
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023 6117

Computing Offloading With Fairness Guarantee:
A Deep Reinforcement Learning Method

Hao Hao , Changqiao Xu , Senior Member, IEEE, Wei Zhang , Shujie Yang,
and Gabriel-Miro Muntean , Fellow, IEEE

Abstract— Edge computing can reduce service latency and save
backhaul bandwidth by completing services at network edges,
providing support for diverse computation-intensive and delay-
sensitive services. However, it is not practical to support all
services at edge nodes due to the limited network resources. The
decision that which services can be provided locally and which
services should been offloaded to cloud significantly impacts the
user experience. Cloud-edge computing offloading becomes an
important issue in edge computing. In this paper, we take the
fairness into the optimization objective of computing offloading
problem, and consider both computing capacity and storage
space as problem constraints. The problem is formulated as
a long-term average optimization problem to maximize the
α-fair utility function of saved time, and further translated as
a Markov decision process. As the optimization problem with
fairness guarantee and huge action space, we cannot solve it with
traditional methods. Therefore, an innovative multi-update deep
reinforcement learning algorithm is proposed which can optimize
the objective with α-fair utility function and reduce dramatically
the size of action space. We also prove the convergence of
our algorithm theoretically. To our best knowledge, the long-
term average optimization of computing offloading with fairness
guarantee is rarely seen in literature. Extensive simulation
experiments show that our algorithm can converge quickly and
has better performance in terms of service delay and fairness.

Index Terms— Mobile edge computing, computing offloading,
deep reinforcement learning, fairness guarantee.

Manuscript received 5 January 2023; revised 17 February 2023; accepted 4
March 2023. Date of publication 10 March 2023; date of current version
4 October 2023. This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62225105; in part by
the National Natural Science Foundation of Shandong Province under Grant
ZR2022QF040; and in part by the Qilu University of Technology (QLU)
Pilot Project of Integration of Science, Education and Production under Grant
2022PX083 and Grant 2022GH007. The work of Gabriel-Miro Muntean was
supported in part by the Science Foundation Ireland (SFI) (Fradis) under Grant
21/FFP-P/10244 and in part by Insight under Grant 12/RC/2289_P2. This
article was recommended by Associate Editor M. R. Hashemi. (Corresponding
author: Changqiao Xu.)

Hao Hao and Wei Zhang are with the Shandong Computer Science
Center (National Supercomputing Center in Jinan), Qilu University of Tech-
nology (Shandong Academy of Sciences), Jinan 250014, China (e-mail:
haoh@sdas.org; wzhang@sdas.org).

Changqiao Xu and Shujie Yang are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: cqxu@bupt.edu.cn;
sjyang@bupt.edu.cn).

Gabriel-Miro Muntean is with the Performance Engineering Labora-
tory, School of Electronic Engineering, Dublin City University, Dublin 9,
D09 K6W2 Ireland (e-mail: gabriel.muntean@dcu.ie).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2023.3255229.

Digital Object Identifier 10.1109/TCSVT.2023.3255229

I. INTRODUCTION

OUR life has been greatly enriched by the rapid
development of both high specification devices and

mobile networks. Many new computational-demanding ser-
vices, including involving natural language processing, live
rich media streaming, etc. have sprung up. These services
enrich our life, but also bring exponentially growing data
to process, which requires huge computing resources. It is
becoming inadequate to respond such a large computational
pressure with cloud computing solutions that only rely on
the computing resources of cloud services. Besides, users
can only get services from remote cloud in cloud comput-
ing, resulting in unacceptable network latency and congested
backbone networks. To alleviate the computation pressure in
the cloud, edge computing [1], a new computing paradigm,
was proposed to utilize edge node resources to support some
services. This approach reduces network latency by avoiding
the long transmission from users to cloud services, and is
gradually becoming an essential avenue to improve the quality
of network services.

However, the capability of edge node is limited and they
cannot satisfy all service requests currently. To take full advan-
tage of cloud computing and edge computing, it is necessary to
cooperate the resources of cloud and edge node. One of impor-
tant problems is how to determine the computing status. There
are many works that study this problem and have achieved
excellent results in some respects [2], [3], [4], [5], [6], [7],
[8], [9], [10]. However, they all ignore the fairness of services,
which results in consistently short latency for some popu-
lar services but poor experience for other services. Besides,
it is common to cache relevant databases/libraries before
processing computational-demanding services. For example,
in Dynamic Adaptive Streaming over HTTP (DASH) [11],
we need to analyze packet loss, available bandwidth and other
factors of users to provide appropriate bitrate versions. Before
the computing, the relevant databases/libraries of applications
need to be cached in edge node. Another example involves
cloud games. Users offload computing tasks to edge nodes or
the cloud to reduce the computing pressure. Apart from data
processing, the edge node or the cloud also need to cache
relevant data of the games. These show the storage space is
also an important constraint for the cooperation between cloud
and edge node.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2765-3303
https://orcid.org/0000-0003-1467-1086
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-9332-4770

6118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

In our work, we focus on the long-term average performance
optimization of service offloading with fairness guarantee
under the constraints of limited computing capacity and
storage space at the edge node. There are many new chal-
lenges to solve this problem. First, we all know that network
aspects such as user requests are dynamic and stochastic
[12]. Compared with short-term performance, the long-term
average performance (e.g. service latency) is also more useful.
However, we usually need the complete future information
to achieve the long-term average optimization, but predicting
future information in a dynamic network is difficult, which
means that optimization of long-term average performance
is also very challenging. In addition, we need to take the
fairness into account, making the problem intractable. In fact,
some works have optimized the current computing offloading
decision by taking fairness into account, but few works achieve
the long-term average optimization with fairness guarantee.
Second, the problem complexity will increase with double
constraints. In the service offloading problem, both the com-
puting capacity and storage space of the edge node affect the
offloading policy, so we should address them jointly. There
is a need for adaptive and efficient coordination to reduce
service latency. Third, we need to get the computing status of
services rather than the computing offloading ratio. However,
the computing statuses of services are interrelated, resulting
in an exponentially growing solution space, which means it is
not feasible to search the entire solution space.

Recently, deep reinforcement learning (DRL) [13], good
at long-term optimization problem solving, was widely used
in control. Through training on historical data, DRL can
take appropriate actions to get the optimal long-term average
reward, which can help solving our problem. However, we can
not use DRL directly due to the optimization objective of our
problem with fairness guarantee. Additionally, there are some
other issues, especially as model training takes a long time or
converges slowly if the action space is very large.

This paper focuses on achieving long-term average opti-
mization of cloud-edge computing offloading with fairness
guarantee. The article formulates the problem as a Markov
Decision Process (MDP) and proposes a novel DRL algorithm
to solve it. The proposed solution is a significant extension of
our previous work [14] as it guarantees fairness. To the best
our knowledge, this is one of the very few works which focus
on the long-term average optimization of computing offloading
with fairness guarantee. The main contributions of our research
are summarized as follows:

• To minimize service delay, the computing offloading
problem with optimization of the long-term aver-
age performance is formulated. We also introduce the
α-fair utility function into our optimization objective to
guarantee service fairness. Furthermore, the optimization
is formulated into a Markov Decision Process (MDP)
problem.

• To optimize the α-fair utility function of average service
delay, we adjust the MDP with a function of past
rewards. We also theoretically prove that the adjusted
model has the same stationary point as the original α-fair
utility function problem model.

• Due to the unavailability of state transition probability,
we propose a novel model-free deep reinforcement
learning algorithm, the multi-update reinforcement
learning (MURL) to solve this problem. MURL has an
adjusted reward and employs an innovative exploration
strategy, which can optimize the α-fair utility function of
average service delay and reduce the action space size.

• Extensive simulation experiments compare the pro-
posed solution with three other alternative solutions.
Better results are achieved in terms of both service latency
and fairness during performance evaluations.

The paper is organized as follows. The related works are
reviewed in Section II. The system model is introduced in
Section III. The service offloading problem is formulated as a
MDP in Section IV. The novel DRL algorithm is introduced
in Section V. Section VI discusses the simulation results and
Section VII presents the conclusions.

II. RELATED WORKS

Mobile edge computing is attracting widespread attention
and being applied to various scenarios, including transcoding
for livecast services [15], software defined networking (SDN)
[16], information centric networking (ICN) [17] and 5G envi-
ronments [18]. Due to the limited resources of edge nodes,
the collaboration between cloud and edge is necessary, which
has attracted many researches and development efforts.

One of the essential aspects to address is computing
offloading which will significantly affect the performance of
services. Various works have focused on how to improve
service quality under the limited computing capacity of edge
nodes. To meet the demand of user services, authors [2]
proposed a resource allocation framework for mobile-edge
cloud, which combines the limited communication and com-
puting resources. The resource optimization of computing is
formulated as a mix integer nonlinear programming problem in
[3] to minimize the computing time of all services. In order to
adapt to the dynamic environments, the authors of [4] proposed
a service offloading method based on meta reinforcement
learning. This method improves the speed of training by
employing a clipped surrogate objective and also reduces the
delay. Authors of [5] considered the trust risks in computing
offloading. They formulated a long-term optimization problem
with co-provisioning of computation, transmission and trust
services. Based on a Lyapunov optimization, they proposed
an online learning-aided cooperative offloading mechanism
to solve the problem. Considering the spectrum access in
reconfigurable wireless networks, authors of [6] proposed
a primary-prioritized recurrent deep reinforcement learning
algorithm for dynamic spectrum access based on the cognitive
radio (CR) technology. They formulated user states as Markov
states. To improve the convergence speed, authors combined
dueling deep Q-network with recurrent neural network to solve
the problem. Authors of [7] took both energy consumption
and service delay into account. They formulated a service
offloading problem with the goal of minimizing the weighted
sum of energy consumption and computation latency. Authors
of [8] proposed a D2D-assisted MEC system whose goal is to

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6119

reduce energy consumption and delay. They separately solved
the computing offloading and transmission power allocation by
a Knapsack problem-based algorithm and convex optimization.
Finally, they proposed an alternate optimization algorithm to
achieve the joint optimization of these two aspects. In Internet
of Things (IoT), authors of [9] proposed an application-
deadline-aware computing offloading strategy which employs
deep reinforcement learning to reduce the energy consumption
of IoT devices. In internet of vehicles, authors [10] formulated
the service placement problem as a binary integer linear pro-
gramming problem whose goal is the optimization of service
delay. Then authors developed a low complexity heuristic
solution to this problem. However, all these works ignore
the fairness of services which is important network objective.
Besides, there is an implicit assumption that edge node can
process all computation tasks that are offloaded from users
regardless of whether it has already cached related data. This
is impractical as there is limited edge storage space available.

Edge caching localizes traffic and achieves low latency.
The authors of [19] proposed an edge caching framework for
5G networks. Based on user demands, this framework caches
most popular content to minimize the average access delay.
By learning users’ preferences for video topics, authors [20]
proposed a novel caching policy. Once receiving a service
request, an explore-and-exploit method is applied to decide
whether to cache the service based on users’ preference.
Authors of [21] studied the binary offloading avenues for
AR applications. They formulated the problem as a Markov
decision process and proposed a deep reinforcement learning
model to solve it, which greatly reduced the computational
complexity of the solution. Authors [22] designed a caching
system which supports both edge computing and hierarchical
caching. They formulated a hierarchical collaborative caching
problem with the goal of minimizing transmission latency, and
then proposed an online algorithm to solve it. Collaborative
content caching between cloud and single base station was
studied in [23] and [24] whose goal was to maximize the
local hit rate and data transmission rates while reducing service
latency.

At the same time, it is an important avenue to solve
network resource allocation problems by predicting network
status. Content prefetching is widely used in mobile scenarios.
Yuan et al. [25] used neural network to predict the users’
requests information. Based on the predictive information,
they designed a placement scheme to generate the placement
strategy for edge node. Different from previous works, based
on the assumption of synchronous offloading, Chen et al.
[26] studied an energy-saving offloading strategy whose arrival
time and task processing time are asynchronous. The problem
was transformed into two subproblems. Authors combined the
double DQN and distributed LMST to predict time intervals
and reduce the overall solution’s computational complexity.
Cao et al. [27] conducted a study on the deployment of
heterogeneous edge servers, whose goal is to minimize the
expected response time of base station system. Based on
the game theory, they designed a mobility-aware approach to
analyze the movement of users. Although predicting network

information can improve the effectiveness of decisions, the
accuracy of prediction method is far from guaranteed. These
works always depend on high prediction accuracy, which
introduces certain limitations.

Focusing on computing services, an architecture which
jointly optimizes computing and caching in 5G networks was
proposed in [28]. In [29], the authors researched a joint
computation offloading and data caching problem in a hybrid
MEC system to minimize the request delay at the user side.
However, these works all ignore the fairness in optimization,
which is an important factor of user experience on the network.
Few works on computing offloading considered fairness, but
paper [30] is one of them. There are still several significant
differences. First, [30] only focuses on the optimization of
current time slot and ignores the future information, while we
achieve the long-term average optimization. Second, [30] only
considers the min-max fairness function, while we use the α-
fair utility function where min-max fairness is just one case.
Third, we propose an innovate DRL algorithm to solve the
problem and [30] is based on convex optimization theory.

III. SYSTEM MODELING

This section introduces the system model for computing
offloading, which includes system scenario, service delay
model, and problem formulation. Table I lists the mathemat-
ical notations.

A. Scenario Description

The network scenario consists of cloud, base station (BS)
and users, which is a collaborative cloud-edge network and
illustrated in Fig.1. The V -antenna base station, whose storage
space is C and computing capability (e.g. the maximum fre-
quency of CPU) is F , works in full-duplex mode. It can cache
service data (e.g. databases/libraries and content) and provide
computation for services. However, BS can not support all
services due to the limited resources.

The set of services is denoted as K ≜ {1, 2, . . . , K }. For
each service, there are three important attributes (ck, uk, ok),
where ck is the required storage space to cache service data, uk
is the required computation resource to finish computing, and
ok is the data size of output. Let’s take live streaming as an
example, ck is the data size of related codec databases/libraries
that application need to cache, uk is total computation to
encode and decode contents, and ok is the data size of output
codec streaming. Each independent service is assumed to be
the smallest processing unit which is indivisible [32].

The time is slotted [33], i.e., T = {1, 2, . . . , T }. There
are two phases in a time slot, user request phase and service
providing phase. The beginning of a time slot is user request
phase. In this phase, users generate service requests and
send them to BS. We denote the number of users as N ,
and the number of requests for each service as a vector
Dt

= [d t
1, . . . , d t

k, . . . , d t
K], where d t

k is the number of requests
for service k in time slot t . For user n, we use H l

n =

[hl
1,n, hl

2,n, . . . , hl
V,n] to denote the downlink channel matrix

of BS, and wn is the additive white Gaussian noise, whose
covariance is σ 2

l,n

6120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

TABLE I
MATHEMATICAL NOTATIONS

Fig. 1. System architecture.

In the service providing phase, BS provides services.
As mentioned above, BS cannot support all services locally
because of the limited network resources of BS. We should
make decisions based on the request status and caching status
to determine which services can be processed locally for
minimizing service delay. Then, BS will provide services
based on the decision.

B. Service Delay Model

Local Computing: If BS provides service k locally, the
computation delay is defined as:

tcl
k = uk/ f l

k (1)

where f l
k is the computation resources that the BS assigns

to service k per second (cycles/s). If BS has cached related
libraries and content, it can process the service directly. The
received signal of user n, which consists of received radio
frequency signal from BS and the additive white Gaussian
noise at user n, can be expressed as:

yn =

√
pl

n(H l
n)T gl

n + wn (2)

where (·)T is transposition operation, gl
n is transmission signal

from BS to user n, and pl
n is power of transmission signal.

Then, we can calculate the signal to interference plus noise
ratio (SINR) as:

γ l
n =

pl
n tr{(H l

n)T (H l
n)T H

}

σ 2
l,n

(3)

where tr{·} represents the trance of matrix, (·)H is conjugate
transpose of matrix, and pl

n is transmission power of downlink
that BS transmits signal to user n. The transmission rate is
defined as:

r l
n = bllog2(1 + γ l

n) (4)

where bl is the channel bandwidth of BS. For user n, the
transmission delay of service k is:

tr l
k = ok/r l

n (5)

The service delay consists of computation delay and transmis-
sion delay as following:

T l
k = tcl

k + tr l
k (6)

If BS does not cache related databases/libraries and content,
it first needs to download related data from the cloud by
backhaul, and the download time is td

k = ck/B, where B
is the bandwidth of wired link between SBS and the cloud.
Therefore, the service delay in this case is:

T l
k = tcl

k + tr l
k + td

k (7)

Cloud Computing: If service k is processed in the cloud,
the computation delay is:

tcc
k = uk/ f c

k (8)

where f c
k is the computation resources that the cloud assigns

to service k per second. Due to the uncertainty of cloud
transmission [34], we simplify the transmission rate as:

rc
= bclog2(1 +

pchc

σ 2
c

) (9)

where bc, pc, hc, σ 2
c respectively denote the channel band-

width, fixed transmission power, the channel gain, noise power
of cloud. The service delay is:

T c
k = tcc

k + trc
k (10)

where trc
k = ok/rc is the transmission delay of cloud comput-

ing.

C. Problem Formulation

Compared to cloud computing, edge computing can reduce
service latency by supporting faster transmission. The saved
time for service k by edge computing is calculated as:

T s
k = T c

k − T l
k (11)

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6121

The average saved time is:

T s
k = lim

T →∞

1
T

T∑
t=1

(d t
k x t

k T s
k) (12)

where d t
k is the number of requests, x t

k is the computing status
of service k, and x t

k = 1 if BS provides service k locally,
otherwise x t

k = 0. At each time slot, the computing status of
all services need to be determined, which can be denoted as
a vector X t

= [x t
1, . . . , x t

k, . . . , x t
K].

In order to guarantee fairness, the α-fair utility function is
introduced in our problem. For some constant α ≥ 0, the α-fair
utility is defined as:

U (x) =

{
x1−α/(1 − α) f or α ̸= 1
log(x) f or α = 1

(13)

The fairness-aware computing offloading is formulated as
follows:

max
X t

∑
k∈K

U (T s
k)

s.t.
∑
k∈K

ck x t
k ≤ C (14a)∑

k∈K
f l
k x t

k ≤ F (14b)

where the goal is the α-fair utility function of average reduced
time, (14a) is the constraint of storage space due to the fact that
BS needs to cache relevant databases if it provides services
locally, (14b) is the computing capacity constraint of BS.

It is intractable to derive the optimal solution of above prob-
lem. First, we need to find the long-term average optimization
solution of service computing problem. Traditional methods
such as dynamic programming always need the complete state
transition probability which is related to the user requests.
These methods also make decisions only after knowing the
user requests in all time slots, so they need to predict future
information. However, this prediction is both difficult and
impractical to make due to the dynamic characteristics of
the network systems. Besides, the optimization problem (14)
has huge solution space. In each time, we need to obtain the
decision X t , which has 2K possibilities due to a combination
explosion of options. It is clearly not feasible to traverse
such huge solution space. Furthermore, there are many illegal
actions because of the limited resource of BS, which increases
the complexity of optimization. Third, reinforcement learning
is good at solving long-term average optimization problems,
but the goal of our problem is the α-fair utility function of
average reduced time not only the average reduced time, which
further increases the difficulty of solving the problem.

IV. MARKOV DECISION PROCESS FOR
SERVICE OFFLOADING

Reinforcement learning which replaces the state transition
probability by data sampling can achieve model-free learning
and is an efficient method to solve this kind of problem.
It only needs current information and does not require to

predict future data. Considering that deep reinforcement learn-
ing is an efficient method, we first formulate the computing
offloading problem without fairness guarantee as an MDP.
Three important elements are defined: state space, action space
and reward function. Then, we adjust the reward for α-fair
utility function and analyze the stationary point of the reward-
adjusted problem.

A. Markov Decision Process

We first formulate the original computing offloading prob-
lem without fairness guarantee, whose goal is long-term aver-
age reduced time, as following:

max
x t

k

∑
k∈K

T s
k

s.t.(14a), (14b) (15a)

Three important variables of MDP for the original problem
are defined.

1) The State Space: In this problem, the system state
consists of two variables, caching status and request sta-
tus. We denote edge caching status as a vector M t

=

[mt
1, . . . , mt

k, . . . , mt
K], where mt

k = 1 if BS has cached
the relevant databases of service k locally at the beginning
of time slot t , otherwise mt

k = 0. In order to describe the
request status, we define a vector Dt

= [d t
1, . . . , d t

k, . . . , d t
K]

to represent the number of requests to each service, where d t
k

is the number of requests. Therefore, we denote the state at
time slot t as St

= (M t , Dt), and the state space is given as:

S = {(M t , Dt)|M t
∈M, Dt

∈ N , t ∈ T } (16)

where M is the set of caching status under the problem
constraints, N is the set of all positive integers.

2) The Action Space: In the model, the action at each
time slot is defined as the computing decision X t

=

[x t
1, . . . , x t

k, . . . , x t
K]. For action X t , it consists of x t

k which is
called underlying action. The size of action space is 2K , where
K is the number of services. Besides, we call these actions
which do not satisfy problem constraints as illegal actions.

3) The Reward Function: In this problem, an action can
grant higher reward if it brings higher saved time. The
reward function of original problem is divided into several
components.

Illegal actions should be avoided, so we defined the reward
associated with illegal actions to be Pu, which is a negative
number, as a penalty. In legal actions, we discuss the reward
depending on the saved time. If BS provides service k locally
which means x t

k = 1, the saved time by edge computing is
d t

k(T c
k − T l

k). If the service k is completed in the cloud then
the saved time is 0. The reward of underlying action x t

k is
summarized as follows:

r t
k =

Pu, i f X t is illegal
d t

k(T c
k − T l

k), i f X t is legal and x t
k = 1

0, i f X t is legal and x t
k = 0

(17)

where d t
k is the request number of service k. By the way, the

calculation of T l
k is different for the different current caching

6122 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

status:

T l
k =

{
tcl

k + tr l
k, i f mt

k = 1
tcl

k + tr l
k + td

k , i f mt
k = 0

(18)

The reward of action X t is the sum of all reward of
underlying action x t

k :

Rt
=

∑
k∈K

r t
k (19)

B. Model Adjustment and Analysis

Our goal is to optimize the fairness utility U (T s
k) not the

long-term average T s
k , so we need to adjust the MDP of

original problem (15). It is easy to know that the past reward
history of services affects the fairness of decision. We record
the average of past reward until time slot t as:

ht
k =

1
t

t∑
τ=1

r τ
k (20)

Then we use the average of past reward and original reward
to get the adjusted reward, which is defined as follows:

r̂ t
k = r t

kU ′(ht
k) = r t

kU ′(
1
t

t∑
τ=1

r τ
k) (21)

where U ′(x) is the first order derivative of the fairness utility
function U (x).

Theorem 1: The stationary point of the problem which has
adjusted reward is also a stationary point of the α-fair utility
optimization problem (14).

Proof: Based on paper [35], we give the proof of
Theorem 1. We use θ∗ to denote a stationary point for the
problem with adjusted reward, which means ∇θ p̂πθ |θ=θ∗ = 0,
where p̂πθ is the average adjusted reward under policy πθ and
is defined as:

p̂πθ = lim
T →∞

1
T

[

T∑
t=1

K∑
k=1

r t
kU ′(

t∑
τ=1

r τ
k /t)] (22)

The average reward for service k of original problem
Eq.(15) is as following:

pπθ ,k = lim
T →∞

1
T

T∑
t=1

r t
k (23)

The Markov Chain is irreducible and aperiodic under policy
θ , so for any ϵ ≥ 0, we can get a T that satisfies the equation:

|
1
T

T∑
t=1

r t
k − pπθ ,k | < ϵ (24)

Combining Eq.(22), Eq.(23) and Eq.(24), we have:

| p̂πθ −

K∑
k=1

pπθ ,kU ′(pπθ ,k)|

= |
1
T

T∑
t=1

K∑
k=1

r t
kU ′(

1
t

t∑
τ=1

r τ
k) −

K∑
k=1

pπθ ,kU ′(pπθ ,k)|

≤

K∑
k=1

|
1
T

T∑
t=1

r t
kU ′(

1
t

t∑
τ=1

r τ
k) − pπθ ,kU ′(pπθ ,k)|

≤

K∑
k=1

|
1
T

T∑
t=1

r t
kU ′(pπθ ,k) − pπθ ,kU ′(pπθ ,k)| + ϵC2L

≤

K∑
k=1

|
1
T

T∑
t=1

r t
k − pπθ ,k | · |U ′(pπθ ,k)| + ϵC2L

≤ ϵC1 + ϵC2L (25)

where C1 is a bound for |U ′(pπθ ,k)| and C2 is a bound for the
average reward 1

T
∑T

t=1 r t
k . In the third step above, we used

the Lipschitz continuity as following:

|U ′(
1
t

t∑
τ=1

r τ
k) − U ′(pπθ ,k)| ≤ L|

1
t

t∑
τ=1

r τ
k − pπθ ,k | ≤ Lϵ

(26)

As ϵ → 0, that is T → ∞, we have p̂πθ =∑K
k=1 pπθ ,kU ′(pπθ ,k). For α-fair utility functions, we know

that (1 − α)U (x) = xU ′(x).1 Therefore, ∇θ p̂πθ |θ=θ∗ =

0 implies following equation:

∇θ [

K∑
k=1

pπθ ,kU ′(pπθ ,k)]|θ=θ∗ = 0 (27)

∇θ [

K∑
k=1

U (pπθ ,k)]|θ=θ∗ = 0 (28)

Therefore, the stationary point θ∗ of adjusted-reward prob-
lem is also a stationary point for the α-fair utility optimization
problem (14). Theorem 1 is proved. □

From Theorem 1, we know that the α-fair utility optimiza-
tion problem and the adjusted reward problem have the same
stationary point and we can use gradient policy to get it. This
motivates us to design an algorithm to solve the problem.

V. PROBLEM SOLUTION

This section discusses the solution to the computing offload-
ing problem with guarantee. We modify DQN in terms of
adjusted reward, exploration strategy and update method. Then
a novel DRL approach is proposed to solve the problem.

A. Proposed Solution Principle

Due to the lack of state transition probability matrix, tra-
ditional solutions such as policy iteration and value iteration
fail to solve this problem. DRL is a more efficient way to
solve long-term average optimization problem. It can learn
the optimal strategy by data sampling without knowing the
transition probability matrix.

As the MDP model described in previous section, we can
simply apply a DRL method such as the DQN algorithm,
whose input is state St and output is action X t , to solve
the service offloading problem. Although we can use DQN

1When α ̸= 1, we have xU ′(x) = x1−α
= (1 − α)U (x). When α = 1,

optimization of fair utility log(x) can be considered as the limit of (x1−α
−

1)/(1 − α) as α → 1.

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6123

directly to solve our problem, there are two problems. First,
as mentioned earlier, our optimization goal is the α-fair utility
function of average saved time not average saved time. DQN
can not achieve this goal. Second, for each service, there are
two options x t

k ∈ {0, 1}. The size of action space reaches
2K , which is exponential to the number of services. In DQN,
we need an output neuron to represents the reward of an
action, so the number of output neurons is very large and
we require huge computing resources to train the model.
Therefore, it is not wise to use the DQN algorithm directly
and we need to reduce the action space.

For the first problem, we can use r̂ t
k to replace r t

k as the
analysis in Section IV-B. To deal with the second problem,
we make more analysis. In the service offloading problem,
equation (19) shows that the reward of an action X t consists
of its components x t

k . The Q-values of all actions X t can
be calculated by the combinations of x t

k if we have get the
Q-value of underlying actions x t

k . Therefore, we only need to
train the expected reward of components x t

k , rather than X t .
In this way, the action space can be reduced from 2K to the
number of components 2K .2 When x t

k = 0, the saved time
is 0 and the reward is 0, so we don’t need to train. In other
words, for service k, we only need to calculate the reward of
providing it locally, which is also the reward of underlying
action x t

k = 1. Therefore, we further reduce the size of action
space from 2K to the number of services K .

Although we have the idea of reducing action space, two
important problems remain. First, the state transition depends
on action X t in this problem. But in our idea, the model
should output the Q-value of underlying actions x t

k = 1, which
means we can not get action X t and lead to the failure of state
transition. Second, the loss function that we can get at each
time slot is for action X t . But we have to calculate the loss
function of underlying action x t

k = 1 to train the model, which
is contradictory in traditional DRL algorithms.

To solve above problems, we modify the classical DQN
algorithm from two aspects. The first aspect is exploration
strategy. The output of our model is the Q-value of underlying
actions x t

k = 1. In the classical DQN algorithm, agent can
only select an underlying action by ϵ-greedy policy each time.
However, the state transition of the model is based on action
X t not underlying action x t

k = 1, which means the exploration
strategy should obtain a set of actions rather than only an
action. Therefore, a new selection mechanism of optimal
actions set whose Q-value is largest is proposed, which will
be described in detail in subsection V-C. The new exploration
strategy of our model is that we select a random actions set
with a probability of ϵ, otherwise we get the optimal actions
set by our new selection mechanism with a probability of 1−ϵ.

The second innovative aspect is the update of Q-values.
In our model, we need to calculate the loss function of
underlying action xk and update model. But we only can get
the reward of action X t from system. This is contradictory
because action X t is a set of underlying actions and we cannot
use its reward to calculate the loss function of underlying

2There are two options for each service and the number of services is K .
So the number of components is product of the two 2K .

Algorithm 1 Optimal Set Selection Algorithm
Require:

Storage space C ;
Computing capacity F ;
Attributes (ck, f l

k) of all services;
Q-value of edge computing qk

Ensure:
Computing status vector X t ;

1: for k = 1, . . . , K do
2: for j = 1, . . . , C do
3: for i = 1, . . . , F do
4: if ck> j or f l

k >i then
5: V k

j,i = V k−1
j,i

6: remove x t
k if x t

k in X t

7: else if V k−1
j−ck ,i− f l

k
+ qk ≥ V k−1

j,i then

8: V k
j,i = V k−1

j−ck ,i− f l
k
+ qk

9: add x t
k if x t

k not in X t

10: else
11: V k

j,i = V k−1
j,i

12: remove x t
k if x t

k in X t

13: end if
14: end for
15: end for
16: end for

action xk directly. So, we first calculate the loss function of
action X t :

L(X t) = (Q′
r − Q(St , X t))2 (29)

where Q′
r = R + γ Q′(St+1, argmaxX ′ Q(St+1, X ′)), X ′ is

the optimal underlying actions set that selected by our new
selection mechanism, and Q(St , X t) is the Q-value of set X t .
The calculation of Q(St , X t) is as follows:

Q(St , X t) =

∑
x t

k∈X t

Q(St , x t
k) (30)

Then, the loss function of underlying action x t
k in action X t

is:

L(x t
k) =

Q(St , x t
k)

Q(St , X t)
· L(X t) (31)

Finally, we can use the loss function L(x t
k) for ∀x t

k ∈ X t to
update our main network model.

In MURL algorithm, we use the loss value of action X
to calculate the loss value of underlying actions x which
belong to action X . So, in each episode, we get the loss value
of multiple underlying actions x and update parameters of
the neural network model multiple times. This is unlike in
traditional DRL, where the parameters can only be updated
once in each episode. As the MURL algorithm updates the
values of an action set, rather than updating the value of one
action only in each episode, it was denoted multi-update.

B. Optimal Set Selection Mechanism

In this subsection, we will introduce the optimal set selec-
tion mechanism in detail, which can get the action set with

6124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

largest Q-value. We first formulate the problem as follows:

max
∑
xk∈X

Q(S, xk)

s.t.
∑
xk∈X

ck ≤ C

∑
xk∈X

f l
k ≤ F (32)

The goal of problem is to optimize the Q-value, and the con-
straints are the limited storage space and computing capacity.
This is a multi-constraint 0-1 Knapsack problem with profits
Q(S, xk) and weights C, F . If the storage space of BS is j and
the computing capability is i , we denote V k

j,i as the maximum
Q-value of optimal action set for first k services. The transition
equation (i.e. recursion) of V k

j,i is:

V k
j,i =

{
V k−1

j,i , i f ck> j or f l
k >i

max {V k−1
j,i , V k−1

j−ck ,i− f l
k
+ qk}, otherwise

(33)

where ck represents the storage space to cache the service
data, the f l

k represents the computation resource that the SBS
provides for service k, and the qk is the Q-value of action xk .

For equation (33), service k cannot be supported locally if
its required storage space or computation resource exceeds the
local resources of base station. In this case, the optimal action
set with largest Q-value for the first k services is equal to first
k − 1 services. If BS has enough resources to support service
k, there are two options. If BS processes service k locally, the
total Q-value is V k−1

j−ck ,i− f l
k
+ qk . If service k is completed in

cloud, the total Q-value is the same as the first k − 1 services
V k−1

j,i . This process is introduced in Algorithm 1.

C. Proposed Service Offloading Algorithm

Fig. 2 illustrates the architecture of our algorithm. To over-
come the problem of overestimation, we use two multi-layer
neural networks with the same structure: Main Network and
Target Network. In the training, we need to train the parameters
of main network by loss function, and use target network
to get the target Q-values. The target network copies the
main network parameters at regular intervals. As mentioned,
we use Q-value of underlying action Q(St , x t

k) instead of
Q-value of underlying actions set Q(St , X t) to reduce the
action space from 2K to K . So, the output of our models
are the Q-value of underlying action Q(St , x t

k), whose size is
K . In the state transition of model, we need underlying action
set Q(St , X t) to determine the next state. The Action Selection
module can achieve this transition by obtaining the optimal
underlying set according to Algorithm 1. In the update of
model parameters, we need the loss function of underlying
action x t . Loss Function module can calculate it based on the
reward of underlying action set X . The Exploration module
selects a proper action, as mentioned in subsection V-A.

The training of model needs computing resources and is
time consuming. As BS computing resources are often limited,
to reduce the pressure on BS, we consider cooperation

Fig. 2. Process of solution.

Algorithm 2 MURL Algorithm in BS
Require:

Model Parameters θ ;
Ensure:

Four-tuple of experience information;
1: for t = 1, . . . , T do
2: Sent request to the cloud for model parameters;
3: Recieve the model parameters from the cloud;
4: Get current state St ;
5: Select action X t by new exploration strategy;
6: Execute action X t ,get next state St+1 and reward Rt ;
7: Calculate adjusted reward r̂ t

k by Eq.(21);
8: Calculate R̂t ;
9: Sent four-tuple (St , X t , R̂t , St+1) to the cloud;

10: end for

between BS and the cloud to train the model. The main
idea is as follows. BS transmits the experience information
(St , X t , R̂t , St+1) to the cloud. The cloud uses this experi-
ence information to train the model and transmits the model
parameters back to the BS. The proposed MURL algorithm is
described in Algorithm 2 and Algorithm 3.

Algorithm 2 indicates the process of information collection
performed at BS.

The cloud trains the model. The training process is intro-
duced by Algorithm 3.

In MURL, there are several improvements in comparison
with DQN. In line 5 of Algorithm 2, we use our new
exploration strategy to get a set of underlying actions X instead
of a single underlying action xk . In line 8 of Algorithm 2,
we use the adjusted reward to optimize the α-fair utility
function. Additionally, the reward R̂ j is for set X j , so we
cannot directly use the Q-value of the underlying action x j

k
to calculate the loss function. We have to get the Q-value of
set X j by employing Algorithm 1, as shown in lines 11 and
12 of Algorithm 3. Lines 13-18 of Algorithm 3 correspond
to the update process. We calculate the loss function of set

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6125

Algorithm 3 MURL Algorithm in the Cloud
Require:

Learning rate δ; Decay factor γ ;
The update frequency of target network e;

Ensure:
The main network parameters θ ;

1: Initialize the main network parameter θ and Q-values
Q(S, xk) randomly;

2: Initialize target network parameter θ ′
= θ and Q-value

Q′(S, xk) = Q(S, xk);
3: Initialize S1 as first state and get S1;
4: for i = 1, . . . , P do
5: if receive the parameters request from BS then
6: send main network parameters θ to BS
7: end if
8: if receive four-tuple (St , X t , R̂t , St+1) then
9: Store (St , X t , R̂t , St+1) in replay memory;

10: Sample m samples (S j , X j , R̂ j , S j+1) from replay
memory randomly;

11: Select argmaxX ′ Q(S j+1, X ′) by Algorithm 1 in
main network;

12: Calculate Q′(S j+1, X ′) by (30) in target network
13: Compute the target value for action set X j

y j
=

{
R̂ j , terminate
R̂ j

+ γ Q′(S j+1, X ′), otherwise
14: Get the loss function L(X j) by equation (29) ;
15: Get L(xk) by equation (31) for ∀xk ∈ X j

16: for ∀xk ∈ X j do
17: Perform gradient descent with respect to the net-

work parameters θ by L(xk);
18: end for
19: if i%e == 0 then
20: Update target network parameter θ ′

= θ

21: end if
22: end if
23: end for

X j and get the loss function of each underlying action in
X j by proportional distribution. Finally, for all underlying
actions in X j , we update the main network according to the
loss function. As users’ preferences change slowly in time,
the model does not need a real-time update. For example, the
model can be updated and trained once every so often (e.g.
two weeks) and in between, we can use the already trained
model to make decisions.

It is worth noting that there are two major aspects which
strongly recommend using multi-update deep reinforcement
learning to solve the proposed problem. First, it is the prob-
lem’s huge and discrete action space. The action space size
of the computing offloading problem is 2K . We use MURL to
train the Q-value of underlying action and reduce the action
space from 2K to K . To solve any conflicts in training, MURL
employs a new exploration strategy and an improved Q-value
update method. Second, it is the optimization objective of the
problem. Our goal is optimizing the α-fair utility function
of the long-term average saved time and not the long-term

average saved time. In MURL, we record the average of
past rewards, then use this average of past rewards and the
original reward to get the adjusted reward. We also analyze
the stationary point of the reward-adjusted problem.

VI. SIMULATION RESULTS

We design extensive simulation base on TensorFlow [36] to
demonstrate the performance of our algorithm as efficient solu-
tion to the service offloading problem. In this section, we will
show the simulation results and analyze the performance in
terms of convergence, fairness, computing capacity, storage
space, and user requests. Table II summarizes the experimental
settings.

A. Simulation Scenario and Setup

There are 10 independent services. For service k, the range
of required computing resource uk is [0.5G H z, 2.5G H z], the
range of required storage space ck is [1.2G B, 2G B] and the
data size of output range is [4M B, 6M B]. The bandwidth
B of backhaul from cloud to BS is set to 8Gbps and the
download delay can be calculated as µk = 8 ·ck/B. Similar to
[37], we assume that the request frequency conforms the Zipf
distribution with parameters λ = 1 and V = 0.1. The average
number of requests to service k is as follows:

D̄(k) =
V

r(k)λ
· N (34)

where r(k) is the ranking of user request frequency, N is the
number of users. In each time, the user request number follows
the Poisson distribution whose parameter is D̄(k). The default
computing capacity of BS is 10G H z, and the default storage
space is 10G B. In terms of data transmission, the transmis-
sion rate from BS to user is between [80Mbps, 100Mbps]
and the transmission rate from cloud to user is between
[8Mbps, 15Mbps]. The transmission time is calculated as
tc = 8 · ok/r , where ok is the data size of output and r is
the transmission rate.

The neural network employed has three layers. The first
layer is the input layer, which is responsible for taking the
state as input and passing the data to the following layers.
The number of neurons in the input layer is 2K , where K is
the number of services. In the experimental setup considered,
the input layer has 20 neurons. The second layer is a fully-
connected (FC) layer and there are 20 neurons with rectified
linear units (ReLU). The last layer is the output layer. The
number of neurons in the output layer is K , (i.e. set to 10 in
experiment). In the model training phase, we set the batch size
to 32, the learning rate is 0.01 and the decay factor is 0.9.

Due to the issues related to interpretability of neural
networks and randomness of training data, it is intractable
to prove the gap between our proposed algorithm and the
corresponding theoretical optimal solution [38]. Additionally,
the long-term average performance optimization problem is
NP-hard. Therefore very few approaches get the optimal solu-
tions of such a problem by employing variations of traditional
optimization algorithms (e.g. convex optimization) and many
of them use suboptimal solutions [27]. Therefore, for the

6126 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

Fig. 3. Performance of algorithms (a) convergence behavior; (b) fairness.

TABLE II
PARAMETERS SETTING FOR SIMULATIONS

evaluation, we compare the performance of our algorithm
with that of three other baseline solutions via simulation-based
experiments. Table III summarizes the differences between our
algorithm and three baselines.

• Single Time slot Optimization(STO) This solution [3]
designs an asymmetric search tree and improves the
branch and bound method to solve the computing offload-
ing problem. STO focuses on optimizing current system
performance and not the long-term average performance
and does not take the fairness into account.

• DQN-based solution: This solution [39] is to optimizes
the long-term average performance of edge computing
system based on DQN algorithm. But it doesn’t consider
the fairness of services and the constraint of storage
space. To compare with our algorithm, we add the con-
straint of storage space in the experiment.

• Fairness-awared Computing Offloading solution
(FACO): This solution [30] considers the network opti-
mization of current time slot and use convex optimization
theory to solve this problem. It also takes the fairness into
account.

B. Comparative Performance Evaluation

This section discusses the performance of our algorithm in
terms of convergence and service delay.

Fig.3(a) shows the convergence behaviors in the train-
ing phase. We only show the performance of MURL and

TABLE III
COMPARISON OF ALGORITHMS

DQN-based solution, because FACO and STO solutions are
not based on reinforcement learning and doesn’t need the train-
ing phase. In MURL, after 4600 training episodes, BS estab-
lishes the knowledge model of the whole network system. The
average of saved time is stable and the algorithm converges.
The DQN-based solution converges after 8200 episodes. It can
also be seen that MURL outperforms the DQN-based solution,
as MURL updates Q-values for an actions set in each episode,
while DQN-based solution performs update only once per
action. Fig.3(b) shows the performance of four algorithms in
fairness. We can find that MURL has the largest average saved
time, but the gap between maximum saved time and minimum
saved time is small. This indicates that our algorithm MURL
has good performance in service delay and fairness. Although
the average saved time of DQN-based solution is larger than
FACO, the gap between maximum saved time and minimum
saved time of FACO is smaller than DQN-based solution.
The reason is that FACO only considers the optimization for
current time slot not for the long-term average, which reduces
the average saved time. Although DQN-based solution has
larger average saved time, it ignores the fairness. As a result,
DQN-based solution has the largest gap between maximum
saved time and minimum saved time. Similarly, STO considers
the performance optimization for the current time slot only,
and ignores fairness, so it saves more time, but it is very unfair.

Fig.4 shows the saved time by employing edge computing
during testing phase. The saved time is defined as the service
delay of cloud computing minus the delay of edge computing,
which consists of reduced transmission and download delay.
By the way, the reduced transmission time is defined as the
difference of transmission time between edge computing and
cloud computing which is calculated as tcc

k + trc
k − tcl

k − tr l
k .

Download delay td
k is the increased download delay for BS

downloading related databases from cloud. We set the initial
state of BS to null, that is, BS does not cache any services

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6127

Fig. 4. Saved time (a) reduced transmission time; (b) delay for downloading databases.

Fig. 5. Effect of computing capacity (a) saved time; (b) backhaul traffic.

databases. In Fig.4(a), the reduced transmission time of MURL
is similar to DQN-based solution, because it will sacrifice
part of the service delay to ensure the fairness of users.
As Fig.4(a) shows, MURL and DQN-based solution, which
have been trained with historical data during the training
phase, have faster convergence speed than FACO and STO.
FACO and STO only consider the optimization for the current
time slot, so their time reduction is less than those of DQN
and MURL which consider long-term average optimizations.
Fig.4(b) shows the download delay of the four solutions. At the
beginning, FACO and STO solution frequently download
services as there is a lack of historical data. This is also
illustrated in Fig.4(a). Due to the off-line training of the
model in advance, MURL and DQN-based can adapt to the
environment quickly and have low download delay. Besides,
we can find that the frequency of services download is much
smaller than the frequency of service requests, which also
shows that caching is performed on a much larger time-scale
[40]. Fig.4 shows that MURL has the larget saved time and
the best system performance in the four solutions.

C. Impact of Computing Capacity

We analyzes the performance of four solutions under the
constraint of computing capacity in this subsection. Fig.5
shows the effect of computing capacity on saved time and
backhaul traffic. We adjusted the BS computing capacity to
test, and other parameters are consistent with Table II.

Fig.5(a) shows the impact of computing capacity on saved
time when the storage space is fixed at 10G B. The saved time

of four solutions all increases with the computing capacity
of BS. It is obvious that BS can process more services
locally if its computing capacity increases. Due to the lim-
ited of storage space, we cannot always increase the saved
time by increasing computing capacity of BS, and the effect
of computing capacity gradually weakens until disappears.
In addition, different algorithms have different utilization of
computing capacity, resulting in different stationary points.
According to the average results of multiple experiments, our
algorithm saves up to 24.6% more time compared to FACO,
11.2% more than when STO is used, and 4.3% more that
the DQN-based solution. The reason is that FACO and STO
only optimize the single time slot performance and often get a
local optimal solution. Our algorithm and DQN-based solution
optimize long-term average performance, which leads to better
performance, in favor of MURL.

Fig.5(b) illustrates the impact of computing capacity on
backhaul traffic. The backhaul traffic is defined as the load rate
of backhaul link. It decreases with the increase of computing
capacity, contrary to saved time. Because more services can
be provided by BS when computing capacity increases, and
BS forwards less requests to cloud. Therefore, the services
provided by cloud decrease, which results in the decrease
of backhaul traffic. Besides, the backhaul traffic of MURL
algorithms is the minimum, DQN is the second best, STO
is the third, and FACO has the maximum value, which
means MURL has the best performance in terms of edge
offloading, followed by the other algorithms in the indicated
order.

6128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

Fig. 6. Effect of storage space (a) saved time; (b) backhaul traffic.

Fig. 7. Effect of number of contents (a) number of users; (b) parameters of Zipf distribution.

D. Impact of Storage Space

This subsection analyzes the impact of storage space on the
performance, shown in Fig.6. We adjusted the storage space
to test, and the other parameters are consistent with Table II.

Fig.6(a) shows the impact of storage space on saved time
when the computing capacity is fixed at 10G H z. Similar to the
situation of computing capacity, lager storage space can also
increase the saved time and has bottleneck. One different is
that the saved time of FACO solution doesn’t change with the
storage space and always stays the same in picture, because
the limited computing capacity of BS cannot support more
services under the strategy of FACO.

Fig.6(b) illustrates the backhaul traffic decreases with the
increase of storage space, and the trend levels off. The reason
is that more storage space means more service database can
be stored in BS which decreases the backhaul traffic. But the
backhaul traffic tends to be stable because of the constraint
of computing capacity. According to Fig.6(b), our algorithm
MURL reduces the backhaul traffic with up to 16.1%, 8.7%
and 5.6% compared to FACO, STO and DQN-based solution,
respectively.

From Fig.5 and Fig.6, we can find that both storage space
and computing capacity can affect service quality, but the con-
straints are coupled. If we only change one aspect, it often has
bottleneck for the overall system performance improvement.

E. Impact of User Request

Both the number of users and Zipf distribution parameter
can affect the number of user requests. These two factors are
studied in the following experiment.

The effect of number of users is shown in Fig.7(a).
We set the Zipf distribution parameter as λ = 1. From
equations (17) and (34), we know that the saved time is pro-
portional to the number of requests and the number of requests
is proportional to the number of users. So, the saved time of
the four algorithms is proportional to number of users, which
corresponds to the data illustrated in the picture.

Fig.7(b) shows how the Zipf distribution parameter affects
the performance of our solution MURL. There are N = 300
users in experiment. We find that the saved time is inversely
proportional to Zipf distribution parameter. Because larger
parameter mean less requests according to equation (34),
so the total saved time decreases. To intuitively reflect the
change of each user, we divide the total saved time by the num-
ber of users and get the average saved time. The right y-axis
of Fig.7(b) shows that the average saved time increases with
Zipf distribution parameter, and they are positively correlated.
Zipf distribution parameter becomes large means the user
requests are more concentrated to services with high popularity
rankings. Providing these popular services at edge nodes can
improve more system performance. Take an extreme example,
if Zipf distribution parameter goes to 0 and all services have
the same frequency of requests, all algorithms will get closer to
the random-based solution without considering the constraints.

VII. CONCLUSION

This paper focused on the long-term average performance
optimization of the cloud-edge computing offloading problem
with fairness guarantee. First, we formulated the problem with
the goal of minimizing the save time. This problem cannot

HAO et al.: COMPUTING OFFLOADING WITH FAIRNESS GUARANTEE: A DEEP REINFORCEMENT LEARNING METHOD 6129

be solved with traditional methods due to the lack of state
transition probability. To provide a solution, we introduced
a novel DRL algorithm and designed the Markov decision
process of the problem. We adjusted the reward function
and proved the stationary point theoretically to guarantee
the fairness of services. Due to the huge solution space,
we improved the traditional DQN algorithm from exploration
strategy and model update, and then proposed MURL, a new
algorithm which can effectively reduce the size of the action
space from 2K to K . Extensive simulations show that proposed
solution outperforms three alternative approaches in terms of
different indicators including convergence, fairness and service
delay. Future work will focus on the computation resources
allocation problem in a dynamic network with a cloud and
multiple BSs.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart.,
2017.

[2] X. Chen, W. Li, S. Lu, Z. Zhou, and X. Fu, “Efficient resource
allocation for on-demand mobile-edge cloud computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 9, pp. 8769–8780, Sep. 2018.

[3] J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019.

[4] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253,
Jan. 2021.

[5] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-aided
computation offloading for trusted collaborative mobile edge comput-
ing,” IEEE Trans. Mobile Comput., vol. 19, no. 12, pp. 2833–2849,
Dec. 2020.

[6] M. Chen, A. Liu, W. Liu, K. Ota, M. Dong, and N. N. Xiong, “RDRL:
A recurrent deep reinforcement learning scheme for dynamic spectrum
access in reconfigurable wireless networks,” IEEE Trans. Netw. Sci.
Eng., vol. 9, no. 2, pp. 364–376, Mar. 2022.

[7] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[8] H. Wang, Z. Lin, and T. Lv, “Energy and delay minimization of partial
computing offloading for D2D-assisted MEC systems,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6.

[9] S. K. Panda, M. Lin, and T. Zhou, “Energy efficient computation
offloading with DVFS using deep reinforcement learning for time-
critical IoT applications in edge computing,” IEEE Internet Things J.,
early access, Feb. 23, 2022, doi: 10.1109/JIOT.2022.3153399.

[10] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-
enabled V2X service placement for intelligent transportation systems,”
IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1380–1392, Apr. 2021.

[11] Z. Jiang, C. Xu, J. Guan, Y. Liu, and G.-M. Muntean, “Stochastic
analysis of DASH-based video service in high-speed railway networks,”
IEEE Trans. Multimedia, vol. 21, no. 6, pp. 1577–1592, Jun. 2019.

[12] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590–3605, Sep. 2016.

[13] S. David et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[14] H. Hao, C. Xu, L. Zhong, and G.-M. Muntean, “A multi-update
deep reinforcement learning algorithm for edge computing service
offloading,” in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020,
pp. 3256–3264.

[15] X. Chen, C. Xu, M. Wang, Z. Wu, L. Zhong, and L. A. Grieco,
“Augmented queue-based transmission and transcoding optimization for
livecast services based on cloud-edge-crowd integration,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 11, pp. 4470–4484, Nov. 2021.

[16] X. Nie, L. T. Yang, J. Feng, and S. Zhang, “Differentially private tensor
train decomposition in edge-cloud computing for SDN-based Internet of
Things,” IEEE Internet Things J., vol. 7, no. 7, pp. 5695–5705, Jul. 2020.

[17] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Communications, caching,
and computing for next generation HetNets,” IEEE Wireless Commun.,
vol. 25, no. 4, pp. 104–111, Aug. 2018.

[18] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed DNN collaborative computing approach for mobile
web augmented reality in 5G networks,” IEEE Netw., vol. 34, no. 2,
pp. 254–261, Mar. 2020.

[19] D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and
Z. Han, “A dynamic edge caching framework for mobile 5G networks,”
IEEE Wireless Commun., vol. 25, no. 5, pp. 95–103, Oct. 2018.

[20] Y. Guan, X. Zhang, and Z. Guo, “PrefCache: Edge cache admission with
user preference learning for video content distribution,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1618–1631, Apr. 2021.

[21] M. Chen, W. Liu, T. Wang, A. Liu, and Z. Zeng, “Edge intelligence
computing for mobile augmented reality with deep reinforcement learn-
ing approach,” Comput. Netw., vol. 195, Aug. 2021, Art. no. 108186.

[22] J. Dai, Z. Zhang, S. Mao, and D. Liu, “A view synthesis-based 360◦

VR caching system over MEC-enabled C-RAN,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 10, pp. 3843–3855, Oct. 2020.

[23] X. Zhao, P. Yuan, H. Li, and S. Tang, “Collaborative edge caching in
context-aware device-to-device networks,” IEEE Trans. Veh. Technol.,
vol. 67, no. 10, pp. 9583–9596, Oct. 2018.

[24] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in 5G
wireless networks: Cloud versus edge caching,” IEEE Trans. Wireless
Commun., vol. 17, no. 5, pp. 3030–3045, May 2018.

[25] X. Yuan, M. Sun, and W. Lou, “A dynamic deep-learning-based virtual
edge node placement scheme for edge cloud systems in mobile envi-
ronment,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1317–1328,
Apr. 2022.

[26] M. Chen, W. Liu, T. Wang, S. Zhang, and A. Liu, “A game-based
deep reinforcement learning approach for energy-efficient computa-
tion in MEC systems,” Knowl.-Based Syst., vol. 235, Jan. 2022,
Art. no. 107660.

[27] K. Cao, L. Li, Y. Cui, T. Wei, and S. Hu, “Exploring placement of
heterogeneous edge servers for response time minimization in mobile
edge-cloud computing,” IEEE Trans. Ind. Informat., vol. 17, no. 1,
pp. 494–503, Jan. 2021.

[28] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 80–87, Jun. 2018.

[29] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint
multi-user computation offloading and data caching for hybrid mobile
cloud/edge computing,” IEEE Trans. Veh. Technol., vol. 68, no. 11,
pp. 11018–11030, Nov. 2019.

[30] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading
and resource allocation in mixed fog/cloud computing systems with
min-max fairness guarantee,” IEEE Trans. Commun., vol. 66, no. 4,
pp. 1594–1608, Apr. 2018.

[31] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
“Attention-weighted federated deep reinforcement learning for device-
to-device assisted heterogeneous collaborative edge caching,” IEEE
J. Sel. Areas Commun., vol. 39, no. 1, pp. 154–169, Jan. 2021.

[32] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards efficient resource
allocation for heterogeneous workloads in IaaS clouds,” IEEE Trans.
Cloud Comput., vol. 6, no. 1, pp. 264–275, Jan. 2018.

[33] S. Li et al., “Joint admission control and resource allocation in edge
computing for Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 72–79,
Jan./Feb. 2018.

[34] X. Hu, L. Wang, K.-K. Wong, M. Tao, Y. Zhang, and Z. Zheng,
“Edge and central cloud computing: A perfect pairing for high energy
efficiency and low-latency,” IEEE Trans. Wireless Commun., vol. 19,
no. 2, pp. 1070–1083, Feb. 2020.

[35] J. Chen, Y. Wang, and T. Lan, “Bringing fairness to actor-critic rein-
forcement learning for network utility optimization,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), May 2021, pp. 1–10.

[36] A. Martin, A. Ashish, B. Paul, and B. Eugene, “TensorFlow:
Large-scale machine learning on heterogeneous distributed systems,”
Google, Mountain View, CA, USA, Tech. Rep., 2015. [Online].
Available: https://cse.buffalo.edu/~chandola/teaching/mlseminardocs/
TensorFlow.pdf

[37] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms in
information-centric networking,” IEEE Commun. Surveys Tuts., vol. 17,
no. 3, pp. 1473–1499, 3rd Quart., 2015.

http://dx.doi.org/10.1109/JIOT.2022.3153399

6130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

[38] E. Weinan, “Towards a mathematical understanding of neural network-
based machine learning: What we know and what we don’t,” CSIAM
Trans. Appl. Math., vol. 1, no. 4, pp. 561–615, Jun. 2020.

[39] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[40] A. F. Molisch, G. Caire, D. Ott, J. R. Foerster, D. Bethanabhotla, and
M. Ji, “Caching eliminates the wireless bottleneck in video aware
wireless networks,” Adv. Electr. Eng., vol. 2014, pp. 1–13, Nov. 2014.

Hao Hao received the Ph.D. degree in computer
science and technology from the Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China, in 2021. He is currently a Lecturer with
the Shandong Computer Science Center (National
Supercomputing Center in Jinan), Qilu University
of Technology (Shandong Academy of Sciences).
His research interests include MEC and content
caching over the wireless networks and multimedia
communications.

Changqiao Xu (Senior Member, IEEE) received the
Ph.D. degree from the Institute of Software, Chinese
Academy of Sciences (ISCAS), in January 2009,
and the Ph.D. degree from Dublin City University,
Ireland, in 2009. He was an Assistant Research
Fellow and the Research and Development Project
Manager of ISCAS from 2002 to 2007. He was a
Researcher with the Athlone Institute of Technol-
ogy. He joined the Beijing University of Posts and
Telecommunications (BUPT), China, in December
2009. Currently, he is a Full Professor with the

State Key Laboratory of Networking and Switching Technology and the
Director of the Next Generation Internet Technology Research Center, BUPT.
He has published over 200 technical papers in prestigious international
journals and conferences, including IEEE COMMUNICATIONS SURVEYS &
TUTORIALS, IEEE WIRELESS COMMUNICATIONS, IEEE Communications
Magazine, and IEEE/ACM TRANSACTIONS ON NETWORKING. His research
interests include future internet technology, mobile networking, multimedia
communications, and network security. He has served many international
conferences and workshops as the co-chair or a technical program committee
member. He is currently serving as the Editor-in-Chief for Transactions on
Emerging Telecommunications Technologies (Wiley).

Wei Zhang received the B.E. degree from Zhe-
jiang University in 2004, the M.S. degree from
Liaoning University in 2008, and the Ph.D. degree
from the Shandong University of Science and Tech-
nology in 2018. He is currently a Professor with
the Shandong Computer Science Center (National
Supercomputing Center in Jinan), Qilu University of
Technology (Shandong Academy of Sciences). His
research interests include future generation network
architectures, edge computing, and edge intelligence.

Shujie Yang received the Ph.D. degree from the
Institute of Network Technology, Beijing University
of Posts and Telecommunications, Beijing, China,
in 2017. He is currently a Lecturer with the
State Key Laboratory of Networking and Switch-
ing Technology. His major research interests are in
the areas of wireless communications and wireless
networking.

Gabriel-Miro Muntean (Fellow, IEEE) is currently
a Professor with the School of Electronic Engi-
neering, Dublin City University (DCU), Ireland,
and the Co-Director of the DCU Performance
Engineering Laboratory. He has published over
500 papers in top-level international journals and
conferences, authored four books and 26 book
chapters, and edited six additional books. He has
supervised to completion 25 Ph.D. students and has
mentored 20 post-doctoral researchers and fellows.
His research interests include quality, performance,

energy saving issues related to rich media content delivery, technology
enhanced learning, and other data communications over heterogeneous
networks. He is an Associate Editor of the IEEE TRANSACTIONS ON
BROADCASTING and Multimedia Communications, an Area Editor of the
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and the chair and
a reviewer for important international journals, conferences, and funding
agencies. He was a Project Coordinator and the DCU Team Leader of the
EU projects NEWTON and TRACTION.

