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Abstract— With the emergence of enormous videos on various
video apps, semantic video-text retrieval has become a critical
task for improving the user experience. The primary paradigm
for video-text retrieval learns the semantic video-text represen-
tations in a common space by pulling the positive samples close
to the query and pushing the negative samples away. However,
in practice, the video-text datasets contain only the annotations
of positive samples. The negative samples are randomly drawn
from the entire dataset. There may exist soft positive samples,
which are sampled as negatives but share the same semantics
as positive samples. Indiscriminately enforcing the model to
push all the negative samples away from the query leads to
inaccurate supervision and then misleads the video-text feature
representation learning. In this paper, we introduce debiased
video-text retrieval objectives that calibrate the punishment of
soft positive samples. In particular, we propose a novel uncer-
tainty measure framework to estimate the credibility of negative
samples for each instance. Then, the reliability of negative
samples is used to find the soft positive samples and rescale their
contribution within video-text retrieval losses, including triplet
loss and contrastive loss. Experimental results on five widely
used datasets demonstrate that our debiased video-text retrieval
objectives achieve significant performance improvements and
establish a new state-of-the-art.

Index Terms— Video-text retrieval, debias, soft positive
samples.
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I. INTRODUCTION

NOWADAYS, people are swamped with the massive vol-
ume of videos provided by various video apps, such

as YouTube and TikTok. To improve the user experience,
video retrieval, as a critical topic in the fields of informa-
tion retrieval and video technology, has attracted increasing
research interest.

The critical challenge of video-text retrieval is that the
distributions and representations of videos and texts are incon-
sistent, making it difficult to measure the similarity between
different modalities. To tackle this problem, the dominant
approaches [1], [2], [3], [4], [5], [6], [7] for video-text retrieval
firstly encode different modalities into a common represen-
tation space, and then leverage a suitable distance metric
to measure the semantic similarities. With such a paradigm,
some recent work has focused on designing more complicated
encoder [1], [6], [7] to obtain better representations for modal-
ities or more sophisticated matching strategies [2], [3], [5], [8].
For example, Gabeur et al. [2] focus on the multi-modality
information in the videos and incorporate multi-layer trans-
formers to learn strong video features. Chen et al. [3] introduce
a hierarchical video-text encoder, which factorizes video-text
matching into hierarchical levels, including events, actions,
and entities.

Existing approaches have achieved remarkable performance
by leveraging the strong representation ability of deep neu-
ral networks. Meanwhile, few of them are aware that the
data preparation process of video-text retrieval brings biases.
Annotators of video-text datasets are required to describe the
entire untrimmed video in a few sentences [9], [10], [11],
[12], [13], resulting in general annotations that disregard video
specifics and can be paired with multiple videos. Furthermore,
the video-text retrieval datasets only contain annotations for
positive video-text pairs, i.e., video vi and text ti match in
semantics, with no labeled negative pairs, i.e. video vi and
text t j do not match.

Existing methods [1], [2], [3], [4], [6], [7], [14], [15],
[16], [17] randomly sample negatives from the whole distribu-
tion, which contains inescapable noise. There are samples that
are sampled as negatives but have semantics comparable to the
query, termed as “soft positive samples”. As shown in Fig.1,
given a query t0 “A man is singing and playing the guitar”,
only the annotated video v0 is treated as a positive sample.
Except for that, all the other samples are regarded as negative,
although some of them ( e.g., v−

1 and v−

2 ) can also match the
query t0 perfectly.
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Fig. 1. Training data for video-text retrieval. The dataset only contains
positive pair (v+

0 , t0). The negative samples (v−
∗ ) are randomly sampled over

the whole distribution, which may contain biases. For example, the negative
ones in the blue shadow (v−

1 , v−

2 , v−

4 ) also have close semantics to the query,
which we refer to as “soft positive samples.” Indiscriminately enforcing the
model to maximize the distance between the query and these soft positive
samples leads to biased supervision in optimization. By using our debiased
video-text retrieval, the soft positive samples will receive the appropriate
supervision based on their uncertainty scores ηi j , resulting in a reasonable
semantic space for cross-modal matching.

The conventional video-text retrieval methods push all the
negative samples away from the query t0, including soft
positive samples v−

1 , v−

2 , and v−

4 . However, indiscriminately
enforcing the model to maximize the distance between the
query and soft positive samples leads to inaccurate supervi-
sion, misleads video-text representation learning, and severely
disrupts common space.

To tackle the above challenges, we introduce the Debiased
Video-Text Retrieval (DVTR) method that calibrates the biased
supervision of soft positive samples. We first introduce the
video-text matching uncertainty estimation module, which
evaluates the uncertainty [18] of the query and candidate sam-
ples to identify the soft positive samples. Specifically, a novel
hierarchical probabilistic encoder is introduced for video-text
pairs to map them into probabilistic embedding [19]. Then, the
heterogeneity-aware multi-modal uncertainty learning strategy
is presented to estimate the matching uncertainty of a given
video-text pair. The uncertainty is defined as the probability
of semantic mismatch of a given video-text pair. A lower
uncertainty means the candidate sample has a higher semantic
similarity with the query sample. As shown in Fig.1, video
v−

1 , v−

2 , and v−

4 may be identified as soft positive samples
of query t0, if the estimated uncertainty score η01, η02, η04 are
small. Then, we propose the debiased video-text representation
learning module, in which we weightedly reduce the penalty
of soft positive samples in video-text retrieval losses by their
uncertainty scores to address the biased supervision. As shown
in Fig.1, the distance between query t0 and v−

1 , v−

2 , and v−

4 are
rescaled by their uncertainty score. In this way, our represen-
tation learning module can precisely capture the semantics of
videos and texts. Note that the proposed debiased video-text
retrieval objectives can be applied to any state-of-the-art

video-text retrieval model by simply adjusting their losses.
To verify the effectiveness of our proposed method, we con-
duct extensive experiments on five widely used video-text
retrieval benchmark datasets, MSRVTT [9], MSVD [10],
VATEX [11], ActivityNet [13] and LSMDC [12]. Extensive
experiments with state-of-the-art performance demonstrate the
effectiveness of our debiased objectives.

In brief, our contributions can be summarized as follows:
• We propose the novel Debiased Video-Text Retrieval

(DVTR) method to alleviate the biased supervision of soft
positive samples. DVTR can be integrated into most video
retrieval models for better retrieval performance with a
few computational costs at training time and no additional
time consumption at test time.

• We introduce the uncertainty estimation module to iden-
tify the soft positive samples, which precisely estimate
the uncertainty of video-text pairs by the novel hierarchi-
cal probabilistic encoders and heterogeneity-aware multi-
modal uncertainty learning strategy.

• We present the debiased video-text representation learn-
ing objectives, in which we calibrate the biased supervi-
sion of soft positive samples by reducing their penalty in
proportion to their uncertainty scores.

• Extensive experimental results on five widely used
datasets demonstrate that our debiased video-text retrieval
method achieves significant performance improvements
and establishes a new state-of-the-art in video-text
retrieval.

II. RELATED WORK

In this section, we briefly review the previous methods most
relevant to our work, including video-text retrieval, bias in
video-text retrieval, and uncertainty estimation.

A. Video-Text Retrieval
Video-text retrieval aims to perform effective semantic

retrieval across video and text data. Recently, semantic
video-text retrieval methods [1], [2], [3], [4], [5], [6], [7]
aim to develop a powerful encoder to map video and text
to a shared embedding space or more sophisticated matching
strategies to align video and text at different levels. For
example, Gabeur et al. [2] introduce a transformer-based
encoder architecture that aggregates multiple modality features
extracted from videos to build effective video representations.
Dong et al. [1] propose a novel dual network that exploits
multi-level encodings to obtain global, local, and temporal
patterns in videos and sentences. However, they still suffer
from the scale of the training data and have a poor retrieval
performance. Most recently, with the promising performance
of CLIP [20], some clip-based methods [6], [7], [21] achieve
incredibly high performance and outperform other methods
by a large margin. Some approaches [17], [22] focus on the
large-scale datasets. For example, Bain et al. [17] propose an
end-to-end trainable model that is designed to use large-scale
image and video captioning datasets for video-text retrieval.
Ko et al. [22] introduce a multi-modal self-supervised frame-
work to capture significant information from noisy and weakly
correlated large-scale datasets by using a variant of dynamic
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time warping. Additionally, some recent works [23], [24] focus
on splitting video and text into fine-grained levels to bridge
semantic gaps in visual and textual. For example, inspired
by the reading strategy of humans, Dong et al. [23] propose
a reading-strategy inspired visual representation learning to
represent videos. Zhang et al. [24] propose a local-global graph
pooling network to disentangle the video and text into four
levels with the graph neural networks and exploit a hierarchical
pooling strategy to maximize the mutual information between
pool features and the corresponding graph node features.

Different from the above work, this paper focuses on
addressing the biased supervision of soft positive samples in
video-text retrieval representation learning rather than build-
ing more complex feature extractors or matching strategies.
Furthermore, this work can be equipped with state-of-the-art
methods to further improve its performance.

B. The Bias in Video-Text Retrieval
Recently, the bias in video representation learning is attract-

ing more and more attention. Many efforts [4], [25], [26],
[27], [28], [29], [30], [31] have been proposed to address a
variety of biases. Some approaches [4], [26] focus on the
bias of strict assumption of video-text retrieval, i.e., only a
single text is relevant to a query video and vice versa [25].
Hence, some approaches [4], [25], [26], [27] are proposed to
model the one-to-many or many-to-many correspondences in
the retrieval task. For example, Patrick et al. [4] introduce a
multi-modal cross-instance text generation task as the auxiliary
to extract the inner one-to-many correspondences of instances
for video-text retrieval. Chun et al. [26] encode image and
text into probability distributions of concepts, and implicitly
perform many-to-many matching between those concepts.
Some recent work [30], [32], [33] making effort to alleviate
biases in other areas. For example, Cheng et al. [32] explore
the effectiveness of various video features on visual search
and test different search strategies over different types of
queries. Liu et al. [33] introduce the cross-modal semantic
importance consistency to achieve invariance in the semantics
of items during cross-modal aligning. It measures the semantic
importance of items and learns a more reasonable represen-
tation vector by inter-calibrating the importance distribution.
Yang et al. [30] present a novel contrastive self-supervised loss
to update features of the foreground in a noise-free manner for
instance segmentation. It considers the different roles of noisy
labels in different subtasks’ loss.

In this paper, we observe the biased supervision of soft
positive samples. We introduce Debiased Video-Text Retrieval
(DVTR) method, which tackles the bias by directly identifying
the soft positive samples in negative samples and correcting
their punishment.

C. Uncertainty Estimation
Uncertainty estimation aims to capture what a model does

not know or is not confident. Various aspects of uncertainty
have been explored [18], [19], [34], [35], [36], including
the data-dependent uncertainty, model uncertainty, and the
uncertainty on annotation. For example, Oh et al. [19] learn
the uncertainty of image representation to obtain a more
robust embedding. Chang et al. [34] learn the uncertainty of

input data to alleviate the influence of observation noise for
better network optimization. Zheng and Yang [35] estimate
the uncertainty of the predicted pseudo labels for semantic
segmentation. Uncertainty also has much research attention in
other areas [37], [38], [39], [40]. Kim et al. [37] consider two
types of uncertainty in multispectral pedestrian detection to
alleviate the miscalibration of image pairs. Cheng et al. [38]
argue that the unlabeled data in deep semi-supervised hash-
ing methods is not always reliable. They introduce the
uncertainty-aware and multi-granularity consistent constrained
semi-supervised hashing method to alleviate the negative
effects of noisy supervised signals, where the uncertainty
score is estimated by Monte Carlo dropout. Kim et al. [39]
introduce class uncertainty-aware loss for object detectors,
in which the uncertainty score of classification is used to
modulate the detector loss function. Su et al. [40] introduce an
uncertainty-aware loss function in multi-view stereo scenario
to measure the reliability of the estimated depth map.

In this work, we explore the reliability estimation of the
randomly sampled negative pairs and alleviate the biased
supervision of soft positive samples by re-weighting their
contributions in video-text representation learning. To the best
of our knowledge, this is the first work to utilize uncertainty
to resist biases in video-text retrieval.

III. PROBLEM FORMULATION

Given a video-text retrieval dataset D = {(vi , ti )}N
i=1 of N

video-text pairs, where the i-th pair (vi , ti ) is composed of
video vi and corresponding caption ti , the task of video-text
retrieval is to retrieve the videos (or texts) whose semantics
are similar to query text (or video). Here, we take v as a
query and t as a candidate, as an example. The primary
paradigm of video-text retrieval [1], [2], [3], [4], [6], [7],
[14], [15], [16] is to encode the different modalities into a
common representation space, then leverage distance metrics
to directly compare the semantic similarity of video and text.
Specifically, the cross-modal common space is built by ranking
losses, in which the representational similarity between a given
query vi and its positive samples D p

ti is maximized while the
similarity with negative samples Dn

vi
is minimized.

We denote the uncertainty [18], [19] that vi and t j have
similar semantic content as ηi j ∈ [0, 1]. Ideally, none of
the negative samples match the query, i.e., ηi j = 1, ∀t j ∈

Dn
vi

. Unfortunately, there are no negative pair annotations in
datasets, standard approaches thus sample negatives t j for
given query vi from the whole distribution of text {t j }

N
j ̸=i

instead. There are negative samples that are sampled as neg-
atives but have semantics comparable to the query (ηi j < 1),
termed as “soft positive sample”. Indiscriminately enforcing
the model to maximize the distance between the query and
soft positive samples leads to biased supervision, misleads
video-text representation learning. To this end, we propose
our debiased video-text retrieval method to mitigate the biased
supervision of soft positive samples in the following section.

IV. METHODOLOGY

A. Model Overview

To address the biased supervision of soft positive samples
in video-text representation learning we propose our Debaised
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Fig. 2. The framework of the debiased video-text retrieval network. The video-text matching uncertainty estimation module takes global- and local-level
representations of each pair (vi , t j ) as input to obtain its uncertainty score η. Specifically, the pair (v, t) first goes through the feature encoders Fv and Ft to
extract features. Then the probabilistic encoders Pv, Pt project each modality into the probabilistic embeddings zv and zt . By joint considering the discrepancy
of contributions and the distance of sampled point embeddings, we approximate the uncertainty ηi j . The uncertainty is then employed to guide the video-text
representation learning by reducing the penalty of the soft positive sample with ηi j .

Video-Text Retrieval (DVTR) method. The overview archi-
tecture is illustrated in Fig.2. The framework consists of the
following components:

• Basic Video-text Retrieval Backbone: We construct a
basic retrieval backbone to apply video-text retrieval.
Specifically, we employ visual and textual encoders to
extract video and text representations. Then, by mini-
mizing the ranking loss functions, we could construct a
cross-modal common space in which the representation
distance between a given query (video or text) and its
positive samples is minimized while the distance with
negative samples is maximized. Unfortunately, such basic
retrieval method can not handle the biased supervision
introduced by the soft positive samples.

• Video-text Matching Uncertainty Estimation: To iden-
tify the soft positive samples, we propose a video-text
matching uncertainty estimation module to measure
the uncertainties between query and negative samples.
We propose a hierarchical probabilistic encoder to map
video and text as probability embeddings. In addition,
we propose a heterogeneity-aware multi-modal uncer-
tainty learning strategy to comprehensively measure the
discrepancy of multi-modal probabilistic distributions.
Based on the estimated video-text matching uncertainty,
we could precisely detect the soft positive samples.

• Debiased Video-text representation learning: The debi-
ased video-text representation learning aims to calibrate
the inappropriate supervision for soft positive samples.
The uncertainty scores between the query and each
negative are first measure by the video-text matching
uncertainty estimation module. Based on the estimated
uncertainties, we modify the frequently used two ranking
loss functions by weighted reducing the penalty of soft
positive samples with their uncertainty score.

TABLE I
THE MAIN NOTATIONS OF THIS PAPER AND THEIR EXPLANATIONS

We introduce the basic video-text retrieval module in
Sec.IV-B. The proposed video-text matching uncertainty esti-
mation module is introduced in Sec.IV-C. The debiased loss
functions are detailed in Sec.IV-D. Finally, we elaborate on the
training and inference flow in Sec.IV-E. The math notations
of this paper are summarized in Tab.I.

B. Basic Video-Text Retrieval Backbone

Given a video v and text t , the basic video-text retrieval
module aims to encode video and text into the common rep-
resentation space. The local and global features of video-text
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pairs are then generated and fed into the video-text uncertainty
estimation module.

1) Video Encoder Fv(v; θFv ): Given a video v, the video
encoder is used to learn the local- and global-level representa-
tions (lv, gv) = Fv(v; θFv ), where θFv is the parameter of the
video encoder. lv and gv are the local- and global-level video
representations, respectively. lv = {l1

v , l2
v , . . . , l N

v } N denotes
the frame number. The global video representations gv is
obtained by applying a pooling strategy to lv . Specifically, the
video encoder is designed as transformer based architecture.
For HiT [16], we use the outputs of the feature-level layer as
the local-level representations of video and conduct the mean
pooling of the semantic-level to aggregate the global-level
representations. For CLIP2Video [7], the vision transformer
(ViT) [41] is adopted to encode every frame into features and
combines the temporal and spatial information to generate the
local-level representations. Following [7], we then apply global
average pooling to encode final global-level representations.

2) Text Encoder Ft (t; θFt ): Given a text t , text encoder
Ft (t; θFt ) is used to encode it as a local- and global-level rep-
resentation (lt , gt ), where θFt denotes the learnable parameter.
Specifically, we adopt the base BERT [42] as the text encoder
and fine-tune it. For HiT [16], we use the outputs of the
word-level layer as the local-level representations lt , and per-
form the average pooling for the semantic-level to aggregate
the global-level representations gt . And for CLIP2Video [7],
we obtain the local-level features lt from the hidden states of
BERT and take the highest number in each hidden state as the
global-level features gt .

3) Video-Text Matching: Based on the above video and text
encoder, the parameter θFv and θFt are updated by minimizing
Eq.1 or Eq.2 as follows:

LT L =
1
N

N∑
i=1

[S−

i j − S+

i i + λ]+ (1)

LC L =
1
N

N∑
i=1

[
− log

e(S+

i i /τ)

6B
k=1e(Sik/τ)

]
(2)

where Si j is the similarity of vi and t j , S+ are positive pairs,
S− are negative pairs, λ is the margin, [·]+ = Max{·, 0}. λ

and τ are the margin and temperature parameters, respectively.
B is the batch size.

C. Video-Text Matching Uncertainty Estimation

In this section, we introduce the video-text matching uncer-
tainty estimation module, which evaluates the uncertainty
η−

i∗ of the query sample vi and candidate samples t∗ by
encoding the video and text into the probabilistic embed-
ding space [19]. Different from common point embedding
methods which project input x into an embedding vector
z with fixed dimension d, i.e., a point in Rd , probabilistic
embedding maps the input x into a probabilistic distribution
in Rd which not only preserves the semantic information but
also captures the inherent uncertainty [18] in data. We build
the video-text matching uncertainty estimation module by
extending probabilistic embedding to the video-text retrieval
scenario.

1) Hierarchical Probabilistic Encoders: Given a pair
(vi , t j ) consisting of i-th video and j-th text (for clarity we
omit i and j in this section), we first propose the video
probabilistic encoder Pv(lv, gv; θPv ) and text probabilistic
encoder Pt (lt , gt ; θPt ) to project the local- and global-level
representation of video and text as probabilistic embedding
zv and zt , where θP∗

∗
denote the parameters.

The local and global features lv, gv of video v are first
obtained by powerful feature extractors Fv(v; θFv ) to cap-
ture the semantic information. Then the video probabilistic
encoder projects them into probabilistic embedding zv =

Pv(lv, gv; θPv ), where zv = N (vµ, v6) The mean vµ and the
variance v6 of video distribution zv are obtained as follows:

vµ = Pµ
v (lv, gv; θPµ

v
)

= LN(gv + σ(MLPµ
v Attn µ

v (lv))) (3)

v6 = P6
v (lv, gv; θP6

v
)

= MLP6
v (gv + Attn6

v (lv)) (4)

where LN(·) is the LayerNorm [43], Attn∗
v(·) is the self-

attention layer, MLP∗
v indicate the multilayer perception

(MLP) layer σ(·) means the sigmoid function.
Similar to the video probabilistic encoder, the text prob-

abilistic encoder Pt (lv, gv; θPt ) attempts to encode text rep-
resentations lt and gt as a probabilistic embedding zt =

Pt (lv, gv; θPt ),where zt = N (tµ, t6). The local and global
features lt , gt of text t are obtained by Ft (t; θFt ) to capture
the semantic information. The mean tµ and the variance t6 of
text probabilistic embedding zt are formulated as follow:

tµ = Pµ
t (lt , gt ; θ

µ
P )

= LN(gt + σ(MLPµ
t Attn µ

t (lt ))) (5)

t6 = P6
t (lt , gt ; θ6

P )

= MLP6
t (gt + Attn 6

t (lt )) (6)

2) Heterogeneity-Aware Multi-Modal Uncertainty Learn-
ing: Existing probabilistic embedding methods [19], [26]
mainly focus on single-modal data. They estimate the proba-
bility that the semantics of zv and zt are matched by directly
calculating the distance of points sampled from the distribu-
tions. We argue that the inherent heterogeneity gap between
visual and textual modalities may lead to invalidation of such
random sampling measures, especially when the sample size is
small. Thus, in this work, we measure the matching probability
between two probabilistic distributions by jointly considering
the similarity of the point sampling from each distribution and
the divergence between distributions:

D(zv, zt ) = vT
·

zv

zt
t (7)

where v and t are sampled from distribution zv and zt by
Monte-Carlo sampling. If the two probabilistic distributions
are aligned well in the common space, the Eq.7 is degen-
erated as the standard format: D(zv, zt ) = vTt, which only
considering the distance between point embeddings. Once
the two probabilistic distributions are not aligned well, Eq.7
measures the discrepancy between probabilistic embedding by
introducing the divergence of distribution.
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During training, based on the similarity of distribution, the
loss function is formulated as follows:

LU = −Ezv Ezt log(D(zv, zt ))

= −Ezv [Ezt log(vTt) − KL(zt∥zv)]

≈ −
1

K 2

K∑
i=1

K∑
j=1

vT
i t j + KL(zt∥zv) (8)

where K is the Monte-Carlo sampling number, the KL(·∥·) is
the KL divergence. However, the KL divergence is asymmetric
and there is a problem of vanishing gradient. To address it,
we adopt the 2-Wasserstein distance [44] to minimize the dis-
crepancy between zv and zt . As the zv and zt follow Gaussian
distribution, the 2-Wasserstein based method is reduced to:

W (zv, zt ) = ∥vµ − tµ∥
2
2 + ∥v

1/2
6 − t1/2

6 ∥
2
2 (9)

Then, we measure the uncertainty that the pair (vi , t j ) is
matched by:

ηi j = U(zvi , zt j ; θU)

= σ(−MLPη(W(zvi , zt j ))) (10)

where MLPη denotes a MLP layer. σ is the sigmoid activation
function. Furthermore, we optimize Lη to minimizing the
matching probability of the:

Lη = −σ(−MLPη(W (zv, zt ))) (11)

Following the aforementioned definition of uncertainty,
we can effectively identify the soft positive samples from
negative ones since they have a close ηi j with the positive
samples, a.k.a. the candidate video/text is highly semantically
consistent with the query sample.

D. Debiased Video-Text Representation Learning
As shown in Fig.1, we observe that candidate samples

with higher semantic similarity to the query have a lower
uncertainty. Based on this observation, we propose a novel
debiased video-text representation learning module, in which
we weightedly reduce the penalty of soft positive samples in
ranking losses by their uncertainty scores. Specifically, the
two most commonly used ranking losses: triplet loss and
contrastive loss, are altered with uncertainty.

1) The Debiased Triplet Loss: Triplet loss is commonly
used in video-text retrieval to make the similarity of positive
pairs S+

i i be at least λ larger than negative pairs S−

i j . The
conventional equation of triplet loss LT L is shown in Eq.1.

Minimizing LT L means maximizing the similarity of posi-
tive pairs S+

i i and minimizing the similarity of negative pairs
S−

i j . It is implemented by pulling the representation of the
positive sample vi close to the query ti , and pushing away the
representation of negative sample v j from the query ti , until
the negative samples narrows the positive one with at least λ

margin. However, when facing the soft positive samples, the
existing models still try to push them away by imposing a sig-
nificant penalty, leading to the wrong optimization direction.

In our debiased video-text representation learning, we define
the debiased triplet loss as follows:

LU
T L =

1
N

N∑
i=1

[η−

i j S−

i j − S+

i i + λ]+ (12)

Algorithm 1 Debiased Video-Text Retrieval Training

Input: dataset D = {(vi , ti )}N
i=1; max epoch number E

Output: Learned parameters θFv ,θFt , θPv ,θPt , and θU
1 repeat
2 // Training the uncertainty estimation module;
3 for sampled batch {(vi , ti )}B

i=1 from D do
4 Extract features:

(lv, gv), (lt , gt ) = Fv(v; θFv ), Ft (t; θFt );
5 Generate probabilistic embeddings:

zv, zt = Pv(lv, gv; θPv ), Pt (lt , gt ; θPt );
6 Calculate LU and Lη;
7 Update θFv , θFt , θPv , θPt , and θU;
8 end
9 // Training the debiased retrieval module;

10 for sampled batch {(vi , ti )}B
i=1 from D do

11 Obtain negative pairs {(vi , t j )}
B
i=1, j=1, i ̸= j ;

12 Calculate ηi j for negative pairs ;
13 Calculate debiased loss LU

T L or LU
C L ;

14 Update θFv , θFt ;
15 end
16 until convergence;

where for the pairs with low uncertainty scores, such as soft
positive samples, a smaller weight η−

i j is used to reduce its
penalty, leading to a smaller gradient in optimization. For the
pairs with high uncertainty, the η−

i j S−

i j stays high, resulting in
a high gradient in optimization. Thus, the LU

T L can effectively
prevent the pairs with high semantic similarity from being
separated by a far distance in embedding space.

2) The Debiased Contrastive Loss: Contrastive loss is also
a widely adopted loss in video-text retrieval, which aims to
make the similarity of positive pair S+

i i account for the largest
proportion in the sum of similarity of all pairs in a batch∑B

k=1 Sik . The conventional equation of contrastive loss LC L
is shown in Eq.2.

By minimizing LC L , the similarity of positive pairs S+

i i will
approach to 1 and the similarity of all the other negative
pairs

∑B
k ̸=i S−

ik will approach to 0. It is implemented by
pulling the representation of vi and ti as close as possible
and pushing apart the representation of vi and t j as far as
possible. Thus, the contrastive loss also cannot handle the soft
positive samples well due to the conflict between pulling the
similar semantic samples close to the query and pushing away
the soft positive samples.

In our debiased video-text representation learning, we define
the debiased contrastive loss as follows:

LU
C L =

1
N

N∑
i=1

− log
e(S+

i i /τ)

e(S+

i i /τ)
+ 6B

k ̸=iη
−

ike(S−

ik/τ)

 (13)

In LU
C L , we can observe that the issue of soft positive samples

can be well addressed, since the lower uncertainty η−

ik the pair
has, the smaller the gradient and the contribution of this pair
to the optimization.
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E. Training and Inference
We summarize our training algorithm in Alg.1. We first

learn the uncertainty estimation model with positive pairs.
Then, we train the video-text retrieval method by losses LU

T L
or LU

C L with the contribution of negative samples calibrated by
their uncertainty. Given the positive training pairs {(vi , ti )}B

i=1,
we first extract the local and global features of video and
text by basic retrieval module. Then, these features are fed
into the corresponding probabilistic encoder Pv and Pt , which
maps them into probabilistic embeddings. We train the video
and text probabilistic encoders by minimizing LU and Lη.
For training the debiased retrieval module, we first obtain
negative pairs {(vi , t j )}

B
i ̸= j . Then, we calculate the uncertainty

ηi j for each negative sample. The debiased LU
T L or LU

C L are
then optimized with each sample receiving proper supervision.
In the inference stage, given a query sample, we extract its
features by Fv/Ft and sort the similarities between the query
and candidates to choose the best matching samples.

V. EXPERIMENTS

A. Experimental Details
1) Datasets: To achieve a comprehensive evaluation of our

DVTR, we carry out our experiments on five widely used
[1], [2], [3], [6], [7], [14], [16] video-text retrieval datasets
with various scales and video sources. Table II summarizes
the brief statistics of these datasets.

a) MSRVTT [9]: The MSRVTT dataset consists of 10K
videos collected from YouTube. Each video lasts 10 to 30s
and is annotated with about 20 natural sentences in English.
Our results are reported on the train/test splits named Full [9]
and 1k-A [45]. Following the Full split, 6,513 videos are used
as the training set, 497 for validation, and 2,990 for the testing
set. The 1k-A split was introduced by [45] that 9K videos are
used for training, 1K for testing and validation.

b) MSVD [10]: The MSVD dataset consists of 80K
English sentences for 1,970 videos from YouTube. Each video
is described with around 40 sentences. Our results are reported
base on the standard split that uses 1,200, 100, and 670 videos
for training, validation, and testing.

c) VATEX [11]: VATEX dataset is a multilingual
video-text dataset with 34,911 videos. Each video, collected
from YouTube, has a duration of 10s and at least 10 English
captions. In our work, we only use English annotations. We use
the official split, 25,991, 3,000, and 6,000 videos for training,
validation, and testing.

d) ActivityNet [13]: The ActivityNet dataset consists of
20,000 YouTube videos. We follow the setting of [51], which
concatenates all the captions of a video into a paragraph, and
evaluate the model on the “val1” split.

e) LSMDC [12]: The LSMDC dataset contains 118,081
videos and equal captions extracted from 202 movies, with
a split of 109,673, 7,408, and 1,000 as the train, validation,
and test sets. Every video is selected from movies ranging
from 2 to 30 seconds.

2) Implementation Details: Follow Alg.1, we apply our
debiased video-text retrieval objectives to the HiT [16] and
CLIP2Video (C2V) [7] to obtain our DVTR + HiT model and
DVTR + C2V model, respectively. We follow the HiT [16] to

TABLE II
BRIEF INTRODUCTION OF FIVE PUBLICATION DATASETS USED IN OUR

EXPERIMENTS: MSRVTT, MSVD, VATEX, ACTIVITYNET, AND
LSMDC.FOR A COMPREHENSIVE EVALUATION, WE CONDUCT

EXPERIMENTS ON ALL SPLITS OF MSRVTT

conduct feature extraction for DVTR + HiT model, including
the audio features from VGGish [54], appearance features
from SENet-154 [55], motion features from S3D [56]. For
MSRVTT, MSVD, and LSMDC, we use all the audio, appear-
ance, and motion pre-extracted features. For ActivityNet,
we use the motion and audio pre-extracted features. For
VATEX, we use motion and the official I3D [57] features.
We use 30 and 25 as the frame length and caption token
numbers in the DVTR model. The initial learning rate is set
to 2e-5 and the network is optimized by the AdamW [58]
optimizer. We use the 10% proportion of warm up and cosine
decay for scheduling the learning rate. The batch size is
128 and we train 40 epochs. We follow the CLIP2Video [7]
to set the DVTR + C2V model. We initialize the spatial
transformer (ViT) with CLIP (ViT-B/16) [20] by reusing
parameters of similar dimensions in CLIP. We use 12 and
32 as the frame length and caption token number in the
DVTR + C2V model. We fine-tune the model with the Adam
optimizer. For the learning schedule, we follow the cosine
schedule of CLIP [20] to decay the learning rate. The learning
rate is set as 1e-7 for both video encoder and text encoder,
and 2e-5 for our uncertainty estimation module. The batch
size is 128 and running 5 epochs. The sample number of
Monte-Carlo sampling is set to 7 for both DVTR + HiT and
DVTR + C2V. We set the λ as 0.5 for Eq.12 and τ as 0.07
for Eq.13.

3) Evaluation Metrics: We adopt the common metrics to
report retrieval performance, including Recall at K (R@K),
Median Rank (MedR). R@K is the fraction of queries that
correctly retrieve desired items in the top K of the ranking
list. Following the tradition, K = 1,5,10 are adopted. Espe-
cially, for ActivityNet, K=1,5,50. Therefore, a higher score
of R@K means better performance of the retrieval methods.
The MedR computes the median rank of the correct targets for
a query, where a lower score indicates a better performance.
Furthermore, rsum is also considered as the evaluation metric
on the overall perspective, which is the sum of the R@K.

4) Compared Methods: To validate the effectiveness of our
DVTR, we choose baselines from the following aspects to
compare.

a) Conventional Video-Text Retrieval Models: The con-
ventional video-text matching methods [2], [3], [16] focus on
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TABLE III
VIDEO-TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON MSRVTT DATASETS

mining the multi-modality information from video and text to
improve the retrieval performance.

• HGR [3] proposes a hierarchical graph reasoning module
that decomposes video-text matching into global-to-local
levels.

• MMT [2] presents a multi-modal transformer to jointly
encode the different modality features in video and
allows them to make hierarchical interaction with the text
feature.

• HiT [16] proposes a hierarchical transformer for video-
text retrieval. It performs hierarchical cross-modal con-
trastive matching at both feature and semantic levels and
achieves a multi-grained matching between video and text
modality.
b) The Pretrained Model based Video-Text Retrieval

Models: The pre-trained model based video-text retrieval
methods [6], [7], [21], [49] transfer the ability of the
pre-trained model to the cross-modal retrieval task by
fine-tuning in the downstream datasets.

• CLIP-straight [21] directly adopts CLIP [20] to obtain
video and text represnetaions for video-text retrieval.

• CLIP4Clip [6] aims to transfer the knowledge of the
CLIP model to video-text retrieval and introduces several
cross-modal fusion modules to investigate an appropriate
cross-modal matching strategy.

• CLIP2Video (C2V) [7] presents a temporal difference
block to capture motions at fine temporal video frames,
and a temporal alignment block to re-align the token

of video clips and phrases and improve the multi-modal
matching.

• X-Pool [49] focuses on the difference of information
between video and text and proposes an x-pool strategy
that main mechanism is a scaled dot product attention
for a text to attend to its most semantically similar
frames.

c) The Debiased Video-text Retrieval Models: The debi-
ased cross-modal retrievals [15], [27], [48], [50] reveal and
alleviate the bias in retrieval datasets. And all above them
could be applied directly to many different video-text retrieval
for improving the retrieval performance.

• TT [15] aims to alleviate the bias in captions and intro-
duces multiple text encoders as complementary cues to
provide an enhanced supervisory for the retrieval model.

• CMGSD [27] proposes an adaptive margin changed with
the distance between positive and negative pairs to solve
the influence of soft negative samples.

• CAMoE [48] introduces a alignment strategy named dual
softmax, which could rectify the similarity matrix by dual
soft max to avoid the one-way optimum-match in cross-
modal matching.

• QB-NORM [50] presents a re-normalize strategy to alle-
viate impacts of hub embedding that is close to many
queries in common space.

In the following, the best performance is highlighted in
bold, “-” means no result reported.
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TABLE IV
VIDEO-TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON MSVD DATASETS

TABLE V
VIDEO-TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON VATEX DATASETS

B. Results
1) Comparison of State-of-The-Arts: Tab.III, Tab.IV, Tab.V,

Tab.VI and Tab.VII show the performance comparison results
between our model and state-of-the-art methods on the
five benchmark datasets. Our performance surpasses all
state-of-the-art methods on five common datasets across most
evaluation metrics for both text-to-video and video-to-text
retrieval. We compare our model with other state-of-the-art
methods on the MSRVTT Full and 1k-A partitions, respec-
tively. Our retrieval performance at rsum exceeds recent state-
of-the-art methods T2VALD [5] by over 10 points. On the
MSVD, VATEX, ActivityNet and LSMDC, the DVTR + HiT
also outperforms comparison methods by a large margin. The
significant improvements achieved by DVTR indicate that the
samples which belong to negative but have a close semantic
distance with positive ones have seriously disrupted video-text
representation learning in the state-of-the-art methods.

We also compare our DVTR + C2V model with the state-
of-the-art methods that are pretrained with extra training data,
such as pretrained on HowTo100M [59] or adopting the
pretrained features from CLIP [20]. On the MSRVTT, MSVD,
VATEX, and ActivityNet datasets, we achieve state-of-the-
art performance improvements compared with all baselines.
On the LSMDC dataset, we outperform the state-of-the-art

model on most of the metrics. The results show that pretrained
models are still suffering from the negative impact of soft
positive samples in the transfer to downstream tasks, althought
they maintain a powerful ability and achieve a significant
retrieval performance. We notice that the increase brought
by DVTR is not as large as the non-pretrain methods. This
may be because pretrained models are trained on vast and
comprehensive datasets, in which the probability η+ that one
sample has similar semantics to another random sample is
smaller in that dataset, thus suffering minor biases.

2) Comparison With Other Denoising Methods: Tab.VIII
shows the performance comparison between our proposed
DVTR and other denoising methods on the full split of
MSRVTT. Following the CMGSD [27] and TT [15], we adopt
CE [14] as our backbone model, keep all the settings
unchanged and apply our DVTR to it. Specifically, CMGSD
gives samples a dynamic margin to reduce their optimization
time. But it neglects the soft positive samples, and still
provide the same supervision information as the ordinary
negative samples. TT uses multiple text encoders to provide
abundant text supervision while never considering the impacts
introduced by soft positive samples. This improvement can be
attributed to the additional supervision information provided
by multiple text encoders. The results show that our method
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TABLE VI
VIDEO-TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON ACTIVITYNET DATASETS

TABLE VII
VIDEO-TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON LSMDC DATASETS

TABLE VIII
VIDEO-TEXT RETRIEVAL COMPARISON WITH OTHER DENOISING

METHODS ON MSRVTT FULL DATASETS

surpasses CMGSD [27] and TT [15] and further upgrades
the retrieval performances of the baseline by considering the
semantics of soft positive samples. Specifically, our method
gains 2.7, 5.6, and 4.7 on R@1, R@5, and R@10 for CE,
respectively. The experimental results show that our model can
effectively fix the bias and improve the retrieval performance
by identifying the soft positive samples and correcting their
inaccurate supervision.

3) Comparison With Different Probabilistic Embedding:
In this work, we theoretically analyze the biased supervision
problem in Sec.III and find the root causes that the existing
methods draw negative samples from the whole dataset, which
contains biases. Inspired by the probabilistic embedding [19],
we propose an innovative and effective way to solve the prob-
lem: locate the biased samples and rescale their contributions
by their uncertainty score, as shown in Eq.12 and Eq.13.
As reviewed in related work, the PCME [26] also tackles the
biased supervision problem, they conjecture that the problem is

that many-to-many relationships are not modeled. Thus, they
introduce probabilistic embedding to capture many-to-many
relationships. The uncertainty in PCME is a by-product of
providing interpretability for retrieval results.

In this section, we compare our method with the PCME,
and extend the PCME model by replacing our video-text
matching uncertainty estimation module in DVTR with it
(DVTRpcme + HiT and DVTRpcme + C2V). Results are shown
in Tab.IX. According to the results, the PCME model performs
poorly in video-text retrieval tasks in R@K metrics. This
may be because the probability embedding may better capture
relations rather than represent samples. The DVTRpcme + HiT
and DVTRpcme + C2V performed well, which demonstrated
the effectiveness of our proposed debiased framework in
identifying the soft positive samples and calibrating the biased
supervision. The DVTR + * models outperform the DVTRpcme
+ * indicating the effectiveness of the proposed hierarchical
probabilistic encoder and heterogeneity-aware multi-modal
uncertainty learning. Furthermore, it also demonstrated that the
proposed video-text matching uncertainty estimation module
estimates the uncertainty score more accurately than PCME.

VI. ABLATION STUDIES

A. Debiased Loss Functions

Tab.X shows the results of ablation studies on the MSRVTT
Full datasets of video-text retrieval task. The LU

T L and LU
C L

represent the debiased triplet ranking loss and debiased
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Fig. 3. Visualization of the similarity matrix on a batch of MSVD test datasets The max value on each row and column is highlighted with the red border. The
diagonal is the ground-truth pair (v∗, t∗). When obtaining text-to-video retrieval, the model returns the max similar video on each row. For the video-to-text
retrieval, the most similar texts over columns are returned.

TABLE IX
VIDEO-TEXT RETRIEVAL COMPARISON WITH OTHER PROBABILISTIC

EMBEDDING METHODS ON MSRVTT FULL DATASETS

TABLE X
ABLATION STUDIES ON MSRVTT FULL DATASETS TO INVESTIGATE

CONTRIBUTIONS OF DIFFERENT DEBIASED LOSSES

Fig. 4. Visualization of the soft positive sample calibration.

contrastive learning loss, respectively. According to Tab.X,
we can find that both LU

T L and LU
C L can help the model

achieve a better performance. This illustrates that the debiased
loss functions help models to learn a better representation of
videos and texts. Furthermore, the debiased contrastive loss
functions yield a better performance, indicating that bias may
affect conventional contrastive loss functions more easily.

TABLE XI
PARAMETER ANALYSIS FOR THE SAMPLE NUMBER K ON

TEXT-TO-VIDEO RETRIEVAL ON MSVD DATASET

TABLE XII
PARAMETER ANALYSIS OF MARGIN λ ON MSVD DATASET

B. Monte-Carlo Sampling Numbers
Tab.XI reports the effect of the number of samples on

the retrieval results by Geometric-Mean of R@1-R@5-R@10
at text-to-video retrievals. In these experiments, we only
modify the number of samples of Monte-Carlo Sampling and
keep other parameters unchanged. The results show that, the
retrieval performance grows with the number of samples. Due
to the computation limits, we choose the K = 7 as the number
of the sample finally.

C. Hyperparameter of Triplet Loss
λ is the key parameter of the triplet loss function. To explore

the suitable value of margin λ, sufficient experiments are
conducted at Tab.XII. According to Tab.XII, when the margin
λ is 0.5, the model achieves the best performance.

D. Hyperparameter of Contrastive Loss
The temperature τ in contrastive loss is a sensitive param-

eter. To further analyze the effect of τ , we present sufficient
experiments and show results at Tab.XIII. A fine-grained step
length 0.01 is used to explore the most appropriate τ value.
As Tab.XIII shows, the best retrieval performance can be
achieved when τ is set to 0.07.

VII. QUALITATIVE RESULTS

A. Visualization of the Similarity Matrix
In this section, we study how the debiased objectives work

on retrieval by visualization of the output of the similarity
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Fig. 5. Visualization of text to video retrieval results on MSVD test dataset. The ground-truth is shown in green.

TABLE XIII
PARAMETER ANALYSIS OF TEMPERATURE τ ON MSVD DATASET

matrix. Fig.3 visualized the similarity scores between the
query and candidate samples in the video-text retrieval. From
Fig.3, we conclude that: (1) The conventional methods fail in
most retrieval cases since they have trouble with the bias of
soft positive samples, while the proposed method performs
well. (2) Both the conventional method and our proposed
method encourage the model to give a high similarity score
to the diagonal, i.e., the positive samples. (3) For the negative
ones that are not diagonal, our debiased video-text retrieval
objectives weightedly reduce their punishment, resulting in an
accurate similarity score for the soft positive samples and some
minor scores for the true negatives.

B. Visualization of the Soft Positive Sample Calibration
To show the effectiveness of debiasing more clearly, we ran-

domly select a query and show its training loss along with the
uncertainty on the whole MSVD dataset. From Fig.4, we can
conclude that: (1). Over 95% of negative samples have an
uncertainty of over 0.9, which indicates that they are the real
negative ones. (2). The model can quickly fit the real negative
samples, so they have lower losses. (3). The model has trouble
with the biased supervision problem. The wrong supervision
forces the model to give a low similarity score for the soft
positive samples by imposing significant losses. However, the
soft positive samples do have a similar semantic with the
query. (4). The proposed negative sample reweighting can
effectively reduce the punishment for soft positive samples.

C. Visualization of the Uncertainty Estimation Results
Fig.5 and Fig.6 show the retrieval results in our video-to-

text retrieval with the output of the uncertainty estimation
module. For both visualization examples, we display the top 3
retrieved results for analysis, among which, the correct results
are marked in green and the wrong ones in red. The uncertainty
between the retrieved results and the query sample is shown
beside or at the bottom of the retrieved results. We can find that
although the retrieved results may have no positive candidate
from the retrieved results, the proposed debiased retrieval
model can still return the most relevant result, which has
close semantics to the query. Furthermore, our uncertainty

Fig. 6. Visualization of video to text retrieval results on MSVD test dataset.
The ground-truth is shown in green.

estimation module can also identify them by giving an accurate
uncertainty score.

D. Time Complexity

The uncertainty estimation module in DVTR is based on
the features of the video-text retrieval backbone. The addi-
tional time is required when DVTR projects v and t as
the probabilistic embeddings. At the projection stage, the
main time consuming operator is the attention mechanism,
which needs additional time of O(N 3). Numerous methods
[4], [5], [16] adopt transformers or attention mechanisms to
learn better representations of video and text. Thus, compared
to other methods, no additional time consumption is required
in our DVTR.

E. Space Complexity

The common method of point embedding requires O(N )

space to store the features in the joint embedding space. In our
DVTR, extra spaces are used at the stages of probabilis-
tic embedding and Monte-Carlo sampling. For probabilistic
embedding stage, our DVTR projects v and t as probabilistic
distributions. µ and 6 of video and text need to be stored
beforehand, resulting in the doubled space requirement. For
Monte-Carlo sampling, our DTVR needs K 2 storage by sam-
pling K points from video and text distributions, respec-
tively. Thus, the additional space requirements of DVTR are
O(2N ∗ K 2).
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VIII. CONCLUSION

In this work, we tackle the biased supervision of soft
positive samples in video-text retrieval learning and propose
the novel Debiased Video-Text Retrieval (DVTR) method
to alleviate the biased supervision of soft positive samples.
We first introduce the novel video-text matching uncertainty
estimation module, which identify the soft positive samples by
evaluates the uncertainty of the query and candidate samples
with probabilistic embeddings. Then, a debiased video-text
representation learning objective is employed to fix the inac-
curate supervision by weightedly reducing the penalty of soft
positive samples in ranking losses. DVTR can be integrated
into most video retrieval models for better retrieval perfor-
mance with a few computational costs at training time and
no additional time consumption at test time. Comprehensive
experimental results on five widely used datasets demonstrate
the superiority of the proposed method compared with other
state-of-the-art video-text retrieval methods.
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