes involve encoding
the same content twice to adapt the encoding parameters per
title. Que et al. [27] proposed a two-pass VBR method for
Advanced Video Coding (AVC) [28]. The first-pass uses CBR
encoding to gather encoding statistics, while offline processing
is used in the second-pass to detect scene-cuts, precisely
allocate target bits, and determine the quantization parameter
for each frame. Zupancic et al. [29] utilized a fast encoder with
a condensed set of coding tools in the first-pass to collect data
for rate allocation and model parameter initialization during
the second-pass. Wang et al. [30] proposed a two-pass VBR
control for HEVC, motivated by structural similarity (SSIM),
that allocates available bits at the group of pictures (GOP),
frame, and coding unit (CU) levels to create a perceptually
uniform space. Since the two-pass encoding method generally
involves processing all segments twice, the overall encod-
ing time is increased two-fold, introducing added streaming
latency. Hence, these schemes are not used for live video
streaming.

Constrained Variable Bitrate (cVBR) is the most widely
used type of two-pass Variable Bitrate encoding® [10]. This
encoding scheme involves setting a maximum bitrate and

%https://docs.aws.amazon.com/mediaconvert/latest/ug/mediaconvert- guide.
pdf, last access: May 30, 2023.

First pass

R

Input video
lAnaIysis stats
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;

Fig. 4: Two-pass encoding architecture.

buffer window, requiring two encoding passes to complete the
process. The target bitrate cannot be specified in Constant Rate
Factor (CRF) rate control mode, so the information from the
first-pass is used to determine the optimized CRF that achieves
the target bitrate. During the second-pass, the video segment
is encoded with the selected optimized CRF while maintaining
the maximum bitrate and buffer window constraints. This
results in reaching the desired target bitrate with maximum
compression efficiency!”. In terms of computational costs,
CBR encoding generally incurs lower computational costs due
to its fixed and predictable bitrate allocation. CVBR encoding,
with its complexity analysis and bitrate adjustments, requires
more computational resources. However, the specific compu-
tational cost can vary depending on factors such as video
resolution, content complexity, and hardware capabilities.

Another popular method of two-pass encoding is to extract
video complexity features as the first-pass, and use them
to predict encoding parameters in the second-pass. Low-
complexity features must be chosen in live streaming appli-
cations to guarantee uninterrupted low-latency video stream-
ing. An intuitive method for feature extraction would be
to utilize Convolutional Neural Networks (CNNs). However,
CNN-based feature extraction would not be effective as it
lacks temporal motion information, which is crucial for video
complexity detection and subsequent bitrate-ladder prediction.
Architectures such as 3D-CNN [31] or Conv-LSTM [32], [33]
could be alternatives to accommodate the temporal motion
information present in the video stream. However, such models
have several inherent disadvantages, such as higher training
time, inference time, and storage requirements (to deploy
the prediction models in real-time), which are impractical in
live streaming applications. Although CNN-based approaches
could result in rich features, simpler models which yield a
significant prediction performance are more suitable for live
video streaming. The popular state-of-the-art video complexity
features are Spatial Information (SI) and Temporal Information
(TT) [34]. The rate of SI and TI feature extraction'! from
2160p resolution videos are observed as around five frames
per second, which is insufficient for low-latency streaming
applications [35].

To summarize, most related works on per-title and two-pass
encoding yield latency unsuitable for live-streaming applica-
tions. Machine learning-based methods in the literature are
too complex and storage heavy, hence, they are not suitable

10https://www.wowza.com/blog/cbr-vs-vbr, last access: May 30, 2023
https:// github.com/Telecommunication-Telemedia-Assessment/SITI, last
access: May 30, 2023.
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Fig. 5: Live HTTP adaptive streaming featuring our JND-aware two-pass per-title encoding scheme (JTPS).

for real-time deployments. To overcome these problems, this
paper proposes a low-latency pre-processing step as the first-
pass to analyze the video segment’s complexity to predict an
optimized encoding bitrate-ladder.

III. JIND-AWARE TwWO-PASS PER-TITLE ENCODING
SCHEME (JTPS)

The architecture of the proposed JTPS scheme for live
video streaming applications is shown in Fig. 5. For each
segment of the input video sequence, the JND-aware bi-
trate ladder is determined so that the adjacent RD points
of the bitrate ladder have a perceptual quality difference of
one JND. The prediction of every segment is motivated by
the fairly uniform frame-to-frame spatiotemporal content of
frames within a segment [1]. The bitrate ladder is predicted
using video complexity features (i.e., F/, h, and L features are
explained in Section III-A) extracted for every segment and the
set of pre-defined resolutions (1), minimum and maximum
target bitrates (i.e., bynin and by,..), average JND quality
(vy) function, and the maximum VMAF (v,,,4.) of the bitrate
ladder. This paper assumes that VMAF is the optimal measure
of perceptual quality'>. To ensure that the predicted bitrates
and VMAF values align with the preferences of the streaming
service provider, JTPS takes inputs b.in, bmaz, and Vpaq.
By considering b4, and v;,4.:, JTPS can be adjusted to
optimize the number of representations in the bitrate ladder.
Additionally, the input R ensures that only the supported
resolutions of the streaming service provider are selected for
the encoding set. The process starts by predicting the VMAF
corresponding to b,,;,. The VMAF scores for the remaining
representations are calculated by incrementing the previous
VMAF in the bitrate ladder by one JND until either b,,,, or
Umaz 18 reached. These VMAF values are then used to predict
the corresponding bitrate-resolution pairs. Additionally, an
optimized CRF is predicted to achieve maximum compression
efficiency for the cVBR encoding of the selected bitrate-
resolution pairs. For each segment, the encoding process is
performed exclusively for the predicted perceptually aware
bitrate-resolution-CRF triples. In this manner, compression
efficiency is improved over traditional fixed bitrate ladder

120ther quality metrics can be envisioned and are subject to future work.

and CBR encoding schemes while decreasing storage and,
consequently, content delivery network (CDN) costs. JTPS is
classified into four phases (cf. Fig. 5; the first-pass comprises
the first three phases and the second-pass comprises the
last/forth phase):
@ Video complexity feature extraction (Section III-A)
@ Perceptually-optimized bitrate ladder prediction (Sec-
tion III-B)
@ Optimized CRF prediction for the selected bitrate-
resolution pairs (Section III-C)
@ cVBR encoding of the segments using the predicted
bitrate-resolution-CRF triples
Optimized bitrate prediction and CRF prediction are sep-
arated into two distinct prediction modules for better inter-
pretability and control over the prediction process. The first
module derives the target resolution (7;) and the upper limit
for the instantaneous bitrate (i)t), while the second module
derives the CRF parameter (¢;) based on (7, l;t). Utilizing a
two-module approach is advantageous, as it explicitly helps us
model and optimize for different aspects of the problem.

A. Video Complexity Feature Extraction

In this paper, three DCT-energy-based features, (i) the
average texture energy F, (ii) the average gradient of the
texture energy h, and (iii) the average luminescence L are
used as the spatial and temporal complexity measures [11],
[35]. The feature extraction method was proposed in our
previous work [35] and is included here to have the paper
self-contained.

The following DCT-based energy function is used to de-
termine the texture of every non-overlapping block & in each
frame f, which is defined as:

w—1w-—1
4 V2 _ ..
Hep =y G2 DT, )] )
i=0 j=0

where w x w pixels is the size of the block, and DCT (3, j)
is the (i,7)"" DCT component when i + j > 0, and 0
otherwise [36]. To determine the spatial energy feature per
segment, denoted as FE, the texture is averaged as illustrated

below:
F-1K-1

P-y Y

=0 k=0

Hy

F-K-w? @
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Algorithm 1: Bitrate ladder prediction algorithm

Inputs:
bimin, bmaz : minimum and maximum target bitrate
R : set of all resolutions r
vy : average (target) JND function
Output: (7,b) pairs of the bitrate ladder
Step 1: 131 = bnin
Determine 0,.; Vr € R
01 = max(d, 5,
f1 = argmax,c (9,5 )
(71,b1) is the first point of the bitrate ladder.
Step 2:
t=2
while b;_1 < byae and ;1 < Vyas do
Oy = 0p—1 + vy (0r-1)
Determine b, 5, Vr € R
by = min(l;n{,t)
& = arg min, ¢ p(brs, )
(74, by) is the t*" point of the bitrate ladder.
t=t+1

Here, K represents the number of blocks per frame, and F
denotes the number of frames per segment. Furthermore, the
block-wise sum of absolute difference (SAD) of the texture
energy of each frame compared to its previous frame is
computed and then averaged per segment to obtain the average
temporal energy (h) as shown below:

F-1K-1

=3

f=1 k=0

Hp 1 |

K -uw? ©)

The luminescence of non-overlapping blocks k£ of each
frame p is defined as:

DCT(0,0) “)

where DCT'(0,0) is the DC' component in the DCT calcu-
lation. The block-wise luminescence is averaged per segment
denoted as L, as shown below.

Ly =

F-1K-1 L

L= el L
X (5)
f=0 k=0

Please note that E and L represent the spatial character-
istics of the video segment, while h represents the temporal
characteristic, which are used in the following steps to predict
the encoding bitrate ladder.

B. Perceptually-optimized Bitrate Ladder Prediction

The JND-aware bitrate ladder prediction method is pre-
sented in Algorithm 1 and comprises two steps.

Step 1: The perceptual quality, measured by VMAF, is
modeled as a function of features such as E, h, and L,
resolution 7, and target bitrate b, which can be expressed as
vy = f(E, h, L,r,b) [37]. The first point in the bitrate ladder
is determined by predicting VMAF for all resolutions » € R
at I;l = bmin (as shown in Fig. 6) using VMAF prediction

>
2 n
'ig
E
o &
O

Fig. 6: Estimation of the first point of the bitrate ladder. 0y
is the maximum value among the f;r,gl values output from
the predicted models trained for resolutions ry, .., rps. The
resolution corresponding to the VMAF 9, is chosen as 7.

N 1

‘l br 3] :

%@ £ 0g(bry,5,) !

ggh >log(b i
8 Sf L Og( 7'2’77‘1,) E ‘f‘t

min ! log(bz)

1

D, j :

@t E o.o.o.o log(brys.o.) E

1

Fig. 7: Estimation of the t*" point (¢ > 1) of the bitrate ladder.
log(by) is the minimum value among the log(br 5,) values
output from the predicted models trained for resolutions 71, ..,
rps. The resolution corresponding to log(I;t) is chosen as 7;.

models. From the predicted VMAF values (i.e., ¥ v values)
for different resolutions, the resolution with the hlghest VMAF
value, 71, is selected to correspond to the bitrate bl. This
results in the first point of the bitrate ladder being (71, 131).
Step 2: For every subsequent point in the bitrate ladder
(t > 1), the target VMAF is set to 0y = 041 + v (Vr—1),
which means one JND more than the previous point. Bitrate
is modeled as a function of E, h, L features, resolution 7, and
target VMAF v, i.e., b, , = f(E, h,L,r,v). The target bitrate
lA)m;t required to achieve the VMAF ¢, is determined for each
resolution in R (refer to Fig. 7). The minimum value of IA)T,@t
in all resolutions is considered as 13,5 for the bitrate ladder, and
the resolution corresponding to the minimum value is chosen
as 7. This process is repeated until by is greater than or equal
to bpyqp OF Uy is greater than or equal to vy,q,.
Implementation of prediction models: The prediction mod-
els are trained for each resolution supported by the streaming
service provider, ensuring the scalability of the design without
the need to retrain the entire network when adding a new reso-
lution to the framework. In this paper, the following prediction
models (i) linear regression model [38], (ii) XGBoost'? [39]
and (iii) random forest regression model'* [40], are used and
compared for their prediction accuracy in terms of R? score
and Mean Absolute Error (MAE). Random forest regressor is

Bhttps:/xgboost.readthedocs.io/en/stable/parameter.html, last access: May
30, 2023.

https://scikit-learn.org/stable/modules/ensemble html#forests-of-
randomized-trees, last access: May 30, 2023.
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TABLE II: Prediction accuracy of VMAF and log(b) pre-
diction models for 2160p resolution encoding of VCD
dataset [12] using x265 HEVC encoder at ultrafast preset.

VMAF prediction | log(b) prediction
Method R? MAE R? MAE
Linear Regression | 0.598 10.102 0.651 1.126
XGBoost 0.877 4.484 0.896 0.511
Random Forest 0.930 3.941 0.943 0.488

an ensemble regression model that uses a randomly selected
subset of training samples and variables to train multiple
decision trees in parallel, commonly known as bagging. The
cumulative results of all the numerous decision trees in the
ensemble are combined to obtain the final predictions.

Table 1T shows the results of the VMAF and log(b) pre-
diction, respectively, using the models mentioned above for
2160p resolution using the default hyper-parameters of the
models'® !, It is observed that the R? score is the maximum
and the MAE score is the minimum for random forest models.
Moreover, random forest models exhibit lower overfitting than
XGB and are faster as the decision trees run in parallel
(courtesy of distributed computing-based approaches). Hence,
this paper uses random forest models for VMAF and log(b)
prediction for each resolution. Please note that training models
for each resolution ensure scalability, as more resolutions can
be added to JTPS architecture in the future with minimal
retraining. Hyper-parameter tuning is performed on the pre-
diction models of 2160p to obtain a balance between model
size and performance. The selected hyper-parameters'* for
VMAF and log(b) prediction models are min_samples_leaf=1,
min_samples_split=2, n_estimators= 00, and max_depth=14.

The total processing time of the bitrate ladder prediction
algorithm (7p) is:

™ = (f : Tvp) + (N - 1) - (7 pr) (6)

where 7 and N denote the number of resolutions in R and
the number of points in the bitrate ladder, respectively. 7,
denotes the inference time of the VMAF prediction models
and 7, represents the inference time of the bitrate prediction
models. The amount of memory required to store the models
for bitrate ladder prediction (sp) is given by:

T
s5 = (Sup, + Stp,) (7)
r=1
where s,,,. denotes the size of the VMAF prediction model
trained for the resolution r, and Sbp, denotes the size of the
bitrate prediction model trained for the resolution r.

C. Optimized CRF Prediction

For HAS it is essential to avoid exceeding the maximum
bitrates specified in the HLS/DASH manifests [2] during the
encoding process. Failure to adhere to these limits can lead to
buffer overflows or underflows in video players'C. Therefore,
accurately predicting CRF becomes of utmost importance. In
this paper, CRF is predicted instead of quantization parameter
(QP), since, it simplifies the encoding workflow by eliminating
the need to manually set and adjust QP for each frame. Once

F
58
E =
s &
S

log(l;t)

Fig. 8: Estimation of the optimized CRF to achieve the target
bitrate b; using a prediction model trained for resolution 7.

TABLE III: Prediction accuracy of CRF prediction models for
2160p resolution encoding of VCD dataset [12] using x265
HEVC encoder at ultrafast preset.

Method R? | MAE
Linear Regression | 0.873 | 3.976
XGBoost 0.961 | 2.203
Random forest 0.968 | 1.871

the bitrate ladder is determined, the optimized CRF ¢; is
estimated for every (7, l;t). CRF c is modeled as a function
of the features E, h, and L, the resolution r, and the target
bitrate b, i.e., ¢,p = f(E,h,L,r,b). A prediction model is
trained for each resolution r, which determines ¢; based on
E, h, L, and log(b;) for each video segment as shown in
Fig. 8. The minimum and maximum CRF (¢, and cpaqn
respectively) are chosen based on the target video encoder.
For example, x264'> AVC [28] encoder and x265* HEVC [16]
encoder support a CRF range between 0 and 51. SVI-AV1'6,
an AV1 [41] encoder supports a CRF range between 1 and 63.

Implementation of prediction models: Similarily as for the
bitrate prediction, linear regression model [38], XGBoost [39],
and random forest regression model [40] are tested for their
prediction accuracy in terms of R? score and MAE. As shown
in Table III, R? score is the maximum, and the MAE score is
the minimum for random forest models. Furthermore, random
forest models for CRF prediction for every resolution exhibit
a lower tendency of over-fitting and can utilize distributed
computing for faster training and prediction. Hyper-parameter
tuning is performed on the prediction model of 2160p
to obtain a balance between model size and performance.
The selected hyper-parameters'® are min_samples_leaf=1,
min_samples_split=2, n_estimators=100, and max_depth=14.
Since the output of the prediction model is a floating point
value, the decimal value is truncated so that the result is an
integer.

The total processing time of the CRF prediction (7¢) is:

Te=N T ()

where 7., denotes the inference time of the CRF prediction
models. The amount of memory required to store the models
for CRF prediction (s¢) is given by:

T

Se = Z(Scpr) (9)

r=1

Bhttps://www.videolan.org/developers/x264.html, last access: May 30,
2023.
16https://github.com/AOMediaCodec/SVT-AV 1, last access: May 30, 2023.
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where s,;,,. denotes the size of the CRF prediction model
trained for resolution 7.

IV. EVALUATION
A. Test Methodology

The Video Complexity Dataset [12] is used to validate the
performance of the encoding schemes considered in this paper.
The dataset needed to train and test the prediction models
is generated as shown in Algorithm 2. E, h, and L features
are extracted using VCA v2.0'7 open-source video complexity
analyzer [35]. The sequences are encoded at 30 fps using x265
v3.5% with the ultrafast preset on a dual-processor encoding
server with Intel Xeon Gold 5218R (80 cores, frequency at
2.10 GHz). VCA and x265 are run using a single thread
with only x86 SIMD optimization [42] to compare the time
complexity of the considered schemes. The resolutions spec-
ified in Apple HLS authoring specifications! are considered
in the evaluation, i.e., R= {360p, 432p, 540p, 720p, 1080p,
1440p, 2160p}. The total memory used to store VMAF and
bitrate prediction models for bitrate ladder prediction, sp (cf:
Eq. 7) is 777MB, i.e., 58 MB for VMAF prediction models
for each resolution, and 53 MB for bitrate prediction models
for each resolution. The total memory used to store CRF
prediction models, s. (¢f Eq. 9) is 400 MB, i.e., 57 MB for
CRF prediction models for each resolution. In order to check
for the generalization of the models, 5-fold cross-validation is
performed, and the values are averaged from all folds. Since
these values are similar, we assume that the model generalizes
well. It was ensured that the training set does not include any
segments from the same scenes in the test set. For a target
bitrate of b; (in Mbps), the CBR encoding is achieved by
setting the bitrate and vbv-maxrate'® option of x265 as by,
and enabling strict-cbr flag'®. Similarly, for a target bitrate
of b; (in Mbps) and CRF c¢;, cVBR encoding is achieved by
setting the crf option'® of x265 as c;, and vbv-maxrate option
as by.

This paper considers the following encoding schemes to
compare with JTPS:

o Bruteforce bitrate ladder encoding [3], where the bitrate-
resolution-CRF triples are determined by encoding videos
using all CRFs supported by x265 for all resolutions. The
representations are chosen such that there is a VMAF
difference of one target JND.

« HLS CBR encoding, which is the CBR encoding of HLS
bitrate ladder!.

e« OPTE [11] CBR encoding, where optimized resolution is
predicted for the set of bitrates in the HLS bitrate ladder,
as shown in Fig. 6. In [11], linear regression models were
used to predict VMAF based on the E and h features.
For the evaluation in this paper, the method is extended
by using random forest models trained to predict VMAF
(for all resolutions in R) based on the E, h, and L features
using the CBR encoding dataset (¢f Algorithm 2).

https://vca.itec.aau.at, last access: May 30, 2023.

8https://x265.readthedocs.io/en/master/cli.html#
quality-rate-control-and-rate-distortion-options,  last
2023.

access: May 30,

Algorithm 2: Dataset generation.

cVBR encoding dataset

Inputs:
R: set of resolutions
Cmin: Minimum supported CRF
Cmaz: Maximum supported CRF

for each video segment do
Determine E, h, and L

for each r € R do
for each ¢ € [cmin, Cmaz]| dO
Encode segment with CRF c ;
Record E, h, L, r, ¢, achieved bitrate b/,
VMATF v, and PSNR p ;

CBR encoding dataset
Inputs:
R: set of resolutions
B: set of target bitrates
for each video segment do
Determine FE, h, and L
for each r € R do
for each target bitrate b € B do
Encode segment with CBR b ;
Record E, h, L, r, b, achieved bitrate ¥/,
VMAF v, and PSNR p ;

e PPTE [7], where optimized bitrate-resolution pairs are pre-
dicted for JND-aware CBR encoding as shown in Algo-
rithm 1. In [7], linear regression models were used to predict
VMATF and bitrate based on the £ and h features. For the
evaluation in this paper, the method is extended by using
random forest models trained to predict VMAF and bitrate
(for all resolutions in R) based on the E, h, and L features
using the CBR encoding dataset (cf. Algorithm 2).

« HLS cVBR encoding, where the optimized CRF is predicted
for the bitrate-resolution pairs of the HLS bitrate ladder, as
shown in Fig. 8. Random forest models are trained to predict
CRF (for all resolutions in R) using the cVBR encoding
dataset (cf. Algorithm 2).

e« OPTE cVBR encoding, where the optimized CRF is pre-
dicted along with the optimized resolution for the set of
bitrates in the HLS bitrate ladder for cVBR encoding.
This scheme predicts VMAF for all resolutions in R for
a given set of target bitrates. The resolution which yields
the maximum VMATF is chosen as the optimized resolution
for the given target bitrate, as shown in Fig. 6. Random
forest models are trained to predict VMAF and CRF (for
all resolutions in R) using the cVBR encoding dataset (cf.
Algorithm 2).

For PPTE and JTPS encoding, the parameters, b,,;,, and
bmasz are set as 0.145Mbps and 16.8 Mbps, respectively, to
compare with the HLS bitrate ladder. The average target IND
function (v ) is considered as two [26], four, and six'® based

https://streaminglearningcenter.com/codecs/finding-the-just-noticeable-
difference-with-netflix-vmaf.html, last access: May 30, 2023.
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on current industry practices. Accordingly, V.4, 1S set as 98,
96, and 94, respectively, to comply with the target JND value.

First, the pre-processing time (7,), i.e., latency in encoding
due to the time taken for video complexity feature extraction,
and the inference time of the models to predict the optimized
bitrate-resolution-CRF triples are determined to evaluate the
first-pass encoding time. 7, for state-of-the-art methods [3],
[13]-[15], [43] is the time for pre-encoding. The additional
computational time overhead to determine convex-hull ATx
is reported as a ratio to the sum of encoding times of all
representations in the reference bitrate ladder encoding as
shown below: -

ATC Z tre f
Second, the VMAF, log(b), and CRF prediction models are
assessed in terms of the prediction accuracy using the coef-
ficient of determination (R?) score and Mean Absolute Error
(MAE) compared to the ground truth values. The achieved
VMAF, bitrate, and CRF recorded in the cVBR encoding
dataset are ground truth values. Third, the relative importance
of the features used is evaluated using the SHapley Additive
exPlanations (SHAP) values [44].

(10)

The encoding schemes’ rate-distortion (RD) curves are
analyzed for selected video sequences (segments) of vari-
ous video content complexities. Bjgntegaard delta rates [45]
BDRp and BDRy refer to the average increase in bitrate
of the representations compared with that of the reference
bitrate ladder encoding scheme to maintain the same PSNR
and VMAF, respectively. A negative BDR suggests a boost
in the coding efficiency of the considered encoding scheme
compared to the reference bitrate ladder encoding scheme.
BD-PSNR and BD-VMAF refer to the average increase in
PSNR and VMATF, respectively, at the same bitrate compared
with the reference bitrate ladder encoding scheme. A positive
BD-PSNR and BD-VMAF denote an increase in the coding
efficiency of the considered encoding scheme compared to the
reference bitrate ladder encoding scheme.

The relative difference in the storage space needed to store
all bitrate ladder representations of the considered encoding
scheme (AS) is also evaluated as:

Z bopt -1
Z bref

where Y brey and > b, represent the sum of bitrates of all
representations in the reference bitrate ladder encoding and the
bitrate ladder encoding using the considered encoding scheme,
respectively. Similarly, the relative difference in the encoding
time of the considered encoding scheme (AT) is also evaluated

as:
Tp + > Lopt

D trer

where > t.cs and ) t,p; represent the sum of encoding times
of all representations in the reference bitrate ladder encoding
and the bitrate ladder encoding using the considered encoding
scheme, respectively.

AS =

Y

AT = -1 12)

2.7
3 ||
22
[e]
(9]
: .
£1 0.74
> 0.33
. 01202 212 28

360 432 540 720 1080 1440 2160

Video resolution (rmax)

Fig. 9: Pre-processing time (7,) of JTPS for various input
video resolutions.

TABLE IV: Comparison of the additional computational time
overhead to determine the convex-hull.

Method ATe
Bruteforce [3] 4596.77%
DeepStream [13] 4596.77%
Katsenou et al. [14] 120.57%
FAUST [15] 48.65%
Bhat er al. [4] 67.82%
OPTE [11] 0.30%
PPTE [7] 0.33%
JTPS 0.41%

B. Experimental Results

This section presents the results of JTPS. The pre-
processing time (7,), i.e., the sum of feature extraction time
and the inference time of the prediction models is evaluated.
E, h, and L features are extracted at an average speed of 44
frames per second over the entire dataset, i.e., for a segment
of four second duration, features are extracted in 2.71s. The
average inference time of the random forest models for the
bitrate ladder and CRF prediction (7yp, Tpp, and 7cp) is Sms.
Hence, 7, is 2.72s. As observed in Fig. 9, 7, decreases as
the video resolution (7,,,.,) decreases. The inference time of
the prediction models do not change, however, the featrue ex-
traction time reduces considerably as the resolution decreases.
In real-time applications, video complexity feature extraction
and the encoding bitrate-ladder prediction can be executed as
concurrent processes, using multi-threading optimizations. As
an example, 7, is reduced to 0.35 s when eight CPU threads are
used for feature extraction. As shown in Table I, the state-of-
the-art methods have pre-encoding steps to determine convex-
hull, making them unsuitable for live streaming applications.
However, OPTE [11], PPTE [7] and JTPS do not need
pre-encoding. Table IV shows the additional computational
time overhead needed to determine the convex-hull (first-pass
encoding time) compared to HLS CBR encoding time. It is
observed that our previous works OPTE and PPTE, and JTPS
need significantly lower processing time to predict the bitrate
ladder, compared to the state-of-the-art methods; hence, they
are suitable for live streaming applications.

The performance of the VMAF, bitrate and CRF prediction
models are investigated using the R? score and MAE, as
shown in Table V. The average R? score of the VMAF, bitrate,
and CRF prediction models are estimated as 0.886, 0.910, and
0.968, respectively. Hence, it can be observed that there is a
strong positive correlation between the predicted and ground
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TABLE V: R? score and MAE of the prediction models for various resolutions.

R? score MAE
r 360p | 432p | 540p | 720p | 1080p | 1440p | 2160p || 360p | 432p | 540p | 720p | 1080p | 1440p | 2160p
VMAF | 0.821 | 0.852 | 0.882 | 0.906 | 0.910 | 0.906 | 0.930 5.091 | 5.071 | 4966 | 4.971 | 4.806 | 4.490 | 3.941
log(b) 0.867 | 0.884 | 0.901 | 0.910 | 0.932 | 0.937 | 0.943 0.527 | 0.505 | 0.472 | 0.456 | 0.460 | 0.472 | 0.488
CRF 0.969 | 0.969 | 0.970 | 0.969 | 0.968 | 0.967 | 0.968 1.823 | 1.820 | 1.820 | 1.859 | 1.860 1.885 1.871
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Fig. 10: The relative importance of (a) VMAF prediction, (b) bitrate prediction, and (c) CRF prediction for 2160p resolution

determined by SHAP values [44].

truth values. The average MAE of the prediction models is
estimated as 4.762, 0.483, and 1.848, respectively, which is
acceptable in live streaming applications. Furthermore, this
paper also examines the relative feature importance in the
prediction models. Fig. 10 shows the SHAP values [44]
corresponding to the features used in the prediction models.
The target bitrate in the logarithmic scale (log(b;)) is the
most influential feature for VMAF prediction, followed by
the h, L, and E features. Similarly, target VMAF (vy) is
the most important feature for bitrate prediction, followed by
the h, L, and FE features. Furthermore, log(b;) is the most
vital feature for CRF prediction, followed by the h, L, and
I’ features. Intuitively, lower CRF yields higher bitrate and
VMATF, and vice versa. Additionally, in inter-coding, temporal
activity is expected to influence the encoding decisions more
than spatial content. Hence, h is expected to be more critical
in the predictions than L and F, respectively.

Fig. 11 shows the RD curves of selected video sequences
(segments) of various video complexities with bruteforce en-
coding [3], HLS CBR encoding, OPTE CBR encoding [11],
PPTE encoding [7], HLS c¢VBR encoding, OPTE cVBR
encoding, and JTPS. It is observed that JTPS determines
the RD points so that the average VMAF difference between
consecutive RD points is the target JND value (in the figure,
IJND is assumed as 6 VMATF points). Furthermore, the VMAF
achieved by JTPS is higher than HLS CBR encoding at the
same target bitrates. In most cases, however, OPTE cVBR
yields higher VMAF than the other encoding schemes at the
same target bitrates for videos in all complexity classes. This is
because OPTE cVBR encoding is optimized for maximizing
VMATF, while JTPS is a joint optimization for maximizing
VMAF and maintaining a perceptual gap between represen-
tations. Hence, the number of representations in JTPS for
every video segment is lower than for HLS ladders and OPTE
encoding. On average, JTPS (6 VMAF JND) yields eight
representations for each video segment, while HLS ladders

and OPTE encoding always have twelve representations. On
average, PPTE (6 VMAF JND) yields ten representations for
each video segment.

Considering temporal activity in live-streaming applications
is crucial for achieving optimal video quality, and storage
efficiency. Since h represents the temporal activity and is
shown to have the strongest influence on the bitrate and VMAF
prediction models compared to the other video complexity
features (cf. Fig. 10), the correlation of A with the cumulative
bitrate of all representations encoded using JTPS for different
VMAF JND values (i.e., 2, 4, and 6) is analyzed as shown in
Fig. 12a, 12b, and 12c, respectively. The average R? score
of h with the cumulative bitrate is 0.65. This is because,
video segments with high temporal activity and fast-paced
motion tend to have more temporal changes between frames,
resulting in more information to be stored or transmitted. As
a result, higher bitrates and larger file sizes are needed to
maintain video quality. Similarly, the correlation of A with
| BDRy | of the videos encoded using JTPS is analyzed
for different VMAF JND values (i.e., 2, 4, and 6) as shown
in Fig. 12d, 12e, and 12f, respectively. The average R
score of h with | BDRy | is 0.51. In scenes with low
temporal motion activity, where there is slower motion or
minimal changes between frames, fewer bits are needed to
represent the frames accurately. Hence, | BDRy | is high
at low h values. However, | BDRy | is observed to be
independent of the considered JND value. This is because
the area under the RD curve using JTPS does not change
based on JND values. To summarize, as h increases, i.e.,
when there is an increase in temporal activity, the storage
requirement increases. Furthermore, as h increases, the bitrate
savings while maintaining the same VMAF decreases.

Finally, Table VI summarizes the bitrate saving results
of the schemes in terms of BDRp, BDRy, and AS, the
qualitative analysis results in terms of BD-PSNR and BD-
VMAPF, and encoding time saving (AT") compared to the HLS
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Fig. 11: RD curves of representative video sequences (segments) (a) Bunny_s000 (E =22.40, h=4.70, L=129.21), (b)
Characters_s000 (EE =45.42, h=36.88, L=134.56), (c¢) Eldorado_s000 (E=15.28, h=49.76, L=140.54) (d) Eldorado_s005
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L=119.57) using the HLS CBR encoding (green line), OPTE CBR encoding (brown line), PPTE encoding (olive line), HLS
cVBR encoding (blue line), OPTE cVBR encoding (purple line), and JTPS encoding (red line). JND is considered as 6 VMAF
in these plots.
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Fig. 12: Cumulative bitrate of all representations encoded using JTPS with (a) 2 VMAF IND, (b) 4 VMAF JND, and (c) 6
VMAF JIND for various values of h , and | BDRy | results of JTPS encoding with (d) 2 VMAF JND, (e) 4 VMAF IND,
and (f) 6 VMAF IND for various values of h, compared to HLS CBR encoding.

CBR encoding. Bruteforce encoding with JND of 2, 4, and 6
VMATF points is the best possible result when the predictions
are 100% accurate. Hence, the corresponding results are the
highest bound of the compression efficiency improvement
(considering VMAF as the quality metric) compared to the
HLS CBR encoding. The encoding time using the bruteforce
method is 47 times higher than the HLS CBR encoding. OPTE
CBR encoding yields bitrate savings of 17.28% and 22.79% to
maintain the same PSNR and VMAF, respectively, compared
to the HLS CBR encoding, along with a 0.07% cumulative

increase in storage space required and a 9.74% cumulative
increase in encoding time for various representations. This
scheme yields the highest bitrate saving to maintain the same
VMAF compared to the other CBR encoding schemes. PPTE
scheme is analyzed for the JND values of 2, 4, and 6 VMAF
points. With a target JND of 2 VMAF points, PPTE yields
bitrate savings of 11.06% and 16.65% to maintain the same
PSNR and VMAF, respectively, compared to the HLS CBR
encoding, along with a 10.18% cumulative increase in storage
space required and a 105.73% cumulative increase in encoding
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TABLE VI: Average results of the encoding schemes compared to the HLS CBR encoding.

Method BDRp | BDRy | BD-PSNR | BD-VMAF AS AT
Bruteforce (2 VMAF JND) [3], [13] | -23.09% | -43.23% 1.34 dB 10.61 -25.99% | 4732.33%
Bruteforce (4 VMAF JND) [3], [13] | -28.15% | -42.75% 1.70 dB 10.08 -59.07% | 4732.33%
Bruteforce (6 VMAF JND) [3], [13] | -25.36% | -40.73% 1.67 dB 9.19 -70.50% | 4732.33%
OPTE CBR [11] -17.28% | -22.79% | 0.98 dB 3.79 0.07% 15.74%
PPTE (2 VMAF JND) [7] -11.06% | -16.65% | 0.87 dB 2.18 10.18% | 105.73%
PPTE (4 VMAF JND) [7] -10.44% | -15.13% | 0.91 dB 2.39 -27.03% 10.19%
PPTE (6 VMAF IND) [7] -12.94% | -17.94% | 0.94 dB 232 -42.48% | -25.35%
HLS cVBR -35.25% | -32.33% | 2.09 dB 6.59 -9.39% 1.64%
OPTE cVBR -34.42% | -42.67% | 2.90 dB 9.51 -1.34% 62.73%
JTPS (2 VMAF JND) -14.25% | -29.14% 1.36 dB 7.82 23.57% | 184.62%
JTPS (4 VMAF JND) -18.41% | -32.48% 1.41 dB 8.31 -56.38% | 26.14%
JTPS (6 VMAF JND) -18.80% | -32.59% 1.34 dB 8.34 -68.96% | -18.58%

time for various representations. The increase in storage space
and encoding time is owed to the increase in the number
of representations in the bitrate ladder when the JND value
decreases. With a target JND of 4 and 6 VMAF points, the
decrease in storage space requirement is observed as 27.03%
and 42.48%, respectively. The overall encoding time increases
by 10.19% for a target JND of 4 VMAF points, while it
decreases by 25.35% for a target JND of 6 VMATF points.

It is observed that HLS cVBR encoding yields bitrate
savings of 35.25% and 32.33% to maintain the same PSNR
and VMAF, respectively, compared to the HLS CBR encoding,
along with a 9.39% cumulative decrease in storage space
and 1.64% cumulative increase in encoding time required
for various representations. This result demonstrates that the
compression efficiency of cVBR encoding is better than CBR
encoding. Using OPTE cVBR encoding, bitrate savings of
34.42% and 42.67% to maintain the same PSNR and VMAF,
respectively, are observed, compared to the HLS CBR encod-
ing along with a 1.34% cumulative decrease in storage space
requirement and a 62.73% cumulative increase in encoding
time requirement. This scheme yields the highest bitrate
saving to maintain the same VMAF compared to the other
considered schemes. However, as observed in the RD figures,
many representations are perceptually redundant, which wastes
storage space. JTPS is observed to overcome this problem.
With a target JND of 2 VMAF points, JTPS yields bitrate
savings of 14.25% and 29.14% to maintain the same PSNR
and VMAF, respectively, compared to the HLS CBR encoding,
along with a 23.57% cumulative increase in storage space and
a 184.62% cumulative increase in encoding time required for
various representations. Similar to the observation for PPTE,
when the JND value decreases, the number of representations
in the bitrate ladder increases, causing an increase in storage
space required. However, with a target JND of 4 and 6 VMAF
points, the decrease in storage space requirement is observed
as 56.38% and 68.96%, respectively. The overall encoding
time increases by 26.14% for a target JND of 4 VMAF points,
while it decreases by 18.58% for a target JND of 6 VMAF
points.

V. CONCLUSIONS

This paper proposes a JND-aware two-pass cVBR per-title
encoding scheme (JTPS) for adaptive live streaming appli-
cations. JTPS includes an optimized encoding bitrate ladder

prediction algorithm, which estimates bitrate-resolution-CRF
triples for a given video segment based on its spatial and
temporal characteristics, using RF-based models. The bitrate
ladder is predicted such that there is a perceptual difference of
at least one JND between the representations in order to min-
imize the perceptual redundancy of the representations. Opti-
mized CRF prediction for every representation in the bitrate
ladder enables cVBR encoding. The experimental results show
that, on average, JTPS yields bitrate savings of 18.80% and
32.59% to maintain the same PSNR and VMAF, respectively,
compared to the CBR encoding of the reference HLS bitrate
ladder with a negligible additional latency in streaming. This is
accompanied by a cumulative decrease of 68.96% in storage
space needed for various representations, and a cumulative
decrease of 18.58% in encoding time, considering a JND of
6 VMAF.

In case the streaming service provider does not support per-
title encoding schemes, the HLS cVBR encoding scheme can
be used, where the bitrate-resolution pairs are fixed. Hence,
the network architecture used for fixed bitrate-ladder encod-
ing shall remain unaltered. If the streaming service provider
supports dynamic resolution changes while maintaining a
selected set of bitrates, OPTE cVBR encoding scheme is
the best choice. Finally, if dynamic bitrate-resolution pairs
are supported, JTPS offers the best storage reduction and
improved compression efficiency.

In the future, JTPS can be extended to support Common
Media Client Data (CMCD) [46], so that the encoding can be
optimized based on the user profile, geolocation, subscription
model, ratings, etc. In this way, context-awareness can be
incorporated in JTPS.
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