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A Comprehensive Survey on Video Saliency
Detection With Auditory Information: The
Audio-Visual Consistency Perceptual 1s the Key!

Chenglizhao Chen', Member, IEEE, Mengke Song, Wenfeng Song, Li Guo, and Muwei Jian

Abstract— Video saliency detection (VSD) aims at fast locating
the most attractive objects/things/patterns in a given video clip.
Existing VSD-related works have mainly relied on the visual
system but paid less attention to the audio aspect. In contrast,
our audio system is the most vital complementary part of our
visual system. Also, audio-visual saliency detection (AVSD), one
of the most representative research topics for mimicking human
perceptual mechanisms, is currently in its infancy, and none of
the existing survey papers have touched on it, especially from the
perspective of saliency detection. Thus, the ultimate goal of this
paper is to provide an extensive review to bridge the gap between
audio-visual fusion and saliency detection. In addition, as another
highlight of this review, we have provided a deep insight into
key factors that could directly determine AVSD deep models’
performances. We claim that the audio-visual consistency degree
(AVC) — a long-overlooked issue, can directly influence the
effectiveness of using audio to benefit its visual counterpart when
performing saliency detection. Moreover, to make the AVC issue
more practical and valuable for future followers, we have newly
equipped almost all existing publicly available AVSD datasets
with additional frame-wise AVC labels. Based on these upgraded
datasets, we have conducted extensive quantitative evaluations
to ground our claim on the importance of AVC in the AVSD
task. In a word, our ideas and new sets serve as a convenient
platform with preliminaries and guidelines, all of which can
potentially facilitate future works in further promoting state-
of-the-art (SOTA) performance.

Index Terms— Audio-visual fusion, video saliency detection,
semantical consistency.
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I. INTRODUCTION

UMANS tend to be attracted by specific things, and

this mechanism has its basic principle in general. But,
outwardly, it could vary from different people and scenes,
and, directly or indirectly, such differences are usually caused
by either personality and individual differences or the exact
environment [1], [2], [3]. For example, in an open wild,
we may get attracted by a fantastic nature scene view and
pay less attention to artificial subjects. However, things go
differently in a downtown area, where magnificent artificial
buildings could keep drawing our attention. Also, our attention
could get shifted to “rare” elements — patterns that are
anomalies for their nearby surroundings, and we have an
academic name for all these objects/things/patterns attracting
our attention — saliency.

In general, the saliency-related research activities [4] should
come with a specific venue, e.g., the visual saliency, which
aims at segmenting the most eye-attracting objects or regions
in a given scene. And the scenes are usually “expressed” in
images or videos. Since video data is the main course of this
survey, we shall omit image-based saliency works.

The current visual saliency detection research field can be
roughly divided into two groups, i.e., video salient object
detection (VSOD) and video fixation prediction (VFP). The
primary methodologies of VSOD and VFP are almost the
same, whereas the existing hand-crafted methods [5], [6], [7],
[8] mainly follow either top-down or bottom-up rationale.
After entering the deep learning era, most of the exist-
ing works [9], [10], [11], [12] have adopted the end-to-
end encoder-decoder network architecture, which, generally,
belongs to the typical top-down category. Hence the differ-
ence between VSOD and VFP is the exact training ground
truth data, training loss functions, and network architectures.
For a better understanding, Fig. 1 has demonstrated such a
difference.

Though our visual system is one of the most important
venues for us to perceive the environment that we’re in, our
auditory system also plays an important role. For example,
our attention could fast shift to a sounding object, showing
that our auditory system can complement our visual system.
Despite being complementary in general, these two venues
have completely different perceptual mechanisms.

The visual venue is very informative yet with rather limited
sensing scope (because of the limited field of vision, FOV).
In contrast, the auditory venue is less informative, yet its
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Fig. 1.  The differences between video salient object detection (VSOD)

and video fixation prediction (VFP) regarding “Training Labels”, “Loss
Functions”, and “Network Designs”. The training labels (left of the below
table) of the VSOD task are object-level manual annotations (subfig-b), while
the VFP are human-eye fixations (subfig-c). The loss function (middle of
the below table) usually adopted by VSOD is cross-entropy loss which
mainly focuses on intact detection with sharp object boundary. In contrast, the
VFP focuses on the output’s distribution aspect. Further, regarding network
designs (right of the below table), the VSOD task mainly adopts bi-stream
architectures considering both temporal and spatial information to implement
a late fusion of two types of saliency, while the VFP task tends to employ
single-stream structure with early or mid fusion.

sensing scope is dead-angle-free. Besides, different from the
visual saliency research field, a pretty mature topic, audio-
related saliency is in its infancy. Moreover, different from the
visual saliency, a single modality task with abundant accessible
training data, the available training data for the audio-visual
saliency detection (AVSD) is in a critical shortage,1 which has
resulted in a clear performance bottleneck, especially in this
deep learning era.

Meanwhile, we have noticed that there exist massive
researches [18], [19], [20] regarding the visual and auditory
fusion. Their main interests usually focus on multimedia appli-
cations, e.g., multi-modality information processing, filtering,
and understanding, and these works are rarely intercrossed
with the saliency detection research field. Though some
of the existing fusion methods proposed in previous liter-
atures [21], [22] can inspire and help the network design
toward the saliency detection task, none of them has cov-
ered both saliency detection and audio-visual fusion. Thus,
as shown in Fig. 2, this review mainly focuses on two
topics, and we choose three concrete research fields as
the main courses, i.e., video saliency detection (VSD),
audio-visual correspondence (AVC), and audio-visual saliency
detection (AVSD). Also, the differences between several exist-
ing reviews on audio-visual representation learning and ours
have been illustrated in Table I.

Despite providing an extensive review, we have noticed that
the audio-visual consistency (AVC) between audio and visual,
a representative task considered in the multimedia research
field [23], [24], [25], is the key factor to determining the
overall performance of AVSD, while its importance has long
been overlooked by our AVSD research field. To verify our
claim, we have newly labeled all publicly available AVSD clips

1Widely—used VSD and VFP training datasets comprise totally 1.6K video
clips, while the available data for AVSD is only 0.2K clips, not to mention
the fact that the AVSD task is more challenge than VSD and VFP, and thus
is more data-hungry.

TABLE I

ILLUSTRATION OF THE MAIN DIFFERENCES BETWEEN THE
EXISTING REVIEWS AND OURS

Reviews Year Publication Contents
Katsaggelos et.al [13] 2015 P-IEEE Audio-visual Fusion
Baltrusaitis er.al [14] | 2018 T-PAMI Multi-modality Machine Learning
Cong et.al [15] 2018 T-CSVT RGBD/Video/Co-saliency Detection
Wang et.al [16] 2019 T-PAMI Video Saliency Detection
Zhu et.al [17] 2021 1JAC Audio-visual Localization/Correspondence
Chen et.al (Ours) 2022 T-CSVT Audio-visual Saliency Detection

frame-by-frame and conducted massive quantitative experi-
ments with them. This new finding can potentially benefit our
audio-visual saliency detection research field shortly.

In a summary, significant highlights and contributions of

this review include the following aspects:

o This review is the first attempt to bridge the gap between
saliency detection and audio-visual fusion;

o We have extensively included the most recent deep
learning-based works, making this review fresh and capa-
ble of helping new hands to join this new research topic;

« We have noticed one critical factor — the semantical
consistency degree, which has been well studied by the
multimedia research field while being completely omitted
by our AVSD research field, could significantly influence
the AVSD performance;

o For all widely-used existing AVSD datasets, we have
newly equipped them with frame-wise semantical consis-
tency degree labels, which could potentially benefit our
research community.

II. VIDEO SALIENCY DETECTION

A. Image Saliency Detection v.s. Video Saliency Detection

Image saliency detection (see in Fig. 3-A) aims at detecting
the most eye-attracting-areas in the image, e.g., region of
interest, or regions with distinct patterns/textures/appearances.
Thus, the primary problem scope of image saliency detection
is usually localized in the spatial domain, where only a
single image is considered each time when performing image
saliency detection. Compared with images, videos additionally
contain temporal information. Since the human visual system
tends to pay more attention to dynamic changes, we shall
simultaneously consider both static image and dynamic tem-
poral information when performing video saliency detection
(see in Fig. 3-B) — aiming at mimicking the human visual
system.

B. Video Salient Object Detection v.s. Video
Fixation Prediction

In the video saliency detection research field, there exist
two main research branches, including the video salient object
detection (VSOD) [5], [7], [26], [27], [28], [29] and the video
fixation prediction (VFP) [30], [31]. The major differences
between VSOD and VFP lie in three aspects: training labels
and loss functions and network designs.

As shown in Fig. 1 (left column in the table), training
labels used for the VSOD task are binary masks, where
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Fig. 2.

Our review’s structure covers two significant topics: 1) Video Saliency Detection and 2) Audio-Visual Multi-Modality Fusion. W.r.t.,

Topic 2: Audio-visual Fusion

the most

representative applications, we have highlighted them with red rectangular boxes. Also, we have newly argued that the audio-visual semantical consistency
perceptual (highlighted by the blue box) is the key factor in determining the AVSD performance.
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Fig. 3. Comparison between Image Saliency Detection and Video Saliency
Detection. The former aims at detecting visually significant areas in the static
image, while the latter contains not only the feature information of static
images, but also the dynamic information between adjacent video sequences.

all salient objects have been well annotated/segmented by
humans. In contrast, the labels used in the VFP task are
human-eye fixations (i.e., individual pixel-wise coordinates)
collected by eye-trackers directly, representing raw image
regions that humans would pay attention to. In a word, training
labels for the VSOD task are object-aware, while training
labels for the VFP task are scattering locations.

Also, as shown in Fig. 1 (middle column in the table),
the widely-used loss function in the VSOD task is the cross-
entropy loss, while the VFP task usually prefers the kullback-
leibler (KL) divergence, linear correlation coefficient (CC)
loss, normalized scanpath saliency (NSS) loss, and similarity
(SIM) loss.

Further, the VSOD task mainly adopts bi-stream archi-
tectures considering both temporal and spatial information
to implement late fusion. The VFP task tends to employ
single-stream structure with early or mid fusion. See in Fig. 1
(right column in the table).

Despite using different training labels, loss functions, and
network designs, there also exist multiple other distinguishing
differences:

1) The VSOD task should additionally consider detec-
tions’ integrity, i.e., the detected salient regions should pre-
cisely comprise the entire salient object with all its subparts.

However, the VFP task aims to simulate the human eye’s
fixation, and thus the detected results are not required to
highlight the entire object.

2) The widely-used VSOD scenario could be fully automatic
video segmentation. In this application, the saliency ranks of
different objects tend to stay unchanged for a long time. How-
ever, the human eye’s fixations are usually scattered locations,
which are relatively weak in indicating those corresponding
objects. In other words, fixations usually shift between objects.

In the following two subsections, we will review these two
research branches respectively.

C. Video Salient Object Detection (VSOD)

1) Task Definition: VSOD aims to locate and segment
the most eye-attracting salient objects. Given a given video
scene, VSOD can be regarded as a multi-task problem, where
salient object localization and segmentation are performed
simultaneously in an intensive, interactive manner between
these two tasks. The major challenge of VSOD is how to
appropriately fuse spatial and temporal information when for-
mulating saliency decision rules, while these two independent
information sources usually conflict with each other leading
to learning ambiguity.

The existing state-of-the-art (SOTA) VSOD models [32],
[33], [34], [35], [36], [37], [38], [39] can be divided into two
groups according to their network designs: 1) the bi-stream-
based methods [10], [40], [41], [42], [43], and 2) the single-
stream-based ones [44], [45], [46], [47].

The bi-stream-based models usually consist of two sub-
branches, one for the motion saliency clues, whose input
focuses on the temporal information (e.g., optical flow data);
another is the conventional color branch, which could be any
off-the-shelf image salient object detection deep model. Note
that the network architectures of these two branches could be
the same, and the only difference is their training input, i.e.,
optical flow result vs. color image.

The single-stream-based methods have abandoned the indi-
vidual temporal computation, e.g., the time-consuming optical
flow [48]. Instead, it takes multiple frames as input each
time, and then uses either LSTM [49], ConvLSTM [50], 3D
convolution [51] or Transformer [52], [53] to sense temporal
information. Detailed comparison results of these methods
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A. Bi-stream-based methods
Ideas
[ V]: long-term spatial-temporal information to facilitate the current VSOD approaches;
[“]: two sub-networks, detecting saliency in static images and optical flow maps;
[ “]: training from three aspects, spatial, temporal, and online excitations;
[**]: dynamic filtering and bidirectional dynamic fusion;
[ ']: bidirectional message propagation and updation, full-duplex strategy;
[ “]: long-range dependencies in feature representation and cross-modal integration.

Strengths Weaknesses

v with multi-scale information
v easy to implement
v more robust

X computation expensive (i.e., optical flow)

B. Single-stream-based methods

Ideas
[*°]: 3D ConvNets to learn spatiotemporal features;
[ “]: pyramid dilated bidirectional ConvLSTM to get spatial and spatiotemporal saliency;
[ “]: saliency shift-aware convLSTM to capture video saliency dynamics;
[ 7]: group of constrained self-attentions in pyramid structures to get various objects;
[*']: temporal unit enables the computation of temporal cues interacting with spatial cues;
[ °1: unified transformer framework, self-attention, long-range dependencies.

Strengths Weaknesses

v optical flow free
v fast computation speed

X w/o multi-scale information
X heavy network architecture

X performance bottle-neck
(i.e., rely on spatial branch heavily)

X weak in sensing temporal information

Fig. 4. The overall summary of VSOD including bi-stream-based methods
(A) and single-stream-based methods (B).

TABLE I

STRENGTHS AND WEAKNESSES COMPARISON BETWEEN OPTICAL
FLow [48], LSTM [49], CONVLSTM [50], 3D CONVOLUTION [51]
AND TRANSFORMER [52] TOWARDS TEMPORAL SENSING.
{M.S.}: MULTI-SCALE, {O. F.}: OpTICAL FLOW, {P. B.}:
PERFORMANCE BOTTLENECK, {F. ST.I.}: FULL
SPATIOTEMPORAL INTERACTION;

X Without, v/ : With

Methods| | Implement|M. S.|Computation|Network|O. E[P. B.|F. ST. L.
Optical Flow [48] easy v expensive light v v X
LSTM [49] hard X cheap heavy X | v X
ConvLSTM [50] hard X cheap heavy | X | v/ X
3D Convolution [51] easy v cheap light X | X v
Transformer [52] hard v expensive | heavy X | v 4

are shown in Table II. Compared with the bi-stream-based
methods, this type of work has a significant advantage, i.e.,
it could be 10 times faster in computation because the individ-
ual temporal information computation is the major efficiency
bottleneck for the bi-stream-based approaches. More details
regarding this issue can be found in [47].

2) In-Depth Summary: As shown in Fig. 4, the two
sub-branches of VSOD have been briefly summarized into
subfig-A and subfig-B. The bi-stream-based methods Fig. 4-A
utilizes optical flow to offer temporal information, but the
computation of optical flow is time-consuming, slowing down
the inference speed. Also, the bi-stream-based VSOD methods
can make full use of multi-scale information via dense inter-
stream short-connections in both encoder and decoder stages.
Thus their results can retain good boundary sharpness. Further,
the bi-stream network fashion is implementation friendly,
requiring no complex architectures.

In sharp contrast to bi-stream-based methods, the single-
stream-based methods Fig. 4-B have a distinct advantage,
i.e., because of being optical free, their computation speed
is extremely fast. However, the single-stream-based methods
also have several limitations. First, due to the attribute of

A. Optical flow-based methods

Ideas
[ ]: simpler convGRU to learn the temporal attention transitions across time;
[*']: selective combination of spatial and temporal information.

Strengths Weaknesses

X computation expensive (i.e., optical flow)

X less interactive of spatial and
temporal streams

v strong temporal sensing ability
v easy to implement
v light network design

B. LSTM-based methods
Ideas

[ ] residual layers to solve receptive field loss and spatial attention mechanism;

[ °]: output of LSTM as intra-attention to enhance the input data flow;

[*"]: deformable convolution to aligh deep spatial fratures before inputting to LSTM;
[* ]: repalce LSTM with RNN for sensing temporal information;

[*~]: spatial and temporal features as a early fusion before fed into LSTM;

[*“]: convLSTM architecture with attentive mechanisms to refine saliency maps;

[ °]: multi-stream convLSTM structures in the four pathways network.

Strengths Weaknesses

v optical flow free
v fast computation speed

X difficult to train
X weak in sensing temporal information

C. 3D convolution-based methods
Ideas
[ “]: propagate temporal features and refine the spatial features in 3D FCN;
[ '1: apply 3D convolution to 2D architecture to provide some temperal information;
[ "]: adversarial training that minimizes the gap between source and target domain.

Strengths Weaknesses

v optical flow free

v fast computation speed

v good compatibility

v leading SOTA performance

X inferior in sensing temporal
information

X challenging spatial saliency
computation

D. Transformer-based methods
Ideas

[ “]: use transformer to forecast saliency of future frames instead of previous frames;
[*“]: combine CNN, Transformer and LSTM jointly to obtain spatiotemporal correlations.

Strengths Weaknesses

v capturing long-range dependencies X huge computational

Fig. 5. The overall summary of VFP, where optical flow-based methods
(A) are computation expensive, LSTM-based methods (B) are inferior to
sense temporal information compared with optical flow, 3D-convolution-based
methods (C) are the most inferior to the other two regarding the ability of
temporal information sensing, and Transformer-based methods (D) are good
at capturing long-range context dependencies.

free optical flow, the single-stream-based methods are usually
weak in sensing temporal information. Second, they usually
utilize early spatiotemporal fusion while omitting the spatial
and temporal interaction in their decoding stage. Third, their
network architectures are usually very complex. Last, full
multi-scale interaction is beyond the reach of single-stream-
based methods, and they rely on spatial branch heavily,
resulting in unstable.

D. Video Fixation Prediction (VFP)

1) Task Definition: Unlike the VSOD task using manual
well-annotated object-wise binary masks as training objectives,
the training GTs for the VFP task are scattered human-eye
fixations collected by the eye trackers (e.g., Tobbi, EyeLink,
Smart Eye, and GazeTech). The earliest deep learning-based
VFEFP approaches [54] followed the bi-stream structure, which
belongs to the multi-task rationale, where one stream handles
the fixation predictions in the spatial domain, and another
stream focuses on the fixation predictions over the temporal
scale. Thus, the key problem of the bi-stream-based VFP
models is how to achieve the fusion balance between its
sub-streams.

2) Optical Flow-Based Approaches: The primary way for
the bi-stream VFP models to sense temporal information
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Optical Flow Temporal Stream
| (CNN) —I
[ Fusion l m
=
2 Frames Spatial Stream Predicted
Single (CNN) Fixations
Frame
Fig. 6. Method pipeline of the optical flow-based bi-stream approaches

mainly contains a temporal stream and a spatial stream followed by a fusion
module and a decoder.

is to take the optical flow results as the models’ input.
As shown in Fig. 6, almost all existing bi-stream VFP models
have adopted the optical flow (e.g., the most representative
conventional one [48] and the deep learning-based ones,
such as FlowNet [55], [56]) as the temporal sub-stream to
sensing temporal information. Here we just name a few most
representative ones.

In [31], Lai ef al. have made two key innovations: 1) a novel
way for performing early fusion between spatial and temporal
feature backbones, and 2) the convolutional Gated Recurrent
Unit (convGRU) has been firstly applied for learning the
temporal attention transitions across time, which can make
the predicted video fixation maps temporally smooth. The
major highlight of the fusion scheme is that the deep features
obtained by the spatial and temporal feature backbones are
connected densely via residual attention mechanism in a multi-
scale way. Specifically, the exact fusion operation has biased
toward the spatial information, where the deep features from
the temporal backbone are only served as auxiliary stimuli.
As a variant of the classic LSTM, the proposed convGRU
has two advantages: 1) simpler network design and 2) slight
performance improvement (less than 0.5%).

Following the bi-stream structure [30] also, Zhang et al. [57]
have devised a novel fusion scheme. The key idea of the
proposed fusion is to perform a selective combination of
spatial and temporal information. The channel-wise attention
has been used as the indicator to guide the selection process,
and the rationale is that only those deep features with strong
feature responses would be able to benefit from the detection
task. In addition, the authors have devised a novel strategy
that takes the spatial position of the salient objects in previous
consecutive frames as the additional input, aiming at facil-
itating the estimation of temporal saliency by shrinking the
problem domain. Consequently, the network’s output could
stay consistent (smooth) over the temporal direction.

3) Summary of Optical Flow-Based VFP: As shown in
Fig. 5-A, the major advantage of the optical flow-based
approach is its strong temporal sensing ability (due to the
usage of optical flow). The disadvantages are also clear: time-
consuming and less interaction between spatial and temporal
sources. The comprehensive summary of Optical Flow-based
approaches can be seen in Fig. 5-A.

4) Long Short-Term Memory-Based Approaches: Actually,
most of the existing state-of-the-art (SOTA) VFP approaches
have adopted the long short-term memory (LSTM) to sense
temporal information. The LSTM-based approaches usually
follow the single-stream methodology compared to the optical

Deep Features fr?m Other Frames

e[

Spatial Stream

e
| (CNN)
| Spatial Stream
@— (NN [T _’Q
Multiple Frames e s Q
(CNN) — ecoder |[—

Predicted
Shared Weights v Shared Weights Fixations

Deep Features to Other Frames

Fig. 7.  Method pipeline of the long short-term memory- (LSTM-) based
approaches which usually follow the single-stream methodology.

flow-based ones. As can be seen in Fig. 7, this type of
approaches usually adopts the convolutional neural networks
(CNN) to compute spatial deep features for each single
frame. Then, to sense temporal information, all deep features
computed individually via CNN are fed into the input gate of
LSTM. Finally, a decoder is applied to produce the pixel-wise
fixation prediction.

In [58], Wang et al. have completely followed the structure
demonstrated in Fig. 7. However, some modifications have
been made in the spatial stream, including 1) several residual
layers were used to compensate for the loss of receptive
field caused by removing the last two pooling layers of the
VGG16 feature backbone; 2) the spatial attention mechanism
was applied to the spatial-stream for facilitating the network
training, where the static fixation GTs could be used as the
attentions helping the network’s training (i.e., the dynamic
saliency), which could be able to alleviate the demand of large
scale of costly video fixation GTs.

Similar to [58], Linardos et al. in [59] have placed the
LSTM in the middle stage of a typical encoder-decoder CNN.
The LSTM collects the output of the encoder, and then its
output, representing the spatiotemporal information, is fed to
the decoder to formulate the fixation prediction. The major
highlight of this work is the proposed recurrent mechanism,
where the LSTM’s output is used as an intra-attention to
enhance the input data flow. Consequently, the network’s abil-
ity to sense temporal information gets improved significantly.

To further enhance the sensing ability of temporal infor-
mation, Chen et al. in [60] have taken 3 frames as the
network’s input each time. Then, the deep features computed
from these frames are combined as the input of LSTM.
Compared with the conventional LSTM-based approaches,
which take only 1 frame as input each time, this method
has considered 3 frames, and thus its temporal sensing ability
could, of course, get enhanced. Since the spatial displacement
occurs along the time scale, deep features computed from
consecutive video frames are usually misaligned, which could
confuse the subsequent learning process, blurring the final
prediction results. To solve this problem, the authors have
resorted to deformable convolution — an off-the-shelf tool
that could dynamically learn the spatial positions of the
convolutional kernels. By using the deformable convolution,
the deep features before inputting into the LSTM are aligned.

It is worth mentioning that the LSTM can also be replaced
by other networks which can sense temporal information.
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For example, Droste ef al. in [61] have adopted the recurrent
neural network (RNN), the early prototype of the LSTM,
for sensing temporal information, where the RNN is placed
between the encoder and decoder, sharing a similar overall
network structure to that of the [60].

Apart from the single-stream LSTM-based approaches men-
tioned above, there also exist several works [62] following the
bi-stream methodology, where the spatial and temporal infor-
mation interact with each other as an early fusion. Jiang et al.
in [62] followed the typical bi-stream structure, in which a
pruned form of YOLO is applied as the subnet for sensing
the spatial information, and the temporal stream is a pruned
FlowNet [55]. The multi-scale deep features provided by the
spatial stream are collected via the concatenation and batch
normalization operations, formulating a coarse localization
mask to compress those non-salient backgrounds in the deep
spatial features. Meanwhile, the deep features of the temporal
stream are also assembled in a way identical to that used
in the spatial stream. Finally, the multi-scale deep features
assembled individually from the spatial and temporal streams
are concatenated to be fed to an LSTM.

Similar to the early fusion adopted in [62], Wu et al
in [63] have committed one modification to enhance the tem-
poral sensing ability: the inter-frame correlations are explored
by performing the simple dot-product operator along the
channel dimension. Besides, the authors have adopted the
spatial attention-based shuffle operation to enhance the spatial
stream, where the deep multi-level features are combined and
later shuffled. Both these strong spatial deep features and
cross-frame correlation features will be fed into a variant ver-
sion of the LSTM, named the correlation-based ConvLSTM,
where the input gate has been modified to an addition
operation-based feature fusion; thus, it could be able to simul-
taneously take two different sources as its input.

Also, Cornia et al. in [64] have employed the ConvLSTM
architecture with attentive mechanisms to refine the predicted
saliency maps iteratively. Those predictions are combined with
priors to model the tendency of humans to fix the center region
of the image. In [65], Gorji et al. have deployed multi-stream
ConvLSTM structures in the four pathways network, fol-
lowed by an augmenting convnet that learns to combine the
complementary and time-varying outputs of the ConvLSTMs
by minimizing the relative entropy between the augmented
saliency and viewers’ fixation patterns on videos.

5) Summary of LSTM-Based VFP: As shown in Fig. 5-B,
the major advantage of the LSTM-based VFP is its faster com-
putational speed. However, some of the most recent works [47]
have argued that the nature of the LSTM might not be powerful
to sense temporal information. The main reason is that such
methods tend to focus solely on adjacent pixels, causing a
loss in long-range dependency. Also, the LSTM-based VFP
methods are usually difficult to train because the adopted
LSTMs need to perform two tasks simultaneously, i.e.,
1) sense temporal information, and 2) fuse spatial and temporal
information.

6) 3D Convolution-Based Approaches: Compared with the
widely-used 2D convolution that can only sense spatial infor-
mation, 3D convolution can sense both spatial and temporal

Multi-scale Short Connections

- [+ .
1§ Y "
—s{Spatial-temporal Encoder Spatial-temporal Decoder
(CNN-3D Version) (CNN-3D Version)
3~16 Frames 3~16 Predicted
Fixation Maps
Fig. 8. Method pipeline of the 3D convolution-based approaches and the

major highlight of these approaches is their capability of sensing both spatial
and temporal information in a cubic way.

information in a cubic way. As been discussed in [47],
3D convolution is generally inferior to its competitors (e.g.,
LSTM [49] and optical flow [56]) in sensing temporal infor-
mation, but it still has several unique advantages, i.e., fast
computation and good compatibility.> Also, to the best of
our knowledge, 3D convolution-based VFP models [66] are
generally leading the SOTA performance (simultaneously con-
sidering accuracy and efficiency), and the overall method
pipeline of this type of approach has been provided in Fig. 8.
We shall review several representatives here.

Min et al. in [67] have directly applied the 3D convo-
lution to the conventional 2D encoder-decoder architecture,
where the exact implementation is straightforward, i.e., all
2D convolutions are replaced by 3D versions. Though the
newly applied 3D convolution can provide some temporal
information, one critical problem exists in the decoder. The
widely-used unpooling operation cannot provide the exact
spatial locations over the temporal scale, limiting its decoder’s
performance. To alleviate it, the authors have devised an
auxiliary pooling scheme, whose key rationale is to record
all spatial, temporal, and channel locations when performing
pooling operations. Therefore, the unpooling operations in the
decoder layers can re-use the reserved locations eventually.

Recently, Bellitto et al. in [68] have followed the 3D
encoder-decoder network structure for the VFP task. The high-
light of this approach is the newly proposed decoder, where
two new concepts have been considered. To handle the domain
shift problem, each side output of the encoder is assigned to an
unsupervised binary classifier, whose primary objective is to
follow the adversarial training that minimizes the gap between
features learned from the source and target domain. Besides,
for each layer in the decoder, multiple domain-specific priors
are dynamically learned and incorporated to make the network
domain-specific. This strategy could significantly improve
quantitative scores further.

7) Summary of 3D Convolution-Based VFP: As shown
in Fig. 5-C, compared with the LSTM-based VFP, the 3D
Convolution-based VFP methods usually have faster com-
putation speed since 3D convolutions are more lightweight
than LSTM. Also, as we have mentioned before, 3D convo-
lution can serve any SOTA VFP as a plug-in. Thus any 2D
convolution-based methods can be easily adapted to handle
video data by replacing 2D convolutions with 3D convolutions.

2The powerful generic nature of the 3D convolution, i.e., by replacing 2D
convolutions to 3D convolutions, any 2D convolution-based image saliency
detection models can be easily converted to adapt the saliency detection over
video data without much network modifications.
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8) Transformer-Based Approaches: Comparing with the
existing CNNs-based methods which have mainly adopted
convolutions to obtain features, Transformer-based approaches
utilize self-attention machanism to perform feature extraction.
Since CNN can only conduct locally, while self-attention
machanisms can extract features globally, which is more
powerful to model the long-range correlations between video
frames in temporal sequences [69].

Ma et al. [70] have firstly introduced a pure-transformer
framework for video saliency prediction. In the work, the
authors have instructively forecasted visual saliency of future
frames rather than merely focusing on previous frames. Since
only performing VFP methods will make focusing regions lag
behind the ongoing scenes, which may induce the disability
to keep salient objects in the center of captured videos or
keep following objects with high speeds. Thus, they have
proposed a video saliency forecasting transformer to explore
temporal and spatial semantic information from input videos
for video saliency forecasting. And a cross-attention decoder
is employed to eliminate the time dimension of the decoder
feature by the time embedding layer.

Also, Wang et al. in [69] have introduced self-attention
machanism to obtain spatiotemporal correlations between
features and saliency regions. The key difference compared
with [70] is that this work has combined CNN, Transformer
and LSTM jointly to make fixation predictions. Specifically,
a CNN-based multi-scale feature-fusion network aims at
effectively extracting features in multi-category space and a
CNN-based DConvLLSTM, as the decoder, is used for dynamic
information learning. The Transformer encoder serves to learn
global correlation between pixels and human visual attention
in both time and space domains.

9) Summary of Transformer-Based VFP: As shown in
Fig. 5-D, compared with the above-mentioned CNN-based
VFP methods, the most strength of Transformer-based VFP is
the aptitude for capturing long-range dependencies. Thus, it is
good at sensing long-range temporal information. However,
Transformer is a modeling approach based on pixel-to-pixel
points, so the computational is undoubtedly huge.

III. AUDIO-VISUAL MULTI-MODALITY FUSION

Unlike the visual signal, which determines human attention
directly, the audio signal is usually the auxiliaries, influencing
human attention subtly. For example, our attention can be
easily attracted by a sounding object, e.g., the sound of a
dropping box hitting the floor. However, some audio signals
are also completely helpless in drawing our attention, e.g.,
background music. Thus, since the human visual field has
blind spots, the audio signal, whose perception scope is almost
360°, should be appropriately used to complement visual in
practice. With the development of deep learning techniques,
more and more research attention has been paid to how to
combine/fuse audio and visual for vision-related tasks, e.g.,
sounding object localization [18], audio-visual synchroniza-
tion [73], object tracking [74], and saliency detection [75].
Though the primary focus of this review is on saliency detec-
tion, we shall still review several most representative audio-
visual-related tasks [76], [77], [78] in advance because these

fusion-related arts can be directly referred to and get a deep
insight into our audio-visual saliency detection. For a better
reading, we propose to introduce three most representative
tasks here, including audio-visual correspondence (AVC), face
and audio matching (FAM) and sound-object localization
(SOL). The overall summary can be see in Fig. 9.

A. Preliminaries on Audio Feature Representation and
Audio-Visual Feature Embedding

Given any 1-dimensional raw audio data, we can directly
input it to an off-the-shelf feature backbone (e.g., Sound-
Net [79] or VggSound [80]), where the raw audio is sequen-
tially convoluted by a seises of 1D kernels. Also, the 1D audio
signal can also be transformed to a 2D spectrogram, thus we
can adopt the existing popular backbones (e.g., VggNet [71] or
ResNet [72]) instead, where the audio signal’s 2D spectrogram
can be visualized in the middle of Fig. 10. To make the
audio’s 2D spectrogram more discriminative and sensitive to
our human auditory system, we can use the Mel filter —
a predefined linear transformation [81], to convert the 2D
spectrogram to Mel spectrogram (see the right part of Fig. 10).

Recently, there have been several works that have focused
on the audio-visual feature embedding [21], [22], [82]. The
main objective of audio-visual feature embedding is to obtain
a generic feature representation. Thus in the spanned feature
space, the embedded features can be informative and discrimi-
native enough for specific applications, e.g., the multi-modality
image retrieval [83], audio-visual correspondence, face and
audio matching, and sound object localization.

Tian et al. [84] have applied channel-wise attention to help
selectively fuse audio and visual features. The motivation is
very straightforward, which is based on an assumption, ie.,
that either visual or audio features might benefit the subsequent
classification task, and thus the one with a higher feature
response should be considered more during the fusion. Fol-
lowing this rationale, channel-wise attention has been applied
simultaneously to both audio and visual streams. Then the
exact modality-wise selection is achieved by performing a
softmax. Note that this channel-wise attention-based multi-
modality selective fusion has also been used in some existing
VSOD approaches, e.g., the classic MGA [40]. Recently,
Gao et al. in [85] have adopted a distillation network to
compute audio-visual features. A teacher network was initially
trained in the visual domain, where the video tags were
used as the classification supervision. Then, a student audio-
visual network was trained by taking the predictions from the
teacher network as its supervision. Thus the learned interme-
diate features can achieve automatic alignment between audio
and visual and finally obtain a strong audio-visual feature
embedding.

B. Audio-Visual Correspondence (AVC)

1) Task Definition: The AVC task focuses on discover-
ing the global semantic relation between audio and visual
modalities, which takes both audio and visual information as
input, then makes binary predictions on whether the given
audio event is synchronized with the current visual event. For
example, a barking dog might be out of the visual field, making
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A. Audio-visual Correspondence (AVC)
Ideas
['"]: propose the AVC task firstly;
['"]: euclidean distance-based fusion; extend AVC to cross-modal retrieval and SOL;
[ ']: co-attention to learn cross-modal representations from unlabelled videos;
[ “]: contrastive learning for cross-modal discrimination of video from audio;
[ ]: project audio-video to a common representation space; binary classification;
[ °]: “video theme” as an additional information source to boost the AVC performance.

Strengths Weaknesses

v semi-supervised learning
v abundant in semantic information

X overdependent on Semantic Information
X low accuracy
X single granularity

B. Face and audio Matching (FAM)

Ideas
[ ]: introduce CNNs for both binary and multi-way cross-modal FAM;
['©]: joint audiovisual analysis of videos to determine the voice and face.
Strengths Weaknesses

v good application potential X overdependent on precedent
procedures (face recognition and voice

recognition)

C. SOL -- Correlation Analysis-based methods
Ideas

]: firstly explore the use of audio-visual synchrony to locate sound sources;

]: deep dense trajectory and curriculum learning to locate and separate sound;

]: apply CCA for identifying the moving objects correlated with the audio signal;

]: exploit spatial sparsity of audio-visual events to remove inherent ill-posedness;

]: audio-guided visual attention to adaptively explore the audio-visual correlations;
]: multimodal attention for humanoid robots using bottom-up audio-visual cues;

]: obtain visual saliency map for a video by incorporating sounds in its computation.

Strengths Weaknesses
v feature embedding free

v good robustness

X heavy computation
X massive false-alarms (low accuracy)
X rely on hand-crafted features

D. SOL -- CAM-based methods
Ideas
['°]: localize sound source using attention mechanism guided by sound information;
[ "1: learn a general video representation that fuses audio and visual information;
[ ©7]: dual multimodal residual network to explore audio-visual correlations.

Strengths Weaknesses

v high accuracy X rely on the pre-given video tags
X fully-supervised

E. SOL -- Feature similarity-based methods
Ideas

['"]: demonstrate AVC task can enable tic-based locali. of sound objects;
[ “]: use unsupervised clustering in one modality to supervise the other modality;
["]: use unlabeled audiovisual data to learn to localize objects in a reference frame.

Strengths Weaknesses

v video tags free
v/ semi-supervised

X additional computation
X relatively low accuracy

Fig. 9. The overall summary of Audio-Visual Multi-Modality Fusion, mainly
consisting of three tasks: audio-visual correspondence (AVC), face and audio
matching (FAM) and sound-object localization (SOL).
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Audio’s 2D Mel Spectrogram

Raw Audio Signal

Fig. 10. Audio feature computation details. First, the raw 1D audio signal
is transformed to a 2D spectrogram by fast Fourier transform (FFT), thus
the existing popular backbones (e.g., VggNet [71] or ResNet [72]) can be
used. Next, the Mel filter makes the 2D spectrogram more discriminative and
sensitive to our human auditory system.

the audio event unsynchronized with the visual event. In this
case, the AVC task should make a negative prediction and vice
versa. For a better understanding, we have provided a pictorial
demonstration of the AVC task’s overview in the bottom-left
of Fig. 2. Also, Fig. 11 (a) demonstrates the AVC task more
clearly from the network perspective. The nature of the AVC

task is a typical binary classification, and the technical key is
how to align and fuse audio and visual streams.

Arandjelovic et al. in [86] followed an identical network
structure to that of Fig. 11 (a). Instead of focusing on the
feature representation aspect, the primary interest of this work
is to learn the relationship between single static frames and
their audio counterparts. To fuse deep features derived from
audio and visual sources, the authors have resorted to a
series of feature reshape layers (i.e., pooling layers). Hence,
both features of audio and visual streams are reshaped to an
identical size, which will be later fused via multiple fully-
connected layers. The proposed training process requires no
additional supervision data, where image and audio training
instances pairs are automatically obtained by sampling two
different videos, i.e., picking a random frame from video-1
and a random 1-second audio clip from video-2, and please see
Fig. 11 (b) for more details. Note that this strategy has been
widely used in our AVC research community as the default
training protocol.

Following the bi-stream structure, the same authors
in [18] have made one significant modification regarding the
audio-visual fusion part. In the early version [86], features
derived from audio and visual streams are fused via the
widely-used feature concatenation operation. However, the
concatenation-based fusion tends to misalign both audio and
visual signals, resulting in the fused audio-visual features
being inadequate for cross-modal retrieval. Thus, [18] has
adopted the Euclidean distance-based fusion scheme to enforce
the feature alignment process.

Also using the bi-stream framework, Cheng et al. in [73]
have presented a fancy fusion scheme, where deep features
respectively derived from either the audio steam or the
visual stream are firstly combined by the newly designed
“co-attention” operation, which has been shown in Fig. 11 (c).
The primary objective of this co-attention operation is two-
fold: 1) enhance audio-visual consistencies and 2) suppress
those inconsistencies. As shown in Fig. 11 (c), the outputs of
the co-attention operations can be regarded as the upgraded
versions of the original input, i.e., A+ and V4, where all
those clearly unsynchronized information can be effectively
excluded. In addition, the exact implementation of co-attention
could be either the widely-used spatial attention [87] or the
fancy transformer [88].

To further promote SOTA performance, the existing learning
strategies (e.g., contrastive learning [21]) can be used directly.
Morgado et al. in [89] have applied contrastive learning
to the AVC task, whose core idea can be briefly summa-
rized as increasing the inter-class distance and decreasing the
intra-class distance. In the implementation, training instances
belonging to the intra-class are audio and visual pairs whose
semantical feature distances are below the given hard thresh-
old. And the rest of the audio-visual pairs are the inter-class
cases. There also exist some other similar works (e.g., [90])
which have adopted the existing learning strategies targeting
better audio-visual feature embedding.

The AVC task can also be extended to tell if the current
visual information is appropriate with the corresponding audio
information. For example, it is inappropriate for a video
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(a) The widely-used network architecture for the audio-visual correspondence (AVC) task, which is a typical binary classification, where the key

is how to align and fuse the audio and visual streams. (b) The widely-used audio-visual correspondence (AVC) training data formulation. The synchronized
video and audio pairs are set to positive, whereas the unsynchronized video and audio pairs are set to negative. (c¢) Co-attention-based audio and visual feature
fusion, where the outputs of the co-attention operation can be regarded as the upgraded versions, i.e., A+ means upgraded audio features and V+ denotes
upgraded visual features, where all those clearly unsynchronized information can be effectively excluded.

frame to contain happy faces with a sad melody. To achieve
this goal, Verma et al. in [91] have “weakly” divided the
input audio-visual signals into three categories according to
their intrinsic emotions, i.e., positive, neutral, and negative,
whose structure is almost identical to that of Fig. 11 (c).
A similar solution can be found in [92], where the authors have
adopted the video theme as an additional information source
to boost the AVC performance. The “video theme” adopted
in this paper is the manual video-level category tags. And the
rationale of this work is to use the theme-based classification
responses to eliminate instances whose audio-visual semantics
are unsynchronized.

2) In-Depth Summary: As shown in Fig. 9-A, most exist-
ing AVC methods have adopted semi-supervised learning,
where positive and negative training instances are obtained
by extracting visual and audio fragments from either the
same sequence or different sequences. Since semantic con-
sistency is the sole indicator to show if a given visual
and audio pair corresponds, the existing AVC methods usu-
ally have very strong semantic information. Also, they are
over-dependent on semantic information resulting in unstable
and low-performance accuracy. Further, this type of approach
can only conduct the AVC in single granularity — can
only achieve batch-wise predictions rather than frame-wise
predictions.

C. Face and Audio Matching (FAM)

1) Task Definition: The primary task of FAM is that, given a
face image/video and a voice sequence, FAM determines if the
given face matches the voice. This task’s overview can be seen
in Fig. 12. The methodology of the FAM task is quite similar
to that of the person re-identification (ReID) [93], [94], [95],
[96], while the major difference relies only on their feature
modalities, where the ReID task only needs to consider the
visual domain, while the FAM task needs to consider both
audio and visual. Also, the key to succeeding in matching
faces and voices heavily relies on the design of an appropriate
audio-visual fusion.

Like the AVC task, Nagrani et al. in [97] directly treated
the FAM task as a binary classification. In this work, the face
and voice features are obtained by feeding the given face and
voice to the existing feature backbone. The audio-visual fusion
is implemented by the widely-used concatenation operation,
and the final classification is fulfilled by the conventional

Voice-1 Voice-2
and and
Face-1 Face-1
“
' -
Voice-2 Voice-2
and and
Face-2 Face-2
AN~

Training Phase Testing Phase

Fig. 12. Matching between faces and voices. The matched faces and voices
pairs are set as positive (v'), where the unmatched faces and voices pairs are
set as negative (/%).

fully-connected layers. Like the AVC task, the existing learn-
ing strategies could also be directly applied to the FAM
task and bring solid performance gain, e.g., triplet loss [98],
[99] or contrastive loss [100]. Meanwhile, the FAM research
field [101], [102] has also focused on feature embedding.
Rather than performing the binary classification towards the
matching problem, some other weakly-supervised classifica-
tions (e.g., identity, gender, and nationality [98]) towards a
single modality can also be used to implicitly obtain the
aligned face-voice deep features.

2) In-Depth Summary: As shown in Fig. 9-B, the FAM task
is a representative application of AVC, but it is overdependent
on precedent procedures, i.e., face recognition, and voice
recognition, making the existing FAM methods unstable.

D. Sounding Object Localization (SOL)

1) Task Definition: Given a pair of video and audio exam-
ples, the SOL task aims to locate the sounding object in
visual space. and the task overview can be seen in Fig. 13.
Recent works are mainly based on audio-visual synchroniza-
tion, which jointly train visual and sound networks to obtain
visual and audio features, respectively, then fuse the features,
and finally highlight the spatial regions sharing strong feature
consistency with the audio counterpart.

2) Correlation Analysis-Based SOL Approaches: The
research of SOL has a long history, where the earliest work
originates in 1999 [103]. In this work, Hershey et al. [103]
have explored the correlation between audio and video signals.
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Fig. 13.  The demonstration of the SOL tasks. The objective of SOL is to
locate the sounding object in the visual space, e.g., given a visual scene, the
snake can be located with the snake hiss, while the person can be located
with the human voice.

The idea itself is straightforward, whose rationale is that a
spatial region containing a sounding object should have a large
probability of exhibiting a strong correlation with the audio
signal. Zhao et al. [104] have devised a Deep Dense Trajectory
model and a curriculum learning scheme to locate and separate
sound, which exploits the inherent coherence of audio-visual
signals. The highlight of the work is learning the motion cues
necessary for audio-visual sound separation. After that, several
works have adopted various correlation analysis methods for
the SOL task, and we shall briefly review them.

Izadinia et al. in [105] have applied the canonical
correlation analysis (CCA) [106] for identifying the moving
objects which are heavily correlated with the audio signal.
And similar attempts can be found in [107] and [108].
Besides, several existing works [109], [110] have considered
mutual information as the alternation, whose rationales are
very similar to that of the CCA-based ones. In a word, the
correlation analysis-based approaches are usually hand-crafted
ones, which can only perform well when visual information
has strong consistency with the audio counterpart.

Different from the correlation analysis-based approaches,
which are mainly interested in the SOL task and designed
mainly for videos with plain audio signals, there also exist
several works [111], [112] which have investigated the stereo
cases, i.e., videos with a stereo audio signal. The key idea of
this branch of work is very simple — the sounding object’s
spatial location can be coarsely determined by analyzing the
difference between the individual soundtracks. Let’s take the
dual soundtrack. For example, the audio signal of a sounding
object should first arrive at the left microphone if the sound-
ing object is located on the left. Theoretically, this type of
approach can achieve the best SOL performance. However, the
stereo audio signal requirement inevitably narrows the broad
applications.

3) Summary of Correlation Analysis-Based SOL: As shown
in Fig. 9-C, the major advantage of correlation analysis-based
SOL methods is that they do not need to perform specific
visual-audio feature embedding. Instead, they usually adopt
various off-the-shelf feature computation tools, most of which
are hand-crafted ones, to span high-dimensional feature spaces
for both visual and audio data. By using correlation analysis

methods, they can reveal the potential visual-audio consisten-
cies for localizing the sounding visual areas. However, due
to the hand-crafted nature, such methods are generally time-
consuming. And because of the limitations of hand-crafted
features (i.e., weak discriminative ability), their results usually
exist massive false alarms.

4) Deep Learning-Based SOL Approaches: Recently,
SOL-related works are all based on deep learning [113], [114],
[115], [116], whose key idea is to perform audio and visual
feature embedding. And most of them can be roughly divided
into two groups: 1) the class activation mapping- (CAM-)
based ones and 2) the feature similarity-based ones.

The CAM-based approaches [19], [20], [108], [117] usu-
ally adopt the conventional classification network, e.g., the
image scene classification. Outwardly, the primary objective
of their network training is to achieve a good classification
performance. The real purpose is to utilize the classification
task to formulate the audio-visual feature embedding. Because
the sounding objects’ audio signal can significantly contribute
to the classification task, we can infer that image regions
with strong audio-visual feature responses tend to comprise
the sounding object. Following this rationale, the CAM-based
SOL methods can directly utilize the feature response map
provided at the fusion module’s last layer as the SOL result.
Since the CAM’s computation is fully automatic, the nature
of the CAM-based SOL methods is implicit.

5) Summary of CAM-Based SOL: As shown in Fig. 9-D,
the greatest strength of CAM-based approaches is the high
accuracy because they have additionally used video tags for
network training. However, their fully-supervised manner is a
clear shortcoming, limiting their broad application.

The feature similarity-based SOL methods [18], [74], [86]
are slightly different from the CAM-based ones. Instead of
using the implicit manner, this branch of work has adopted
the explicit way. That is, after the classifier training, two
separate deep feature representations can be derived from the
feature backbones’ (e.g., Vgg and VggSound) bottom layers,
i.e., a deep visual feature (a 3-dimensional tensor) and a
deep audio feature (a 1-dimensional vector). Then, because
those pixels belonging to the sounding object tend to have
a strong audio-visual correlation, the pixel-wise audio-visual
feature similarity (e.g., the widely-used Euclidean distance
and Cosine similarity) can be applied to locate the sounding
pixels. To facilitate a better understanding, we have provided
a pictorial demonstration in Fig. 14.

6) Summary of Feature Similarity-Based SOL: As shown in
Fig. 9-E, compared with CAM-based SOL approaches, feature
similarity-based methods are video tags free and trained in a
semi-supervised way, avoiding disturbances of unfaithful video
tags. The weakness is the additional computation of the feature
similarity computation.

IV. AUDIO RELATED SALIENCY DETECTION
A. Audio Saliency Detection (ASD)

1) Task Definition: The ASD task is designed to detect
drastic changes in audio signals which could attract human
attention. Compared with visual saliency, ASD is a relatively
easy task because the audio signal is less informative than the



CHEN et al.: COMPREHENSIVE SURVEY ON VSD WITH AUDITORY INFORMATION 467

@]

1x1xc >

1-dimensional Audio! =2

Feature Vector (A) g

&

a

»

t g

—/\/\/\/\/\— Audio Stream ] =
(CNN) CA]
Audio (1s) 1

M
. Videg
Categories

? . FC Layers
Spatial-temporal Epcoder
: CNN-3D Version Feature Similarity based SOL
Frames (1s) Feature
p Similarity
\\ v
BT A E
C

Visual Tensor (V)

Fig. 14. Demonstration of the CAM-based SOL and the feature similarity-
based SOL. The former searches for strong audio-visual feature response to
localize the sounding object, while the latter uses the pixel-wise audio-visual
feature similarity instead.

visual signal. By considering audio solely, saliency detection
can still be performed, a.k.a., audio saliency detection or
salient event detection, and there exist multiple works [118],
[119], most of which are non-deep learning-based ones, and
we shall briefly review them here.

Following the rationale proposed in the earliest Itti’s classic
work [120] — salient regions should exhibit high contrast to
their surroundings, Kayser er al. in [121] have investigated
the audio saliency detection task. In this work, the authors
have adopted multiple filters to measure the audio signal’s
changing tendency, i.e., the first derivative of intensity and
frequency over the time scale. Because, for a short time span,
salient audio fragments usually come with a large difference
from the rest, their temporal-scale changing tendency can
be very effective in evaluating saliency. Following a similar
idea, Schauerte et al. [122] have adopted the KL-divergence
between two audio fragments’ 2D spectral histograms. Com-
pared with the previous work [121], which could be regarded
as a “local” audio saliency approach, this new work is a
non-local one. Also, based on the 2D spectral histogram,
Tsuchida et al. in [123] have proposed a novel non-local signal
feature representation method. For each cell in 2D spectral
histogram, the authors have used principal component analysis
(PCA) to extract the non-local feature. Audio saliency can
be obtained based on these features by performing contrast
computation over the newly devised feature subspace.

Also, the audio signal’s amplitude and frequency are the
widely-used computational unit for the salient event detec-
tion [124]. Zlatintsi et al. in [125] have converted both
audio amplitude and frequency to 3D feature via the Teager
energy [126]. This work has strongly assumed that people tend
to be attracted by sudden loudness. Thus, the authors have
directly considered the averaged audio’s amplitude, frequency,
and newly devised energy to measure the saliency degree.
Beyond the amplitude and frequency-based representations,
Merve et al. in [127] have further devised several novel feature
representations (e.g., envelope feature, bandwidth feature, rate
feature, pitch feature) for audio signals over the time scale.
Finally, this work follows the conventional common thread,

A. Audio-based Saliency Detection
Ideas

]: integrate auditory spatial saliency to the conventional ISO loudness;

]: consider naturalistic auditory excerpts as stimuli in magnetic resonance imaging;
]: adopt multiple filters to measure the audio signal’s changing tendency;

]: Gamma distribution, the Kullback-Leibler divergence;

]: predict the saliency of an auditory stimulus in the frequency domain;

]: explore various fusion schemes for perceptually audio events combination;

]: propose a novel auditory saliency map that is defined only over time.

Strengths Weaknesses
v good explanation X stagnant advances
X heavy computation
X low accuracy
B. Text-audio Saliency Detection
Ideas

[ ~“]: maximize the mutual information between the spectrograms of isolated target
events and the estimated saliency of the overall visual representation;

['~°]: use a multimodal saliency curve integrating cues from the aural, visual, and text;

['~"]: propose a non-parametric classification technique for salient event detection;

[~ ']: weakly labeled data and a Non-negative Matrix Factorization model.

Strengths Weaknesses

v focusing on semantic X rely on precedent tools

Fig. 15. The overall summary of Audio Saliency Detection (ASD). The
former (A) considers audio signals solely, while the latter (B) takes both
audio and text signals.

i.e., the contrast computation, for each of the newly devised
features to obtain multiple bottom audio saliency. The final
saliency is achieved by combining them via simple linear
fusion.

2) In-Depth Summary: We have summarized the ASD
works in Fig. 15-A. Most of the existing ASD methods
are explainable because the audio signal’s changing tendency
fits the human attention mechanism. Generally, the existing
methods require heavy computation and achieve low accuracy
because hand-crafted methods such as Gamma distribution cal-
culations are less discriminative and time-consuming. Further,
the advances toward audio saliency detection are relatively
slow, the widely-used methodologies are still limited to the
conventional hand-crafted ones, and the deep learning-related
researches are quite rare. Considering the importance of audio
saliency, this field deserves intense research attention in the
near future.

B. Text-Audio Saliency Detection (TASD)

1) Task Definition: The TASD task aims at detecting drastic
changes over audio signals with the help of text modality,
which focuses on the relationship between text information
and audio saliency [128], [129] instead of merely audio
signals, unlike the above-mentioned audio saliency methods.
Existing TASD task methods mainly compute similarity matri-
ces or clustering to measure the consistency between text and
audio.

Zlatintsi et al. in [130] have fused both text information
and audio signal before computing the audio saliency, where
the key rationale of the adopted fusion is to calculate the
feature similarity (e.g., mutual information) between text and
audio. Another most representative work could be the [131],
which has adopted a non-negative matrix factorization model
to measure the consistency between text and audio.

2) In-Depth Summary: As shown in Fig. 15-B, the
text-audio saliency detection methods mainly focus on seman-
tic information of text and audio, similar to the AVC task.
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But they rely more on precedent tools, which limits their
development.

C. Audio-Visual Saliency Detection (AVSD)

1) Task Definition: The AVSD task is designed to mimic
our human attention mechanism in a visual-audio environment
because both visual and audio stimuli could cause attention
shifting. Thus, the ultimate goal of AVSD is to highlight those
video regions which are simultaneously salient in both visual
and audio sources.

As the main topic of this review, we shall give a more
detailed introduction and discussion of the SOTA audio-visual
saliency detection approaches. However, to our knowledge,
this topic is definitely in its infancy, and only several
deep learning-based works exist. Thus, we take the exact
audio-visual fusion scheme as the starting point. Therefore,
some related works mentioned in the previous sections might
be referenced here for a better understanding.

2) Hand-Crafted Fusions for AVSD: Most of the existing
hand-crafted approaches [132], [133] follow the bi-stream
structure, which is almost the same as the AVC task reviewed
above. Given a video sequence, saliency detection over either
the audio or visual channel is computed first. Then the
audio-visual saliency can be derived by designing an appro-
priate fusion scheme. Any off-the-shelf audio/visual saliency
detection methods can be used directly, making the exact
fusion scheme the key to the overall performance.

Many works [134], [135], [136], [137] have adopted the
multiplicative-based fusion because it can effectively enhance
the consistency and compress the inconsistency between
audio and visual saliency-related features. After all, those
real salient regions tend to be salient in both the audio
domain and visual domain simultaneously. The limitation
of the multiplicative-based fusion is also quite clear — it
tends to get confused if there exist multiple visual and
saliency features. In cases with multiple audio and visual
features, Coutrot et al. in [138] have adopted the linear
fusion, where the fusion weights are computed via the classic
expectation-maximization (EM) algorithm, a statistical method
using training samples to estimate the relative importance of
each feature aiming to maximize the global likelihood of the
mixture model. Further, Sidaty er al. in [139] have conducted
an extensive evaluation regarding different fusion schemes,
including maximum, addition, average, multiplication, and
non-linear combination-based fusion schemes. As expected,
all such simple fusions are inferior to the non-linear fusion
because, in most cases, the audio and visual saliency could
have different contributions to the final audio-visual saliency.
The given video scene and content usually determine the exact
contribution degree. Yet, these naive fusion schemes are not
flexible enough, failing to achieve the optimal balance between
audio and visual.

Also, some works [140], [141], [142] have adopted cor-
relation analysis fusions for AVSD. From the experiment
perspective, Min et al. in [140] have conducted extensive
verifications of the human eye fixations in conditions with and
without audio signals. Their results indicate that audio signals
can significantly influence human attention only if the salient

object is visually non-salient yet salient in the audio channel,
otherwise, the audio information is completely helpless. This
work also inspires us that an audio-visual saliency detection
method should bias more towards visual signals in most
cases. Following the same rationale, Min ef al. in [141]
have adopted the classic canonical correlation analysis (CCA)
to localize spatial regions which have demonstrated strong
audio-visual consistency. Since the audio and visual saliency
cues have been computed, the fusion process mainly targets
highlighting the visual regions correlated well to the audio.
More recently, Min et al. in [142] have further considered
the deep learning-based saliency cues. And the CCA has
been replaced by its upgraded variant — the kernel canonical
correlation analysis (KCCA), to measure the audio-visual
correlation. The main reason is that the CCA can only correlate
linear relationships. At the same time, the KCCA can map
features to higher-dimensional feature spaces and increase the
nonlinearity, which could be more practical in the audio-visual
saliency detection task.

To further explore the advantages and disadvantages of the
existing fusion schemes, Tsiami et al. in [143] have compared
three widely-used audio-visual fusion schemes, e.g., direct
fusion (i.e., the multiplicative-based fusion), linear correlation
coefficient [144], and mutual information [145]. The authors
have combined the existing visual saliency models with the
off-the-shelf audio saliency models by using one of these
fusion schemes alternatively. The quantitative results have
reached a clear conclusion, ie., the exact optimal fusion
scheme is determined by multiple factors, including the quality
of low-level saliency cues and the input video data. For
“raw” hand-crafted saliency cues computed by models which
are good at measuring saliency from the temporal scale,
the correlation coefficient could be the best choice since it
mainly considers the temporal consistency between audio and
visual. As for the case where the raw saliency cues have
been incorporated with spatial information, mutual information
could be the optimal choice. However, things could be changed
for those “refined” saliency cues — saliency cues obtained
via deep learning-based top-down models, where the direct
fusion usually exhibits the best fusion performance because the
refined saliency cues are generally more trustworthy than those
raw ones. Thus they could be directly used to complement their
counterparts.

3) Summary of Hand-Crafted Fusions: As shown in
Fig. 16-A, the existing hand-crafted AVSD methods are very
easy to implement. However, such methods have a critical
limitation, i.e., the adopted hand-crafted fusions cannot well
handle the complex complementary relationships between
visual and audio signals due to the limited flexibility. These
methods also need huge computation to obtain hand-crafted
features.

4) SOTA Deep Learning-Based AVSD Methods: After enter-
ing the deep learning era, massive deep learning-based visual
saliency models have been proposed. However, to the best
of our knowledge, there only exist five deep learning-based
audio-visual saliency detection models [75], [146], [147],
[148], [149]. Here we shall provide a detailed review of
these works respectively. For a better understanding, we have
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A. Hand-crafted Fusions
Ideas

]: provide an overview of audiovisual saliency map models;

]: predict gaze maps by fusing spatial, temporal and auditory attentional maps;

]: first devise a lightweight audlo wsual sallency model by deep CCA;

]: new AVSD dataset, t and multi-scale AV fusion;
]: insert 360° spatial-i temporal wsual learning and spatial auditory in ODVs;

]: use event-based visual s and microphones on a robot for AVSD;

]: employ speaker diarization algorithm to predict the eye movements;

]: testify simple fusions of audio and video are inferior to non-linear fusions in AVSD;
]: illustrate in what situation audio will influence visual attention;

]: adopt CCA to localize spatial regions with strong audio-visual consistency;

]: repalce CCA with KCCA to map features to higher-dimensional feature spaces.

Strengths Weaknesses

v easy to implement X relying on hand-crafted fusions
X less interactive of spatial and

temporal streams

B. Deep learning-based -- Plain Fusion
Ideas

['#]: utilize plain concatenation operations to fuse audio and video features;
[17°]: use a multisensory framework of audio-visual signals for AVSD.

Strengths Weaknesses
v simple to implement

v good compatibility

X inferior performance

X lostin spatial Information

X limited interaction between visual and
audio

C. Deep learning-based -- Spatial Alignment
Ideas

[ “]: use de-convolution for the audio-visual alignment in a coarse-to-fine strategy.

Strengths Weaknesses

v retaining spatial information X weak interaction between visual

and audio
D. Deep learning-based -- Bi-linear Fusion
Ideas

['©]: use bilinear fusion to handle the dimension mismatched problem;
[+ "]: adopt trilinear interpolation and 3D convoluti as decoder modules.

Strengths Weaknesses

v strong interaction between visual and
audio
v retaining intact spatial information

X NULL

Fig. 16. The overall summary of Audio-visual Saliency Detection (AVSD),
which is the main topic of this review. Details of deep-learning-based methods
are demonstrated in Fig. 17.

provided multiple method pipelines to clarify the audio-visual
fusion methodology regarding these SOTA deep learning-
based audio-visual saliency detection works. As can be seen
in Fig. 17, all three sub-figures respectively correlate to the
SOTA models mentioned above: sub-figure (a) [146], [149],
sub-figure (b) [75], and sub-figure (c) [147], [148].

We shall first introduce the [146], [149]. As shown in
Fig. 17 (a), the audio-visual fusion adopts the conventional
plain concatenation operations, which takes both audio and
visual feature tensors as input, and the saliency predictions are
obtained via a typical decoder after concatenating both audio
and visual tensors. Specifically, because the audio modality has
a completely different formation from the visual modality, it is
required to ensure that the audio’s tensor feature has the same
size as its visual counterpart. The overall method rationale of
this work is very straightforward, and other existing ones could
replace the concatenation-based fusion, e.g., direct fusions,
and correlation analysis tools, where similar works have been
widely adopted by the AVC task, which have been reviewed
in Sec. III-B.

5) Summary of Deep Learning-Based Plain Fusion: As
shown in Fig. 16-B, the advantage of plain fusions in the
deep learning era is easy to implement with good compat-
ibility. However, the disadvantage is also clear, i.e., inferior

1xky
9-)1?
Loss

Concatenation/Correlations/Direct Fusion (Avg. Add. Max. Mul.)=> =k ->FC GT
1xky

-)—)lFl
X Iy

(a) Plain Audio-Visual Fusion

Residual =———>
[LFrame]-> Decoder
I/' 1z

© Addition @ Concatenation

Loss
=>|Decoder GT

1xky

(c) Bi-linear Based Audio-Visual Fusion

Fig. 17. The most representation fusion schemes for audio-visual saliency
detection. Among them, (a) merely utilizes the conventional plain concate-
nation operations to integrate audio and visual features; (b) treats the audio
part as auxiliary information, and the embedded semantical consistency is
used to highlight the corresponding spatial regions; (c) adopts a dimension
transformation matrix to handle the dimension mismatched problem, which
doesn’t require the identical dimension size of the individual audio and visual
saliency cues.

performance compared to other methods using more fancy
fusion logics (e.g., bi-linear fusion). That is, plain fusions
(e.g., vector-based feature concatenation) could lead to a loss
in spatial information, resulting in limited interaction between
visual and audio.

As illustrated in Fig. 17 (b), the spatial alignment-based
audio-visual fusion can bias the fusion toward the visual part,
where the deep audio feature, which usually is a 1-dimensional
vector with the same size as the visual tensor’s channel
number, is either de-convolved or copied to correlate to each
spatial location. This implementation has treated the audio as
auxiliary information, where the embedded semantical consis-
tency is the key factor in highlighting the corresponding spatial
regions as the salient ones. The AVC task has widely used the
“copy” scheme. However, to our knowledge, [75] is the first
attempt to use de-convolution for the audio-visual alignment.
Also, either the copy or the de-convolution-based alignment
can be combined with the popular “residual”” operation to focus
the fusion process on the visual signal because, in most cases,
the visual signal is stronger in determining human attention
than the audio signal.

6) Summary of Deep Learning-Based Spatial Alignment: As
shown in Fig. 16-C, compared with the plain fusion mentioned
above, the existing spatial alignment-based AVSD methods
(see Fig. 17-b) can well retain overall spatial structure by
spanning a dummy audio feature tensor with identical size
to the visual counterpart. However, the interaction between
visual and audio is still very weak in such methods.

Lastly, as demonstrated in Fig. 17 (c), we introduce the
bi-linear audio-visual fusion, which has been adopted by [147]
and [148] and achieved the leading SOTA performance. Com-
pared with either the plain or spatial alignment-based fusion,
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the bi-linear fusion has one significant advantage: it doesn’t
require the individual audio and visual saliency cues to have
an identical dimension size, where a dimension transformation
matrix, i.e., see the M in the sub-figure C, is adopted to handle
the dimension mismatched problem. The bi-linear fusion also
has its own limitation, i.e., the semantical correspondence
between audio and visual channels has been destroyed, making
modeling complex audio and visual interactivity very difficult.
In sharp contrast, the spatial alignment-based fusion could
make full use of the semantical information provided by either
off-the-shelf visual (e.g., ResNet50) or audio (e.g., VggSound)
feature backbone, where the learned semantical information
could shrink the problem domain effectively. As a result,
the audio-visual complementary fusion status could be easily
reached even in a complex audio-visual environment.

7) Summary of Deep Learning-Based Bi-Linear Fusion:
As shown in Fig. 16-D, the bi-linear fusion achieves the best
performance since it can retain the overall spatial structure
well and enable strong visual-audio interaction. In a word,
the deep learning-based bi-linear fusion can simultaneously
perform visual-audio embedding and aligning without much
additional computation cost. And bi-linear fusion should be a
common thread for multi-modality feature fusion in this deep
learning era.

V. AUDIO-VISUAL SEMANTICAL
CONSISTENCY PERCEPTUAL
A. Preliminary

Existing audio-visual saliency detection (AVSD) works
mainly adopt bi-stream network architecture, where audio
saliency and visual saliency are computed individually and
combined later as the final output. When the audio signal
is inconsistent with the visual signal, the audio saliency is
completely helpless to complement the visual saliency, which
takes up about 60% of all cases. For example, in an image,
two persons are talking. At the same time, the background
music comes from the outside; in this case, the audio signal
cannot benefit the visual in determining saliency.

Inspired by previous multimedia related works [23], [24],
[25], we propose to introduce the “audio-visual consistency
(AVC)” into our saliency detection research field. The
major highlight of our approach is its generic usage, which
can upgrade any SOTA bi-stream-based AVSD model from
“AVC-unaware” to “AVC-aware”. The optimal audio-visual
fusion is very difficult to achieve if the adopted AVSD model
is AVC-unaware because the model is completely blind and
thus cannot completely omit the audio when the audio is
not corresponding to the visual. Thus, in facing weak audio
signals, an AVSD model taking both audio and visual is
inferior to the model using the visual solely, yet this “binary
switch” cannot be achieved if the model is AVC-unaware.

An intuitive way to convert an AVC-unaware AVSD model
to AVC-aware is to resort to an additional module that
can automatically predict whether the currently given audio
is consistent with the visual. Therefore, to fully realize
our idea — making any existing bi-stream AVSD model
AVC-aware, two things should be prepared in advance: 1) train
the aforementioned classifier, and 2) integrate the classifier into
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Background Talk Fetch Get up Background
labeling labeling labeling labeling labeling
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Audio-visual Consistency (AVC) Labels

Fig. 18. Detailed demonstration of our AVC annotation. In the selected video
clip, when two men are talking, the sounds of Ist and Sth seconds are the
background music, whose AVC labels are set to 0, meaning that the audio
and the visual are semantically mismatched. While, from the 2nd to the 4th
seconds, the audio signals are talking sound, fetching sound, and getting up
sound, respectively, and thus we label them as 1 because these audio-visual
fragments are clearly matched.

the AVSD model. Next, we shall respectively detail each of
them in the following subsections.

B. Audio-Visual Consistency Labeling

The AVC classifier can, of course, be trained via the above-
mentioned weakly-supervised method, shown in Fig. 11 (b).
However, the overall performance of this method is usually too
limited to benefit the saliency detection task. Thus, we propose
to utilize the fully-supervised method to train the audio-visual
consistency classifier.

We shall manually equip each video frame with AVC labels
to achieve this goal. We manually provide all the existing
benchmark AVSD datasets with binary AVC labels, and a rep-
resentative pictorial demonstration has been shown in Fig. 18.
Thus, each audio-visual fragment will be assigned to 1 or
0 labels accordingly. Suppose all existing training instances
(with N frames) can be represented as: {Aj, Vi, Ls;}, where
i < N, A, and V respectively denote the audio and visual, and
Ls is the corresponding fixation map. During the annotation
process, if the audio sound is made by the salient object,’
we regard that the audio and visual are consistent. Thus we
assign the AVC label as 1. Otherwise, if the audio is unseen
background music or off-screen sound, the AVC label of this
audio-visual fragment is set as 0. For a better understanding,
we have provided a pictorial demonstration regarding how to
perform the proposed AVC labeling process, which can be
found in Fig. 18.

After the annotation process,
converted to:

{Ai, Vi, Lsi} — {Aj, Vi, Lsj, Lej},

4 each training instance can be

Lec; € {0, 1},i € [1, N],
ey

3we manually regard an object as salient if it has the highest fixation number
in the scene.

4To match the fps of video clips (25~30) and the audio length, we resort
to Adobe Premiere CC, a professional video editing software, to align the
mismatched audio and visual durations.
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(b) Our Audio-visual Consistency-aware AVSD Training and Testing

Fig. 19. Demonstrations of the differences between the conventional audio-visual saliency detection model training/testing pipeline (a) and the newly modified
training/testing pipeline (b). The advocated AVC classifier can be trained by the newly annotated AVC labels and then dynamically control the data flow of
the adopted bi-stream SOTA AVSD model. The Le denotes the binary output of the AVC classifier. By equipping the existing SOTA AVSD model with the
AVC classifier, we can make the original AVC-unaware AVSD model AVC-aware, achieving persistent performance improvement.

where Lc denotes the newly annotated audio-visual consis-
tency label, and N denotes the total frame number. We have
newly annotated all publicly available AVSD benchmarks,
totally 5 sets (or 6 if the Coutrot set is divided into Coutrotl
set and Coutrot2 set) consisting of 241 video clips involving
300,000 frames. These newly annotated datasets are now
publicly available.?

C. The Proposed AVC-Aware AVSD Model

The conventional audio-visual saliency detection (AVSD)
training and testing protocol has been shown in Fig. 19 (a),
where the AVSD model is a typical bi-stream fusion net, which
combines its AVSD and visual saliency detection (VSD) to
formulate the final result. The VSD stream is the mainstream,
and the AVSD stream is the auxiliary stream, where audio and
visual are fused early via fusion schemes mentioned in Fig. 17,
to promote the VSD stream further. As we have mentioned,
this typical AVSD training and testing protocol are completely
AVC-unaware. The later fusion (i.e., fuse VSD with AVSD)
could even degenerate the overall performance when the given
audio and visual are mismatched.

To handle the above-mentioned problem, we propose the
AVC-aware training and testing protocol, which has been
shown in Fig. 19 (b), whose major difference to (a) is the
newly provided AVC classifier, and this classifier can be
trained by using the newly equipped AVC labels. In our
implementation, we use an identical classifier structure to
AVID [89] to automatically predict the AVC degree of the
current input audio-visual fragment, outputting O or 1. Notice
that other classifier structures can also be used, and we have
tested several others, where the quantitative result (Table V)
suggests that the AVID is the best choice.

As shown in Fig. 19 (b), the newly proposed AVSD model
can be trained in the typical end-to-end way, where the AVC

5 https://github.com/MengkeSong/SCDL

classifier serves the existing SOTA bi-stream AVSD model,
i.e., Fig. 19 (b), as “binary switchers” to control the INPUT of
the adopted SOTA AVSD model. In other words, the output of
the AVC classifier determines whether or not the single V flow
or both V and AV flows are to be used in the subsequent SOTA
AVSD model. That is when the output of the AVC classifier
is 0, which means the current audio is inconsistent with the
current visual, suggesting removing the AV flow from fusing it
with V flow because, for an inconsistent audio-visual fragment,
the output of AV flow tends to significantly inferior to the
output of V flow, thus fusing AV with V MUST degenerate
the overall performance. When the output of the AVC classifier
is 1, the whole training process is completely identical to the
original SOTA AVSD model, where both AV flow and V flow
are simultaneously considered. The entire data flow of our
AVC-aware AVSD model can be expressed as:

OUTPUT <« Lc - Fuse(AV, V) + (1 — L¢) - V,

Le = AVC.s(AV, V) € {0, 1}, (2)

where AVCgs represents the AVC classifier, and Lec is the
binary prediction regarding AVC of the current input V
and AV.

The training process of our AVC-aware AVSD model con-
sists of two tasks, i.e., 1) the conventional audio-visual saliency
detection task, which takes the saliency labels (Ls) as GT, and
2) the newly added AVC classifier training, which takes the
AVC labels (Lc) as GT. Thus, the overall loss function L,j;
can be detailed as:

Lot = (1 = p) - Las + p - Lavsas (3)

where L is a typical cross-entropy loss targeting the training
of AVC classifier, L,,s4 is the Kullback-Leibler (KL) diver-
gence loss, the most widely-used loss function in AVSD model
training, and p is a balancing factor which we empirically
assign it to 0.5.
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Coutrot2 Coutrotl AVAD

ETMD  DIEM

SumMe

Fig. 20. Demonstration of the differences regarding the scene contents of six
wide-used datasets of AVAD, Coutrotl, Coutrotl, DIEM, ETMD, and SumMe.

TABLE III
DETAILS OF THE EXISTING AVSD SETS

Datasets [ Year [ Videos | Viewers Frames [ Links
DIEM [150] | 2010 84 42 78,167 | [Link]
AVAD [141] | 2016 45 16 9,564 | [Link]
Coutrotl [151] | 2013 60 72 25,223 | [Link]
Coutrot2 [152] | 2014 15 40 17,134 | [Link]
SumMe [153] | 2019 25 10 109,788 | [Link]

ETMD [154] | 2019 12 10 52,744 | [Link]

In the testing phase, the exact data flows are dynamically
controlled by the AVC classifier, identical to the training phase.

In brief, the major highlight of our approach is its generic
design, which can serve any existing bi-stream SOTA AVSD
models as the plug-in and promote their performances per-
sistently. Though a more fancy network design could bring
additional performance gain, we shall leave it to future work
to stay the main focus of our topic.

VI. QUANTITATIVE VERIFICATIONS
A. Datasets

There exist six publicly available datasets in our
AVSD research field, including DIEM [150], AVAD [141],
Coutrotl [151], Coutrot2 [152], SumMe [153], and ETMD
[154]. Different from the conventional VSD sets, the eye
fixations in these six sets are collected in the audio-visual
environment. In contrast, in the VSD sets, the eye fixations
are simply collected without audio information. We briefly
introduce these six sets here, and more details can be found
via the links of Table III. Some qualitative demonstrations can
be found in Fig. 20.

The DIEM set consists of 84 film clips, covering 26 films,
including commercials, documentaries, game trailers, movie
trailers, music videos, and news clips. The video scenes in this
set are generally complex with strong background interference.

The AVAD set targets at exploring the effects of the highly
correlated audio and motion on eye movements. The authors of
this set tested the human eyes fixation on 45 video sequences.
These tested sequences are 5 to 10-second video clips con-
taining various scenes, e.g., instrumental playing, dancing, and
dialogue.

The Coutrot set includes Coutrotl and Coutrot2 subsets. The
dynamic nature scenes in the Coutrotl set are divided into
4 visual categories: single moving objects, multiple moving
objects, natural landscapes, and human faces. The Coutort2
set’s scenes are all conversations, and it can be found that the
fixations are most likely to be located on the speaker’s face.

The SumMe set contains 25 unstructured videos collected
from videos taken by users, whose lengths range from
1 minute to 6 minutes. Since all videos in this set are home-
made, the corresponding background sounds tend to be very
noisy, and most of them are irrelevant to the salient objects,
making the audio-visual fusion process very challenging.

The ETMD set contains 12 videos, which are all collected
from 6 existing Hollywood movies. Each video in this set
ranges from 3 to 3.5 minutes, whose contents mainly consist
of action scenes and dialogues.

B. Evaluation Metrics

Five quantitative metrics have been widely used in the
saliency detection field. Since the objective of measuring the
saliency detection performance in an audio-visual environment
is almost the same as the conventional saliency detection
field, all these five metrics can be directly used here, and we
shall briefly introduce them. These metrics include AUC-Judd
(AUC-J), similarity metric (SIM), shuffled AUC (s-AUC),
normalized scanpath saliency (NSS), and linear correlation
coefficient (CC).

CC is a method to measure the linear correlation between
the prediction saliency (S) and the ground truth (GT), which
can be formulated as:

cou(S, GT)
o (S) - o (GT)’
where cov denotes the covariance, and o is the standard
deviation.

SIM measures the similarity between two distributions.
Given S and GT as input, SIM first normalizes them respec-
tively, then measures the minimum values pixel-by-pixel
(denoted by 7). This process can be detailed as:

SIM = Zmin{Z(S)i, Z(GT)i}, (5)

CC(S,GT) = (4)

where Z and min respectively denote the normalization oper-
ation and minimum operation.

AUC measures the area under the receiver operating
characteristic (ROC) curve, which has been widely used to
evaluate the maps by saliency models. Given an image and
its ground-truth eye fixations, the fixated points are regarded
as the positive set, and others are regarded as the negative
set. Then, the computed saliency map is binarized into salient
and non-salient regions using a hard threshold. The AUC-Judd
(AUC-J) computes two items: 1) the true positives from all
the saliency map values above a threshold at fixated pixels
and 2) the false positive rate as the total saliency map values
above a threshold at non-fixated pixels. The s-AUC samples
the negatives from fixated locations of other images/frames.
This sampling scheme can be greatly influenced by center bias
and border cuts.
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TABLE IV

QUANTITATIVE COMPARISONS BETWEEN OUR METHOD WITH OTHER FULLY-/WEAKLY-/UN-SUPERVISED METHODS ON ALL 6 DATASETS. THE BEST
RESULT IS MARKED IN BOLD FONT. * MEANS THAT THE TARGET MODELS (e.g., STANET*, STAVIS*, AND AVINET*) ARE TRAINED BY THE
WHOLE PIPELINE IN FI1G. 19 WITH AV C CLASSIFIER; # DENOTES THAT THE TARGET MODELS (i.e.,, STANET#, STAVIS#, AND AVINET#)

ARE TRAINED BY REMOVING THE AV CLASSIFIER MODEL, AND THEIR OUTPUTS ARE MANUALLY REFORMULATED BY USING
Lc (THE NEWLY ANNOTATED BINARY LABELS, SEE EQ. 7) AS THE INDICATOR, WHICH REPRESENTS THE IDEAL SITUATION.
‘A’ AUC-J, °S.: SIM, ‘s.”: s-AUC, ‘C.”: CC, ‘N.”: NSS, ‘UN-S.”: UN-SUPERVISED
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Datasets
Means

AVAD [141]

DIEM [150]

SumMe [153]

ETMD [154]

Coutrot] [151]

Coutrot2 [152]

Methods

AT

S.7

s.T

CT N7

AT

ST sT CT N7

AT

ST s1 C1 N1JAT

S.T

s.T

C.T N.T

AT

ST

s.T

C.1 N7

AT

ST

s.T

C.T N7

ITTI [155]
GBVS [1560]
SBF [157]
AWS-D [158]

Un-s.

.688
854
.833
.825 .

170
247
272

221

.533
572
.576
.589

131 611 |.
337 1.556
308 1.489
.304 1.378

830
759
733

217
318
292
.250

.583
.605
.608
612

137 555 |.
356 1.277
301 1.081
301 1.128

808
783
747

151
221
228
192

.559
.567
.590
.603

097 436 |.
272 1.134/|.
.230 1.023|.
.186 .853 |.

127
226
232
161

.582
.613
.64
.664

g

181

083 425 |.
.299 1.398
262 1.298|.
907 |.

798

178
253
187
214

.529
.526
530
581

.082 319 |.
272 1.055
215 789
207 872

819
827
783

142
189
152
170

.530
577
.583
590

.040 331
183 1.071
131 1.101
146 842

GradCAM++ [159]
WSS [160]
MWS [161]

777
.858
.834

273
292
272

559
592
573

255 1.217
.347 1.655
309 1.477

732
.803
.806

216
333
.336

.583
.620
.628

271
.344 1.293
.350 1.308

778

174
812
.808

217
245
237

.593
.589
.607

225 924 |.
279 1.098|.
.258 1.155].

STANet [75]
STANet*
STANet#

‘Weakly-supervised

.873
.879
881

334
341
341

.580
584
585

438 2.018
439 2.068
442 2.070

.861
.891
892

.391
392
.390

.658
.66
665

&)

469 1.716
498 2.016
498 2.019

.854
.870
873

294
323
325

.627
.631
632

368 1.647|.
.382 1.662|.
.384 1.663

925

124
277
237
318
319
323

157
.661
.649
.682
701
704

576 .736 |.
334 1.650|.
293 1.425).
448 2.176|.
464 2.326|.
467 2.328|.

137
247
231
.306
315
318

537
547
.528
542
.550
.55

—_

210 511
233 975
201
339 1.376
341 1.394
.346 1.392

798

733
835
.839
.850
.887
.888

114
208
.188
247
264
.266

.567
578
.581
.597
.602
605

168 .625
192 1.178
168 1.197
273 1.475
.336 1.915
339 1.921

DeepVS [62]
ACLNet [58]

.896
.905

391 .
446

.560

.528 3.010
.580 3.170

.840
.869

392
427

.625
.62

8

452 1.860
.522 2.020

.842
.868

262
296

612 .
.609

317 1.620

379 1.790

904
915

349
.329

.686
675

461 2.480|.
477 2.360|.

317
361

.56
.54

SN

359 1.770
425 1.920

925
926

259
322

.646
594

449 3.790
448 3.160

STAViS [147]
STAViS*
STAViS#

919
925
927

457
460
463

.593
599
597

.608 3.180
623 3.252
.622 3.255

.883
.896
.899

482
484
485

674
.68
.684

@

.579 2.260
.582 2.499
.581 2.497

.888
.903
904

337
.393
397

.656
.634
.635

422 2.040
460 2.102|.
463 2.107

931

948

425
454
457

731
758
764

569 2.940|.
620 3.406|.
.623 3.401|.

.393
.398
.395

.584
.590
.592

472 2.110
487 2.203
489 2.210

958
959
963

Sl
523
524

710 .
731
732

734 5.280
738 5.396

739 5.401

AViNet [148]
AViNet*
AViNet#

Fully-supervised

931
932
936

499
.509
511

.663
.691
.694

689 3.740
.678 3.756
.679 3.759

901
.905
906

504
516
518

72
786
797

8

.637 2.540
645 2.637
643 2.634

900
909
913

.350
400
405

.697
.699
702

470 2.420
491 2.529
492 2.535].

931
944

410
447
448

740
761
765

.576 3.070|.
616 3.437|.
617 3.441|.

427
431
428

.63
.644
647

o0

561 2.710
573 2.770
579 2.774

953
963
967

477
579
581

7139
742
746

738 5.730
.806 5.993

.809 5.990

The NSS is designed to evaluate a saliency map over
fixation locations. Given a saliency map S and a binary fixation
map GT, NSS is defined as:

M
) & . S—
NSSZMZ $;.GTy, M<—§‘ GT;, § « 2 #
1 1

(6)
o

where x4 and o are the mean and standard deviation of the

predicted saliency map. This metric is calculated by taking

the mean scores assigned by the unit normalized saliency map

(with zero mean and unit standard deviation) at human eye

fixations.

C. Quantitative Evidences Towards the Effectiveness of the
Proposed AVC Classifier

As we have mentioned, our approach is generic and compat-
ible with almost all existing bi-stream SOTA AVSD models.
The proposed AVC classifier can be intergraded into the target
model using a few code modifications. To verify this issue,
we have tried to deploy our AVC classifier into 3-top tier
SOTA AVSD models, including STANet [75], STAVIS [147],
and AVINet [148]. We shall incorporate our AVC classifier into
more SOTA models, yet, in the AVSD research field, most of
the existing papers haven’t released their codes. Also, w.rt.
the model training, we follow the widely-used training/testing
split [147] over all 6 datasets. To demonstrate the superiority
of our approach, we have compared the upgraded versions
of the three target models (denoted by *) with 12 other
SOTA methods, including 4 unsupervised methods, 4 weakly-
supervised methods, and 4 fully-supervised methods. For a
fair comparison, we use either the code implementations with
default parameter settings or saliency maps provided by the
authors. Specifically, we refer to the numeric results reported
in the papers for others without codes.

As is shown in Table IV, all three upgraded target models
(denoted by * highlighted by PINK color) can achieve per-
sistent performance improvements. For example, our method
can make an average of 1.9%, 1.5%, and 2.7% performance
improvement generally of STANet, STAVIS, and AVINet,
respectively, in terms of the AUC-J metric on six widely-used
benchmark datasets. Also, the promoted model STANet*
outperforms all weakly-supervised methods significantly, and
AVINet* performs the best among all fully-supervised meth-
ods. The reason is that the AVSD benchmark datasets equipped
with the newly proposed AVC classifier can filter out the
unrelated audio-visual pairs so that the side effects from those
mismatched audio-visual fragments can be avoided.

To further investigate the importance of our key idea,
i.e., the audio-visual consistency matters when performing
AVSD, we have removed the proposed AVC classifier from
the upgraded target AVSD models. Instead, we directly use
the original versions, yet their outputs are “manually reformu-
lated” according to our newly provided AVC labels (i.e., Le
in Fig. 19). That is, the target model’s output will be derived
directly by using either AV or V, and this process can be
formulated as:

OUTPUT <« Lc - Fuse(AV, V) + (1 — Le) - V. 7
where all symbols are identical to Eq. 3, and the major
difference is that the Le has been replaced by Le. Actually,
OUTPUT from Eq. 7 is in ideal situation, which tends to per-
sistently outperform that from the upgraded version powered
by the AVC classifier (i.e., Eq. 3). The main reason is clear:
our AVC classifier can not completely avoid erroneous binary
predictions. The quantitative results of these ideal versions
have been marked by # with BLUE background color, and
the detailed results can be found in Table IV.
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TABLE V

ABLATION STUDY REGARDING DIFFERENT AVC CLASSIFIERS, e.g., L3NET, AVENET, AND AVID. THE TARGET AVSD MODEL USED HERE IS
AVINET [148]. AVID+ws DENOTES THAT THE AVID-BASED AVC CLASSIFIER IS TRAINED IN A WEAKLY-SUPERVISED MANNER, THE SAME
AS [86]. THE BESTS ARE HIGHLIGHTED IN BOLD FONT

Datasets Accurac AVAD [141] DIEM [150] SumMe [153]
Methods Y [AUCJT SIMT s-AUCT CCT NSST | AUCIT SIMT s-AUCT CCT NSST | AUCJT SIM s-AUCT CCT NSST
L3Net (ours) || 82.15% | 0928 0505 0.682 0674 3.750 | 0902 0514 0.768 0.639 2.605| 0902 0377 0698 0483 2.489
AVENet (ours) || 85.64% | 0929 0507 0.685 0677 3.753 | 0903 0511 0779 0.642 2.617 | 0907 0392 0.699 0488 2.510
AVID + ws [50] || 85.82% | 0915 0487 0667 0658 3.652 | 0.891 0493 0755 0628 2589 | 0894 0369 0.680 0473 2474
AVID (ours) || 87.59% | 0932 0509 0.691 0.678 3.756 | 0.905 0516 0786 0.645 2.637 | 0909 0400 0.699 0491 2.529
Further, as mentioned above, the classification accuracy of ACKNOWLEDGMENT

the AVC classifier will affect AVSD performance slightly.
Thus, we have tested three AVC classifiers to verify this issue,
i.e., L3Net [86], AVENet [18], and AVID [89]. The AVID is
our default setting, and the other two classifiers can be used
to replace the AVID in our method, as shown in Fig. 19 (b).
That is, in each experiment, we only replace the target AVSD
model’s AVC classifier with either L3Net, AVENet, or AVID.
The experimental results have been shown in Table V.

The influence of the classification result is based on the
amount of corresponding audio-visual pairs, e.g., the more
the corresponding audio-visual pairs are, the better the per-
formance of the target models obtain; otherwise, the target
models will degenerate into the original versions. According
to the results, the AVID-based AVC classifier has achieved the
best accuracy (i.e., 87.59%), and thus, as expected, the corre-
sponding AVSD performance outperforms others. In short, the
higher the performance of the AVC classifier is, the better the
performance of the target models obtains.

VII. CONCLUSION AND FUTURE WORK

This paper presents the first comprehensive review covering
both topics ranging from saliency detection to audio-visual
fusion. Based on this extensive review, we also provided a
deep insight into the audio-visual saliency detection task and
reached our new claim about the importance of an AVSD
model to be audio-visual consistency aware (AVC-aware).
We have also devised a generic method to convert the existing
AVC-unaware SOTA AVSD models to be AVC-aware. The
key is the newly proposed AVC classifier, which controls the
data as a plug-in flow of the bi-steam target AVSD mode to
avoid side effects caused by mismatched audio-visual training
fragments. Specifically, to train the proposed AVC classifier,
we have newly labeled all existing publicly available AVSD
datasets, equipping them with AVC labels. Lastly, we have
conducted extensive experiments to verify the effectiveness
of our claim. Hoping this review could draw more research
attention to the AVSD research field, and the newly claimed
AVC-aware issue could inspire future works in performance
improvement.

Specifically, although audio-visual-based saliency detection
has made notable progress over the past several decades,
there is still significant room for improvement, i.e., the AVSD
model can only obtain limited performance. Thus, in the near
future, we are particularly interested in further designing a
more reasonable AVC classifier to improve the performance
of audio-visual correspondence.

Code and data design: https://github.com/MengkeSong/
SCDL
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