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STDFormer: Spatial-Temporal Motion Transformer
for Multiple Object Tracking

Mengjie Hu , Xiaotong Zhu , Haotian Wang, Shixiang Cao , Chun Liu , and Qing Song

Abstract— Mainstream multi-object tracking methods exploit
appearance information and/or motion information to achieve
interframe association. However, dealing with similar appearance
and occlusion is a challenge for appearance information, while
motion information is limited by linear assumptions and is prone
to failure in nonlinear motion patterns. In this work, we disregard
appearance clues and propose a pure motion tracker to address
the above issues. It dexterously utilizes Transformer to estimate
complex motion and achieves high-performance tracking with low
computing resources. Furthermore, contrastive learning is intro-
duced to optimize feature representation for robust association.
Specifically, we first exploit the long-range modeling capability of
Transformer to mine intention information in temporal motion
and decision information in spatial interaction and introduce
prior detection to constrain the range of motion estimation.
Then, we introduce contrastive learning as an auxiliary task
to extract reliable motion features to compute affinity and
introduce bidirectional matching to improve the affinity com-
putation distribution. In addition, given that both tasks are
dedicated to narrowing the embedding distance between the
motion features of the tracked object and the detection features,
we design a joint-motion-and-association framework to unify
the above two tasks in one framework for optimization. The
experimental results achieved with three benchmark datasets,
MOT17, MOT20 and DanceTrack, verify the effectiveness of our
proposed method. Compared with state-of-the-art methods, the
proposed STDFormer sets a new state-of-the-art on DanceTrack
and achieves competitive performance on MOT17 and MOT20.
This demonstrates the advantage of our method in handling
associations under similar appearance, occlusion or nonlinear
motion. At the same time, the significant advantages of the pro-
posed method over Transformer-based and contrastive learning-
based methods suggest a new direction for the application of
Transformer and contrastive learning in MOT. In addition,
to verify the generalization of STDFormer in unmanned aerial
vehicle (UAV) videos, we also evaluate STDFormer on Vis-
Drone2019. The results show that STDFormer achieves state-of-
the-art performance on VisDrone2019, which proves that it can
handle small-scale object associations in UAV videos well. The
code is available at https://github.com/Xiaotong-Zhu/STDFormer.
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I. INTRODUCTION

MULTI-OBJECT tracking (MOT) plays an essential role
in computer vision. It is widely used in video surveil-

lance, autonomous driving, motion recognition and crowd
behavior analysis. The goal of multi-object tracking is to find
objects of interest in a video sequence and match the same
objects frame-by-frame. This task can be divided into two sub-
tasks: object detection and data association. According to the
combination of the two subtasks, the mainstream methods can
be separated into two paradigms: a) tracking-by-detection [1],
[2], [3], [4] and b) joint-detection-and-tracking [5], [6], [7],
[8], [9]. Researchers [6] have discovered that tracking loss
and detection loss are incompatible and even somewhat impair
detection performance when training a single backbone net-
work jointly. Therefore, we believe that tracking-by-detection,
which decouples the two subtasks, is a better solution. Thanks
to the rapid development of object detection, an increasing
number of tracking-by-detection methods have started to use
powerful detectors that are already in place to implement
high-performance tracking. Compared with object detection,
data association methods have developed relatively slowly.
Moreover, existing data association methods still have some
limitations in multi-object tracking. To further improve the
performance of multi-object tracking, more work is needed to
develop data association methods.

Most of the data association techniques currently in use rely
on appearance and motion data, with the former predominating
and the latter typically employed as a secondary association.
Unfortunately, appearance information performs poorly for
occluded, blurred or similar objects due to noisy detections
or similar appearances. Inspired by trajectory prediction [10],
[11], [12], we recognize that if a high-performance motion
model can perfectly predict the object trajectory, the model can
mitigate the false associations caused by these aforementioned
problems, as shown in Figure 1. Moreover, some recent stud-
ies have demonstrated that accurate tracking can be achieved
by relying on motion information alone. Hence, we aim to
construct a powerful motion model for robust data association.

In past studies on MOT tasks, the motion infor-
mation was encoded either by conventional filtering or
data-driven methods. Compared with conventional filter-
ing [1], [4], [13], [14], [15], [16], [17], [18], data-driven
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Fig. 1. Illustration of the idea of STDFormer. (a) is linear motion estimation,
and (b) (c) (d) is nonlinear motion estimation. (a) The motion prediction
based on the linear model has a large deviation from the true trajectory
of the nonlinear motion. (b) Temporal-based motion estimation can more
accurately determine the purpose of nonlinear motion accurately by mining
historical motion information, and eventually improve motion prediction
(green). However, targets may collide in space when motion estimation
only considers temporal information (yellow and blue). (c) Conflicts can be
avoided by adding spatial information based on temporal prediction, which
is more consistent with the social attributes for people to flee from danger.
(d) Detection constraints can further modify our predictions to be more biased
toward ground truth, and can also indicate avoidance directions for conflicting
trajectories (dashed red lines).

methods [19], [20], [21], [22], [23] have attracted less attention
since most studies typically use motion models as an auxil-
iary clue. However, data-driven motion models have inherent
advantages in handling nonlinear and sophisticated motion pat-
terns which can not be expressed by filtering-based methods.
Among data-driven methods, RNNs make up the majority of
existing model frameworks since they are capable of handling
long-range motion context dependencies. As the RNN blocks
propagate, the relationship between two long-range motion
information becomes very weak. RNN-based methods have
limitations for modeling long-range motion. In summary, our
motivation is to explore a new framework for constructing a
powerful motion model for robust association under similar
appearance, occlusion, or nonlinear motion.

Recent literature in sequence modeling confirmed that
Transformer outperforms RNNs in long-range modeling and
parallel computing due to the attention mechanism. Conse-
quently, we leverage the Transformer architecture to model
long-range motion information. On the other hand, to achieve
accurate trajectory prediction, we deeply mine the influ-
ence of spatial-temporal motion information and observations,

as shown in Figure 1. Contemporary trajectory prediction
methods emphasize that the motion of an object is determined
by multiple factors. As shown in Figure 1(b), the temporal
information contains the motion intention of the object. Inten-
tion dependence is the dominant factor for the movement
of an object in any scene. That is, each object has its own
intended destination. Affected by social neighbors and the
physical environment, objects make temporary changes during
their progress. As shown in Figure 1(c), the spatial interaction
constrains the movement distribution of the object in the next
step. To obtain more accurate motion prediction, we also
introduce the detections of the latest frame as prior knowledge
to further restrict the object’s potential positions, as shown
in Figure 1(d).

To accomplish the aforementioned goals, we propose a
Transformer-based multi-object tracking model with joint
Spatial-Temporal motion and prior Detection, called STD-
Former. STDFormer performs object motion prediction and
affinity matrix calculation between detections and tracks by
utilizing spatial-temporal constraints as well as potential detec-
tion. As shown in Figure 2, our model employs a parallel
framework for jointly learning motion prediction and asso-
ciation, referred to as joint-motion-and-association. Unlike
joint-detection-and-tracking, our approach achieves win-win
cooperation because the jointly optimized feature space is
exceptionally harmonious for both tasks. We believe that the
motion prediction module in our framework can implicitly
utilize the association information encoded in the interactive
features of the current frame, making the feature represen-
tations for the motion prediction module close to the real
detection feature representations. Specifically, the network
consists of four components. Among them, our core design
is to propose the STD (Spatial-Temporal-Detection) module
in feature interaction, which utilizes the attention mechanism
of Transformer to effectively realize the interaction of spa-
tial, temporal and detection information. As for the token
mechanism, we propose a learnable trajectory token, which
obtains information about the entire trajectory by aggregating
the features of all tracking boxes for a single trajectory in
temporal attention. Each trajectory token represents an object
and is used in spatial attention, detection attention and affinity
calculation. For the association task branch, discriminative
features and effective affinity calculation are crucial. How-
ever, existing methods optimize the affinity matrix between
detections and tracks are very dependent on high-quality
detection results, whereas missed and coarse detections seri-
ously damage feature representation learning. To enhance the
association task, we introduce contrastive learning for the
first time in MOT tasks to learn motion representations, and
utilize bidirectional matching to optimize the final affinity
calculation.

To summarize, our contributions are as follows:
• We present a parallel framework for motion prediction

and affinity calculation, named STDFormer. STDFormer
improves the performance of both tasks via joint opti-
mization.

• To the best of our knowledge, we are the first to explic-
itly use a Transformer architecture to model long-range
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Fig. 2. The pipeline of the proposed joint-motion-and-association framework, STDFormer, where ⊗ represents concatenate features. The solid line is the
data flow for training and testing. It takes the tracking boxes of the existing trajectories in the past k frames and the detection boxes of the current frame as
input and outputs the localization of the trajectories in the current frame and the association probability matrix between the detections and the trajectories.
In training, we add an auxiliary task, which inputs the ground truth of the tracking boxes in the current frame to the network instead of the detection boxes,
and its data flow (red dotted line) is consistent with the detection data flow (green solid line). In testing, the predicted tracking boxes are used to update
the trajectory set as input for the next frame (brown dashed line). The pipeline consists of four components: feature extraction, feature interaction, motion
prediction head, and affinity calculation head (the detector component is omitted). Feature interaction is the core component of the whole method, which is
used to mine the spatial-temporal information of the trajectories and interact with detection.

motion information in MOT without considering appear-
ance information.

• We generate a learnable trajectory token by aggregating
previous tracking box features in temporal attention to
efficiently switch to spatial attention, detection attention
and affinity calculation.

• We initially apply contrastive learning in MOT tasks
to learn motion representation, and we further leverage
bidirectional matching to improve affinity calculation.

II. RELATED WORK

In this paper, with the aid of the existing detectors,
we formulate multi-object tracking problem as a motion
tracking model and utilize the Transformer architecture to
mine long-range context dependency. Additionally, we employ
contrastive learning to learn the highly discriminative feature
representation and compute the matching similarity during
the training process. Thus, we review the most relevant tasks
of multi-object tracking, which are motion modeling, Trans-
former tracking, and contrastive learning.

A. Motion Modeling

Motion models aim to exploit motion information to pre-
dict spatial-temporal variations in trajectories, and infer spa-
tial affinity between predictions and detections. The existing
research methods of motion prediction can be roughly divided
into two categories: traditional filtering-based methods and
data-driven methods.

The common idea behind filtering-based motion models
is to apply a Bayesian estimation framework. Following
Bayesian methodology, different Bayesian filtering techniques
have been developed for different scenarios. As one of the
most classic Bayesian filters, the vanilla Kalman filter [24]
with the assumption of uniform motion has gradually become
the most popular motion model in multi-object tracking
tasks [1], [4], [5], [16], [17], [25]. However, it is not suitable
for nonlinear motion. To solve this problem, [26], [27] utilized
the local linearization method based on the Kalman filter to
address nonlinear motion, and particle filters [28] use a large
number of random sampling points to approximate the poste-
rior probability density function. The former methods have a
large tracking error when applied to highly nonlinear motion;
in contrast, the latter is close to optimal Bayesian estimation
when the number of sampling points tends to infinity and
can correctly handle nonlinear motion estimation. Considering
the target interaction and variable number of targets in MOT,
in some studies [29], [30] more advanced particle filter variants
were applied, for example, Reversible-Jump Markov Chain
Monte Carlo (RJMCMC) particle filter [31]. Nonetheless,
particle filter-based methods have seldom been applied in
MOT, given that a large number of sampled particles leads
to a sharp increase in computation.

As traditional filtering-based methods cannot describe the
motion pattern of objects accurately, more complex data-driven
motion methods have been proposed to achieve more com-
plicated state prediction. In the existing multi-object tracking
literature, data-driven approaches have mainly been based
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on RNN architecture to mine the temporal information of
motion. [32] introduced recurrent networks to simulate a
Bayesian filter for motion estimation. After [32], different
types and combinations of RNNs were used [19], [20], [21],
[22], [23] to realize deterministic or probability distribution
prediction of object motion. However, the relationship between
long-range motion information will become very weak as
RNN blocks propagate. In addition, graph models are also
considered for modeling object motion. Reference [33] pro-
posed two modules, box embedding and tracklet embedding,
which used the attention and reconstruction mechanisms of
deep graph convolutional networks to model local and global
motion information, respectively. It should be pointed out that
the global motion modeling in [33] was based on tracklets.
It did not establish connections to box nodes of non-adjacent
frames, which made it unable to mine long-range motion
information from low-level features.

Recently, Transformer has been shown to perform better
than RNNs in long-range modeling and parallel computing.
Compared with the graph models, Transformer does not need
to pre-design graph. It can directly build a fully connected
graph through self-attention. Inspired by this, our approach
adopts the Transformer architecture for long-range modeling
of motion information to extract more accurate motion features
and mine more useful motion cues.

B. Transformer In Tracking

Transformers have achieved great success in natural lan-
guage processing and have gradually been applied to fields
such as computer vision in recent years. The existing
Transformer-based MOT methods can be categorized as
short-term models or long-term models, depending on the
range of information.

Short-term models only consider the local information
of adjacent frames to learn and infer object trajectories.
Reference [34] leverages features from previously detected
objects as queries to discover associated objects in subsequent
frames. Reference [35] introduces pixel-level dense queries
with Transformers and proposes a dual decoder to output cen-
ter heatmap and object size, as well as tracking displacements
in adjacent frames. Reference [36] uses previously detected
results as references to aggregate the corresponding features
from the combined features of the adjacent frames. For each
reference, [36] then concurrently predicts the one-to-one track
state.

In contrast, long-term models have access to longer-range
information beyond two frames, which theoretically can
obtain more accurate results by using more contextual cues.
References [37] and [38] achieve detection and data associa-
tion synchronously by integrating object and autoregressive
track queries as input to the Transformer decoder in the
next time step. These methods implicitly apply long-term
temporal information by propagating track queries frame-by-
frame. References [39] and [40] integrate long-term temporal
information by focusing on all past embeddings for each
individual object and use this information to predict the appro-
priate embedding for the current time step. Reference [41]
constructs a spatial map for objects appearing in each frame

of the past T frames, and leverages Transformer architecture
to jointly learn the spatial and temporal relationships of
small trajectories as well as candidate trajectories for efficient
association. However, these methods which explicitly utilize
multi-frame information, usually require constructing a large
spatial-temporal memory to store past observations of tracked
objects, which consumes expensive storage and computing
resources.

All of the aforementioned approaches, which explicitly use
multi-frame information, take full advantage of Transformer’s
long-term modeling capabilities. The high resource cost of this
technique is due to the storage of high-dimensional visual
features and motion features. To address this problem, our
method only stores and encodes low-dimensional position
information of objects in the past multiple frames and discards
appearance information.

C. Contrastive Learning

Contrastive learning is an effective representation learning
method. It has strong discriminative power to distinguish the
same object from other objects by pushing away negative
embedding distances and narrowing the positive ones. This
technology has recently obtained amazing results in various
fields, such as computer vision [42], [43], [44], natural lan-
guage understanding [45], [46], [47], and text-image match-
ing. Contrastive learning applied specifically to multi-object
tracking has received less attention. The few relevant stud-
ies [48], [49] also focused on appearance features, which
can be learned effectively by contrastive learning. However,
for motion features, determining how to design positive and
negative samples effectively is very important. Recently, in the
field of trajectory prediction, [50] was the first to learn motion
representation by contrastive learning. Reference [50] proposes
a social sampling strategy. It constructs the positive event from
the ground-truth location of the primary agent and the negative
events from the regions of other neighbors, given that one
location cannot be occupied by multiple agents at the same
time. Our work is inspired by the safety of dealing with the
sampling strategy proposed by [50].

Our work attempts to aggregate the historical features of
the tracks to obtain the trajectory information of the objects
in the current frame and compute the similarity with the
detections. Both subtasks require the trajectory token features
to be as close as possible to the motion embedding of objects
in the current frame. Therefore, our method takes all the
objects appearing in the current frame as samples. The samples
belonging to the same objects as the historical tracks are pos-
itive samples, and the samples belonging to different objects
are negative samples. This method enables the trajectory token
features of tracks to effectively learn the behavioral intentions
of objects. To the best of our knowledge, we are the first to
utilize the contrastive idea for motion representation learning
in MOT.

III. METHODOLOGY

In this section, we first introduce the overall framework of
STDFormer (Figure 2). Then, we provide a detailed descrip-
tion of the model, training and inference process.
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A. Overview

Given a sequence of video frames, the goal of MOT is to
detect and associate the targets frame-by-frame. In this paper,
we address the problem of online multi-object tracking in a
scene by following a tracking-by-detection paradigm.

Before introducing the pipeline of our tracking algo-
rithm, we define some symbolic expressions. Specifically, let
Dt

= {d1, . . . , dN } denote the detections of N objects at
frame T . Each detection di = [x, y, w, h] is represented
as the center point and size of the bounding box. Let
Tt−1

= {T t−1:t−k
1 , . . . , T t−1:t−k

M } denote the trajectories of M
tracked objects at frame t − 1. Every trajectory T t−1:t−k

j =

[T t−1
j , . . . , T t−k

j ] consists of the tracking boxes from the j-th
tracked item over the previous k frames in reverse order of
time. Note that if the length of a trajectory T j at frame t is
s (s < k), we need to pad T t−1:t−k

j . Specifically, we assume
that the state of the short trajectory T j is standing still until
the trajectory initialization, so we repeat the initial tracking
box T t−s

j of the trajectory k − s times and regard them
as hypothetical tracking boxes for T j from frame t-k to
frame t-s+1:

T t−1:t−k
j = [

s︷ ︸︸ ︷
T t−1

j , . . . , T t−s
j ,

k−s︷ ︸︸ ︷
T t−s

j , . . . , T t−s
j ] (1)

The j-th tracked object’s tracking box at frame t T t
j =

[x, y, w, h] takes the same definition as detection, where t ∈

{t − 1, . . . , t − k}. Based on the definition, the tracking boxes
of all tracked objects at frame t can be represented as T t

=

{T t
1 , . . . , T t

M }. Let 1t−1:t
= {δ1, . . . , δM } denote the tracked

objects’ displacements between frame t −1 and frame t . Each
tracked object’s displacement δt−1:t

j = [dx, dy, dw, dh] is
expressed as the change in the center point and size of the
tracking box between two frames. Let At

N :M denote the affinity
matrix at frame t , which indicates the similarity of detections
and tracked objects.

The workflow of STDFormer contains two stages: 1) At
frame t , we apply a high-performance detector [51] to identify
and locate all targets Dt ; 2) the proposed STDFormer takes
object trajectories Tt−1 up to time t − 1 and detections Dt at
time t as input and outputs each tracked object’s displacements
1t−1:t as well as the affinity matrix At

N :M . During training,
we introduce an auxiliary task to learn more accurate motion
feature representation. This stage is similar to the second
stage, except that the input now uses tracking boxes T t from
the t-th frame instead of detections Dt . During inference,
we propose a step-by-step association strategy, which utilizes
an affinity matrix to match first and then adopts the IoU
similarity between detections and predicted tracking boxes to
match the remaining detections and tracks.

Specifically, as shown in Figure 2, STDFormer consists of
four main components: 1) a feature extraction module that
encodes the current frame’s detection information along with
the tracked objects’ historical motion data from the previous
frames; 2) a feature interaction module that takes advantage of
Transformer’s attention mechanism to aggregate trajectories’
spatial-temporal features and detection features; 3) a motion
prediction head that generates displacements of tracked objects

Fig. 3. Feature extraction module. The center points and sizes of the
input tracking boxes and detection boxes are denoted as (xc, yc, w, h).
The embedding layer maps each dimension of the low-dimensional input
to the high-dimensional space and connects them into embedding vectors
(R4

⇒ R4d ). The MLP layer fuses and reduces the dimension of the
embedding vectors of each dimension (R4d

⇒ Rd ), and finally outputs the
extracted feature vector Ht−1 and O t .

in adjacent frames, based on the difference between tracking
box features in the previous frame and aggregated features
of the trajectories; and 4) an affinity calculation head that
computes the affinity matrix between detections and tracked
objects for data association.

B. Feature Extraction

Both historical motion information and detection informa-
tion represent spatial information. Therefore, they can be
embedded into the same feature space by a shared feature
extractor. As shown in Figure 3, taking the input object
trajectories up to time t − 1 Tt−1

∈ RM×k×4 and detections
at time t Dt

∈ RN×4, we utilize an embedding layer to
extract their features. The embedding layer is a lookup table
that can be trained. It creates a weight matrix W ∈ Rr×d ,
where r is the embedding vector size and d is the embedding
vector dimension. This layer takes only positive integers
(indices) as input and converts them into fixed-size embed-
ding vectors. Specifically, the embedding layer converts each
integer i into the i-th row of the embedding weight matrix.
As shown in Figure 3(b), in this work, we take the center
point coordinates and bounding box size values of trajectory
and detections as a set of positive integer indices, retrieve the
corresponding embedding vectors from the embedding weight
matrix and concatenate them as the output of the embedding
layer. We define the extracted features for trajectories and
detections as Ht−1

emb ∈ RM×k×4d and O t
emb ∈ RN×4d , where d

indicates the embedded dimension. The calculation process of
the embedding layer is as follows:

xemb = W [xc] (2)
yemb = W [yc] (3)
wemb = W [w] (4)
hemb = W [h] (5)

Ht−1
emb/O t

emb = concat (xemb, yemb, wemb, hemb) (6)
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Fig. 4. Feature interaction module. STD concatenates the learnable trajectory tokens QLT T and the extracted features of the historical tracking boxes
H t−1:t−k as input, and outputs the iteratively updated trajectory tokens QLT T after three spatial-temporal attention submodules. Each spatial-temporal
attention submodule is composed of a temporal attention layer and a spatial attention layer, and realizes feature interaction based on a self-attention mechanism.
Then, the updated trajectory tokens QLT T and the extracted feature of the detection boxes O t are fed to the three detection attention layers, and QLT T is
used as the query vector to realize the cross-attention with O t . Finally, the STD outputs the updated trajectory tokens QLT T .

Furthermore, we use a 1-layer Multi-Layer Perceptron
(MLP) to fuse the features of the last dimension and map
them to the final embedded representation, Ht−1

∈ RM×k×d

and O t
∈ RN×d .

In summary, our embedding layer maps low-dimensional
spatial data to high-dimensional feature space, which obtains
more discriminative feature representations and is propagated
to the next feature interaction module.

C. Transformer for Feature Interaction

In this subsection, we demonstrate how to leverage Trans-
former’s attention mechanism for feature interaction: feature
interaction using Spatial attention, Temporal attention, and
Detection attention, STD for short.

After feature extraction, Ht−1
= {H t−1:t−k

1 , . . . , H t−1:t−k
M }

and O t
= {O1, . . . , ON } are passed through the STD module

to implement feature interaction. As shown in Figure 4,
the STD module consists of three different types of atten-
tion submodules: a) temporal attention, b) spatial attention,
c) detection attention. In fact, the three attention modules all
follow the same encoder layer paradigm [52], except that the
query and key are used as input. We first briefly introduce the
tokens involved in the three submodules, and then elaborate
on the detailed differences of each module.

1) Token Mechanism: The token embeddings are delivered
as input to the attention module with a 1D sequence format.
In the STD module, tokens can be classified into the following
three categories according to the source of embedding:

• detection token: embedding of a detection at frame t
Oi ∈ O t , where Oi ∈ Rd , i ∈ {1, . . . , N }.

• track token: embedding of a history tracking box for a
single tracked object at frame t −1 over the past k frames
H p

j ∈ H t−1:t−k
j = {H t−1

j , . . . , H t−k
j }, where H p

j ∈ Rd ,
j ∈ {1, . . . , M}, p ∈ {t − 1, . . . , t − k}.

• trajectory token: learnable embedding of a tracked object
at frame t −1. It aggregates the historical tracking boxes’

features of a single object, whose state at the output
of the attention module implicitly serves as the tracked
object’s tracking box embedding at frame t . We define
the Learnable Trajectory Token of the j-th tracked object
as QLT T ( j) ∈ Rd .

2) Temporal Attention: The long-range motion information
of a tracked object implicitly indicates its motion trend. For
each tracked object, we independently execute the interaction
of temporal motion features over the previous k frames.
Therefore, considering that each tracking target has a temporal
attention layer, the temporal attention module dynamically
adjusts the number of parallel temporal attention layers along
with the tracking target. As illustrated in Figure 4, we construct
the encoded query and key vectors for the intra-track temporal
attention of the j-th tracked object at frame t − 1 in a
self-attention manner as follows:

• query: embeddings of a tracklet token and k track tokens
of the target in the past k frames {QLT T ( j), H t−1

j , . . . ,

H t−k
j }, where j ∈ {1, . . . , M}.

• key: similar to the query.
In particular, position embeddings with sinusoidal for-

mat [53] are added to the above embeddings to retain temporal
information. DIn contrast to the standard Transformer, we only
add them once to the relevant temporal embeddings of the fea-
ture extraction module output. The inputs of temporal attention
become time-dependent by adding the position embeddings to
the temporal embeddings, which is essential for STD mining
movement trends.

3) Spatial Attention: The interaction of spatial features
reflects social interaction. In social interactions, targets’
decisions frequently follow logical social norms. Regarding
spatial information, we exploit the interaction mechanism of
self-attention to measure the relative spatial position between
the targets and their neighbors, which assists them in making
movement decisions. Thus, the query and key vectors for the
inter-track spatial attention module are as follows:
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• query: embeddings of the tracklet tokens of all the targets
at frames t − 1 {QLT T (1), . . . , QLT T (M)}.

• key: similar to the query.
4) Detection Attention: The detections provide the potential

distribution position of targets in the current frame, which can
be used as prior knowledge to constrain the possible position
of the tracking targets in the current frame. In the detection
attention module, we focus on the relative spatial position
between the tracked objects’ prediction and the detections.
Unlike the spatial attention module, we aim to narrow the
feature representation of matched pairs in the embedding space
by measuring relative positions and performing the interaction
between detection and tracking in a cross-attention manner.
Its query and key vectors are as follows:

• query: embeddings of the tracklet tokens of all the targets
at frames t − 1 {QLT T (1), . . . , QLT T (M)}.

• key: embeddings of all the detection tokens at frame t
{O1, . . . , ON }.

As demonstrated in Figure 4, we interleave the temporal
attention and spatial attention modules by L times in the STD
module to aggregate the spatial-temporal motion features of
the tracklets. Then, we iterate the detection attention module
L times to make the aggregated motion features interact with
the detection features of the current frame. After feature
interaction, we have M trajectory tokens for tracked objects
{QLT T (1), . . . , QLT T (M)}.

D. Motion Prediction Head

The motion prediction task aims to forecast the position of
each tracked object in the current frame. However, inspired
by [54] and [55], directly training a model to adapt to shapes
of various objects is a challenging task, which results in poor
performance in precise localization. In contrast, predicting the
candidate box offset is simpler. Thus, STDFormer takes the
position of the target in the previous frame as prior information
and predicts the change in its position in the current frame
instead of directly regressing the position of the target in the
current frame.

To improve the learning ability of the model, we assess the
object motion distribution using several benchmark datasets in
Appendix A and finally propose two motion prediction head
variants based on the data distribution characteristics:

1) Linear Motion Prediction Head (LMPH): This variant
directly predicts the displacement δ of each tracked
object between the adjacent frames, which is suitable
for datasets with simple motion patterns and small offset
variance;

2) Exponential Motion Prediction Head (EMPH): This vari-
ant scales the bounding box of the tracked object in the
previous frame by predicting an exponential adjustment
factor ζ to obtain the tracking box in the current frame,
which is suitable for datasets with complex motion
patterns and large offset variance.

The quantitative results in Section IV-C further verify the
superiority of the two variants in different scenarios. More
details about object motion analysis on benchmark datasets
can be found in Appendix A. The detailed motion prediction
head architecture is shown in Figure 5.

Fig. 5. Motion prediction head, where ⊖ represents feature addition and
⊕ represents vector addition. There are two variants of this module: (a) Linear
Motion Prediction Head (LMPH): This variant subtracts the trajectory token
features after the feature interaction module and the tracking box features of
the previous frame after the feature extraction module. Then, the subtracted
features are passed to a five-layer MLP, which outputs the displacement δ

of each tracked target between adjacent frames. Finally, the displacement is
added to the tracking box of the previous frame to obtain the tracking box
prediction of each tracked target in the current frame. (b) Exponential Motion
Prediction Head (EMPH): This variant first concatenates the trajectory token
features after the feature interaction module and the tracking box features of
the previous frame after feature extraction module. Then, the concatenated
features are passed to a five-layer MLP, which outputs the exponential
adjustment factor ζ of each tracked target between adjacent frames. Finally,
the exponential adjustment factor is exponentially processed, and multiplied
by the tracking box of the previous frame to obtain the tracking box prediction
of each tracked target in the current frame.

1) Linear Motion Prediction Head: As depicted in Figure 5,
to learn the displacement, we first utilize this simple sub-
traction between trajectory token features from the feature
interaction module and the motion features from feature
extraction module for each tracked object as the displacement
feature B j :

B j = QLT T ( j) − H t−1
j , (7)

where QLT T ( j) is the implicit motion feature of tracked
object j at frame t and H t−1

j is the motion feature of tracked
object j at frame t − 1.

After obtaining the displacement features, we propose a
five-layer MLP with a nonlinear operator that takes the dis-
placement feature B j as input and produces a scalar value δ j
that represents the displacement of the tracking target j
between frame t − 1 and frame t :

δ j = M L P(B j ). (8)

Finally, to obtain the position prediction T̃ t
j of tracked

object j at frame t , we perform simple additive post-
processing:

T̃ t
j = T t−1

j + δ j . (9)
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2) Exponential Motion Prediction Head: As shown in
Figure 5(b), the main difference from LMPH is the processing
of input and output. Instead of subtracting, we first concatenate
trajectory token features from the feature interaction module
and the motion features from the feature extraction module
for each tracked object. Then, the concatenated features are
also fed to a five-layer MLP and MLP outputs a scalar as
an exponential adjustment factor ζ . Finally, an exponential
operation is performed on this factor to obtain a scaling
factor that is multiplied by the bounding box of the pre-
vious frame to obtain the position of the tracking target
in the current frame. The specific calculation process is as
follows:

ζ = M L P(concat (QLT T ( j), H t−1
j )), (10)

T̃ t
j = exp(ζ ) · T t−1

j (11)

3) Box Loss: We describe motion prediction as a tracking
box regression task. L1 loss, the most popular regression loss,
is sensitive to bounding box size. To alleviate this problem,
we employ a linear combination of smooth L1 loss [56]
and scale-invariant generalized IoU loss [57] to optimize the
prediction of tracking boxes:

Lbox (T t
j , T̃ t

j ) = λl1Ll1(T t
j , T̃ t

j ) + λiouLiou(T t
j , T̃ t

j ), (12)

where λl1, λiou ∈ R are hyperparameters, T̃ t
j is the estimated

tracking box of tracked object j at frame t , T t
j is the ground

truth of the tracking box of tracked object j at frame t ,
Ll1 is the smooth L1 loss and Liou is the GIoU loss.

E. Affinity Calculation Head

The goal of the affinity calculation head is to compute
the pairwise similarity scores of detected and tracked objects
for data association. The process of this module is shown
in Figure 6. Given the features of N detections from the
feature extraction module and the trajectory token features
of M tracked objects from the feature interaction module,
we calculate the affinity matrix at frame t At

N :M as the inner
product between each pair of detection features Oi and tracked
object trajectory token features QLT T ( j):

At
N :M (i, j) = Oi · QLT T ( j), (13)

where i ∈ {1, . . . , N }, j ∈ {1, . . . , M}.
1) Bidirectional Matching: A well-performing affinity

matrix should satisfy bidirectional optimal matching. In other
words, when detection-to-track or track-to-detection pairs
identify the best match, symmetrical track-to-detection or
detection-to-track scores should be the highest. As a result,
we use the dual-softmax proposed by [58], which modifies the
initial affinity matrix by introducing a prior probability matrix
P̃prior ∈ RN×M generated in the cross direction. We can filter
out the challenging cases with a high detection-to-track affinity
score but a low track-to-detection affinity score by acalculating
the dot product between the prior probability matrix and the
initial affinity matrix.

Specifically, we successively apply softmax on the two
dimensions of At

N :M to obtain the probability P̃ ∈ RN×M

Fig. 6. Affinity calculation head. Given the trajectory token features QLT T
after the feature interaction module and the detection box features O t after
the feature extraction module, this module first calculates the affinity matrix
At

N :M between the detection and tracks based on the inner product. The
affinity matrix At

N :M is then fed to the bidirectional matching submodule to
obtain a detection and tracking association probability matrix P̃ .

of soft mutual nearest neighbor matching:

P̃prior = so f tmax(At
N :M/τ, dim = 1), (14)

P̃(i, j) = so f tmax(P̃prior · At
N :M , dim = 0)i j (15)

where i ∈ {1, . . . , N }, j ∈ {1, . . . , M} and τ is a temperature
parameter.

2) Label Assignment: Unlike box loss, the ground truth of
the affinity matrix cannot be given directly or indirectly by the
dataset when computing affinity loss, because the performance
of the chosen detector greatly influences the detection directly
tied to the affinity matrix. For this reason, we refer to [59]
and use the Hungarian algorithm to find an optimal bipartite
matching between predicted detection and ground truth tracked
objects for label assignment. In contrast to [59], our approach
takes only the box loss into account when calculating the
matching cost and ignores the categorization loss. For more
implementation details, please refer to [59].

3) Affinity Loss: After the label assignment, we obtain
the ground truth affinity matrix. Each row and column of
the matrix is either a one-hot vector, or an all-zero vector,
where 1 to indicates a matching detection-track pair at that
location and 0 indicates a mismatch. We can also treat the
ground truth affinity matrix as a probability matrix, denoted
as P .

During training, we set a max objects hyperparameter, Z ,
to achieve parallel training. When the number of tracked or
detected targets as input is less than the max objects, we pad
the input with 0. In other words, the dimension of our output
must be Z × Z . When M < Z and/or N < Z , the output will
be extended to dimension Z ×Z by padding with 0. Obviously,
the number of zeros in P is much greater than the number of
ones. To address the imbalance between positive and negative
samples, we use focal loss [60] as affinity loss:

La f f (P̃(i, j)) = −α(1 − P̃(i, j))γ log(P̃(i, j)), (16)

where α and γ are hyperparameters.

F. Training

To summarize the above, whether focusing on motion
prediction or affinity calculation, the primary task is to learn
the motion feature representation of tracked objects in the
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current frame. However, as mentioned in Section III-E, the
performance of the affinity calculation head is highly depen-
dent on the prediction of the detector. Missed, wrong, and
rough detections cause serious damage to the motion feature
representation due to the feature interaction. In this regard,
we believe that the ideal situation of the current frame is
that no new targets appear, no old targets are lost, and
each tracked target can find its accurate localization in the
current scene. Motivated by this assumption, we introduce
an auxiliary task to discover more trustworthy motion feature
representations.

The most intuitive approach is to follow the STD
pipeline above, using the ground truth tracked boxes T t

at frame t instead of detections Dt as input, and retrain
the STD. However, as shown in Figure 2, instead of training
twice, we achieve parallel training by adding an auxiliary
branch.

Specifically, the auxiliary task shares the feature processing
flow of detection in STD and outputs a track-to-track affinity
matrix whose ground truth is the identity matrix. We define
this track-to-track affinity matrix at frame t as At

M :M :

At
M :M (i, j) = QLT T (i) · V j , (17)

where V j is the embedding of the j-th ground truth tracked
boxes T t

j at frame t from the feature extraction module.
In fact, our auxiliary task subtly introduces the idea of

contrastive learning. Contrastive learning requires that each
sample has one positive sample and several negative samples.
Like [50], we take the aggregated historical motion infor-
mation of each tracked object as a sample, and we hope
to make the feature representation of the sample close to
the motion feature representation of the corresponding target
in the current frame through contrastive learning. Therefore,
we regard the ground truth position of the tracked object
in the current frame as a positive sample, and the ground
truth position of the rest of the tracked objects in the current
frame as a negative sample. Obviously, it is easy to meet
the above requirements in the setting of our auxiliary task.
Furthermore, [50] pointed out that such a sampling strategy
can effectively not only narrow the feature representation
of similar samples, but also push the samples away from
the negative sample points, avoiding location conflicts and
eventually effectively introducing security considerations.

1) Contrastive Loss: After obtaining the track-to-track
affinity matrix at frame t as At

M :M , we also perform the dual-
softmax operation (Equation 14, 15) on it. Unlike Equation 16,
the affinity loss of our auxiliary task replaces the focal loss
with cross entropy loss which is called Dual Softmax Loss
(DSL) in [58]. It can be regarded as a variant of InfoNCE
Loss, a contrastive loss that is frequently employed. This
contrastive loss optimization seeks to learn well-performing
historical aggregated representations by maximizing the
mutual information between historical aggregated representa-
tions and ground truth motion representations. Specifically,
the contrastive loss of the auxiliary task is calculated as
follows:

Pr(i, j) = so f tmax(At
M :M/τ, dim = 1), (18)

Laux = −
1
M

M∑
i

log
exp(Q(

LT T i) · V +

i · Pr(i, i))∑M
j=1 exp(Q(

LT T i) · V j · Pr(i, j))
,

(19)

where Pr is the prior matrix of At
M :M (same as Equation 14),

τ is a temperature hyperparameter.
2) Total Loss: We jointly train the motion prediction, affin-

ity calculation and auxiliary task branches by adding the losses
(i.e., Equations 12,16,19) together. In particular, we leverage
the uncertainty loss proposed in [61] to automatically balance
multitask learning:

Ltask = w1Lbox + w2La f f , (20)

Ltotal =
1
2
(

1
ew3

Ltask +
1

ew4
Laux + w3 + w4), (21)

where w1 and w2 are fixed hyperparameters that balance
the motion prediction task and the affinity calculation task,
respectively, and w3 and w4 are learnable parameters that
balance the above two main tasks and the auxiliary task.
Finally, it should be emphasized that the auxiliary task is only
used during training.

G. Inference

During inference, we process the video stream online in
a frame-by-frame manner. We construct a temporal history
buffer of T frames to store each tracked object’s tracking
boxes. Following [4], we divide all detection boxes into
high score detection boxes and low score detection boxes
according to the detection score threshold θdet . For each
individual frame t , given all the high score detections for the
current frame and a sequence of the tracked objects’ historical
tracking boxes for the previous frame, STD takes them as input
for inference and outputs an affinity matrix with probability
format (after dual softmax) as well as the tracked objects’
tracking boxes prediction in the current frame.

Data Association. After network inference, we perform
association by using the network outputs. We follow the
standard online tracking paradigm to associate boxes. In the
first frame, we first initialize some tracklets based on the high
score detection boxes. In the following frames, we link the
detection boxes to the existing tracklets according to a step-
by-step association strategy as follows:

1) high score detection boxes are associated with all exist-
ing tracklets, including tracked, lost, and unconfirmed
tracklets;

2) low score detection boxes are associated with the
unmatched tracklets in the previous step;

3) the high score detection boxes are associated with all
the remaining unmatched tracklets.

In each step of the above association process, we obtain a
cost matrix C by performing a weighted sum operation on the
center point distance cost Ccdist , spatial overlap rate (GIoU)
cost Cgiou and affinity cost Ca f f between the prediction boxes
and the detection boxes. The calculation process is as follows:

C = λcdist Ccdist + λgiouCgiou + λa f f Ca f f (22)
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We found that a large amount of noise and false detections
in low score detection boxes can seriously damage the tracking
performance through ablation experiments. Therefore, we only
feed high score detection boxes to STDFormer, which causes
the model to not output an affinity matrix between the predic-
tion boxes and the low score detection boxes and step 2 of
the above association does not consider the affinity cost.
After obtaining the cost matrix, we feed it to the Hungarian
algorithm and filter matching pairs that are far away according
to a fine-grained spatial overlap rate threshold design.

In addition, determining the birth and death of a trajectory
is also an important part of MOT. When a detection box fails
to match an existing tracked object, we can assume that a
new target has entered the scene and constructing a unique
identification is necessary. To avoid false positive detection
boxes, we initialize a new trajectory only if the object exists
for more than three consecutive frames (except the first frame).
On the other hand, when the tracking object does not find
a matching detection box in the current scene, we need to
distinguish whether the object is lost or has left the current
scene. We propose a boundary judgment method. Specifically,
when the center point of the predicted tracking box is less
than x pixels from the image frame boundary, we consider the
object to have already left the current scene and destroy the
corresponding identity of the tracking object. In contrast, when
the object is far from the image frame boundary, we consider
the object to be only temporarily lost. Furthermore, when the
object is lost in fewer than s frames, we fill the tracklet of
the lost tracked object with the predicted tracking box, and
reactivate this tracked object if the object reappears. When
the object is missing more than s frames, we also consider
the tracking object to have left the current scene and destroy
its identity.

IV. EXPERIMENTS

In this section, to assess the performance of the proposed
approach, we describe experiments conducted on MOTChal-
lenge. First, we introduce evaluation datasets, evaluation
metrics and implementation details. Then, we compare the
proposed method with state-of-the-art methods and show quan-
titative results on MOTChallenge. In addition, we provide a
qualitative analysis of the results. Finally, we demonstrate the
effectiveness of each module through ablative studies.

A. Datasets and Metrics

1) Datasets: We evaluate STDFormer on the MOT17 [62],
MOT20 [63] and DanceTrack [64] datasets in accordance with
the “private detection” protocol. All three datasets are related
to pedestrian tracking. The difference is that the pedestrian
motion patterns of MOT17 and MOT20 are relatively simple
and close to linear motion, while the motion of DanceTrack
is complex and highly nonlinear. The details of these datasets
are as follows:

1) MOT17: This dataset includes seven scenes of indoor
and outdoor public places with pedestrians. The videos
of each scene are divided into two segments for training
and testing. Specifically, this dataset contains 14 video

sequences, 7 of which are used for training and 7 for
testing. The training datasets consist of 15948 frames
with a total of 1638 identities and 336891 labeled boxes.
The test datasets consist of 17757 frames with a total of
2355 identities and 564228 labeled boxes.

2) MOT20: This dataset consists of 8 video sequences
from 3 different scenes, half of which are used as the
training dataset and half as the testing dataset. The
training dataset consists of 15948 frames with a total
of 1638 identities and 1336920 labeled boxes. The
test dataset consists of 4479 frames with a total of
1501 identities and 765465 labeled boxes. Obviously,
compared with MOT17, the pedestrian density in the
scene of MOT20 datasets is higher, and the average
crowd density reaches 246 pedestrians per frame. All
sequences were shot from above.

3) DanceTrack: This dataset includes 100 videos (40 train-
ing videos, 25 validation videos and 35 test videos)
covering group dance, kung fu, gymnastics, and other
activities. It contains 990 unique instances with an aver-
age length of 52.9 s, 105k frames and 877k high-quality
bounding boxes by 20 FPS annotation. In addition,
the targets in DanceTrack are very clear and in close
range, so object detection generally does not limit the
algorithm, and emphasis is placed on evaluating the data
association performance of the algorithm. Furthermore,
since the targets in DanceTrack have similar or even
identical appearances and there are a large number of
occlusions, position interleaving, and complex nonlinear
motion patterns among the targets, the dataset encour-
ages the algorithm to mine matching cues other than
appearance, such as motion trajectories.

Note that MOT17 and MOT20 are both benchmark datasets
for MOTChallenge and the most commonly used benchmarks
for multi-object tracking. Both only have training and testing
sets, while validation sets are not available. Therefore, in the
ablation experiments, we follow the experimental setup in
most of the literature [1], [4], [5], [13]. We divide each
video in the MOT17 training set into two equal parts. The
first half is used for training, and the second half is used
for validation. In addition, we also evaluate STDFormer on
the VisDrone2019 [65] dataset to verify the effectiveness of
the proposed method in UAV videos. More details about
STDFormer in unmanned aerial vehicle videos can be found
in Appendix B.

2) Metrics: We use the CLEAR MOT Metrics [66], [67]
and HOTA [68] to quantitatively evaluate the overall tracking
accuracy. All the metrics are listed as follows:

• MOTA(↑): Multi-Object tracking accuracy.
• IDF1(↑): ID F1 score.
• HOTA(↑): Higher order tracking accuracy.
• MT(↑): Mostly tracked targets.
• ML(↑): Mostly lost targets.
• FP(↑): The total number of false positives.
• FN(↑): The total number of false negatives (missed

targets).
• AssA(↑): Association accuracy.
• ID Sw.(↑): Number of identity switches.
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TABLE I
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART MOT ALGORITHMS UNDER THE “PRIVATE DETECTOR” PROTOCOL ON THE MOT17

TEST SET. THE BEST RESULTS OF THE FOUR GROUPS OF METHODS ARE MARKED IN YELLOW, GREEN, BLUE AND RED, RESPECTIVELY

• Frag(↑): The total number of times a trajectory is frag-
mented.

(↑) means that the higher the score is, the better the
performance. (↓) means that the lower the score is, the better
the performance.

B. Implementation Details

We implemented our proposed method in PyTorch and
trained it on a server equipped with 4 NVIDIA TITAN Xp
GPUs, Intel(R) Core(TM) i7-6800K CPU, and 32 GB memory.
For fair comparison and high-speed inference, we inferred on
a single Tesla V100 GPU and a single Tesla A100 GPU, which
are widely used in baseline methods [4], [34], [38], [40].
On the MOT17 test set, we achieved approximate real-time
tracking on a single Tesla V100 GPU with 24 FPS running
speed and 2860 MB GPU memory. We achieved up to 28 FPS
running speed on a single Tesla A100 GPU. For detection,
we adopted YOLOX-X [51] as the detector and the input
image size was 1440 × 800. YOLOX-X is widely used by
several recent state-of-the-art MOT algorithms based on the
tracking-by-detection paradigm [4], [13], [14], [15] because
of its balance between accuracy and speed. The training and
inference of the detector stand on the giants’ shoulders, which
exactly adhere to the strategy of [14]. Next, we focus on the
implementation details of STDFormer.

1) Training Schemes: We trained STDFormer using
AdamW optimizer [69] with an initial learning rate of 10−3

and weight decay of 10−1. For better optimization results,
we employed a cosine annealing scheduler [70] with warm-up

and restart for AdamW [69]. Due to the sparseness and scale
difference of these three datasets, we set different training
epochs and batch sizes. For MOT17, the batch size was set
to 128 and the training epoch was set to 1500 with a total
training time of 9h. For MOT20, the batch size was set to 64
and the training epoch was set to 750 with a total training
time of 26h. For DanceTrack, the batch size was set to 512
and the training epoch was set to 1270 with a total training
time of 35h.

2) Hyperparameter Setting: In this work, we set k = 15,
r = 2500, d = 128 and L = 3 for model building. We let
θdet = 0.6, λcdist = 0.1, λgiou = 2.0, λa f f = 2.0 and
x = 50 for data association. In addition, the hyperparameters
for the construction of the box loss were: λl1 = 5 and
λiou = 2. The hyperparameters for the construction of the
affinity loss were: α = 0.25 and γ = 2.0. The hyperparameters
for the construction of the total loss were: w1 = 1.0 and
w2 = 1.0. The temperature hyperparameters for dual-softmax
was: τ = 1000. The effect of the hyperparameter k, L and x
were conducted in the ablative studies.

C. Quantitative Results

We compared the proposed method with several state-of-
the-art methods on the MOT17, MOT20 and DanceTrack test
sets. Table I, Table II and Table III present an overview of the
comparative results on these three datasets. To better prove
the effectiveness of our method’s core design, we grouped
and compared the state-of-the-art methods according to the
method correlation. Considering that our proposed method is
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TABLE II
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART MOT ALGORITHMS UNDER THE “PRIVATE DETECTOR” PROTOCOL ON THE MOT20

TEST SET. THE BEST RESULTS OF THE FOUR GROUPS OF METHODS ARE MARKED IN YELLOW, GREEN, BLUE AND RED, RESPECTIVELY

TABLE III
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART MOT ALGORITHMS ON THE DANCETRACK TEST SET. THE BEST

RESULTS OF THE FOUR GROUPS OF METHODS ARE MARKED IN YELLOW, GREEN, BLUE AND RED, RESPECTIVELY

a motion-based method that takes full advantage of the Trans-
former’s superiority and extracts more discriminative motion
features through comparative learning, we divide the compared
methods into four groups: 1) benchmark methods, which are
the SOTA method released on the benchmark dataset in recent
years except for the methods mentioned in the following three
groups; 2) motion-based tracking methods, which only rely
on the motion features of objects and discard appearance cues;
3) Transformer-based tracking methods, which utilize a regular
Transformer framework; and 4) contrastive learning-based
tracking methods, which use contrastive learning to learn
more discriminative features of the tracked objects. Note
that although the methods in the first group are not closely
related to our method, they are all representative and often
used for comparison in MOT. To prove the competitiveness
of our method, this group of comparison is indispensable.
In addition, since DanceTrack is an MOT benchmark dataset

released in 2022, there were fewer methods available for
comparison.

For a more comprehensive comparison, we tested and
compare two different configurations of STDFormer on
each benchmark dataset: STDFormer-LMPH and STDFormer-
EMPH. Their main difference was the motion prediction
head. The former uses the Linear Motion Prediction Head
(LMPH), while the latter uses the Exponential Motion Predic-
tion Head (EMPH). The performance of STDFormer-LMPH
and STDFormer-EMPH was comparable on MOT17 and
MOT20. In terms of the three main evaluation met-
rics of MOTA, IDF1 and HOTA, the overall performance
of STDFormer-LMPH was slightly better than that of
STDFormer-EMPH. On DanceTrack, STDFormer-EMPH was
significantly better than STDFormer-LMPH based on all eval-
uation metrics. This was mainly due to the difference in
the offset distribution and the exponential adjustment factor
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distribution on the three benchmark datasets. More detailed
analysis is provided in Appendix A. To better compare
with other methods, we chose STDFormer-LMPH as the
comparison method on MOT17 and MOT20, and we chose
STDFormer-EMPH as the comparison method on DanceTrack.
The following will be referred to as STDFormer.

The quantitative results show that STDFormer achieved
state-of-the-art performance on the DanceTrack test set, while
STDFormer achieved comparable performance to that other
state-of-the-art methods on the MOT17 and MOT20 test sets.
The significant gains of STDFormer on DanceTrack demon-
strated its superiority in handling complex nonlinear motion
estimation. Furthermore, the analysis of the group comparison
was as follows:

1) Benchmark tracking: Compared with benchmark
methods on three benchmark datasets, the proposed
method achieved state-of-the-art performance based on
most evaluation metrics. In terms of the three main
evaluation metrics of MOTA, IDF1 and HOTA, the pro-
posed method achieved significant improvement com-
pared with the baseline method. For example, 2.1%,
0.5% and 0.3% improvements for MOT17, 3.4%, 0.7%
and 3.3% improvements for MOT20, and 4.9%, 13.8%
and 9.5% improvements for DanceTrack. The better per-
formance demonstrated the effectiveness of the proposed
method in MOT.

2) Motion-based tracking: Compared with motion-based
methods, the proposed method achieved state-of-the-
art performance on DanceTrack, while achieving per-
formance comparable to that of other state-of-the-art
algorithms on MOT17 and MOT20. On DanceTrack,
the proposed method achieved the best performance
based on all evaluation metrics, especially in the three
important association metrics of IDF1, HOTA and AssA,
which were improved by 6.3%, 2.7% and 3.7%, respec-
tively. This demonstrated that the proposed method sig-
nificantly outperformed baselines on complex nonlinear
object motion modeling and achieved robust associa-
tion under similar appearance, occlusion, or nonlinear
motion. On MOT17 and MOT20, the proposed method
did not achieve state-of-the-art performance on the main
evaluation metrics of MOTA, IDF1 and HOTA. How-
ever, we achieve the best or second-best performance
in MT and ML. For example, on the MOT17 test
set (Table I), the proposed method ranked first with
an ML of 12.7% and second with an MT of 49.6%.
On the MOT20 test set (Table II), the proposed method
achieved the best performance in terms of both MT
(71.5%) and ML (8.6%). The higher MT and lower ML
value indicated that our method was better at recovering
objects from occlusion or drift than filter-based methods.
Note that methods in this group follow the tracking-by-
detection paradigm and use the same detector [51]. In the
motion part, ByteTrack uses standard Kalman filtering
and trajectory interpolation while both OC-SORT and
BoT-SORT modify Kalman filtering to adapt to more
complex situations. Furthermore, BoT-SORT also mod-
els camera motion.

3) Transformer-based tracking: Compared with exist-
ing Transformer-based methods, the proposed method
achieved the best tracking performance on MOT17,
MOT20 and DanceTrack. On DanceTrack, STDFormer
achieves 91.7 MOTA, 60.5 IDF1, 57.8 HOTA, 80.5 DetA
and 41.7 AssA, surpassing the baseline methods by
3.3%, 9.0%, 3.6%, 4.6% and 1.5%. Unlike the base-
line methods, the proposed method only encodes the
object position information without considering the
object appearance. This showed that the new paradigm
of Transformer-based methods had a great advantage
in tracking under nonlinear motion. On MOT17 and
MOT20, the three main evaluation metrics of MOTA,
IDF1 and HOTA and the associated accuracy metric of
AssA ranked first with 78.4, 73.1, 60.9, 58.4 and 76.2,
72.1, 60.2, 57.7 respectively. In more detail, on MOT17
test set (Table I), our method increased by 0.8%, 0.2%,
0.6% and 1.4% on MOTA, IDF1, HOTA and AssA,
respectively. In the crowded MOT20 test set (Table II),
the benefits of the proposed method were more sig-
nificant. MOTA, IDF1, HOTA and AssA increased by
3.9%, 3.1%, 2.9% and 2.7%, respectively. Comparing
Table I and Table II, we found that the performance
of most Transformer-based methods on the MOT20 test
set decreased significantly. In contrast, the performance
loss of our method on MOT20 was much lower, and
some metrics (MT and ML) even increase. In addition,
71.5% MT and 8.6% ML were much better than the
second-best record on the list, increasing by 14.0% and
4.8%, respectively. These results demonstrated that our
method could effectively handle the occlusion problem
in dense scenes. In summary, the good performance
showed that the idea of using Transformer to encode
low-dimensional position information for multi-object
tracking was effective. Note that since Transformer has
been applied in MOT in the past two years, there
have been relatively few related studies. To make a
full comparison, we only paid attention to whether the
Transformer architecture is applied in the pipeline when
selecting the methods, regardless of whether the tracking
paradigm, detector or association strategy was closely
related to the proposed method and whether the Trans-
former architecture was applied in the detection part or
in the association part or even in both parts. In this work,
one of our motivations was to explore a new Transformer
application paradigm in MOT, trying to achieve better
tracking performance with fewer computing and storage
resources, so the comparison of this group of methods is
meaningful. In addition, the selected methods were all
published in the past two years and are comparable to a
certain extent.

4) Contrastive learning-based tracking: Compared with
some existing contrastive learning-based studies, the
proposed method outperformed the baseline by a
large margin on MOT17, MOT20 and DanceTrack.
On DanceTrack, our method improved MOTA, IDF1,
HOTA, DetA and AssA by 8.7%, 15.7%, 12.1%,
8.4% and 12.5%, respectively, compared with the
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baseline method. The large performance advantage
demonstrated that our contrastive learning strategy could
learn more discriminative feature representations for
complex nonlinear object motion tracking. On MOT17,
our method achieved state-of-the-art performance with
78.4 MOTA, 60.9 HOTA, 49.6% MT, 12.7% ML, 87132
FN and 25917 Frag. We achieved the second-best values
in terms of 73.1 IDF1 and 58.4 AssA, slightly lower
than the performance of Semi-TCL [48]. On MOT20,
our method outperformed other methods based on
all proposed metrics. Furthermore, like the compari-
son results of Transformer-based methods, our method
did not fluctuate much in tracking performance on
MOT17 and MOT20 compared to other contrastive
learning-based methods. This indicated that our con-
trastive learning strategy could learn more reliable fea-
ture representations to keep tracking or recover lost
objects from occlusion or drift. Note that the con-
trastive learning-based baseline methods adopt selec-
tion criteria similar to the Transformer-based baseline
methods.

D. Qualitative Analysis

1) Visualization: To more intuitively show that STDFormer
can achieve more robust association and more stable tracking
than the baseline mentioned in IV-C under similar appear-
ance, occlusion and nonlinear motion, we provide some
visualization results of difficult cases on DanceTrack that
STDFormer was able to handle but ByteTrack was not
(Figure 7). Specifically, we selected samples from diverse
scenes, including pop dance, gymnastics and street dance.
Objects in pop dance videos (dancetrack0013, dance-
track0017) have frequent crossover. Objects in gymnastics
videos (dancetrack0054, dancetrack0059) exhibit diverse body
gestures, frequent pose variation and complicated motion pat-
terns. Street dance videos (dancetrack0084, dancetrack0093)
present difficult scenes in low lighting apart from frequently
occluded objects. Additionally, the objects in these videos have
similar appearances due to similar or even identical clothes.
As shown in Figure 7, ByteTrack caused ID switching due to
object occlusion or complex nonlinear motion, especially the
object with id 918 on dancetrack0093 (Figure 7(k)) experi-
enced multiple ID switches. In contrast, STDFormer did not
exhibit any identity conversion and effectively preserved the
identity. This demonstrated that the proposed method could
effectively improve multi-object tracking under occlusion and
nonlinear motion situations.

In Figure 8, we also show the tracking results of Byte-
track and the proposed method on MOT17. Although STD-
Former did not achieve superior tracking performance over
motion-based methods on MOT17, the visualization results
showed that it still had an advantage in solving the occlusion
problem.

2) Limitations: STDFormer has several limitations, which
are the problems we will focus on in future work:

1) Linear motion noise/Detector noise: We focus on
improving multi-object tracking under occlusion and

nonlinear motion and pay insufficient attention to the
noise interference existing in linear motion prediction.
Affected by detection noise, STDFormer easily inter-
prets bad detection results as nonlinear motion signals
and accumulates errors. We believe that it is nec-
essary to explore a reasonable correction mechanism
for STDFormer to address the incorrect values in the
prediction process and enhance the smoothness of the
trajectory.

2) Tracking in dynamic scenes: Our method only models
the object motion without considering the influence
of coordinate system transformation caused by cam-
era motion in the dynamic scene (e.g., MOT17-06,
MOT17-12 and MOT17-14). Motion prediction pro-
duces large deviations in dynamic scenes. In particular,
because the camera motion is ignored, it is easy to
misjudge the object leaving the scene as still remain-
ing in the current scene and make the wrong associ-
ation. Therefore, in the face of multi-object tracking
in dynamic scenes, STDFormer needs to model camera
motion additionally.

3) Tracking at the edge: Compared with the objects in
the center of the scene, the object motion modeling
at the edge is more complex. Objects at edges away
from the camera direction are small and dense. Only
relying on the center point distance and GIoU matching
of the object bounding boxes for association is prone
to ID switching. In addition, due to the small motion
displacement of the objects at the edge, the object
after the ID switching may continue to maintain the
wrong ID in the future. False tracking will interfere with
STDFormer’s judgment of the object’s motion intention,
especially ID switch with a object wandering at the edge
or a new object entering the scene. It is difficult to judge
whether the object will continue to leave the scene, stop
at the edge or even re-enter the scene according to the
trajectory trend, so the wrong tracking is difficult to be
corrected. On the other hand, for the object close to the
camera direction and gradually away from the edge of
the scene, its motion offset is large. As mentioned in
Appendix A, the object motion offset at some edges on
MOT17 and MOT20 can reach tens or even hundreds
(e.g., MOT17-08, MOT20-06 and MOT20-08), which is
highly volatile and difficult to predict compared with the
offset at the center of the scene. These are issues with
motion-based methods that should be studied in future
work.

In summary, the quantitative experiments and visualization
results on MOT17, MOT20 and DanceTrack demonstrate that
STDFormer is an effective and powerful tracker. It focuses on
improving the nonlinear motion modeling of objects to mine
object motion intention and decision information to achieve
robust association under similar appearance, occlusion, and
nonlinear motion. Meanwhile, STDFormer achieves state-of-
the-art performance compared to Transformer-based and con-
trastive learning-based methods. This points to a new feasible
direction for the application of Transformer and contrastive
learning in MOT.
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Fig. 7. Visualization results of STDFormer and ByteTrack on DanceTrack. ByteTrack leads to ID switch due to object occlusion or complex nonlinear
motion, but STDFormer effectively preserves the identity. To be precise, the problem occurs with ByteTrack’s objects: (a) ID switch between #82 and #86;
(c) ID switch between #97 and #101; (e) ID switch between #535 and #537; (g) ID switch between #576 and #579; (i) ID switch between #692 and #693;
(k) ID switch multiple times between #917 and #918. We pick samples from different scenes, including pop dance, gymnastics, and pop dance.

E. Ablative Studies

In this subsection, we evaluate different components of
STDFormer on the MOT17 validation set using private
detection and show the individual contributions of key

components and strategies to facilitate tracking performance.
Note that to optimize the association performance of STD-
Former, we use the three main association metrics of HOTA,
IDF1 and AssA as the judgment basis in the following
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Fig. 8. Visualization results of STDFormer and ByteTrack on MOT17-01.
ByteTrack switches IDs between #4 and #6 due to object occlusion, while
STDFormer effectively preserves identities based on motion trends.

TABLE IV
COMPARISONS ON DIFFERENT LENGTH OF

HISTORICAL MOTION MEMORY

experiments to determine the best parameter values and com-
ponent design.

1) Effect of Historical Motion Memory Length: STDFormer
uses long-range motion information of tracked objects to mine
their behavioral intent. Too long trajectory information may
have redundancy or noise effects, while too short trajectory
information may not be enough to reflect the potential motion
awareness of the objects. To choose an appropriate length of
temporal information, we use trajectory histories of different
lengths to train the model and infer on a single V100 GPU.
Table IV shows the effect of different track history lengths k
from 5 to 30 on tracking.

The results support our analysis that raising k can encourage
association performance until the bottleneck is encountered.
According to our experimental results, HOTA, IDF1, and
AssA performed the best when k was increased to 15. This
can be explained by the fact that adding historical motion
information can alleviate the influence of short-term motion
noise on motion direction estimation. However, continuing
to increase k above 15 restrains association performance.
Long-range movement behavior causes misjudgment of the
current movement intention. We also focused on the effect of
increasing history motion length on inference time in addition
to association performance. As k varies from 5 to 30, the
association time increased from 11.34 ms to 13.12 ms and
the running speed of STDFormer decreased from 24.8 FPS

TABLE V
COMPARISONS WITH AND WITHOUT PRIOR DETECTION

to 23.7 FPS with detection time around 29 ms. As can be
seen, increasing the history motion length had a negligible
impact on the overall inference time. Therefore, we mainly
considered the association performance. The results showed
that our method had the best association performance when
k=15, so we finally chose the historical motion memory length
of 15 frames. This setting improved by 0.84%, 0.66% and
0.955% over the second place in HOTA, IDF1 and AssA,
respectively. Moreover, the association performance changed
sharply in the neighborhood of the optimal value of k, and
the remaining values of k changed gently for the association
performance of the proposed method, which further showed
that 15 frames was a very suitable historical motion memory
length.

2) Effect of Prior Detection: We tried to constrain the range
of motion prediction by incorporating the high score detection
boxes of the current frame in the process of modeling object
motion. As shown in Table V, we verified the effectiveness
of prior detection by adding or not adding a detection branch.
In addition, we explored the choice of prior detection. “w/o”
means that no detection information was input to STDFormer.
“w/ high score” indicates that only high score detections were
input to STDFormer. “w/ all” indicates that both high score
detection boxes and low score detection boxes were input to
STDFormer.

We found that STDFormer achieved the best association
performance by adding high score detection boxes in the
process of predicting object motion, especially in the three
main association evaluation metrics of HOTA, IDF1 and
AssA. It shows that adding high confidence prior information
imposes effective constraints on motion estimation, thereby
improving the association accuracy of STDFormer. On the
other hand, although STDFormer had significantly better
association performance after adding prior information, its
detection metric MOTA was lower than the setting without
prior detection. This is because noise and false detection boxes
in high score detection boxes led to a decrease in localization
accuracy and an increase in FN and FP. In addition, there were
more false detection boxes and noise in low score detection
boxes. Using low score detection boxes as prior information
not only failed to improve the association accuracy, but also
greatly diminished its localization accuracy, which leads to
a significant decline in STDFormer’s tracking performance.
Therefore, although there may be some occluded objects in
low score detection boxes and considering that all detection
boxes can help reduce missing objects, fragmented trajectories
and ID switching, we do not recommend inputting all detection
boxes into STDFormer. In summary, prior detection helped to
improve the performance of association, but it was limited by
the impact of detection accuracy to some extent. Considering
everything together, we chose to use high score detection
boxes as the prior information available to STDFormer.
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Fig. 9. Several different feature interaction designs. (a) Intra-feature interaction: Temporal features, spatial features, and detection features sequentially
implement self-interaction, and there is no interaction between different types of features. (b) Joint spatial-temporal-detection interaction: Three types of
features interact in each submodule. (c) Joint spatial-temporal and separate detection interaction: First realize the interaction of spatial-temporal features in
each submodule, and then implement the self-interaction of detection separately.

TABLE VI
COMPARISONS ON DIFFERENT FEATURE INTERACTION MODE

3) Effect of Feature Interaction Mode: Feature interaction
is the core module of the proposed method. The interaction
patterns of temporal features, spatial features and detection
features are crucial for the model to extract effective motion
cues. Figure 9 shows several different feature interaction
designs. Mode a iteratively encodes temporal features, spatial
features and detection features in sequence, and there is no
obvious interaction among different types of features. Mode b
interleaves the three types of features by L times, interacting
with the three features in each iteration. Mode c is the feature
interaction method proposed by our method, which first inter-
leaves the spatial-temporal motion features of the objects to
obtain trajectory token features, and then interactively encodes
the trajectory token features and detection features.

Table VI displays the comparison results of different feature
interaction modes. They show that the feature interaction
method adopted by STDFormer was superior in both local-
ization and association. Compared with the split temporal
attention and spatial attention in Mode a, the interleaved
coding of spatial-temporal attention in Mode b and Mode c
was more effective in mining the motion information of the
objects. In addition, compared with the addition of detection
information in the process of extracting trajectory motion
information in Mode b, the use of detection information in
Mode c to fine-tune the extracted spatial-temporal motion
information was clearly better for making correct decisions.

4) Effect of Bidirectional Matching Optimization: STD-
Former achieves bidirectional optimal matching of affinity
matrices by introducing dual-softmax. As shown in Table VII,

TABLE VII
COMPARISONS ON DIFFERENT MATCHING STRATEGIES

we demonstrate the effectiveness of our proposed bidirectional
optimization method by comparing three different matching
strategies. Pso f tmax indicates performing single-dimensional
softmax matching processing on the affinity matrix. The
calculation process is as follows:

Pso f tmax = so f tmax(At
N :M/τ, dim = 2) (23)

Pdsl indicates that the bidirectional softmax matching pro-
cess in LoFTR is used for the affinity matrix. The calculation
process is as follows:

Pdsl = so f tmax(At
N :M/τ, dim = 1)

· so f tmax(At
N :M/τ, dim = 2) (24)

Ours is the bidirectional softmax matching strategy we
applied, and the calculation process is shown in Equation
Equations 14 and 15.

The experimental results demonstrated that STDFormer’s
bidirectional matching method provided the best optimization
effect. The comparative analysis of the three matching strate-
gies not only showed that bidirectional matching was better
than single-directional matching but also demonstrated that
the sequential softmax was better than the parallel softmax
optimization in two dimensions of the affinity matrix.

5) Effect of the Contrastive Learning Task: To learn the
accurate motion feature representation of the trajectory predic-
tion branch, we introduce an auxiliary task based on contrast
learning. Table VIII shows the effects of adding and not adding
auxiliary tasks for model learning.
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TABLE VIII
COMPARISONS WITH AND WITHOUT THE CONTRASTIVE LEARNING TASK

TABLE IX
COMPARISONS ON DIFFERENT ASSOCIATION STRATEGIES

TABLE X
COMPARISONS ON DIFFERENT BOUNDARY JUDGMENT THRESHOLDS

The results were consistent with our previous analysis. The
addition of auxiliary tasks improved the MOTA, IDF1 and
HOTA metrics, greatly improving the association accuracy and
localization accuracy of the model. We also verified that the
model learned a more accurate motion feature expression with
the constraints of contrastive learning.

6) Effect of Association Strategies: The proposed stepwise
association strategy has two novel designs compared to con-
ventional association methods:

1) Incorporating Affinity Cost (IAC): Compared with exist-
ing motion association methods, in addition to the posi-
tion distance and/or detection box overlap ratio, we also
use the affinity cost of detection feature representation
and motion feature representation as one of the assign-
ment criteria.

2) Boundary Judgment Filtering (BJF): It is used to distin-
guish whether the disappearing target is temporarily lost
or the target has left the current screen effectively.

As shown in Table IX, we separately verified the individual
contributions of each component by different combinations
of association strategies. The results showed that both of our
proposed association strategies were effective in promoting the
association accuracy of tracking, especially the IAC strategy.

Furthermore, we also explored the optimal boundary judg-
ment threshold x through experiments. Table X showed the
effect of different boundary judgment thresholds from 0 to 60.
The results suggested that boundary judgment filtering enabled
our method to obtain the highest HOTA, IDF1 and AssA
when x = 50. Therefore, we finally set the boundary judgment
threshold to 50. As can be seen, this setting had little difference
in association metric compared with the boundary judgment
threshold belonging to the range of 20 to 60 and was superior

to no boundary judgment or when the border judgment range
was close to 0 pixels. For example, it improved HOTA,
IDF1 and AssA by 0.293%, 0.175% and 0.351% respectively
compared with the boundary judgment threshold of 0.

V. CONCLUSION

In this paper, we proposed STDFormer for online
multi-object tracking by jointly performing motion estima-
tion and data association. STDFormer mines motion cues
contained in temporal motion and spatial interaction of tar-
gets by the attention mechanism of Transformer. We also
introduced detection constraints considering prior knowledge.
STDFormer achieves switching between temporal attention
and spatial attention/detection attention by representing the
tracked targets as the embeddings of dynamically updated and
aggregated temporal information. To learn accurate motion
feature representations, we introduced an auxiliary task based
on contrastive learning to mitigate the influence of detection
noise. In addition, we employed bidirectional matching to
improve the one-to-many/many-to-one matching problem of
single-directional matching. Evaluation on the MOTChallenge
benchmark datasets demonstrated the superiority of our pro-
posed method. The proposed method achieved significant
improvement over existing Transformer-based and contrastive
learning-based methods, although it still has some limitations
in simple motion modes and dynamic scenes. In future work,
we will conduct in-depth research to empower the STDFormer
model by introducing camera motion information.

APPENDIX A

OBJECT MOTION ANALYSIS ON BENCHMARK DATASETS

The convergence speed and performance of the model are
closely related to the data distribution. To make STDFormer
converge quickly and locate the tracked objects’ positions
accurately, we analyzed the object motion on different bench-
mark datasets.

We reported the offset distribution of tracked objects’
bounding boxes between adjacent frames on the MOT17,
MOT20 and DanceTrack training sets in Figure 10, specifically
including the offset distribution of object center point coor-
dinates, bounding box height and width. The variance of the
offset distribution on DanceTrack was large, while the variance
of the offset distribution on MOT17 and MOT20 was small.
We conducted an in-depth analysis to assess this.

MOT17 and MOT20. Except for the center point coor-
dinate x, the offset value in the interval [−2,2] accounted
for more than 90% of MOT17. Due to the dense scene
and overhead perspective, the offset on MOT20 was smaller,
most of which was in the [−1,1] interval. Furthermore, the
percentages of 0 offsets far exceeded the others on both
MOT17 and MOT20. This is because the video frame rate
of MOT17 and MOT20 is high and the pedestrian motion
pattern is simple in static scenes, so the percentage of no
obvious change in position between adjacent frames is large.
At the same time, there were also some offsets as high as
dozens or even hundreds. These large offsets were mostly
distributed in dynamic scenes with camera motion on MOT17.
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Fig. 10. Percentage bar graph of Offset on benchmark datasets. For visualization purposes, we do not show the offset percentage bars below 1% separately.
(a)-(d): The percentages of the center point coordinate x, center point coordinate y, bounding box width w, and bounding box height h of the target in adjacent
frames on the MOT17 training set are displayed in turn; (e)-(h): The percentages of the center point coordinate x, center point coordinate y, bounding box
width w, and bounding box height h of the target in adjacent frames on the MOT20 training set are displayed in turn; (i)-(l): The percentages of the center
point coordinate x, center point coordinate y, bounding box width w, and bounding box height h of the target in adjacent frames on the DanceTrack training
set are displayed in turn.

A small number of large offsets occurred in the static scenes on
MOT17 and MOT20, which usually appeared when pedestri-
ans approached the camera and left the scene. Overall, object
motion in MOT17 and MOT20 scenes was relatively simple,
and the main challenges were camera motion in dynamic
scenes and object motion at the edge of the scene.

DanceTrack. Compared with MOT17 and MOT20, the
offset on DanceTrack was larger, mostly in the [-10,10]
interval. The percentage of large offsets with an absolute offset
value above 10 cannot be ignored, and some even reached
300 or even 400, while the 0 offsets were much smaller than
those on MOT17 and MOT20. In addition, the continuity
of the offset was not strong. For example, the offset was
consistently 0 and suddenly changed to 30 at a certain point in
time. This is because DanceTrack is full of dance videos and
the target movement range is large and the movement pattern is
nonlinear. The object motion of DanceTrack is more complex,
and the main challenge was more abrupt motion and nonlinear
motion.

According to the analysis of Figure 10, it is feasible to
directly predict the offset of object motion on MOT17 and
MOT20. However, it is difficult to directly predict the offset

on DanceTrack because the model did not easily converge.
Therefore, we considered another commonly used method of
regressing the bounding box based on the candidate box.
Specifically, instead of directly outputting the offsets of the
two bounding boxes, we obtained the bounding box of the
current frame by predicting an exponential adjustment factor to
scale the bounding box of the previous frame. This exponential
adjustment factor is calculated as follows:

ζx = log(
xt

xt−1
) (25)

ζy = log(
yt

yt−1
) (26)

ζw = log(
wt

wt−1
) (27)

ζh = log(
ht

ht−1
) (28)

Similarly, we report the exponential adjustment factor dis-
tribution of tracked objects’ bounding boxes between adjacent
frames on the MOT17, MOT20 and DanceTrack training sets
in Figure 11, specifically including the exponential adjustment
factor distribution of object center point coordinates, bounding
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Fig. 11. Percentage bar graph of Exponential Adjustment Factor on benchmark datasets. (a)-(d): The percentages of the center point coordinate x, center
point coordinate y, bounding box width w, and bounding box height h of the target in adjacent frames on the MOT17 training set are displayed in turn; (e)-(h):
The percentages of the center point coordinate x, center point coordinate y, bounding box width w, and bounding box height h of the target in adjacent frames
on the MOT20 training set are displayed in turn; (i)-(l): The percentages of the center point coordinate x, center point coordinate y, bounding box width w,
and bounding box height h of the target in adjacent frames on the DanceTrack training set are displayed in turn.

box height and width. The distributions of the exponential
adjustment factors on the three benchmark datasets were sim-
ilar, and the variances were all extremely small. The values of
the exponential adjustment factors were nearly or completely
in the [−0.5,0.5] interval, and the model was easy to regress.

In summary, given that the variance of the offset distribution
and the variance of the exponential adjustment factor on
MOT17 and MOT20 were both small, the model converged
well, and the performance of the model was not much different
whether it is directly predicting the offset or the exponential
adjustment factor. For further comparison, the performance of
the model based on offset regression may be better due to the
larger variance of the offset distribution and more discrimina-
tion. The variance of the offset distribution on DanceTrack was
much larger than the variance of the exponential adjustment
factor and the model based on the exponential adjustment
factor converged better. To a certain extent, the performance of
the model was also significantly better than that of the model
based on offset regression. The above conclusions are sup-
ported by the quantitative results in Section IV-C. Therefore,
STDFormer-LMPH is recommended when dealing with simple

motion scenes, and STDFormer-EMPH is recommended when
dealing with complex nonlinear motion scenes.

APPENDIX B

STDFORMER IN UNMANNED AERIAL VEHICLE VIDEOS

Recently, multi-object tracking techniques based on
unmanned aerial vehicle (UAV) videos have received a lot
of attention. Compared with the targets captured in natural
scenes, the targets captured by the mobile UAV platform are
smaller in scale and have higher density in crowded scenes.
Due to the differences of targets in different scenes, some
multi-object tracking algorithms applied to natural scenes can
not be directly used in UAV videos. To demonstrate the gen-
eralizability of our method in different scenarios, we evaluate
the performance on a UAV-captured MOT dataset. Specifically,
we compare the proposed method with the state-of-the-art
methods on the VisDrone2019 dataset.

A. VisDrone2019 Dataset

VisDrone2019 is a large-scale benchmark dataset for facil-
itating object detection and tracking research on UAV videos.



HU et al.: STDFormer: SPATIAL-TEMPORAL MOTION TRANSFORMER FOR MOT 6591

TABLE XI
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART MOT ALGORITHMS ON THE VISDRONE2019 TEST-DEV

SET. THE BEST RESULTS OF THE METHODS ARE MARKED IN RED

Fig. 12. Percentage bar graph of Offset and Percentage bar graph of Exponential Adjustment Factor on VisDrone2019 datasets. (a)-(d): The offset percentages of
the center point coordinate x, center point coordinate y, bounding box width w, and bounding box height h of the target in adjacent frames on the VisDrone2019
training set are displayed in turn; (e)-(h): The exponential adjustment factor percentages of the center point coordinate x, center point coordinate y, bounding
box width w, and bounding box height h of the target in adjacent frames on the VisDrone2019 training set are displayed in turn.

It was collected from 14 different cities in China by the
AISKYEYE team at Lab of Machine Learning and Data
Mining, Tianjin University, China. This dataset contains
96 sequences. 56 sequences are used as a training set for
training the algorithms. 7 sequences are used as a validation set
to verify the performance of algorithms. 17 sequences are used
as a test-development set for public evaluation. 16 sequences
are used as a test-challenge set for the workshop competition.
The AISKYEYE team has annotated the targets with bounding
boxes, categories, and tracking ids in each frame. Note that
the VisDrone2019 dataset has ten categories, but we generally
only consider five categories (pedestrian, car, van, truck and
bus) in the evaluation of multi-object tracking methods.

B. Implementation Details

STDFormer’s experimental environment on the Vis-
Drone2019 dataset was the same as IV-B. We used the training
set together with the validation set for training and evaluated
our method on the VisDrone2019 test-development set using
the official VisDrone MOT toolkit.

Unlike single-class tracking (pedestrian) on MOT17,
MOT20 and DanceTrack datasets, tracking on VisDrone2019

dataset is a multi-class tracking task. Therefore, we did some
additional designs to avoid id switching between different
categories of targets. The main modifications were as follows:

• We retrained a multi-class detector. The original detector
was a single-class detector, which only needed to distin-
guish whether the object was a pedestrian or not. The
new detector was extended to 5 classes (pedestrian, car,
van, truck and bus).

• We added object category information to STDFormer’s
input. Specifically, we converted the input (xc, yc, w, h)

to (xc, yc, w, h, c), where c referred to the category id of
the target.

• We added category matching cost in matching. Specifi-
cally, we filtered out some false matches by setting the
cost of matching pairs that did not belong to the same
class to infinity.

C. Comparison With State-of-the-Arts

To further demonstrate its effectiveness, the proposed
method is compared with previous SOTA methods and
benchmark methods on the VisDrone2019 dataset. As shown
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in Table XI, STDFormer sets a new state-of-the-art, outper-
forming the baseline by a large margin in UAV videos. This
shows that our method generalizes well to UAV videos. Specif-
ically, we achieved 45.9 MOTA, 57.1 IDF1 and 77.9 MOTP
on the VisDrone2019 test-development set, which surpassed
the second place by 9.8%, 6.1% and 1.8% respectively. STD-
Former has little difference with other methods in detection
metrics like MOTP, but it has improved significantly in asso-
ciation metrics like IDF1 and finally achieved a large increase
in tracking accuracy (MOTA). It can be seen that the proposed
method can achieve a large leap in association performance
on the basis of slightly improving the detection performance,
which reflects that compared with other methods, STDFormer
can better handle the association problem of small-scale targets
in UAV videos. Note that, as shown in Figure 12, the variance
of the offset distribution on VisDrone2019 is much larger
than the variance of the exponential adjustment factor and the
model based on the exponential adjustment factor converged
better. Thus, we finally choose STDFormer-EMPH as the
comparison method.

However, while our method outperforms existing methods,
the tracking performance based on UAV videos is still far
inferior to that in natural scenes. An important influencing
factor is that the images on VisDrone2019 were all cap-
tured by a moving unmanned aerial vehicle platform, and its
camera movement is more obvious than in natural scenes.
In a dynamic scene, we need to consider the impact of
camera motion on it in addition to its own motion when
modeling the object’s motion. Therefore, we believe that our
method will achieve greater performance gains in multi-object
tracking tasks for UAV videos after adding camera motion
compensation.
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