5882

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

METER: A Mobile Vision Transformer Architecture
for Monocular Depth Estimation

Lorenzo Papa™, Graduate Student Member, IEEE, Paolo Russo™, and Irene Amerini*, Member, IEEE

Abstract— Depth estimation is a fundamental knowledge for
autonomous systems that need to assess their own state and per-
ceive the surrounding environment. Deep learning algorithms for
depth estimation have gained significant interest in recent years,
owing to the potential benefits of this methodology in overcoming
the limitations of active depth sensing systems. Moreover, due to
the low cost and size of monocular cameras, researchers have
focused their attention on monocular depth estimation (MDE),
which consists in estimating a dense depth map from a single
RGB video frame. State of the art MDE models typically rely on
vision transformers (ViT) architectures that are highly deep and
complex, making them unsuitable for fast inference on devices
with hardware constraints. Purposely, in this paper, we address
the problem of exploiting ViT in MDE on embedded devices.
Those systems are usually characterized by limited memory
capabilities and low-power CPU/GPU. We propose METER,
a novel lightweight vision transformer architecture capable of
achieving state of the art estimations and low latency inference
performances on the considered embedded hardwares: NVIDIA
Jetson TX1 and NVIDIA Jetson Nano. We provide a solution
consisting of three alternative configurations of METER, a novel
loss function to balance pixel estimation and reconstruction of
image details, and a new data augmentation strategy to improve
the overall final predictions. The proposed method outperforms
previous lightweight works over the two benchmark datasets: the
indoor NYU Depth v2 and the outdoor KITTI.

Index Terms— Deep learning, embedded device, monocular
depth estimation, vision transformer.

I. INTRODUCTION

CQUIRING accurate depth information from a scene

is a fundamental and important challenge in computer
vision, as it provides essential knowledge in a variety of
vision applications, such as augmented reality, salient object
detection, visual SLAM, video understanding, and robotics [1],
[2], [3]. Depth data is usually captured with active depth
sensors as LiDARs, depth cameras, and other specialised
sensors capable of perceiving such information by perturbing
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the surrounding environment, e.g. through time-of-flight or
structured light technologies. These sensors have several dis-
advantages, including unfilled depth maps and restricted depth
ranges, as well as being difficult to integrate into low-power
embedded devices. In addition, we also need to consider the
power consumption in the case of hardwares with low-resource
constraints.

On the contrary, passive depth sensing systems based on
deep learning (DL) could potentially overcome all the active
depth sensor limitations. Moreover, in some settings such as
indoor or hostile environments, where the use of small robots
and drones could introduce additional constraints, the presence
of a single RGB camera offers an effective and low-cost
alternative to such traditional setups. The monocular depth
estimation (MDE) task consists in the prediction of a dense
depth map from a video frame with the use of DL algorithms,
where the estimation is computed for each pixel.

Recent MDE models aim at enabling depth perception using
single RGB images on deep vision transformer (ViT) archi-
tectures [4], [5], [6], which are generally unsuitable for fast
inference on low-power hardwares. Instead, well-established
convolutional neural networks (CNN) architectures [7], [8]
have been successfully exploited on embedded devices with
the goal of achieving accurate and low latency inferences.
However, ViT architectures demonstrate the advantage of
a global processing by obtaining significant performance
improvements over fully-CNNs. In order to balance compu-
tational complexity and hardware constraints, we propose to
integrate the two architectures by fusing transformers blocks
and convolutional operations, as successfully exploited in
classification and object detection [9], [10] tasks.

This paper presents METER, a MobilE vision TransformER
architecture for MDE that achieves state of the art results with
respect to previous lightweight models over two benchmark
datasets, i.e. NYU Depth v2 [11] and KITTI [12]. METER
inference speed will be evaluated on two embedded hard-
wares, the 4GB NVIDIA Jetson TX1 and the 4GB NVIDIA
Jetson Nano. To improve the overall estimation performances,
we focus on three fundamental components: a specific loss
function, a novel data augmentation policy and a custom
transformer architecture. The loss function is composed of four
independent terms (quantitative and similarity measurements)
to balance the architecture reconstruction capabilities while
highlighting the image high-frequency details. Moreover, the
data augmentation strategy employs a simultaneous random
shift over both the input image and the dense ground truth
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depth map to increase model resilience to tiny changes in
illumination and depth values.

The proposed network exploits a hybrid encoder-decoder
structure characterized by a ViT encoder, which was inspired
by [9] due to its fast inference performances. We focus on the
transformer structure in order to identify and to improve the
blocks with the highest computational cost while optimizing
the model to extract robust features. In addition, we designed
a novel lightweight CNN decoder to limit the amount of
operations while improving the reconstruction process. Fur-
thermore, we propose three different METER configurations;
for each variant, we reduce the number of trainable parameters
at the expense of a slight increase of the final estimation error.
Figure 1 shows several METER depth estimations for both
indoor and outdoor environments.

Moreover, to the best of our knowledge, METER is the
first model for the MDE task that integrates the advantage
of ViT architectures in such lightweight DL structures under
low-resource hardware constraints. The main contributions of
the paper are summarized as follows:

« We propose a novel lightweight ViT architecture for
monocular depth estimation able to infer at high fre-
quency on low-resource (4GB) embedded devices.

« We introduce a novel data augmentation method and loss
function to boost the model estimation performances.

« We show the effectiveness and robustness of METER
with respect to related state of the art MDE methods
over two benchmark datasets, i.e. NYU Depth v2 [11]
and KITTI [12].

« We validate the models through quantitative and qualita-
tive experiments, data augmentation strategies and a loss
function components, highlighting their effectiveness.

This paper is organized as follows: Section II reviews some
previous works related to the topics of interest. Section III
describes the proposed method and the overall architecture
in detail. Experiments and hyper-parameters are discussed in
Section IV, while Section V reports the results and a quan-
titative analysis of METER with respect to other significant
works. Some final considerations and future applications are
provided in Section VI.

II. RELATED WORKS

In this section, we report state of the art related works
on monocular depth estimation, grouped as follows: fully
CNN-based methods are covered in Section II-A, ViT-based
approaches in Section II-B and lightweight (CNN) MDE
methods in Section II-C.

A. CNN-Based MDE Methods

Fully convolutional neural networks based on
encoder-decoder structures are commonly used for dense
prediction tasks such as depth estimation and semantic
segmentation. In the seminal work of Eigen et al. [13] it
is presented a CNN model to handle the MDE task by
employing two stacked deep networks to extract both global
and local informations. Cao et al. present [14] and [15] two
works based on deep residual networks to solve the MDE

5883

defined as a classification task, respectively, over absolute
and relative depth maps. Alhashim and Wonka [16] propose
DenseDepth, a network which exploits transfer learning
to produce high-resolution depth maps. The architecture
is composed of a standard encoder-decoder with a pre-
trained DenseNet-169 [17] as backbone and a specifically
designed decoder. Gur and Wolf [18] present a variant of the
DeepLabV3+ [19] model where the encoder is composed of
a ResNet [20] and of an atrous spatial pyramidal pooling
while introducing a Point Spread Function convolutional layer
to learn depth informations from defocus cues. Recently,
Song et al. [21] propose LapDepth, a Laplacian pyramid-
based architecture composed of a pretrained ResNet-101
encoder and a Laplacian pyramid decoder that combined the
reconstructed coarse and fine scales to predict the final depth
map.

However, those methods, which often rely on deep
pre-trained encoders and high-resolution images as input, are
unsuitable for inferring on low-resource hardwares. In contrast,
we propose a lightweight architecture that takes advantage
of transformers blocks to balance global feature extraction
capabilities and the overall computational complexity of con-
volutional operations.

B. ViT-Based MDE Methods

Vision Transformers [22] gain popularity for their accuracy
capabilities thanks to the attention mechanism [23] that simul-
taneously extract information from the input pixels and their
inter-relation, outperforming the translation-invariant property
of convolution. In dense prediction tasks, ViT architectures
share the same encoder-decoder structure that has significantly
contributed to face many CNN vision-related problems. Bhat
et al. [5] have been the first to handle the MDE task with
ViT architectures by proposing Adabins: it uses a minimized
version of a vision transformer structure to adaptively calculate
bins width. Ranftl et al. [4] investigate the application of ViT
proposing DPT, a model composed of a transformer-CNN
encoder and a fully-convolutional decoder. The authors show
that ViT encoders provide finer-grade predictions with respect
to standard CNNs, especially when instantiated with a large
amount of training data. Yun et al. [24] improves 360° monoc-
ular depth estimation methods with a joint supervised and
self-supervised learning strategies taking advantage of non-
local DPT. Recently, Li et al. [25] design Monolndoor++,
a framework that takes into account the main challenges of
indoor scenarios. Kim et al. [26] propose GLPDepth, a global-
local transformer network to extract meaningful features at
different scales and a Selective Feature Fusion CNN block
for the decoder. The authors also integrate a revisited ver-
sion of CutDepth data augmentation method [27] which is
able to improve the training process on the NYU Depth v2
dataset without needing additional data. Li et al. propose
DepthFormer [6] and BinsFormer [28], where the first one is
composed of a fully-transformer encoder and a convolutional
decoder interleaved by an interaction module to enhance
transformer encoded and CNN decoded features. Differently,
in BinsFormer the idea of the authors is to use a multi-scale
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Fig. 1. METER depth map predictions (third-row) over the KITTI and NYU Depth v2 datasets. GT depth maps are resized to match METER output resolution.
The depth maps are converted in RGB format with a perceptually uniform colormap (Plasma-reversed) extracted from the ground truth (second-row), for a

better view.

transformer decoder to generate adaptive bins and to recover
spatial geometry information from the encoded features.

Instead of following the recent trend of high-capacity mod-
els, we propose a novel lightweight ViT architecture that is
able to achieve accurate, low latency depth estimations on
embedded devices.

C. Lightweight MDE Methods

The models reported so far are not suitable for embedded
devices due to their size and complexity. For this reason,
developing lightweight architectures could be a solution to
perform inference on constrained hardwares as shown in [29]
and [30]. To provide a clearer overview of those approaches
we also provide the frames per second (fps) published in the
original papers that focus on inference frequency, remarking
that they are not comparable due to the different tested
hardwares. Poggi et al. [31] propose PyD-Net, a pyramidal
network to infer on CPU devices. The authors use the pyra-
midal structure to extract features from the input image at
different levels, which are afterwards upsampled and merged
to refine the output estimation. Such model achieves less
than 1 fps on an ARM CPU and almost 8 fps on an Intel
17 CPU. Spek et al. [32] present CReaM, a fully convolutional
architecture obtained through a knowledge-transfer learning
procedure. The model is able to achieve real-time frequency
performances (30 fps) on the 8GB NVIDIA Jetson TX2
device. Wofk et al. [8] develop FastDepth, an encoder-decoder
architecture characterized by a MobileNet [33] pre-trained
network as backbone, and a custom decoder. Furthermore, the
authors show that pruning the trained model guarantees a boost
of inference frequency at the expense of a small increment of
the final estimation error. FastDepth achieves 178 fps on the
8GB NVIDIA Jetson TX2 device. Recently, Yucel et al. [34]
propose a small network composed by the MobileNet v2 [33]
as encoder and FBNet x112 [35] as decoder, trained on an
altered knowledge distillation process; the model achieves
37 fps on smartphone GPU. Papa et al. [7] design SPEED,
a separable pyramidal pooling architecture characterized by

an improved version of the MobileNet v1 [36] as an encoder
and a dedicated decoder. This architecture exploits the use
of depthwise separable convolutions, achieving real-time fre-
quency performances on the embedded 4GB NVIDIA Jetson
TX1 and 6 fps on the Google Dev Board Edge TPU.

As previously mentioned, all those lightweight MDE works
are designed over fully-convolutional architectures. In contrast
to previous methodologies, METER exploits a lightweight
transformer module in three different configurations, achieving
state of the art results over the standard evaluation metrics.

III. PROPOSED METHOD

This section outlines the design of METER, the pro-
posed lightweight monocular depth estimator. In particular,
in Section III-A, we provide a detailed architecture analysis
for both encoder and decoder modules, in Section III-B we
describe the proposed loss function and in Section III-C the
employed augmentation policy.

A. METER Architecture

The vision transformer architecture has demonstrated out-
standing performances in a variety of computer vision tasks,
usually relying on deep and heavy structures. On the other
hand, to reduce the computational cost of such models,
lightweight CNN usually relies on convolutional operations
with small kernels (i.e. 3 x 3, 1 x 1) or on particular tech-
niques such as depthwise separable convolution [37]. Based
on those statements, we design an hybrid lightweight ViT
characterized by convolutions with small kernels and as few
transformers blocks as possible reducing the computational
impact in the overall structure. Motivated by this, in the
following, we present METER: a MobilE vision TrasformER
architecture characterized by a lightweight encoder-decoder
model designed to infer on embedded devices. METER
encoder re-design computational demanding operations of [9]
to improve the inference performances while maintaining
the feature extraction capabilities. The high-level features
extracted from the encoder are then fed into the decoder
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Fig. 2. Overview of METER encoder-decoder network structure. The processing flow, i.e. the sequence of operations and the skip-connection, is represented
with a blue dashed arrow. The (H, W, C) format refers to the input-output spatial dimensions, while the 1 and | refers to the feature resolution upsampling

and downsampling.

TABLE I
NUMBER OF CHANNELS (Ci) USED IN METER CONFIGURATIONS
Channels | METER S METER XS  METER XXS

Ch 16 16 16
Co 32 32 16
C3 64 48 24
Cy 128 80 64
Cs 160 96 80
Ce 320 192 160
Cr 128 128 64
Cg 64 64 32
Co 32 32 16
C1o 16 16 8

through the skip-connections to recover the image details.
The proposed fully convolutional decoder has been structured
to upsample the compact set of encoder high-level features
while enhancing the reconstruction of the image details to
obtain the desired output depth map (i.e. a per-pixel distance
map). A graphical overview of the architecture is reported
in Figure 2 while the number of channels employed in the
different METER configurations, METER S, METER XS, and
METER XXS are reported in Table I. The number of trainable
parameters of the three proposed networks consists of 3.29M,
1.45M, and 0.71 M, respectively.

METER encoder exploits a modified version of MobileViT
network due to its light structure demonstrated in [9]. As can
be noticed in Figure 2, METER presents a hybrid network
composed of convolutional MobileNetV2 blocks (red) and
transformers blocks (green). The MobileViT blocks with the
highest computational cost, i.e. the ones composed of cascaded
transformers and convolution operations, have been identi-
fied and replaced with new modules (METER blocks). Such
modules are able to guarantee low latency inference while
tuning the entire structure to minimize the final estimation
error. Along the lines of [9], we propose three variants of

the same encoder architecture with decreasing complexity and
computational cost namely S, XS, and XXS.

The proposed METER block (green in Figure 2) is com-
posed by three feature extraction operations, two Convolu-
tional blocks composed by a 3 x3 convolution and a point-wise
one (purple) and a second 1 x 1 convolution (yellow) inter-
leaved by a single transformer block (blue). Such module com-
putes an unfold operation to apply the transformer attention on
the flattened input patches while reconstructing output feature
map with an opposite folding operation, as described in [9].
Moreover, in order to apply an attention mechanism to the
encoded features, the input of METER block (gray) has been
concatenated with the output of the transformer and fed to
the previous 1 x 1 convolution layer. When compared with
MobileViT architecture, characterized by four convolutions
operations and a number of cascaded transformers blocks, the
proposed design allows to reduce the computational cost of
the overall model while producing an accurate estimation of
the depth (as will be shown in Section V-B).

Finally, we halved the number of output encoder features
(channel Cg¢) and we replaced the MobileViT SiLU non
linearity function with the ReLU. Despite the fact that SiLU
activation function is differentiable at every point,' it does
not ensure better performance, likely due to the depth-data
distribution.

METER decoder is designed with a fully convolutional
structure to enhance the estimation accuracy and the recon-
struction capabilities while keeping a limited number of oper-
ations. As can be seen in Figure 2, the decoder consists of a
sequence of three cascaded upsampling blocks (light blue) and
two convolutional layers (yellow) located at the beginning and
at the end of the model. Each upsampling block is composed
of a sequence of upsampling, skip-connection and feature
extraction operations. The upsampling operation is performed

IUnlike the SiLU, the ReLU activation function is non-differentiable at
Zero.
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by a transposed convolutional layer (orange) which doubles the
spatial resolution of the input. Then, a Convolutional block
(purple) is used for feature extraction; the skip-connection
(dashed blue arrow) linking METER encoder-decoder modules
allows to recover image details from the encoded feature maps.

B. The Balanced Loss Function

The standard monocular depth estimation formulation con-
siders as loss function the per-pixel difference between the
i"" ground truth pixel y; and the predicted one ;. However,
as reported in literature [16], [38], [39] several modifications
have been proposed to improve the convergence speed and
the overall depth estimation performances. In particular, the
addition of different loss components focuses on refinement
of fine details in the scenes, like object contours.

Derived from [38] and [39], we propose a balanced loss
function (BLF) to weight the reconstruction loss through
the Lgepin(yi, 3i) and Lgsry(yi, §i) components with the
high-frequency features taken into account by the Lg,qq (yi, 3i)
and the Lo (i, yi) losses. The BLF L(y;, ;) mathematical
formulation is reported in Equation 1, where Ay, Ay, A3 are
used as scaling factors.

L(yi, 31) = Laepih + M Lgraa + A2 Lporm +A3Lssim (1)

In detail, the 10ss Lgeprn (yi, $;) in Equation 2 is the point-
wise L1 loss computed as the per-pixel absolute difference
between the ground truth y; and the predicted image ;.

N .
Laeptn (yi, ¥i) = - Zl lyi — yil ()
=

The Lgraa(yi, yi) and the Lyorm(yi, i) losses reported
respectively in Equation 3 and Equation 4 are designed to
penalize the estimation errors around the edges and on small
depth details. The Lgrqq(y:,3:) loss computes the Sobel
gradient function to extract the edges and objects boundaries.

n
Lgrad(yi, $i) = % D (Vallyi = i + Vyllyi = i) 3)
i=1
We report with V the spatial derivative of the absolute esti-
mation error with respect to the x and y axes.
The Lyorm (i, ¥i) loss, reported in Equation 4, calculates
the cosine similarity [40] between the ground truth and the
prediction.

(ng;, ny)

1 n
norm Vi, Yi) = — - 4
Lnorm (yi» 3i) = ;( \/(nyi,nyl_)\/<nyl.,nyi)) @

We identify with (ny,, n;,) the inner product of the surface
normal vectors ny, and nj, computed for each depth map i.e.
n; =[-Vx(2), —V,(2), 1]T with z = [y;, 3i].

The last component Lggya (i, ¥;) loss, Equation 5, is based
on the mean structural similarity (SS/M) [41]. Similarly
to [39] and [16] we add this function to improve the depth
reconstruction and the overall final estimation.

Lssim (i, i) =1 — SSIM(y;, 3i) )
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In conclusion, the proposed BLF balances the image
reconstruction Lgepsn, the image similarity Lgsyay, the edge
reconstruction Lgrq¢ and the edge similarity L,oqm losses.
The impact of each loss will be quantitatively evaluated in
Section V-C.

C. The Data Augmentation Policy

Deep learning architectures and especially Vision Trans-
former need a large amount of input data to avoid overfit-
ting of the given task. Those models are typically trained
on large-scale labelled datasets in a supervised learn-
ing strategy [4]. However, gathering annotated images is
time-consuming and labour-intensive; as result, the data aug-
mentation (DA) technique is a typical solution for expanding
the dataset by creating new samples. In the MDE task, the use
of DA techniques characterized by geometric and photometric
transformations are a standard practice [5], [16]. However,
not all the geometric and image transformations would be
appropriate due to the introduced distortions and aberrations in
the image domain, which are also reflected on the ground-truth
depth maps.

With METER we propose a data augmentation policy based
on commonly used DA operations while introducing a novel
approach named shifting strategy. In particular we consider
as default augmentation policy the use of the vertical flip,
mirroring, random crop and channels swap of the input image
as in [16] to make the network invariant to specific color
distributions. The key idea is to combine the default augmen-
tation policy with the shifting strategy augmentation, based
on two simultaneous transformations applied respectively to
the input image and to the ground truth depth map. The first
one applies a color (C) shift to the RGB input images, while
the second one is a depth-range (D) shift, which consists of
adding a small, random positive or negative value to the depth
ground truth. The mathematical formulation of the computed
transformations are following reported; we refer with rgb,,
and rgb,,g respectively the unmodified and the augmented
input for RGB images and with d, and dg,g the unmodified
and the augmented depth map.

The C shift augmentation, applied on RGB images, is com-
posed of two consecutive steps. In the first operation we apply
a gamma-brightness transformation (rgbgp), as reported in
Equation 6, where 8 and y are respectively the brightness and
gamma factors that are randomly chosen into a value range
experimentally defined between [0.9, 1.1].

rgbgp = B * (rgbun)” (6)

Then, the color augmentation transformation reported in
Equation 7 is applied, where I is an identity matrix of H x W
resolution and 7 is a scaling factor that is randomly chosen
into a value range empirically set between [0.9, 1.1].

rgbaug =rgbgb*(IHxW*77) (N

The D shift augmentation, Equation 8, is made up of a
random positive or negative value summed to the ground-truth
depth maps (dy,). The random value, with a range of
[—10, +10] centimeters for the indoor dataset and [—10, +10]
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Fig. 3.  Illustration of an augmented sample with the proposed shifting
strategy. The shifting factors (B, y, n, and S) are set as their maximum and
minimum values, i.e. {0.9, —10} and {1.1, 410} respectively. The min/max
depth ranges for the regions of interest are given through the respective colored
bars.

decimeters for the outdoor one, is uniformly applied to the
whole depth map.

daug =dun + SHxW (8)

In Figure 3 we report a sample frame before and after the
application of the proposed strategy with the minimum and
the maximum shift values. To emphasise the impact of the
D shift, we focus on a narrow portion of the original depth
map (in a distance range between 150 and 300 centimeters) by
applying a perceptually uniform colormap and highlighting the
minimum and maximum depth intervals through the associated
color bars. The reported frames show that the depth with
the positive displacement (410 centimeters) has a lighter
colormap, while the depth with the negative displacement
(—10 centimeters) has a darker one; this effect is emphasised
by the colormap of the original distance distribution.

The introduced depth-range shift augmentation, along with
the color and brightness shift and the commonly used trans-
formations, leads to better final estimations as will be shown
in Section V-D providing also invariance to color and illumi-
nation changes.

IV. EXPERIMENTAL SETUP

This section gives a detailed description of the exper-
imental setup, including training hyper-parameters, bench-
mark datasets and evaluation metrics respectively in
Sections IV-A, IV-B, and IV-C.

A. Training Hyper-Parameters

METER has been implemented using PyTorch? deep learn-
ing API, randomly initializing the weights of the architectures.

2Code and corresponding pre-trained weights are made publicly available
at the following GitHub repository: https://github.com/lorenzopapaS/METER
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All the models have been trained from scratch using the
AdamW optimizer [42] with 8y = 0.9, B> = 0.999, weight
decay wd = 0.01 and an initial learning rate of 0.001 with
a decrement of 0.1 every 20 epochs. We use a batch size of
128 for a total of 60 epochs. For the balanced loss function
we empirically choose the scaling factors A1 = 0.5 and
A2, A3 = {1,10, 100} depending on the unity of measure
used for the predicted depth map, i.e. meters, decimeters or
centimeters. We apply a probability of 0.5 for all the random
transformations set in the data augmentation policy.

B. Benchmark Datasets

The datasets used to show the performance of METER
are NYU Depth v2 [11] and KITTI [12], two popular MDE
benchmark datasets for indoor and outdoor scenarios.

NYU Depth v2 dataset provides RGB images and corre-
sponding depth maps in several indoor scenarios captured at
a resolution of 640 x 480 pixels. The depth maps have a
maximum distance of 10 meters. The dataset contains 120K
training samples and 654 testing samples; we used for training
the 50K subset as performed by previous works [5], [16].
The input images have been downsampled at a resolution of
256 x 192.

KITTTI dataset provides stereo RGB images and correspond-
ing 3D laser scans in several outdoor scenarios. The RGB
images are captured at a resolution of 1241 x 376 pixels.
The depth maps have an maximum distance of 80 meters.
We train our network at a input resolution of 636 x 192 on
Eigen et al. [13] split; it is composed of almost 23K training
and 697 testing samples. Similarly to [21], due to the low
density depth maps, we evaluate the compared models in the
cropped area where point-cloud measurements are reported.

C. Performance Evaluation

We quantitatively evaluate the performance of METER
using common metrics [13] in the monocular depth estimation
task: the root-mean-square error (RMSE, in meters [m]), the
relative error (REL), and the accuracy value &1, respectively
reported in Equations 9, 10, and 11. We remind that y; is
the ground truth depth map for the i’" pixel while J; is the
predicted one, n is the total number of pixels for each depth
image, and thr is a threshold commonly set to 1.25.

1 .
RMSE = |- Dy = 3ill? ©)

ien

1 lyi — il
2

ien Yi

1 . 5.
51 = — max (&, &) < thr
n] Vi Vi

ien

REL = (10)

(In

Moreover, we compare the different models through the
number of multiply-accumulate (MAC) operations and train-
able parameters. METER has been tested on the low-resource
embedded 4GB NVIDIA Jetson TX1? and the 4GB NVIDIA

3 https://developer.nvidia.com/embedded/jetson-tx 1
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Jetson Nano* that have a power consumption of 10W and
S5W respectively. Those devices are equipped with an ARM
CPU and a 256-core NVIDIA Maxwell GPU> for the TXI
and a 128-core for the Nano. The inference speed reported in
Section V are computed as frame-per-second (fps) on a single
image averaged over the entire test dataset.

V. RESULTS

In this section, we report the results obtained with METER
on the two evaluated datasets, NYU Depth v2 and KITTI,
described in the previous Section IV-B. In Section V-A
METER is compared with lightweight, state of the art related
works in terms of the metrics described in Section IV-C;
then, we report multiple ablation studies to emphasize the
individual contribution of each METER component. In par-
ticular, Section V-B is related to the architecture structure,
while Sections V-C and V-D analyze respectively the effect
of each element of the proposed balanced loss function and
of the shifting strategy used for data augmentation. Finally,
in SectionV-E, we provide an example of METER application
in a real-case scenario.

A. Comparison With State of the Art Methods

In this section, METER is compared with state of the art
lightweight models as [7], [8], [31], [32], and [34], which are
designed to infer at high speed on embedded devices while
keeping a small memory footprint (lower than 3GB). This
choice is due to the limited amount of available memory in
the chosen platforms. Usually a portion of available RAM is
reserved for the operating system, thus lowering the overall
amount of available space for the model allocation. In par-
ticular METER and its variants allocate less than 2.1GB of
available memory, a value that does not saturate the hardware’s
memory and which gives the opportunity to perform other
operations on the same device. Moreover, for each compared
architecture we also report the number of trainable parameters

4https://developer.nvidia.com/ernbedded/j etson-nano
5 https://developer.nvidia.com/maxwell-compute-architecture

METER XXS METER S

METER XS METER XXS

A graphical comparison among METER (S, XS, XXS) configurations. For a better visualization, we apply to depth images and difference maps
uniform colormaps with the same depth range. Precisely, in the ground truth (GT) and predicted depth maps (Pred) a lower color intensity corresponds to
further distances, while in the difference map (Diff = |GT — Pred|) a lower color intensity corresponds to a smaller error.

(in million [M]) and the number of Multiply-And-Accumulate
(MAC) operations (in giga [G]).

The results can be found in Table II; as can be noticed,
METER outperforms all the other methods on both the
datasets. When compared with [7], METER S achieves a boost
of 17%, 15%, and 6% respectively for the RMSE, REL and
81 metrics over NYU Depth v2 dataset and of 11%, 30% and
7% over KITTI. As before, METER XS achieves superior
performances, with a boost of 9%, 10% and 5% over NYU
Depth v2 dataset and of 10%, 29% and 7% over KITTIL.
The last configuration, METER XXS, can still obtain good
predictions compared with state of the art models while using
just 0.7M trainable parameters and 0.186G MAC operations.

Moreover, in order to assess the frequency performances
of such architectures, we choose as baseline models SPEED,
due to its accuracy, and FastDepth, which is one of the most
popular technique. When tested on the NVIDIA Jetson TXI1,
such models achieve 30.9 fps and 18.8 fps, while METER
S, XS and XXS achieve respectively 16.3 fps, 18.3 fps
and 25.8 fps. From these results we can remark that our
most accurate model shows similar fps values with respect
to FastDepth with a sensibly lower estimation error, while
the lightweight XXS variant exhibits comparable estimation
performance and fps with respect to SPEED.

Regarding MAC operations, it is possible to see that SPEED
MAC value is on par with METER XS, while FastDepth MAC
is sensible higher than all METER architectures.

Furthermore, a qualitative analysis between the proposed
variants of METER is reported in Figure 4 over an indoor
and outdoor scenarios. The estimated depths and their asso-
ciated difference (Diff) maps, which are per-pixel differences
between the ground truth depth maps (GT Depth) and the
predicted (Pred Depth) ones, show how the estimation error
is distributed along the frame. Precisely, we notice an error
increment fairly distributed over the frame as the model
trainable parameters of the model are reduced.

B. Ablation Study: The Encoder-Decoder Architecture

In this subsection we compare the performances of the
encoder and the decoder components of METER; results are
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TABLE I

COMPARISON WITH STATE OF THE ART LIGHTWEIGHT METHODS ON THE TWO BENCHMARK DATASETS. THE BEST SCORES ARE IN BOLD AND SECOND
BEST ARE UNDERLINED; THE - REPRESENTS A VALUE WHICH IS NOT REPORTED IN THE ORIGINAL PAPER

NYU KITTI

Models RMSE| MAC RMSE| MAC Parameters

e S e L () M]
CReaM [32] 0.687 0.190 0.704 - - - - - -
PyD-Net (50) [31] - - - - 6.253 0.262 0.759 - 1.9
PyD-Net (200) [31] - - - - 6.030 0.153 0.789 - 1.9
FastDepth [8] 0.579 - 0.772 3.210 - - - - 3.9
M.Net v2 + FBNet [34] 0.564 - 0.790 - - - - - 2.6
SPEED [7] 0.566 0.158 0.783 0.552 5.191 0.181 0.770 1.403 2.6
METER S 0.471 0.134 0.831 0.975 4.603 0.126 0.829 2.432 3.3
METER XS 0.522 0.154 0.793 0.579 4.671 0.128 0.827 1.444 1.4
METER XXS 0.580 0.174 0.744 0.186 5.157 0.156 0.782 0.464 0.7

TABLE 111

COMPARISON BETWEEN THE MOBILEVIT [9] AND METER ENCODERS OVER DIFFERENT ACTIVATION FUNCTIONS (RELU, SILU) KEEPING METER
DECODER FIXED. THE FPS ARE MEASURED ON THE TWO BENCHMARK HARDWARES, THE NVIDIA JETSON TX1 AND THE NVIDIA JETSON
NANO. IN BOLD THE BEST RESULTS FOR EACH CONFIGURATION IN TERMS OF RMSE, REL AND §;

NYU KITTI
Encoders RMSE| TX11t Nanof MAC | RMSE| TX11T NanoT MAC | Parameters
m REL 0T g s qor | om R 0T g s (Gl [M]
MobileViT S 0.549 0.168 0.763 13.3 10.5 1.222 4.673 0.128 0.825 5.1 4.1 3.046 5.9
MobilViT ReLU S 0.521 0.153 0.790 13.3 10.5 1.222 4.789 0.140  0.815 5.1 4.1 3.046 5.9
METER SiLU S 0.496 0.145 0.811 16.3 12.0 0.975 4.692 0.134  0.825 5.9 4.8 2.432 33
METER S 0.471 0.134  0.831 16.3 12.0 0.975 4.603 0.126  0.829 5.9 4.8 2.432 33
MobileViT XS 0.572 0.171  0.754 13.5 13.3 0.815 4.734 0.133  0.822 5.9 5.1 2.032 2.8
MobilViT ReLU XS 0.547 0.158  0.780 13.5 13.3 0.815 4.797 0.137 0.819 5.9 5.1 2.032 2.8
METER SiLU XS 0.539 0.156  0.787 18.3 15.6 0.579 4.727 0.133  0.821 7.2 6.0 1.444 1.4
METER XS 0.522 0.154  0.793 18.3 15.6 0.579 4.671 0.128  0.827 7.2 6.0 1.444 14
MobileViT XXS 0.615 0.195 0.715 17.4 16.9 0.472 5.211 0.187 0.761 14.3 10.7 1.180 1.8
MobilViT ReLU XXS 0.588 0.176  0.737 17.4 16.9 0.472 5.210 0.171 0.763 14.3 10.7 1.180 1.8
METER SiLU XXS 0.596 0.180  0.728 25.8 23.2 0.186 5.208 0.165 0.763 20.4 15.1 0.464 0.7
METER XXS 0.580 0.174 0.744 258 232 0.186 5.157 0.156 0.782 204 15.1 0.464 0.7
TABLE IV
COMPARISON BETWEEN LIGHTWEIGHT DECODER ARCHITECTURES KEEPING METER S ENCODER FIXED. THE BEST SCORES ARE IN BOLD
NYU KITTI
Decoders RMSE| TX11 NanofT MAC | RMSE| TX11 NanoT MAC | Parameters
mp REM 0T mg s g6 | m REMOOT pg e (Gl M]
NNDSConv5 [8] 0.596 0.174 0.685 154 11.5 0.869 5.737 0.164  0.677 5.5 4.7 2.166 3.1
NNConv5 [8] 0.562 0.167  0.761 14.6 11.3 1.141 4.895 0.139  0.818 5.6 4.5 2.845 3.6
MDSPP [7] 0.581 0.169  0.694 15.1 1.7 1.004 5.167 0.157  0.760 5.7 4.7 2.503 34
METER S 0.471 0.134  0.831 16.3 12.0 0.975 4.603 0.126 0.829 5.9 4.8 2.432 33

reported in Table III and Table IV, respectively. In particular,
the first analysis highlights the contribution of the novel
METER block for each configuration (S, XS, and XXS) while
keeping METER decoder fixed. The second analysis focuses
on the use of alternative decoders with respect to the default
METER decoder, such as NNDSConv5, NNConv5 [8] and
MDSPP [7] using METER S encoder since it is the encoder
that shows the best performances in the evaluated metrics.
Encoder architectures are compared in Table III, reporting
a one-to-one comparison between METER encoder and the
MobileViT; evaluating the effects of two different activation
functions (ReLU, SiLU). From the obtained results, we high-
light that METER encoder (in bold) achieves better depth
estimation in all the proposed variants, as well as when
compared with the same activation function, using fewer train-
able parameters and a reduced number of MAC operations.
In particular, when compared with the MobileViT, METER
achieves an average improvement of 10%, 14% and 6% on

RMSE, REL, and §; metrics in the indoor dataset and of 2%,
7% and 2% respectively on the outdoor dataset. Based on those
findings, the overall estimation contribution of the proposed
encoder over the three configurations is equivalent to 7%,
which almost 3% is due to the use of ReLU activation function
with respect to SiLU. Moreover, regarding MAC operations
we obtain a reduction of 20%, 29%, and 60% with respect
to the corresponding MobileViT variants (S, XS, XXS), while
the fps improvements are respectively 16% fps, 22% fps, and
32% on the NVIDIA Jetson TX1 and of 16% fps, 15% fps,
and 28% fps over the NVIDIA Jetson Nano.

In light of the previous experiments, we can state that all
METER variants show good accuracy and frequency perfor-
mances on the NYU Depth v2, while in the case of KITTI
dataset METER XXS variant should be preferred in order to
get a reasonable inference speed. Focusing on the timings, the
METER XXS variant shows the fastest inference speed, with
reasonable results also on high resolution images of KITTI
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Qualitative comparison of a predicted frame taking into account different loss components. For a better visualization, we apply to the depth images

and to the difference maps uniform colormaps with the same depth range. Precisely, in the ground truth (GT) and predicted depth maps (Pred) a lower color
intensity corresponds to further distances, while in the difference map (Diff = |GT — Pred|) a lower color intensity corresponds to a smaller error.

TABLE V
THE EFFECT OF EACH balanced Loss Function COMPONENTS ON THE METER S OVER THE CONSIDERED METRICS. THE BEST SCORES ARE IN BOLD
NYU KITTI
Loss Components RI\[/IHS;.]E¢ REL, &1 1 Rl\[/InSl]Ei REL| 6,1
Laepth 0.582 0.185 0.736 5.637 0.183  0.741
Laeptnh + A3Lssim 0.544 0.161 0.774 5.526 0.198  0.731
Laeptn + M Lgrad + A2Lnorm 0522  0.153  0.792 | 5.285 0.166  0.744
Lgepth + M Lgrad + A2Lnorm + A3Lssryv (BLF) 0.471 0.134  0.831 4.603 0.126  0.829

dataset, avoiding the needing of cropping or downscaling the
original images.

Decoders architectures are reported in Table IV, comparing
METER decoder and those of other lightweight models; we
used the METER S encoder as baseline. METER decoder
achieves an RMSE improvement of 16% and 19% on NYU
Depth v2 dataset and of 6% and 11% on KITTI dataset
with respect to NNConv5 and MDSPP models. Furthermore,
we compare METER decoder with the NNDSConv5 [8],
a variant of the NNConv5 that takes advantage of depthwise
separable convolution to reduce the computational cost. Our
encoder-decoder architecture is able to achieve higher speed
and a significant improvement in all the estimation metrics
with comparable MAC operations with respect to NND-
SConv5. Finally, when compared with the NNConv5 decoder,
ranked second in our analysis, the proposed structure is able
to achieve an overall improvement equal to 12% over the two
scenarios. Moreover, it can be noticed that the decoder has
little influence on the inference frequency; however, METER
decoder still shows the best fps on the two hardwares (e.g. 11%
of METER S compared to NNConv5 on the TX1 hardware
and NYU Depth v2 dataset). The overall MAC operations
decrement with respect to NNConv5 and MDSPP decoders is
equal to 15% on the same configuration as before, suggesting
that the optimized METER decoder is able to produce more
accurate estimations while using fewer operations.

C. Ablation Study: Loss Function

In this subsection we analyze the impact of the different
components of the proposed balanced loss function introduced

in Section III-B. METER S architecture is used as a baseline
model. The quantitative and qualitatively comparisons are
provided in Table V and Figure 5 respectively, while Figure 6
shows the converging trends of each introduced component,
referring to Lgepsn (blue), Lgyqq (Orange), Lyorn (green) and
Lgsiy (red).

The curves shape show that the initial loss contribution is
mostly attributed to the Lgepn and Lgrqq, While the contri-
butions of the Lgs;p and Ly, penalize from start to finish
structural and high-level details prediction errors.

The Lyepin component showed to be fundamental for the
training convergence, thus it is applied on every experiment
of Table V. The obtained results demonstrate that each loss
component is crucial to get the final METER performance,
balancing the reconstruction of the entire image and of edges
details. In fact, the loss formulation in the second row focuses
only on the overall image, failing at reaching satisfying results.
At the same time, the third row shows a typical loss exploited
in [38] focusing on edge details but not taking into account
the image structure similarity, thus producing an unbalanced
loss achieving a worse result with respect to the proposed
one, which is able to obtain the lowest estimation error by
balancing all the components. In detail, the BLF achieves an
improvement of 10%, 12%, and 5% for RMSE, REL and
81 metrics on NYU dataset, and a boost of 13%, 24%, and
10% over the KITTI dataset compared to [38].

Moreover, to better show the qualitative contribution of
each loss component, provided in Figure 5 the estimated
depth under the four analyzed configurations given an input
sample from KITTI dataset. Based on such example, we can
observe a similar behaviour to the one found in Figure 6
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TABLE VI

COMPARISON BETWEEN DIFFERENT AUGMENTATION STRATEGIES. THE Default POLICY COMPRISES THE FLIP, RANDOM CROP AND CHANNEL SWAP
WHILE THE OTHERS REPRESENT THE DIFFERENT COMPONENTS OF THE Shifting Strategy DESCRIBED IN SECTION III-C. THE REFERENCE MODEL
Is METER S. THE BEST SCORES ARE IN BOLD

NYU KITTI
Augmentation Components RI\[/IHSI]E¢ REL| & 1 Rl\[/IHSl]E¢ REL, &1 1
default 0.511 0.143  0.813 4.839 0.128  0.826
default + C shift 0.506 0.143  0.815 4.897 0.136  0.810
default + D shift 0.585 0.144  0.805 4.938 0.141  0.804
default + C shift + D shift (our) 0.471 0.134  0.831 4.603 0.126  0.829
RGB Input Ref Depth Pred Depth
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Fig. 7. METER application in a real-case scenario. Missing depth mea-
0.0 0 500 1000 1500 2000 2500 3000 3500 surements of reference (Ref) depth are shown as yellow pixels. A uniform

Iterations

Fig. 6. Plot of the individual loss components composing the balanced loss
Jfunction in the first ten epochs, i.e. almost 3600 iterations.

and Table V: the Lgep, component is fundamental for a
correct image reconstruction while the weighted addition of
specific loss components (A1 Lgrad, A2Lnorm, A3Lssip) can
quantitatively and qualitatively improve the final estimation.
This improvement may also be noticed by observing the
predicted frames from left to right, where the object details
and the overall estimation increase significantly as difference
maps darken.

Therefore, we can conclude that the proposed balanced
loss function can successfully enhance the training process,
while each component can effectively contribute to more
accurate estimations, hence enhancing the entire framework.
Precisely, the overall quantitative contribution of the balanced
loss function over the two scenarios is equal to 25% when
compared with Lgepss, and 13% with respect to the loss
formulation used in [38].

D. Ablation Study: Data Augmentation

In this ablation study, we evaluate the performances of
the proposed data augmentation strategy in comparison with
standard MDE data augmentation. We report in Table VI the
quantitative results of shifting strategy (C shift, D shift) and
the default DA (flip, random crop and channel swap) and the
combinations of the two. The proposed shifting strategy (last
row) achieves, on METER S architecture, an improvement of
8%, 6%, and 2% over the RMSE, REL and §; on the NYU
Depth v2 dataset, and of 6%, 2%, and 1% over the KITTI
dataset. On the other hand, the single use of the C shift or
D shift with the default augmentation does not lead to an
improvement in the final estimation, resulting in equivalent or
slightly worst final prediction. Then, the overall improvement
of the shifting strategy over the two scenarios is equal to 4%
with respect to the default data augmentation policy.

colormap, with the same depth range, has been applied to the depth maps.
Points A (armchair), B (box), and C (curtain) on the RGB frame indicates
object used for quantitative comparison.

E. Real-Case Scenario

One of the main objectives of exploring lightweight deep
learning solutions is to close the gap between computer vision
and practical applications, where the proposed models may be
integrated as perception systems, such as robotic systems, thus
taking into account possible hardware limitations. Therefore,
in this subsection, we present an example of a real-case
application in which METER is used to estimate the depth
scene obtained from a generic camera image. We used a
Kinetic V2 to measure the reference depth of the scene. The
extracted acquisition is reported in Figure 7.

Qualitatively comparing the reference depth and the esti-
mated one, we can notice a less sharp prediction, which can
be mainly attributed to the lower working resolution that
ensures high frame rates on edge devices. However, the object
shapes are still adequately defined, and the overall estimation
is visually comparable with the reference frame.

Moreover, in order to perform a quantitative analysis,
we compute the average error of three salient objects that
appear in the input frame (RGB Input), which are point A
for the armchair, point B for the box and point C for the
curtain. The estimation error for the first two points (A and
B) is almost equal to 0.79m, respectively. The obtained value
is related to the fact that we are working in a challenging
open-set scenario with different statistics with respect to the
training set. On the other hand, by analyzing point C, we can
identify one of the main drawbacks of active depth sensing,
i.e. missing or incorrect depth measurements under particular
lighting conditions. In this scenario, although the estimated
depth error is unknown, most likely due to the intense light
source directed toward the camera sensor, our model can
still correctly identify and estimate the area as a single
surface.
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VI. CONCLUSION

In this work, we propose METER, a MDE architecture
characterized by a novel lightweight vision transformer model,
a multi-component loss function and a specific data augmenta-
tion policy. Our method exploits a lightweight encoder-decoder
architecture characterized by a transformer METER block,
which is able to improve the final depth estimation with a small
number of computed operations, and a fast upsampling block
employed in the decoder. METER achieves high inference
speed over low-resource embedded hardwares such as the
NVIDIA Jetson TX1 and the NVIDIA Jetson Nano. Moreover,
METER architecture in its three configurations is able to
outperform previous state of the art lightweight related works.
Thanks to the obtained performances on inference frequency
and accuracy in the estimation, such proposed architectures
can be good candidates to work on multiple MDE scenarios
and real-world embedded applications. Precisely, METER
S outperforms the accuracy of state of the art lightweight
methods over the two datasets, METER XS represents the
best trade-off between inference speed and estimation error,
and METER XXS reaches a high inference frequency, up to
25.8 fps, on the two hardwares at the cost of a small increment
in the estimation error.

The obtained results and the limited MAC operations of the
proposed network demonstrate that our framework could be
valuable in a variety of resource-constrained applications, such
as autonomous systems, drones, and IoT. Moreover, we also
test METER in a real-case scenario with a frame captured by
a generic camera achieving a reasonable estimation error.

Finally, METER architecture could be a valuable starting
point for future studies, in order to get real-time inference
frequency on high resolution images, as well as building
transformer architectures to take advantage of the attention
mechanism both in encoder and decoder structures.
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