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Abstract—The ability to enforce robust and dynamic access
controls on cloud-hosted data while simultaneously ensuring
confidentiality with respect to the cloud itself is a clear goal
for many users and organizations. To this end, there has been
much cryptographic research proposing the use of (hierarchical)
identity-based encryption, attribute-based encryption, predicate
encryption, functional encryption, and related technologies to
perform robust and private access control on untrusted cloud
providers. However, the vast majority of this work studies static
models in which the access control policies being enforced do not
change over time. This is contrary to the needs of most practical
applications, which leverage dynamic data and/or policies.

In this paper, we show that the cryptographic enforcement of
dynamic access controls on untrusted platforms incurs computa-
tional costs that are likely prohibitive in practice. Specifically,
we develop lightweight constructions for enforcing role-based
access controls (i.e., RBAC0) over cloud-hosted files using identity-
based and traditional public-key cryptography. This is done
under a threat model as close as possible to the one assumed
in the cryptographic literature. We prove the correctness of
these constructions, and leverage real-world RBAC datasets and
recent techniques developed by the access control community to
experimentally analyze, via simulation, their associated compu-
tational costs. This analysis shows that supporting revocation,
file updates, and other state change functionality is likely to
incur prohibitive overheads in even minimally-dynamic, realistic
scenarios. We identify a number of bottlenecks in such systems,
and fruitful areas for future work that will lead to more natural
and efficient constructions for the cryptographic enforcement of
dynamic access controls. Our findings naturally extend to the use
of more expressive cryptographic primitives (e.g., HIBE or ABE)
and richer access control models (e.g., RBAC1 or ABAC).

I. INTRODUCTION

In recent years, numerous cryptographic schemes have been

developed to support access control on the (untrusted) cloud.

One of the most expressive of these is attribute-based encryption

(ABE) [31], which is a natural fit for enforcing attribute-based

access control (ABAC) policies [40]. However, the practical

implications of using these types of cryptographic schemes to

tackle realistic access control problems are largely unexplored.

In particular, much of the literature concerns static scenarios

in which data and/or access control policies are rarely, if

ever, modified (e.g., [5], [30], [31], [42], [49], [52], [59]).

Such scenarios are not representative of real-world systems,

and oversimplify issues associated with key management and

revocation that can carry substantial practical overheads. In this

paper, we explore exactly these types of issues in an attempt

to understand the computational overheads of using advanced

cryptographic techniques to enforce dynamic access controls

over objects stored on untrusted platforms. Our primary result

is negative: we demonstrate that prohibitive computational

burdens are likely to be incurred when supporting practical,

dynamic workloads.

The push to develop and use cryptography to support adaptive

access control on the cloud is natural. Major cloud providers

such as Google, Microsoft, Apple, and Amazon are providing

both large-scale, industrial services and smaller-scale, consumer

services. Similarly, there are a number of user-focused cloud-

based file sharing services, such as Dropbox, Box, and Flickr.

However, the near-constant media coverage of data breaches

has raised both consumer and enterprise concerns regarding the

privacy and integrity of cloud-stored data. Among the widely-

publicized stories of external hacking and data disclosure

are releases of private photos [56]. Some are even state-

sponsored attacks against cloud organizations themselves, such

as Operation Aurora, in which Chinese hackers infiltrated

providers like Google, Yahoo, and Rackspace [20], [51].

Despite the economic benefits and ease-of-use provided by

outsourcing data management to the cloud, this practice raises

new questions regarding the maintenance and enforcement of

the access controls that users have come to expect from file

sharing systems.

Although advanced cryptographic primitives seem well-

suited for protecting point states in many access control

paradigms, supporting the transitions between protection states

that are triggered by administrative actions in a dynamic

system requires addressing very subtle issues involving key

management, coordination, and key/policy consistency. While

there has been some work seeking to provide a level of

dynamism for these types of advanced cryptographic primitives,

this work is not without issues. For instance, techniques have

been developed to support key revocation [8] and delegated

re-encryption [32], [58]. Unfortunately, these techniques are not

compatible with hybrid encryption—which is necessary from

an efficiency perspective—under reasonable threat models.

In this paper, we attempt to tease out these types of critical

details by exploring the cryptographic enforcement of a widely-

deployed access control model: role-based access control

(specifically, RBAC0 [61]). In particular, we develop two

constructions for cryptographically enforcing dynamic RBAC0

policies in untrusted cloud environments: one based on standard

public-key cryptographic techniques, and another based on

identity-based encryption/signature (IBE/IBS) techniques [11],

[13], [59]. By studying RBAC0 in the context of these relatively
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efficient cryptographic schemes, we can effectively lower-
bound the costs that would be associated with supporting richer

access controls (e.g., ABAC) by using more advanced—and

more expensive—cryptographic techniques exhibiting similar

administrative and key delegation structures (e.g., ABE).

We use tools from the access control literature [36] to

prove the correctness of our RBAC0 constructions. To quantify

the costs of using these constructions in realistic access

control scenarios, we leverage a stochastic modeling and

simulation-based approach developed to support access control

suitability analysis [26]. Our simulations are driven by real-

world RBAC datasets that allow us to explore—in a variety

of environments where the RBAC0 policy and files in the

system are subject to dynamic change—the costs associated

with using these constructions. In doing so, we uncover several

design considerations that must be addressed, make explicit

the complexities of managing the transitions that occur as

policies or data are modified at runtime, and demonstrate

the often excessive overheads of relying solely on advanced

cryptographic techniques for enforcing dynamic access controls.

This provides us with a number of insights toward the

development of more effective cryptographic access controls.

Through our analysis, we make the following contributions:

• We demonstrate that the cryptographic enforcement of role-

based access controls on the cloud incurs overheads that

are likely prohibitive in realistic dynamic workloads. For

instance, we show that removing a single user from a role

in a moderately-sized organization can require hundreds or

thousands of IBE encryptions! Since our constructions are

designed to lower-bound deployment costs (given current

cryptographic techniques), this indicates that cryptographic

access controls are likely to carry prohibitive costs for even

mildly dynamic scenarios.

• Prior work often dismisses the need for an access control

reference monitor when using cryptographically-enforced

access controls (e.g., [5], [30], [31], [52]). We discuss the

necessity of some minimal reference monitor on the cloud

when supporting dynamic, cryptographically-enforced access

controls, and we outline other design considerations that

must be addressed in dynamic environments.

• We develop constructions that use either the IBE/IBS or

public-key cryptographic paradigms to enable dynamic

outsourced RBAC0 access controls. In an effort to lower-

bound deployment costs, our constructions exhibit design

choices that emphasize efficiency over the strongest possible

security (e.g., using lazy rather than online re-encryption,

cf. Section IV-C), but are easily extended to support

stronger security guarantees (albeit at additional costs). These

constructions further highlight practical considerations that

are often overlooked in the literature, or that prevent the

application of techniques designed to enhance the dynamism

of advanced cryptographic techniques.

• Having established the infeasibility of enforcing even the

relatively simple RBAC0 in dynamic scenarios, we discuss

the increase in costs that would be associated with more

expressive cryptographically-enforced access control such

as hierarchical RBAC (RBAC1) using HIBE [10], [29], or

attribute-based access control (ABAC) using ABE.

The remainder of this paper is organized as follows. In Sec-

tion II, we discuss relevant related work. Section III documents

our system model and assumptions, and provides background

on RBAC0 and the cryptographic techniques used in this paper.

In Section IV, we describe our IBE/IBS construction in detail,

and overview the key differences between it and our PKI-

based construction. Section V presents theorems stating the

correctness of our constructions, as well as experimental results

showing the overheads incurred by our constructions when

applied to real-world RBAC datasets. In Section VI, we identify

interesting directions for future work informed by our findings.

Section VII details our conclusions.

II. RELATED WORK

A. Access Control

Access control is one of the most fundamental aspects

of computer security, with instances occurring pervasively

throughout most computer systems: relational databases often

provide built-in access control commands; network administra-

tors implement access controls, e.g., firewall rules and router

ACLs; operating systems provide access control primitives that

enable users to protect their private files; and web applications

and other frameworks typically implement purpose-specific

access controls to control access to the information that

they manage. The literature describes a diversity of access

control systems supporting policies including basic access

control lists [60], cryptographically-enforced capabilities [64],

group- [43], role- [61], and attribute-based [40] controls.

Despite this diversity, a central theme in most access control

work is the reliance on a fully-trusted reference monitor to

check compliance with the policy to be enforced prior to

brokering access to protected resources. This dependency on

a trusted reference monitor is problematic, however, when

resources are stored on (potentially) untrusted infrastructure.

Distributed or decentralized approaches to access control

have also been well studied in the literature and in practice.

Work in the trust management space (e.g., [4], [7], [21],

[45]) allows the specification of declarative access control
policies for protecting resources, which are satisfied using

digital credentials of various forms. For instance, a research

portal may allow free access to publications, provided that the

requester is a graduate student at an accredited university. This

allows the portal to delegate trust: provided that a requestor

can produce a proof-of-ownership for a “graduate student”

attribute certificate issued by an accredited university, she

will be permitted access. We note that these approaches need

not rely on heavyweight certificate infrastructures; recent

work has provided similar functionality using lightweight

cryptographic bearer credentials [6]. Further, widely-deployed

identity management solutions (e.g., OAuth [35]) can also be

viewed as simplified trust management approaches that offload

identity verification to a third party, receiving only a “token”
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attesting to a requestor’s identity. In all cases, however, a trusted

reference monitor is still required to validate that the presented

credentials actually satisfy the policy protecting a resource.

In this paper, by contrast, we investigate the implications of

using cryptography to enforce access controls on cloud-based

storage infrastructure, where the provider is not trusted to view

file contents.

B. Cryptography

We assume the reader is familiar with basic concepts

from symmetric-key and public-key cryptography, and many

references exist (e.g., [41]) discussing these topics. Starting

with the development of practical identity-based encryption

(IBE) schemes [11], there has been considerable work on the

development of cryptographic systems that directly support

a number of access control functionalities, with examples

including hierarchical IBE [29], [37], attribute-based encryp-

tion [59], and functional encryption [57]. At a high level,

these encryption schemes encrypt data to a policy, so that

only those who have secret keys satisfying the policy can

decrypt. What varies between these types of schemes is the

expressiveness of the policies that are supported. With IBE and

traditional public-key encryption, one can encrypt to a given

target individual, and only that individual can decrypt. With

attribute-based encryption, a ciphertext can be encrypted to a

certain policy, and can be decrypted only by individuals whose

secret keys satisfy that policy. With functional encryption, a

certain function is embedded in the ciphertext, and when one

“decrypts,” one does not retrieve the underlying value, but rather

a function of the encrypted value and the decryptor’s secret

key. One underlying motivation in all of the above work is the

ability to enforce access controls on encrypted data.

Each cryptographic scheme has its own associated costs,

but they can be broadly categorized as follows. Symmetric

cryptography is orders of magnitude faster than traditional

public-key encryption, and traditional public-key encryption is

an order of magnitude faster than pairing-based cryptography,

in which the pairing operation itself typically carries the largest

cost.1 The vast majority of IBE, IBS, HIBE and ABE schemes

are pairing-based cryptographic schemes. IBE schemes use

a small constant number of pairings in either encryption

or decryption. In contrast, ABE schemes use a number of

pairings that is a function of the policy being encoded, and

thus, assuming minimally expressive access policies, have

computational costs substantially greater than IBE.

Much of the work on these advanced cryptographic systems

allows for data to be stored on the cloud, but it does not

address the issue of revocation or dynamic modification of

the access control structure being used to store data on

the cloud. This can, of course, be done by downloading

the data, decrypting it, and then re-encrypting under a new

policy, but this is communication intensive, and potentially

computationally intensive too. Further, for large files, clients

1We will exclude lattice-based systems, due to the difficulty in determining
appropriate security parameters. This, amongst other factors, makes such
generic comparisons difficult.

making the changes in the access structure may not be able to

support the entire file locally (e.g., smartphones). Therefore,

there has been some work done in considering delegated

encryption and revocation in these models (e.g., [8], [32],

[33], [46], [53], [58], [62]).

C. Cryptographic Access Controls

There has been significant work on using cryptography as an

access control mechanism, starting with seminal works such as

that by Gudes [34]. This work describes how access controls

can be enforced using cryptography, but does not address many

practical issues such as key distribution and management, policy

updates, and costs. Furthermore, as the work’s motivation is

a local file system, the access control system must be trusted

with the keys (and trusted to delete them from memory as soon

as possible). Work by Akl and Taylor [1] addresses some of the

key management issues by proposing a key assignment scheme:

a system for deriving keys in a hierarchical access control

policy, rather than requiring users higher in the hierarchy to

store many more keys than those lower in the hierarchy. Again,

this work does not consider key distribution or policy updates.

Later work in key hierarchies by Atallah et al. [3] proposes a

method that allows policy updates, but in the case of revocation,

all descendants of the affected node in the access hierarchy

must be updated, and the cost of such an operation is not

discussed. Continued work in key assignment schemes has

improved upon the efficiency of policy updates; see [16] for a

survey of such schemes that discusses tradeoffs such as how

much private vs. public information must be stored and how

much information must be changed for policy updates. Much

of this work focuses on the use of symmetric-key cryptography,

and so its use for the cloud is potentially limited.

De Capitani di Vimercati et al. [18], [19] describe a method

for cryptographic access controls on outsourced data using

double encryption (one layer by the administrator and one by

the service). An extension to this work also enforces write

privileges [17]. However, this solution requires a high degree

of participation by the cloud provider or third party, and the

work does not address the high cost of such operations as

deleting users (which can incur cascading updates). Ibraimi’s

thesis [38] proposes methods for outsourcing data storage using

asymmetric encryption. However, the proposed method for

supporting revocation requires a trusted mediator and keyshare

escrow to verify all reads against a revocation list (and does not

address revoked users reusing cached keyshares). Furthermore,

policy updates require an active entity to re-encrypt all affected

files under the new policy. Similarly, work by Nali et al. [50]

enforces RBAC using public-key cryptography, but requires a

series of active security mediators.

Crampton has shown that cryptography is sufficient to

enforce RBAC policies [14] and general interval-based access

control policies [15], but revocation and policy updates are not

considered (i.e., the constructions are shown only for static

policies). Ferrara et al. [24] formally define a cryptographic

game for proving the security of cryptographically-enforced

RBAC systems and prove that such properties can be satisfied
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Fig. 1: Diagram of a cloud storage system

using an ABE-based construction. This construction has since

been extended to provide policy privacy and support writes

with less trust on the provider [23]. The latter is accomplished

by eliminating the reference monitor that checks if a write is

allowed and instead accepting each write as a new version;

versions must then be verified when downloaded for reading

to determine the most recent permitted version (the provider

is trusted to provide an accurate version ordering). However,

these works do not consider the costs and other practical

considerations for using such a system in practice (e.g., lazy

vs. active re-encryption, hybrid encryption). In this paper, we

consider exactly these types of issues.

Pirretti et al. [55] have shown that distributed file systems and

social networks can use ABE-based constructions to perform

practical access control, but they leave dynamic revocation as

future work.

III. BACKGROUND AND ASSUMPTIONS

Our goal is to understand the practical costs of leveraging

public-key cryptographic primitives to implement outsourced

dynamic access controls in the cloud. In this section, we (i)

define the system and threat models in which we consider

this problem, (ii) specify the access control model that we

propose to enforce, and (iii) define the classes of cryptographic

primitives that will be used in our constructions.

A. System and Threat Models

The environment that we consider—which is based on the

untrusted cloud provider typically assumed in the cryptographic

literature—is depicted in Fig. 1. The system consists of

three main (classes of) entities: access control administrators,

users/clients, and cloud storage providers. In particular, we

consider a model in which a single storage provider is

contracted by an organization. This is analogous to companies

contracting with providers like Microsoft (via OneDrive for

Business) or Dropbox (via Dropbox Business) to outsource

enterprise storage, or individuals making use of cloud platforms

like Apple iCloud or Google Drive for hosting and sharing

personal media. Further, this simplifies the overall system

design by eliminating the need for a secondary mechanism

that synchronizes cryptographic material and other metadata.

Assumptions. The cloud storage provider is contracted to

manage the storage needs of a (perhaps virtual) organization.

This includes storing the files hosted in the cloud, as well

as any metadata associated with the access control policies

protecting these files. We assume that the cloud is not trusted

to view the contents of the files that it stores. However, it is

trusted to ensure the availability of these files, and to ensure

that only authorized individuals update these files. File access

is assumed to occur directly though the cloud provider’s API,

with read access permissions being enforced cryptographically

on the client side, and write access permissions being enforced

by a minimal reference monitor on the cloud provider that

validates client signatures that prove write privileges prior to

file updates.2 In short, the storage provider ensures file system

consistency by preventing unauthorized updates, yet cannot

read or make legitimate modifications to files or metadata.
Access control administrators are tasked with managing the

protection state of the storage system. That is, they control the

assignment of access permissions, which entails the creation,

revocation, and distribution of cryptographic keys used to

protect files in a role-based manner. Metadata to facilitate key

distribution is stored in a cryptographically-protected manner

on the cloud provider. Users may download any file stored

on the storage provider, but may decrypt, read, and (possibly)

modify only the files for which they have been issued the

appropriate (role-based) keys. All files are encrypted and signed

prior to being uploaded to the cloud storage provider. Finally,

we assume that all parties can communicate via pairwise-

authenticated and private channels (e.g., SSL/TLS tunnels).
Implications. To simplify presentation and analysis, the

above threat model does leave some degree of trust in the

cloud provider (albeit far less than is routinely placed in

these providers today). In particular, the cloud provider is

trusted to verify digital signatures prior to authorizing write

operations. This could be avoided by using a versioning file

system, allowing all writes, and relying on clients to find

the most recent version of a file that has a valid signature

prior to accessing that file. Similarly, it is possible—although

prohibited by our threat model—for a malicious provider

to “roll back” the filesystem to a prior state by replacing

current files and metadata with previous versions. We note that

it is possible to detect (e.g., via comparison with off-cloud

metadata) or prevent (e.g., by splitting metadata and file storage

across multiple providers) this issue, and thus this prohibition

could be dropped. Further, we do not consider the denial-of-

service threat of a user overwhelming the storage provider with

spurious file downloads; in practice, this is easily addressed by

using unguessable (perhaps cryptographically-produced) file

names, or lightweight authorization tokens. However, all of

these types of relaxations come with additional complexity. As

we will demonstrate, the costs associated with cryptographic

enforcement of dynamic access controls are likely prohibitive,

even under the above threat model. This, effectively, lower-

2Note that this eliminates the possibility of a purely symmetric-key approach:
the ability to validate, e.g., symmetric-key MACs would also allow the cloud
provider to modify these MACs.

822822



bounds the costs entailed by weaker threat models (which

require more complex mechanisms). For the bulk of this paper,

we will therefore focus on the above threat model, leaving

discussion of further relaxations to Section VI.

B. Access Control Model

In this paper, we focus on cryptographic enforcement of a

role-based access control (RBAC) system, given the prevalence

of this type of access control system in both the research

literature and commercial systems. RBAC systems simplify

permission management through the use of abstraction: roles

describe the access permissions associated with a particular

(class of) job function, users are assigned to the set of

roles entailed by their job responsibilities, and a user is

granted access to an object if they are assigned to a role

that is permitted to access that object. In this paper, we

will investigate cryptographic implementations of the simplest

RBAC formulation: RBAC0 [61]. More formally, the state of

an RBAC0 system can be described as follows:

• U is a set of users,

• R is a set of roles,

• P is a set of permissions (e.g., 〈file, op〉),
• PA ⊆ R× P is the permission assignment relation, and

• UR ⊆ U ×R is the user assignment relation.

The authorization predicate auth : U × P → B determines

whether user u can use permission p and is defined as follows:

auth(u, p) = ∃r : [(u, r) ∈ UR] ∧ [(r, p) ∈ PA]

Many variants of RBAC exist, but we focus on the use of

RBAC0 as it is conceptually the simplest of these variants

yet still provides adequate expressive power to be interesting

for realistic applications. Generalizing this model to richer

RBAC variants (e.g., RBAC1) and attribute-based access control

(ABAC) is discussed in Section VI-C.

C. Cryptographic Primitives

Both of our constructions make use of symmetric-key

authenticated encryption (GenSym, EncSym, DecSym). Our

PKI scheme uses public-key encryption and digital signatures

(GenPub, EncPub, DecPub, GenSig, SignSig, VerSig).

While many attribute-based encryption (ABE) schemes are

being developed to support policy constructions of varying

expressivity, RBAC0 does not require this level of sophistication.

To this end, we instead use identity-based encryption (IBE):

• MSKGenIBE(1n): Takes security parameter n; generates

public parameters (which are implicit parameters to every

other IBE algorithm) and master secret key msk.

• KeyGenIBE(ID,msk): Generates a decryption key kID
for identity ID.

• EncIBE
ID (M): Encrypts message M under identity ID.

• DecIBE
kID

(C): Decrypts ciphertext C using key kID; correct-

ness requires that ∀ ID if kID = KeyGenIBE(ID) then

∀M,DecIBE
kID

(EncIBE
ID (M)) =M .

We also use identity-based signature (IBS) schemes:

• MSKGenIBS(1n): Takes security parameter n; generates

public parameters (which are implicit parameters to every

other IBS algorithm) and master secret key msk.

• KeyGenIBS(ID,msk): Generates a signing key sID for

identity ID.

• SignIBS
ID,sID (M): Generates a signature sig on message M

if sID is a valid signing key for ID.

• VerIBS
ID (M, sig): Verifies whether sig is a valid signature

on message M for identity ID; requires that ∀ ID
if sID = KeyGenIBS(ID) then

∀M,VerIBS
ID (M,SignIBS

ID,sID (M)) = 1.

IBE (resp. IBS) schemes build upon traditional public-key

schemes by allowing any desired string to act as one’s en-

cryption (resp. verification) key. This requires the introduction

of a third party who can generate the decryption and signing

keys corresponding to these identity strings. This third party,

who holds the master keys, is able to produce decryption

or signing keys for anyone, and thus the system has inbuilt

escrow. In our use of these systems, the RBAC administrator(s)

will act as this third party. Since administrators traditionally

have the power to access/assign arbitrary permissions, this

escrow is not a weakness. In practice, if this is still a concern,

threshold/secret splitting schemes can be used to distribute trust

amongst several individuals. However, such schemes would

increase the cryptographic costs of operations associated with

the master key.

IV. CONSTRUCTION

While cryptographic access control enforcement has been

studied in the past, the focus has been almost entirely on

techniques that are best suited for mostly static scenarios

lacking a trusted reference monitor (e.g., [31], [49]), in which

the policies to be enforced and files to be protected change

very little over time. As such, the particulars associated with

securely managing policy change and the associated overheads

have been largely under-explored. In this section, we begin

with a strawman construction for cryptographic access control

enforcement, and use it to highlight a variety of limitations and

design considerations that must be addressed. We conclude with

a detailed description of our IBE/IBS and PKI constructions

for RBAC0, which address these issues.

A. A Strawman Construction

At first blush, it seems conceptually simple to provision a

cryptographically-enforced RBAC0 system. We now overview

such a system, which will allow us to highlight a variety of

issues that arise as a result. This strawman construction will

make use of IBE/IBS; the use of a more traditional PKI is a

straightforward translation. We assume that the administrator

holds the master secret keys for the IBE/IBS systems.

• Registration. Each user, u, of the system must carry out an

initial registration process with the administrator. The result

of this process is that the user will obtain identity-based

encryption and signing keys ku ← KeyGenIBE(u) and

su ← KeyGenIBS(u) from the administrator.
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• Role Administration. For each role, r, the administrator

will generate identity-based encryption and signing keys

kr ← KeyGenIBE(r) and sr ← KeyGenIBS(r). For

each user u that is a member of r (i.e., for each (u, r) ∈ UR
in the RBAC0 state), the administrator will create and upload

a tuple of the form:

〈RK, u, r,EncIBE
u (kr, sr),Sign

IBS
SU 〉.

This tuple provides u with cryptographically-protected access

to the encryption and signing keys for r, and is signed

by the administrator. Here, SignIBS
SU at the end of the

tuple represents an IBS signature by identity SU (the

administrator), and RK is a sentinel value indicating that this

is a role key tuple.

• File Administration. For each file f to be shared with a

role r (i.e., for each (r, 〈f, op〉) ∈ PA in the RBAC0 state),

the administrator will create and upload a tuple:

〈F, r, 〈fn, op〉,EncIBE
r (f), SU,SignIBS

SU 〉.
This tuple contains a copy of f that is encrypted to members

of r. Here, fn represents the name of the file f , while op is

the permitted operation—either Read or Write. As before,

SignIBS
SU is a signature by the administrator, and F is a

sentinel value indicating that this is a file tuple.

• File Access. If a user u who is authorized to read a file f
(i.e., ∃r : (u, r) ∈ UR ∧ (r, 〈f,Read〉) ∈ PA) wishes to do

so, she must (i) download an RK tuple for the role r and

an F tuple for f ; (ii) validate the signatures on both tuples;

(iii) decrypt the role key kr from the RK tuple using their

personal IBE key ku; and (iv) decrypt the file f from the F
tuple using the role key kr.

Writes to a file are handled similarly. If u is authorized to

write a file f via membership in role r (i.e., ∃r : (u, r) ∈
UR ∧ (r, 〈f,Write〉) ∈ PA), she can upload a new F tuple

〈F, r, 〈fn,Write〉,EncIBE
r (f ′),SignIBS

r 〉. If the signature

authorizing the write (SignIBS
r ) can be verified by the cloud

provider, the existing F tuple for f will be replaced.

This construction describes a cryptographic analog to

RBAC0. The UR relation is encoded in the collection of RK
tuples, while the PA relation is encoded in the collection

of F tuples. The authorization relation of RBAC0 is upheld

cryptographically: to read a file f , a user u must be able to

decrypt a tuple granting her the permissions associated with a

role r, which can be used to decrypt a tuple containing a copy

of f encrypted to role r.

B. Design Considerations

While conceptually straightforward, the strawman construc-

tion is by no means a complete solution. We now use this

construction as a guide to discuss a number of design tradeoffs

that must be addressed to support cryptographic enforcement

of dynamic RBAC0 states.

PKI vs. IBE. Basing an RBAC0 system on IBE and IBS

allows for a simple mapping from encryption keys to roles

in RBAC0: The name of the role is the public-key used to

encrypt under that role. This is conceptually simpler than what

is achieved by traditional public key or symmetric encryption,

which may help limit certain key management issues in soft-

ware. IBE-based constructions also generalize to richer access

control models (e.g., enforced using HIBE or ABE), which

we explore in Section VI. That said, rich infrastructure has

been developed to support public key cryptography, which may

make the systems support issues inherent in these constructions

easier to manage. To this end, we present constructions based

on both IBE and public key cryptography.

Inefficiency Concerns. The strawman construction exhibits

two key issues with respect to efficiency. First, IBE (like

public-key cryptography) is not particularly well-suited for

the bulk encryption of large amounts of data. As such, the

performance of this construction would suffer when large files

are shared within the system. Second, this construction requires

a duplication of effort when a file, say f , is to be shared with

multiple roles, say r1 and r2. That is, f must actually be

encrypted twice: once with r1 and once with r2. We note that

this also leads to consistency issues between roles when f is

updated. Fortunately, both of these concerns can be mitigated

via the use of hybrid cryptography. Rather than storing F tuples

of the form:

〈F, r, 〈fn, op〉,EncIBE
r (f), SU,SignIBS

SU 〉
We can instead store the following tuples, where

k ← GenSym is a symmetric key:

〈FK, r, 〈fn, op〉,EncIBE
r (k), SU,SignIBS

SU 〉
〈F, fn,EncSymk (f), r,SignIBS

r 〉
The FK tuples are similar to the file encryption tuples in the

strawman construction, except that the ciphertext portion of

the tuple now includes an IBE-encrypted symmetric key rather

than an IBE-encrypted file. F tuples contain a symmetric-key-

encrypted (using an authenticated mode) version of the file f ,

and are IBS-signed using the role key of the last authorized

updater. This adjustment to the metadata improves the efficiency

of bulk encryption by using symmetric-key cryptography, and

greatly reduces the duplication of effort when sharing a file

with multiple roles: a single F tuple can be created for the file

along with multiple FK tuples (i.e., one per role).

Handling Revocation. The strawman construction can

neither revoke a permission from a role, nor remove a user

from a role. The former case can be handled by versioning the

F and FK tuples stored within the system, and the latter case

handled by adding role versioning to the role key tuples and

FK tuples in the system:

〈RK, u, (r, vr),EncIBE
u (k(r,vr), s(r,vr)),Sign

IBS
SU 〉

〈FK, r, 〈fn, op〉, v,EncIBE
(r,vr)(k), SU,Sign

IBS
SU 〉

〈F, fn, v,EncSymk (f), (r, vr),Sign
IBS
(r,vr)〉

Here, v represents a version number for the symmetric key used

to encrypt a file. Role names have been replaced with tuples

that include the role name (e.g., r), as well as a version number
(vr). Removing a permission from a role entails re-keying and
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re-encrypting the file (i.e., creating a new F tuple), and creating

new FK tuples for each role whose access to the file has not
been revoked. The roles increment their previous role number.

Similarly, removing a user u from a role r entails deleting

u’s RK tuple for r, generating new role keys for r (with an

incremented version number) and encoding these into new RK
tuples for each user remaining in r, and re-versioning all files

to which the role r holds some permission. We note that both

of these processes must be carried out by an administrator,

as only administrators can modify the RBAC0 state. There is

much nuance to these processes, and we defer a full discussion

to Section IV-C.

Online, Lazy, and Proxy Re-Encryption. Supporting revo-

cation leads to an interesting design choice: should files be re-

encrypted immediately upon re-key, or lazily re-encrypted upon

their next write? From a confidentiality standpoint, forcing an

administrator—or some daemon process running on her behalf—

to re-encrypt files immediately upon re-key is preferential, as

it ensures that users who have lost the ability to access a

file cannot later read its contents. On the other hand, this

comes with a potentially severe efficiency penalty in the

event that many files are re-keyed due to changes to some

role, as access to these files must be locked while they are

downloaded, re-encrypted, and uploaded. In this paper, we opt

for a lazy re-encryption strategy, in which files are re-encrypted

by the next user to write to the file (cf., Section IV-C). We

note that such a scheme is not appropriate for all scenarios,

but substantially reduces the computational burden on the

cloud when allowing for dynamic updates to the RBAC0 state

(cf., Section V-D). Similarly, if a client is powerful enough

to download a source file and decrypt it to view the material,

it presumably is powerful enough to perform the roughly

computationally equivalent operation of re-encrypting it. Note

that a single client is unlikely to need to re-encrypt large

numbers of files, unlike the cloud if a lazy re-encryption strategy

were not used. Adapting our construction to instead use online

re-encryption is a straightforward extension.

While appealing on the surface, IBE schemes that support

proxy re-encryption, or revocation (e.g., [8], [32]) are not

suitable for use in our scenario. These types of schemes

would seemingly allow us to remove our reliance on lazy

re-encryption, and have the cloud locally update encryptions

when a permission is revoked from a role, or a role from a

user. This would be done by creating an updated role name,

using proxy re-encryption to move the file from the old role

name to the updated one, and then revoking all keys for the

old file. The significant issue, here, is that such schemes do

not address how one would use them with hybrid encryption.

We do not believe that a reasonable threat model can assume

that even a limited adversary would be unable to cache all the

symmetric keys for files she has access to. Thus, using proxy
re-encryption on the RK and FK tuples and not the F tuples
would allow users to continue to access files to which their
access has been revoked, and so our construction would still
require online or lazy re-encryption of the files themselves.

As a final note, we acknowledge that key-homomorphic

PRFs [12] could be combined with revocation and proxy re-

encryption schemes, solving the revocation problem completely

on the cloud in the hybrid model. However, current technology

does not solve the computational effort, as costs of current

key-homomorphic PRFs are comparable or greater than the

IBE and PKI technologies in consideration.

Multiple Levels of Encryption. We note that our construc-

tion has levels of indirection between RK, FK, and F tuples that

mirror the indirection between users, roles, and permissions

in RBAC0. This indirection could be flattened to decrease the

number of cryptographic operations on the critical path to file

access; this would be akin to using an access matrix to encode

RBAC0 states. While this is possible, it has been shown to

cause computational inefficiencies when roles’ memberships

or permissions are altered [27]; in our case this inefficiency

would be amplified due to the cryptographic costs associated

with these updates.

Other Issues and Considerations. Our constructions are

measured without concern for concurrency-related issues that

would need to be addressed in practice. We note, however, that

features to handle concurrency would be largely independent of

the proposed cryptography used to enforce the RBAC0 policies.

As such, we opt for the analysis of the conceptually-simpler

schemes presented in this paper. Finally, our analysis is agnostic

to the underlying achieved security guarantees and hardness

assumptions of the public-key and IBE schemes. Production

implementations would need to consider these issues.

C. Detailed IBE/IBS Construction

We now flesh out the strawman and previously-discussed

enhancements. This produces a full construction for enforcing

RBAC0 protections over an evolving collection managed by a

minimally-trusted cloud storage provider.

1) Overview and Preliminaries: We reiterate that the admin-

istrators act as the Master Secret Key Generator of the IBE/IBS

schemes. Users add files to the system by IBE-encrypting these

files to the administrators, using hybrid cryptography and F
tuples. Administrators assign permissions (i.e., 〈file, op〉 pairs)

to roles by distributing symmetric keys using FK tuples. Role

keys are distributed to users using RK tuples. Recall the format

of these tuples is as follows:

〈RK, u, (r, vr),EncIBE
u (k(r,vr), s(r,vr)),Sign

IBS
SU 〉

〈FK, r, 〈fn, op〉, v,EncIBE
(r,vr)(k), SU,Sign

IBS
SU 〉

〈F, fn, v,EncSymk (f), (r, vr),Sign
IBS
(r,vr)〉

Note that symmetric keys and role keys are associated with

version information to handle the cases where a user is removed

from a role or a permission is revoked from a role.

We assume that files have both read and write permissions

associated with them. However, we cannot have write without

read, since writing requires decrypting the file’s symmetric

key, which then can be used to decrypt and read the stored

file. Thus we only assign either Read or RW, and only revoke

Write (Read is retained) or RW (nothing is retained). When a

user wishes to access a file, she determines which of her roles
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has access to the permission in question. She then decrypts

the role’s secret key using her identity, and then decrypts the

symmetric key for the file using the role’s secret key, and finally

uses the symmetric key to decrypt the symmetrically-encrypted

ciphertext in question.

2) Full Construction: Figure 2 lists every RBAC0 operation

and shows how each can be implemented using IBE, IBS, and

the metadata structures described previously. This figure uses

the following notation: u is a user, r and q are roles, p is a

permission, fn is a file name, f is a file, c is a ciphertext

(either IBE or symmetric), sig is an IBS signature, and v is

a version number. Users are listed in a file called USERS.

The identity corresponding to a role r is (r, v), where v is a

positive integer representing the version number. We use vr to

denote the latest version number for role r. Roles and versions

are stored as (r, vr) pairs in a file called ROLES, which is

publicly viewable and can only be changed by the administrator.

Similarly, we use vfn to denote the latest version number for

the file with name fn. Filenames and versions are stored

as (fn, vfn) pairs in a file called FILES, which is publicly

viewable and can only be changed by the admin or reference

monitor (R.M.). SU is the superuser identity possessed by the

administrators. We use “−” to represent a wildcard. SignIBS
id

at the end of a tuple represents an IBS signature by identity id
over the rest of the tuple. The subscript after an operation name

identifies who performs the operation if it is not performed by

an administrator.

Many operations described in Fig. 2 are straightforward

given the discussion earlier in this section. To demonstrate

some of the more complicated aspects of this construction,

we now describe the procedure to revoke a role from a user,

which demonstrates several types of re-keys as well as our

notion of lazy re-encryption. The procedure for removing a

user u from a role r consists of three steps: (i) re-keying r,

(ii) re-encrypting existing file keys stored in FK tuples to the

new role key, and (iii) re-keying all files accessible by r.

To re-key a role r, we must transition from (r, vr) to

(r, vr + 1), generating new IBE keys for this new role version.

The old RK tuples for r are deleted, and each remaining

member u′ of role r is given the new RK tuples of the

form of 〈RK, u′, (r, vr + 1), c,SignIBS
SU 〉, where c contains

the new IBE/IBS keys encrypted to u′’s identity key. Next,

all (symmetric) file keys encrypted to (r, vr) in FK tuples are

replaced with file keys encrypted to (r, vr + 1). This allows

the remaining members of r to retain access to existing files,

while preventing the revoked user u from accessing any file

keys that he has not already decrypted and cached.

Finally, each file to which r has access must be re-keyed

to prevent u from accessing future updates to this file using
cached symmetric keys. For each file f , a new symmetric

key is generated via GenSym. This key is then encrypted

for each role r′ that has access to f (including r), and new

FK tuples 〈FK, r′, 〈f, op〉, v + 1, c′,SignIBS
SU 〉 are uploaded

alongside existing 〈FK, r′, 〈f, op〉, v, c,SignIBS
SU 〉 tuples. Here,

v + 1 is the new file key version, c is the existing encrypted

file key, and c′ is the new file key IBE-encrypted to identity r′.

The next time f is read, the key contained in c will be used for

decryption; the next time f is written, the key contained in c′

will be used for encryption. This process obviates the need for

a daemon to re-encrypt all files at revocation time, but prevents

the revoked user u from accessing any future modifications to

these files using cached symmetric file keys.

D. PKI Construction Overview

We now provide an intuition for how traditional public-key

cryptography can be used in place of IBE/IBS to implement

RBAC0. Due to space limitations, full details will be left

to a technical report version [28] of this paper. In our PKI

construction, public-key encryption and signatures take the

place of IBE and IBS. Each role is assigned a public/private

key pair rather than IBE/IBS keys. The primary difference

between the IBE and PKI constructions is that IBE/IBS

clients are given escrowed IBE/IBS identity private keys by

the role administrator, while PKI clients generate their own

public/private key pairs and upload their public keys. Note that

in both systems, the administrators have access to all of the

roles’ private keys.

V. ANALYSIS

We now describe our evaluation of the suitability of IBE/IBS

and PKI constructions for enforcing RBAC0 access controls.

We utilize a workflow similar to that proposed in [26], in which

we first evaluate the candidates’ expressive power (i.e., ability

to represent the desired policy as it evolves), then evaluate the

cost of using each candidate using Monte Carlo simulation

based on initial states obtained from real-world datasets.

A. Qualitative Analysis

We analyze the correctness and security guarantees of

our implementations using the access control expressiveness

framework known as parameterized expressiveness [36]. In

particular, we ensure that the implementation properties of

correctness, AC-preservation, and safety are preserved by these

constructions. Correctness ensures that the RBAC0 state’s

image in our constructions answers queries exactly as the

original RBAC0 system would, and that the same end state

is reached by either executing an RBAC0 action natively and

mapping the result into our construction or by mapping the

initial RBAC0 state and executing the action’s image in our

construction. AC-preservation says that the RBAC0 system’s

authorization requests must be asked directly in the simulating

system. For instance, the policy must be simulated in such

a way that the RBAC0 request “Can subject s read file f?”

is asked directly in the simulated state rather than being

translated to any other queries. Finally, safety ensures that our

constructions do not grant or revoke unnecessary permissions

during the simulation of a single RBAC0 command. That is, the

intermediate states through which our constructions travel while

implementing an RBAC0 command do not add or remove any

granted requests except those that must be added or removed as

determined by the start and end states of the RBAC0 command.
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addU(u)
– Add u to USERS
– Generate IBE private key ku ← KeyGenIBE(u) and IBS private

key su ← KeyGenIBS(u) for the new user u
– Give ku and su to u over private and authenticated channel

delU(u)
– For every role r that u is a member of:
∗ revokeU(u, r)

addPu(fn, f)
– Generate symmetric key k ← GenSym

– Send 〈F, fn, 1,EncSym
k (f), u,SignIBS

u 〉 and 〈FK, SU ,

〈fn,RW〉, 1, EncIBE
SU (k), u, SignIBS

u 〉 to R.M.
– The R.M. receives 〈F, fn, 1, c, u, sig〉 and 〈FK, SU , 〈fn,RW〉,

1, c′, u, sig′〉 and verifies that the tuples are well-formed and the
signatures are valid, i.e., VerIBS

u (〈F, fn, 1, c, u〉, sig) = 1 and
VerIBS

u (〈FK, SU , 〈fn,RW〉, 1, c′, u〉, sig′) = 1.
– If verification is successful, the R.M. adds (fn, 1) to FILES and

stores 〈F, fn, 1, c, u, sig〉 and 〈FK, SU , 〈fn,RW〉, 1, c′, u, sig′〉
delP (fn)
– Remove (fn, vfn) from FILES
– Delete 〈F, fn,−,−,−,−〉 and all 〈FK, −, 〈fn,−〉, −, −, −, −〉
addR(r)
– Add (r, 1) to ROLES
– Generate IBE private key k(r,1) ← KeyGenIBE((r, 1)) and IBS

private key s(r,1) ← KeyGenIBS((r, 1)) for role (r, 1)

– Send 〈RK, SU , (r, 1), EncIBE
SU

(
k(r,1), s(r,1)

)
, SignIBS

SU 〉 to R.M.

delR(r)
– Remove (r, vr) from ROLES
– Delete all 〈RK,−, (r, vr),−,−〉
– For all permissions p = 〈fn, op〉 that r has access to:
∗ revokeP (r, 〈fn,RW〉)

assignU(u, r)
– Find 〈RK, SU , (r, vr), c, sig〉 with VerIBS

SU (〈RK, SU , (r, vr), c〉,
sig) = 1

– Decrypt keys (k(r,vr), s(r,vr)) = DecIBE
kSU

(c)

– Send 〈RK, u, (r, vr), EncIBE
u

(
k(r,vr), s(r,vr)

)
, SignIBS

SU 〉 to
R.M.

revokeU(u, r)
– Generate new role keys k(r,vr+1) ← KeyGenIBE((r, vr + 1)),

s(r,vr+1) ← KeyGenIBS((r, vr + 1))

– For all 〈RK, u′, (r, vr), c, sig〉 with u′ �= u and VerIBS
SU (〈RK, u′,

(r, vr), c〉, sig) = 1:
∗ Send 〈RK, u′, (r, vr + 1), EncIBE

u′
(
k(r,vr+1), s(r,vr+1)

)
,

SignIBS
SU 〉 to R.M.

– For every fn such that there exists 〈FK, (r, vr), 〈fn, op〉, vfn, c,

SU , sig〉 with VerIBS
SU (〈FK, (r, vr), p, vfn, c, SU〉, sig) = 1:

∗ For every 〈FK, (r, vr), 〈fn, op′〉, v, c′, SU , sig〉 with
VerIBS

SU (〈FK, (r, vr), 〈fn, op′〉, v, c′, SU〉, sig) = 1:

· Decrypt key k = DecIBE
k(r,vr)

(c′)
· Send 〈FK, (r, vr + 1), 〈fn, op′〉, v, EncIBE

(r,vr+1)(k), SU ,

SignIBS
SU 〉 to R.M.

∗ Generate new symmetric key k′ ← GenSym for p
∗ For all 〈FK, id, 〈fn, op′〉, vfn, c′′, SU , sig〉 with VerIBS

SU (〈FK,
id, 〈fn, op′〉, vfn, c′′, SU〉, sig) = 1:

· Send 〈FK, id, 〈fn, op′〉, vfn + 1, EncIBE
id (k′), SU ,

SignIBS
SU 〉 to R.M.

∗ Increment vfn in FILES, i.e., set vfn := vfn + 1
– Increment vr in ROLES, i.e., set vr := vr + 1
– Delete all 〈RK, −, (r, vr), −, −〉
– Delete all 〈FK, (r, vr), −, −, −, −, −〉

assignP (r, 〈fn, op〉)
– For all 〈FK, SU , 〈fn,RW〉, v, c, id, sig〉 with VerIBS

id (〈FK, SU ,
〈fn,RW〉, v, c, id〉, sig) = 1:
∗ If this adds Write permission to existing Read permission, i.e.,

op = RW and there exists 〈FK, (r, vr), 〈fn,Read〉, v, c′, SU ,
sig〉 with VerIBS

SU (〈FK, (r, vr), 〈fn, op′〉, v, c′, SU〉, sig) = 1:

· Send 〈FK, (r, vr), 〈fn,RW〉, v, c′, SU , SignIBS
SU 〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn,Read〉, v, c′, SU , sig〉
∗ If the role has no existing permission for the file, i.e., there does not

exist 〈FK, (r, vr), 〈fn, op′〉, v, c′, SU , sig〉 with VerIBS
SU (〈FK,

(r, vr), 〈fn, op′〉, v, c, SU〉, sig) = 1:
· Decrypt key k = DecIBE

kSU
(c)

· Send 〈FK, (r, vr), 〈fn, op〉, v, EncIBE
(r,vr)

(k), SU , SignIBS
SU 〉

to R.M.

revokeP (r, 〈fn, op〉)
– If op = Write:
∗ For all 〈FK, (r, vr), 〈fn,RW〉, v, c, SU , sig〉 with

VerIBS
SU (〈FK, (r, vr), 〈fn,RW〉, v, c, SU〉, sig) = 1:

· Send 〈FK, (r, vr), 〈fn,Read〉, v, c, SU , SignIBS
SU 〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn,RW〉, v, c, SU , sig〉
– If op = RW:
∗ Delete all 〈FK, (r, vr), 〈fn,−〉, −, −, −〉
∗ Generate new symmetric key k′ ← GenSym

∗ For all 〈FK, r′, 〈fn, op′〉, vfn, c, SU , sig〉 with VerIBS
SU (〈FK,

r′, 〈fn, op′〉, v, c, SU〉, sig) = 1:
· Send 〈FK, r′, 〈fn, op′〉, vfn + 1, EncIBE

id (k′), SU ,

SignIBS
SU 〉 to R.M.

∗ Increment vfn in FILES, i.e., set vfn := vfn + 1

readu(fn)
– Find 〈F, fn, v, c, id, sig〉 with valid ciphertext c and valid signature

sig, i.e., VerIBS
id (〈F, fn, 1, c, id〉, sig) = 1

– Find a role r such that the following hold:
∗ u is in role r, i.e., there exists 〈RK, u, (r, vr), c′, sig〉 with

VerIBS
SU (〈RK, u, (r, vr), c′〉, sig) = 1

∗ r has read access to version v of fn, i.e., there exists 〈FK, (r, vr),
〈fn, op〉, v, c′′, SU , sig′〉 with VerIBS

SU (〈FK, (r, vr), 〈fn, op〉,
v, c′′, SU〉, sig′) = 1

– Decrypt role key k(r,vr) = DecIBE
ku

(c′)
– Decrypt file key k = DecIBE

k(r,vr)
(c′′)

– Decrypt file f = DecSym
k (c)

writeu(fn, f)
– Find a role r such that the following hold:
∗ u is in role r, i.e., there exists 〈RK, u, (r, vr), c, sig〉 with

VerIBS
SU (〈RK, u, (r, vr), c〉, sig) = 1

∗ r has write access to the newest version of fn, i.e., there exists
〈FK, (r, vr), 〈fn,RW〉, vfn, c′, SU , sig′〉 and VerIBS

SU (〈FK,
(r, vr), 〈fn,RW〉, v, c′, SU〉, sig′) = 1

– Decrypt role key k(r,vr) = DecIBE
ku

(c)

– Decrypt file key k = DecIBE
k(r,vr)

(c′)

– Send 〈F, fn, vfn,EncSym
k (f), (r, vr),Sign

IBS
(r,vr)

〉 to R.M.

– The R.M. receives r and 〈F, fn, v, c′′, (r, vr), sig′′〉 and verifies the
following:
∗ The tuple is well-formed with v = vfn
∗ The signature is valid, i.e., VerIBS

(r,vr)
(〈F, fn, v, c′′, (r, vr)〉,

sig′′) = 1
∗ r has write access to the newest version of fn, i.e., there exists
〈FK, (r, vr), 〈fn,RW〉, vfn, c′, SU , sig′〉 and VerIBS

SU (〈FK,
(r, vr), 〈fn,RW〉, vfn, c′, SU〉, sig′) = 1

– If verification is successful, the R.M. replaces 〈F, fn,−,−,−,−〉
with 〈F, fn, vfn, c′′, (r, vr), sig′′〉

Fig. 2: Implementation of RBAC0 using IBE and IBS
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For formal definitions of these properties, see [36]. Using

parameterized expressiveness, we get the following results:

Theorem 1: The implementation of RBAC0 using IBE and

IBS detailed in Fig. 2 is correct, AC-preserving, and safe.

Theorem 2: The implementation of RBAC0 using public key

cryptographic techniques is correct, AC-preserving, and safe.

We now give an overview of the structure of and ideas behind

the proof of Theorem 1. This proof begins by formalizing

the IBE/IBS construction presented in Section IV using the

parameterized expressiveness framework. We then provide a

formal mapping from RBAC0 to our IBE/IBS system. We show

that this mapping preserves user authorization, meaning that a

user is authorized for a permission in RBAC0 if and only if

the user is also authorized by the IBE/IBS construction.

The tricky part of this proof involves showing that changes to

the RBAC0 state map correctly as changes to the IBE/IBS state.

This means that changing the RBAC0 state and then mapping

to IBE/IBS has the same effect as mapping to IBE/IBS and

then changing the state there in an equivalent way. Our use of

version numbers in IBE/IBS means that a single RBAC0 state

may map to multiple IBE/IBS states; i.e., if a user is granted

permissions that are later revoked, the resulting RBAC0 state

will be the same as if the permissions were never granted, but

the IBE/IBS state will have different version numbers as a

result of the revocation. Therefore, we consider IBE/IBS states

that only differ in version numbers to be congruent. We show

that the IBE/IBS state resulting from a change to the RBAC0

state, followed by mapping to IBE/IBS, is congruent to one

crafted by first mapping to IBE/IBS, and then changing the

IBE/IBS state in a corresponding way.

The full proof of Theorem 1 can be found in Appendix A.

We note that the proof of Theorem 2 is very similar in structure,

and an accompanying technical report [28] provides the details.

B. Algebraic Costs

Table I lists the costs for each RBAC operation based on the

system state. All costs are incurred by the user or administrator

running the operation unless otherwise noted. In order to

simplify the formulas, we employ a slight abuse of notation:

we use the operation itself to represent its cost (e.g., EncIBE

is used to represent the cost of one EncIBE operation). We

use the following notation:

• roles(u) is the set of roles to which user u is assigned

• perms(r) is the set of permissions to which role r is

assigned

• users(r) is the set of users to which role r is assigned

• roles(p) is the set of roles to which permission p is

assigned

• versions(p) is the number of versions of permission p

C. Experimental Setup

To evaluate the costs of using our constructions to enforce

RBAC0, we utilize the simulation framework proposed in [26].

We encode RBAC0 as a workload, with implementations in

IBE/IBS and PKI as described in Sections IV-C and IV-D.

Simulations are initialized from start states extracted from

assign
user

revoke
user

revoke
perm.

assign
perm.

μAU

μRU

μAP

μRP∞
∞

∞
∞

var semantics value

R administrative rate 0.1×√|U |/day

μA add bias [0.7, 1.0]
μU UR bias [0.3, 0.7]
μAU Rate of assignUser μA × μU ×R
μRU Rate of revokeUser (1− μA)× μU ×R
μAP Rate of assignPermission μA × (1− μU )×R
μRP Rate of revokePermission (1− μA)× (1− μU )×R

Fig. 3: Administrative actions in our experiments

real-world RBAC datasets. We then generate traces of access

control actions using actor-specific continuous-time Markov

chains, or actor machines. While this is a fairly simple model

of actors’ behaviors, it allows us to easily investigate trends in

costs. In particular, we are able to investigate changes in the

relative frequencies of the various administrative actions, and

the costs resulting from these changes.

We simulate one-month periods in which the administrator

of the system behaves as described in the actor machine

depicted in Fig. 3. The administrative workload increases with

the number of users in the system, and we randomly sample

an add bias parameter that describes the relative proportion

of assignment vs. revocation operations. We do not include

administrative actions that add or remove users or roles, due to

the unlikely occurrence of these actions on such short timescales

(one-month simulations).

This administrative behavior model describes a range of real-

istic scenarios and thus allows us to investigate the interactions

in which we are interested. The overall administrative rate is

approximately
√|U | (with |U | the number of users), ranging

from about 0.6 administrative actions per day on our smallest

dataset to 2.2 on the largest. We consider the range of 0%

to 30% of the administrative load consisting of revocations,

since in realistic scenarios permissions tend to be assigned at

a greater rate than they are revoked [63].

To quantify the costs associated with our cryptographic

constructions, we record the number of instances of each

cryptographic operation executed, including counts or averages

for traces of related operations (e.g., the average number of

IBE encryptions needed to revoke a role from a user).

As mentioned above, simulation start states are extracted

from real-world RBAC datasets. These datasets are summarized

in Table II. All of these datasets, aside from university,

were originally provided by HP [22]. The domino dataset

is from a Lotus Domino server, emea is from a set of

Cisco firewalls, firewall1 and firewall2 are generated from

network reachability analysis, and healthcare is a list of
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addU(u) : KeyGenIBE +KeyGenIBS

delU(u) :
∑

r∈roles(u) revokeU(u, r)

addP (p) : EncIBE + 2 · SignIBS and 2 ·VerIBS by R.M.

delP (p) : None

addR(r) : KeyGenIBE +EncIBE +KeyGenIBS + SignIBS

delR(r) :
∑

p∈perms(r) revokeP (p, r)

assignU(u, r) : EncIBE +DecIBE + SignIBS +VerIBS

revokeU(u, r) : KeyGenIBE + KeyGenIBS +
(
|users(r)|+∑

p∈perms(r)(versions(p) + |roles(p)|)
) (

EncIBE + SignIBS +

VerIBS
)
+

(
DecIBE ·∑p∈perms(r) versions(p)

)

assignP (p, r) : versions(p)·(SignIBS +VerIBS
)
; if r has no permissions for the file then also versions(p)·(EncIBE +DecIBE

)

revokeP (p, r) : Revokes all access: |roles(p)| · (EncIBE + SignIBS +VerIBS
)
;

Revokes only write access: |versions(p)| · (SignIBS +VerIBS
)

read(fn) : 2 · (DecIBE +VerIBS
)

write(fn, f) : SignIBS + 2 · (DecIBE +VerIBS
)

and 2 ·VerIBS by R.M.

TABLE I: Algebraic costs of RBAC0 operations in our IBE/IBS implementation

roles/user users/role perm./role roles/perm.
set users |P| |R| |UR| |PA| max min max min max min max min

domino 79 231 20 75 629 3 0 30 1 209 1 10 1
emea 35 3046 34 35 7211 1 1 2 1 554 9 31 1

firewall1 365 709 60 1130 3455 14 0 174 1 617 1 25 1
firewall2 325 590 10 325 1136 1 1 222 1 590 6 8 1

healthcare 46 46 13 55 359 5 1 17 1 45 7 12 1
university 493 56 16 495 202 2 1 288 1 40 2 12 1

TABLE II: Overview of the datasets used in our experiments

healthcare permissions from the US Veteran’s Administration.

The university dataset describes a university’s access control

system, and was developed by IBM [48], [65].

D. Experimental Results

Figure 4 presents a sampling of our results. First, we consider

the cost of performing revocations in our implementation of

RBAC0 using IBE/IBS. Figure 4a shows the average number

of IBE encryptions needed for a single user revocation (i.e.,

removing a user from a role), and Fig. 4b shows the same

for permission revocation (i.e., revoking a permission from a

role). This shows that revoking a permission can cost several

IBE encryptions, while user revocation incurs hundreds or

thousands of IBE encryptions, on average. We note that, by

inspection of the code in Fig. 2, a user revocation also requires

an equal number of IBS signatures and verifications, a smaller

number of IBE decryptions, and the generation of new IBE

and IBS keys for the role.

For our chosen distribution of administrative actions, Fig. 4c

shows the total number of IBE encryptions performed over a

month for all user revocations. As the add bias approaches 1,

the number of revocations (and thus the total number of IBE

encryptions for user revocation) approaches 0. However, even

when only 5–10% of administrative actions are revocation, the

number of monthly IBE encryptions under this parameterization

is often in the thousands.

In Fig. 4d, we show the number of files that must be re-

keyed for a single user revocation. This highlights the benefit

of utilizing lazy re-encryption; if we had instead utilized

active re-encryption, each of these files would need to be

locked, downloaded, decrypted, re-encrypted, and re-uploaded

immediately following revocation. In certain scenarios, active

re-encryption may be computationally feasible. For instance, in

university, only ≈ 10 files must be re-encrypted for the average

user revocation, adding less than 1% to the total number of file

encryptions executed over the entire simulation, even at the

highest rate of revocations that we consider. However, in most

other scenarios, a user revocation triggers the re-key of tens or

hundreds of files, such as in emea or firewall2, where active

re-encryption increases the total number of file encryptions

by 63% and 12%, respectively (at 20–30% revocation rate).

Thus, in most scenarios, active re-encryption is likely to be

infeasible, as discussed in Section IV-B.

Given the administrative behavior model depicted in Fig. 3,

Fig. 4e shows the total number of file re-keys that take place

over a month for the purpose of user revocation. For scenarios

with very user- and permission-dense roles (e.g., firewall1
and firewall2), we see several times as many re-keys as total
files, indicating that, on average, each file is re-keyed multiple

times per month for the purposes of user revocation. This

further enforces that inefficiencies that active re-encryption

would bring, as each file (on average) would be locked and
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(a) IBE encs. per user revoked
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(b) IBE encs. per permission revoked
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(c) IBE encs. for user revocation vs. add bias
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(d) File rekeys per user revoked
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(e) File rekeys for user revoc. vs. add bias
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Fig. 4: Results of running 100 one-month simulations on each dataset (each data point is a simulation)

re-encrypted by the administrator multiple times per month.
Finally, we note that the costs for our IBE/IBS- and PKI-

based constructions for RBAC0 are not notably different. For

instance, Fig. 4f compares, for scenario firewall1, the number

of IBE encryptions with the number of asymmetric encryptions

executed over each simulated month and reveals the same

distribution in both IBE/IBS- and PKI-based constructions.

Given the similarity in the cost of these classes of operations,

we can conclude that these constructions are similarly expensive

from a computational standpoint.

E. Converting Experimental Results to Real Costs
We now demonstrate how the costs of generic IBE encryp-

tions turn into actual computational costs for given schemes.

Since any implementation’s running time is contingent on

a myriad of variables (e.g., processor speed, memory, etc.)

we focus on the number of (pairing friendly) elliptic curve

cryptographic operations that need to be performed. We assume

schemes are implemented using an asymmetric (Type 3) pairing:

e : G× Ĝ→ GT , where G, Ĝ,GT are groups of prime order;

this is more efficient than a symmetric (Type 1) pairing [25].

Additive notation is used in G and Ĝ, while multiplicative

notation is used in GT .

We use multiplication in G as our cost unit, expressing the

relative costs of other operations in terms of this operation. The

relative costs should be somewhat stable across hardware and

reasonable implementations. These relative costs are given in

Table III and are based on data provided by Ayo Akinyele, an

ABE/pairing implementation expert at Zeutro LLC (personal

communication). Costs of addition in G, Ĝ, and multiplication

in GT are so low that we ignore them. These relative costs

are based on the implementation of RELIC v0.4 [2], using

a Barreto-Naehrig curve with a 256-bit base field, GMP for

big number operations, and standard configuration options for

prime field arithmetic. For a point of reference, a reasonable

modern workstation running RELIC v0.4 on such curves

will take approximately 0.2 ms on average to compute a

multiplication in G.

Operation Ĝ Multiply GT Exp. Pairing (e)
G Multiplies 4.5 9 9

TABLE III: Relative cost of Type 3 pairing operations in terms

of multiplication in G in RELIC v0.4

To determine concrete costs, we consider three representative

combinations of IBE and IBS algorithms:
BF+CC: The IBE scheme from [11, Sec. 4.1] and the IBS

scheme from [13, Sec. 2]. Both are efficient and are proven

secure in the random oracle model.
BB1+PS: The IBE scheme from [9, Sec. 4] and the IBS

scheme from [54, Sec. 4]. These schemes are less efficient

than BF+CC but are proven secure in the standard model.
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LW+PS: The IBE scheme from [44, App. C] and the IBS

scheme from [54, Sec. 4]. The IBE scheme here is less efficient

but has stronger security properties.

Table IV lists the cost of each additive RBAC0, read and

write operation in terms of total “multiplication units” in G.

That is, we sum the cost of cryptographic operations in terms

of multiplication units using the conversion factor in Table III.

Table IV specifies the costs incurred by the invoker of the

operation (either the admin or the user) as well as the reference

monitor. For completeness, a table documenting the individual

costs of each basic IBE/IBS operation for these schemes can

be found in [28], an accompanying technical report.

Incurred by Operation BF+CC BB1+PS LW+PS

Invoker

addU 5.5 14.5 32.5
addP 15 25 29
addR 18.5 33 55
assignU 41 63.5 103.5

assignP3 41 63.5 103.5
read 56 90 162
write 58 96.5 168.5

R.M.
addP 38 54 54
write 38 54 54

TABLE IV: Costs of operations in terms of G multiplications

The cost to delete a user/role or to revoke a user/permission

depends on the RBAC state at the time of revocation, so we

cannot give definite costs for these operations. Instead, we

use the experimental results from Section V-D to get an idea

of how expensive revocation can be. The results of this are

in Fig. 5, where we plot the costs for each dataset using the

three IBE/IBS combinations listed above. Figure 5a shows

the cost of revoking a user in terms of multiplications in G;

Fig. 5b does the same for revoking a permission. Note that for

our datasets, a single user revocation usually costs more than

10,000 multiplications in G (≈ 2 s. on a modern workstation),

and often costs more than 100,000 multiplications (≈ 20 s.)

for some datasets. While not exceedingly huge, we remind the

reader that our costing does not account for many costs, such

as concurrency, communication, and storage costs. Further, our

construction minimizes other costs through the use of lazy

re-encryption and hybrid encryption.

VI. DISCUSSION

There is no doubt that IBE and ABE can enable various

forms of cryptographic access control for data in the cloud.

In fact, the results presented in Figs. 4c, 4e and 4f show

that in situations in which the system grows in a monotonic

manner (i.e., users and files are added to the system and roles

are provisioned with new permissions), there is no need for

revocation, re-keying, or complicated metadata management:

IBE alone can enforce RBAC access controls on the cloud.

In fact, there are even implications or direct claims in the

literature that, in the static setting, the reference monitor can

be removed entirely (e.g., [30], [31], [49]). However, this does

not imply that IBE or ABE alone can entirely replace the use

3Assumes permission is for new file; cost is per version of the file

of a reference monitor when implementing outsourced access

controls: it is not the case when dynamic controls are required.

Specifically, this paper shows that IBE and PKI systems

are well-suited for implementing point states of an RBAC0

system. However, managing transitions between these states—

specifically, supporting the removal of a user from a role, the

revocation of a permission from a role, and efficient updates to

files shared with multiple roles—requires non-trivial metadata

management and a small, minimally-trusted reference monitor

that verifies signatures prior to file deletion and replacement.

In some of the datasets that we analyzed, this could lead to

thousands of IBE encryptions (Fig. 4a) and over one hundred

file re-keys/re-encryptions (Fig. 4d) when a single user is

removed from a role.

The above considerations lead to a tradeoff between con-

fidentiality and efficiency that must be weighed by both

cryptographers and system designers. There are two obvious

ways that this can be accomplished: by altering the threat

model assumed, or developing cryptographic approaches that

are more amenable to the dynamic setting. We now discuss

both of these approaches, and comment on lessons learned

during our analysis that can be applied to richer cryptographic

access control, such as using HIBE to support RBAC1, or ABE

to support ABAC.

A. Alternate Threat Models

Many of the overheads that we report on in the previous

section result from the threat model often implied by the

cryptographic literature (i.e., untrusted storage server, minimal

client-side infrastructure). Altering this model can reduce the

cryptographic costs of enforcing dynamic access controls on

the cloud. Here we consider two such alternate models.

Encryption/Decryption Proxy. A large amount of overhead

comes from relying the cloud storage provider to act as a

(cryptographic) metadata broker, as well as a file store. An al-

ternative approach might make use of an encryption/decryption

proxy server situated within an organization, using the cloud

provider solely as a backing store for encrypted files. This proxy

would act as a traditional reference monitor, mediating all file

access requests, downloading and decrypting files for authorized

readers4, and returning plaintext to the user. This would obviate

the need for any cryptography beyond authenticated symmetric

key encryption, and could make use of tried-and-true access

control reference monitors. However, this approach carries an

extra infrastructure overhead (the proxy server, itself) that could

make it unappealing to individuals hoping to enforce access

controls over cloud hosted files. Large organizations may also

have to deal with synchronizing access control policies and

key material across multiple proxies in the event that file I/O

demands outpace the abilities of a single server.

Trusted Hardware. A more extreme approach to simplify-

ing the cryptographic overheads of access control enforcement

would be to use, e.g., an SGX enclave [39], [47] to carry out

the work of the encryption/decryption proxy discussed above.

4Writes could be handled symmetrically.
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Fig. 5: Costs of revocation in different IBE/IBS schemes, in terms of elliptic curve point multiplications in group G

In this scenario, files could be stored encrypted on the cloud

server, while file encryption keys and the access control policy

to be enforced would be managed by a process running within

an SGX enclave. To access a file, a user would negotiate an

authenticated channel (e.g., using public key cryptography) with

this trusted process/reference monitor. The reference monitor

could then check the user’s permission to access the file, and

transmit the encrypted file and its associated key to the user

using a session key that is unknown to any process outside of

the SGX enclave. This approach frees organizations from the

overheads of running their own encryption/decryption proxies,

but is not without its limitations. For instance, this approach

will not work on commonly-used, storage-only services (e.g.,

Dropbox). Further, this approach may be subject to architectural

compromises or flaws (e.g., memory integrity vulnerabilities)

that cryptography-only solutions are not.

While these and other alterations to the threat model that

we consider can lead to decreased cryptographic overheads,

each incurs other costs or tradeoffs. We now consider future

research directions that may decrease the costs associated with

cryptography-only solutions to the problem of outsourcing

dynamic access controls.

B. Future Directions

Our experimentation and analysis has led to a number of

interesting directions for future work:

• Revocation. It is unclear how to use IBE to enforce

even RBAC0 without incurring high costs associated with

revocation-based state changes. Given our use of hybrid

cryptography for efficiency reasons, existing schemes for

revocation or proxy re-encryption (e.g., [8], [32]) cannot

solve the problem. Developing techniques to better facilitate

these forms of revocation and efficient use of hybrid

encryption is an important area of future work.

• Trust Minimization. Our construction makes use of a

reference monitor on the cloud to validate signatures prior

to file replacement or metadata update. Moving to file

versioning (e.g., based on trusted timestamping or block-

chaining) rather than file replacement may result in a

minimization of the trust placed in this reference monitor,

but at the cost of potential confidentiality loss, since old key

material may remain accessible to former role members. It

is important to better explore this tradeoff between reference

monitor trust and confidentiality guarantees.

• “Wrapper” Minimization. Our construction required the

management and use of three types of metadata structures to

correctly implement RBAC0 using IBE or PKI technologies.

It would be worth exploring whether the core cryptography

used to support outsourced access controls could be enhanced

to reduce the use of trusted management code needed to

maintain these sorts of structures.

• Deployability/Usability Costs. We did not consider issues

related to the use of the cryptographic tools underlying our

constructions. Further, our simulations do not separate our

IBE- and PKI-based constructions5 on the basis of RBAC0

implementation complexity. However, it may be the case

that the maturity of tools to support the use of PKIs or the

conceptual simplicity of IBE techniques tips the scales in

one direction or the other. Developing reasonable approaches

for considering these types of tradeoffs would greatly inform

future analyses.

While this paper focused on the use of IBE/IBS and PKI

schemes to enforce RBAC0 access controls, our findings

translate in a straightforward manner to the use of other

cryptographic tools (e.g., HIBE or ABE/ABS) to implement

more complex access control policies (e.g., RBAC1 or ABAC).

We now discuss some lessons learned when considering these

richer access control models.

C. Lessons Learned for More Expressive Systems

RBAC0 and IBE were natural choices for our initial ex-

ploration of the costs associated with using cryptography to

implement dynamic access control: RBAC0 is a simple, but

widely used, access control system; roles in RBAC0 have a

natural correspondence to identities in IBE; and the use of

hybrid encryption allows us to easily share resources between

5Our PKI construction and its corresponding simulations were omitted from
this paper due to space limitations.
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roles. Further, it seemed like an implementation of RBAC0

using IBE would be a jumping-off point for exploring the

use of hierarchical roles in RBAC1 via an analogous use of

HIBE. However, many of the costs that we see with our IBE

implementation of RBAC0 have analogues (or worse) in any

reasonable RBAC1 or ABAC implementation that we foresee

based on respective cryptographic operations.

We first note that we assume that any reasonable cryp-

tographic access control system must make use of hybrid

encryption. Without hybrid encryption, we would need to

continuously apply expensive asymmetric operations to small

“blocks” of a file that is to be encrypted. Given the complexity

of IBE/ABE encryption operations, the associated overheads of

this approach would be prohibitive, even for moderately-sized

files. Additionally, depending on the security requirements of

the application (e.g., Chosen Ciphertext Attack security), even

more complicated constructions than this simple blocking will

be required. The following observations may not apply to an

access control scheme where all files are small enough to do

away with the need of hybrid-encryption. However, the use

cases for such schemes seem limited.

A seemingly natural extension of our IBE-based RBAC0

scheme to a HIBE based RBAC1 scheme exploits the fact that

the HIBE can be used to encode hierarchical relationships,

such as those that exist between roles in a RBAC1 role

hierarchy. However, the costs of this implementation proved to

be considerable. A large initial problem is that an RBAC1 role

hierarchy can be an arbitrary DAG structure, while HIBE only

supports trees. Yet, even limiting RBAC1 to role hierarchies

that form a tree structure comes with serious costs. For example,

removing non-leaf roles in the hierarchy cascades re-encryption

down to all files at descendant leaves of the role, the creation of

new roles for each descendant node, and associated rekeying.

Similarly, practical operations like moving sub-trees in the

access structure can only be achieved by breaking the operation

down into addition and deletion of roles, which comes with

the associated costs of these primitive operations. We note that

we have developed a full RBAC1 implementation using HIBE,

which attempts to minimize costs. Unfortunately, a simple

inspection of this implementation shows that it would incur

significantly more computational expense than the RBAC0

scheme discussed herein.

Similarly, one might hope that the expressiveness of the ABE

encryption schemes would allow us to naturally implement

ABAC access control schemes. Further, there has been some ini-

tial work [58] supporting dynamic (restrictive) credentials and

revocations. However, there is still significant work associated

with making a practical ABE implementation of ABAC, and

such schemes will still have significant costs and meta-data to

manage (as in our IBE/RBAC0 implementation). For example,

revoking a secret-key in an KP-ABE/ABAC setting requires

the dynamic re-encryption of every ciphertext whose attributes

satisfy the policy in the revoked user’s key. Each attribute in

each ciphertext that is re-encrypted must given a new version,

and then finally all users whose keys have policies affected by

the re-versioning of the attributes must be re-issued. Further,

there are ABAC design decisions that must be informed by

the ABE scheme being implemented. For example, suppose

a single file is to be accessed by multiple policies in a CP-

ABE scheme. One can support multiple policies p1, . . . , pn
as individual public-key encryptions all encrypting the same

hybrid key, or as a single encryption supporting the disjunction

of all previous policies, p1 ∨ p2 ∨ · · · ∨ pn. The cost trade-

offs are completely dependent on the ABE scheme used for

the implementation, as the cost of ABE encryption is highly

dependent on the policy encoded into the ciphertext.

VII. CONCLUSIONS

Advanced cryptographic techniques (e.g., IBE and ABE)

are promising approaches for cryptographically enforcing rich

access controls in the cloud. While prior work has focused on

the types of policies that can be represented by these approaches,

little attention has been given to how policies may evolve
over time. In this paper, we move beyond cryptographically

representing point states in an access control system for cloud-

hosted data, and study constructions that cryptographically

enforce dynamic (role-based) access controls. We provide

evidence that, given the current state of the art, in situations

involving even a minimal amount of policy dynamism, the

cryptographic enforcement of access controls is likely to

carry prohibitive costs. Further, these costs are seemingly

amplified when enforcing richer policies (e.g., RBAC1 or

ABAC), requiring more stringent security guarantees (e.g.,

online, rather than lazy, re-encryption), or assuming more

relaxed threat models.

To conduct our analysis, we developed IBE- and PKI-based

constructions that use hybrid cryptography to enforce dynamic

RBAC0 access controls over files hosted on a third-party

cloud storage provider. In addition to proving the correctness

of our constructions, we used real-word RBAC datasets to

experimentally analyze their associated cryptographic costs.

Our findings indicate that IBE and ABE are a natural fit to

this problem in instances where users, roles, and permissions

increase monotonically, but incur very high overheads—e.g.,

sometimes exceeding thousands of encryption operations to

support a single revocation—when updates and revocation

must be supported. In doing so, we have identified a number

of fruitful areas for future work that could lead to more natural

constructions for cryptographic enforcement of access control

policies in cloud environments.
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our paper shepherd, Úlfar Erlingsson, for his guidance in

refining this paper. This work was supported, in part, by

the National Science Foundation under awards CNS–1111149,

CNS–1228697, and CNS–1253204.

REFERENCES

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution to a problem of
access control in a hierarchy,” TOCS, vol. 1, no. 3, 1983.
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APPENDIX A

IBE/IBS PROOF

We first provide a formal definition of an access control

system that uses IBE, IBS, and symmetric-key cryptography,

and then show it implements RBAC0, proving Theorem 1. The

proof of Theorem 2 is analogous, replacing IBE/IBS with

public-key equivalents.

A. Our IBE/IBS System

1) Preliminaries:

• We use m as the symmetric-key size, which is also the

size of the IBE and IBS message spaces.

• For signatures, we assume that hash-and-sign is used,

where the message is hashed with a collision-resistant

hash function and then signed using IBS.

2) States:

• USERS: a list of user names

• ROLES: a list of (r, vr) pairs containing role names and

version numbers

• FILES: a list of (fn, vfn) pairs containing file names and

version numbers

• FS: the set of tuples (RK, FK, or F) stored on the filestore

3) Request:

• u, p for whether user u has permission p

4) Queries:

• RK returns whether a user is in a role. Note that we do

not verify the validity of the encrypted keys because the

encryption is performed by the trusted admin, and the

signature ensures integrity.

RK(u, r) � ∃(c, sig).(〈RK, u, (r, vr), c, sig〉 ∈ FS

∧ sig = SignIBS
SU (〈RK, u, (r, vr), c〉))

Checking RK requires one instance of VerIBS.

• FK returns whether a role has a permission for the latest

version of a file. As is the case RK, we do not need to

verify the validity of the encrypted key.

FK(r, 〈fn, op〉) � ∃(c, sig).(
〈FK, r, 〈fn, op〉, vfn, c, SU, sig〉 ∈ F

∧ sig = SignIBS
SU (〈FK, r, 〈fn, op〉, vr, c, SU〉))

Checking FK requires one instance of VerIBS.

• Role(r) � ∃v.((r, v) ∈ ROLES)
• auth returns whether a user has a permission.

auth(u, p) � ∃r.(RK(u, r) ∧ FK(r, p))

Checking auth requires two instances of VerIBS.

5) Labels: The labels used in this system are simply the

operations in Fig. 2.

B. Implementing RBAC0 using IBE/IBS

Because our IBE/IBS system uses versioning to handle

revocation, assigning and then revoking a user/permission will

not result in the same state as if the user/permission were never

assigned. However, it will result in the same set of users having

access to the latest versions of the same files, so the results of

authorization requests will not be changed. We consider such

states, which are equal except for differences in versioning, to

be congruent, and represent this with the ∼= relation. We also

say that state mappings σ and σ′ are congruent if σ(x) ∼= σ′(x)
for all states x.

The definition of correctness from [36] requires that α
preserves σ, which means the following: For all n ∈ N, states

x0, and labels �1, . . . , �n, let y0 = σ(x0), xi = next(xi−1, �i)
for i = 1, . . . , n, and yi = terminal(yi−1, α(yi−1, �i)) for

i = 1, . . . , n. Then α preserves σ means that yi = σ(xi) for

all i = 1, . . . , n.

We cannot achieve this in our system because of version

numbers, e.g., if �1 assigns a user to a role and then �2 revokes

that user from the role, x2 will be equal to x0 (and thus σ(x2)
will be equal to σ(x0)), but y2 will have version numbers

different from y0. Thus instead we will show that yi ∼= σ(xi)
for all i = 1, . . . , n, which we define as α congruence-
preserves σ.

In [27], α preserves σ is defined as

σ
(
next

(
x, �

))
= terminal

(
σ(x), α

(
σ(x), �

))
(1)

for every state x and label �. This implies the definition from

[36] by the following inductive argument:

Proof: By definition, y0 = σ(x0). Now assume that yi =
σ(xi). Then by Eq. (1),

yi+1 = terminal
(
yi, α

(
yi, �i+1

))

= terminal
(
σ(xi), α

(
σ(xi), �i+1

))

= σ
(
next

(
xi, �i+1

))
= σ

(
xi+1

)
.

However, an analogous proof with congruence instead of

equality does not work because we cannot substitute σ(xi) for

yi if they are not equal. Thus

σ
(
next

(
x, �

)) ∼= terminal
(
σ(x), α

(
σ(x), �

))

does not imply that α congruence-preserves σ. This may occur,

for instance, if one of the IBE/IBS labels does not work

correctly when multiple versions of a file are present.

Instead we will show that

σ′
(
next

(
x, �

)) ∼= terminal
(
σ′(x), α

(
σ′(x), �

))
(2)

for all states x, labels �, and state mappings σ′ congruent to σ.

This proves that α congruence-preserves σ by the following

inductive argument:

Proof: By definition, y0 ∼= σ(x0). Now assume that yi ∼=
σ(xi). Let σ∗ be the state mapping equivalent to σ except
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that σ∗(xi) = yi. Since σ∗(x) = σ(x) for all x �= xi and

σ∗(xi) ∼= σ(xi), σ
∗ ∼= σ. Thus by Eq. (2),

yi+1 = terminal
(
yi, α

(
yi, �i+1

))

= terminal
(
σ∗(xi), α

(
σ∗(xi), �i+1

))

∼= σ∗
(
next

(
xi, �i+1

))
= σ∗(xi+1

) ∼= σ
(
xi+1

)
.

If we have an implementation 〈α, σ, π〉 such that α
congruence-preserves σ and σ preserves π, we say that the

implementation is congruence-correct.
Theorem 3: There exists an implementation 〈α, σ, π〉 of

RBAC0 using IBE and IBS where:

• α congruence-preserves σ and preserves safety

• σ preserves π
• π is AC-preserving

Thus there exists a congruence-correct, AC-preserving, safe

implementation of RBAC0 using IBE and IBS.

Proof:
The notation and conventions used here are listed in

Section IV-C2.

1) State mapping σ:
For each u ∈ U ∪ {SU}:

• Add u to USERS.

• Generate ku ← KeyGenIBE(u) and su ←
KeyGenIBS(u).

Let FS = {}.
Let ROLES and FILES be blank.

Run MSKGenIBE(m) to get IBE system parameters and

master secret key msk.

Run MSKGenIBS(m) to get IBS system parameters and

master secret key msk′.
For each R(r) ∈M :

• Add (r, 1) to ROLES.

• Let FS = FS ∪ {〈RK, SU , (r, 1),

EncIBE
SU

(
KeyGenIBE

msk((r, 1)),KeyGenIBS
msk′((r, 1))

)
,

SignIBS
SU 〉}.

For each P (fn) ∈M where fn is the name of file f :

• Add (fn, 1) to FILES.

• Produce a symmetric key k = GenSym(m).
• Let FS = FS∪{〈F, fn, 1,EncSymk (f), SU,SignIBS

SU 〉}.
• Let FS = FS ∪ {〈FK, SU , 〈fn,RW〉, 1, EncIBE

SU (k),
SU , SignIBS

SU 〉}.
For each UR(u, r) ∈M :

• Find 〈RK, SU, (r, 1), c, sig〉 ∈ FS.

• Let FS = FS ∪ {〈RK, SU , (r, 1),

EncIBE
u

(
DecIBE

kSU
(c)

)
, SignIBS

SU 〉}.
For each PA(r, 〈fn, op〉):

• Find 〈FK, SU, 〈fn,RW〉, 1, c, SU, sig〉.
• Let FS = FS ∪ {〈FK, (r, 1), 〈fn, op〉, 1,

EncIBE
(r,1)

(
DecIBE

kSU
(c)

)
, SU , SignIBS

SU 〉}.
output(FS,ROLES, FILES)

2) Query mapping π:

πUR(u,r)(T ) = RK(u, r) ∈ T

πPA(r,p)(T ) = FK(r, p) ∈ T

πR(r)(T ) = Role(r) ∈ T

πauth(u,p)(T ) = auth(u, p) ∈ T

The query mapping π is AC-preserving because it maps

auth(u, p) to TRUE for theory T if and only if T contains

auth(u, p).
3) σ preserves π: This means that for every RBAC0 state

x, Th(x) = π(Th(σ(x))). To prove this, we show that for

each RBAC0 state x and query q, x � q if and only if

πq(Th(σ(x))) = TRUE.

We consider each type of query separately.

• UR: If x � UR(u, r) then UR(u, r) ∈ Th(x),
meaning that in x, 〈u, r〉 ∈ UR. Thus in σ(x),
vr = 1 and ∃(c, sig).(〈RK, u, (r, 1), c, sig〉 ∈ FS ∧
sig = SignIBS

SU (〈RK, u, (r, vr), c〉)). Hence RK(u, r) ∈
Th(σ(x)), so πUR(u,r)(Th(σ(x))) = TRUE.
If x � UR(u, r) then UR(u, r) /∈ Th(x), mean-

ing that in x, 〈u, r〉 /∈ UR. Thus in σ(x), vr =
1 and �(c, sig).(〈RK, u, (r, 1), c, sig〉 ∈ FS). Hence

RK(u, r) /∈ Th(σ(x)), so πUR(u,r)(Th(σ(x))) =
FALSE.

• PA: If x � PA(r, p) with p = 〈fn, op〉,
then PA(r, p) ∈ Th(x), meaning that in x,

〈r, p〉 ∈ PA. Thus in σ(x), vfn = 1 and

∃(c, sig).(〈FK, r, 〈fn, op〉, vfn, c, SU, sig〉 ∈ FS ∧
sig = SignIBS

SU (〈FK, r, 〈fn, op〉, vfn, c, SU〉)). Hence

FK(r, p) ∈ Th(σ(x)), so πPA(r,p)(Th(σ(x))) = TRUE.
If x � PA(r, p) with p = 〈fn, op〉, then

PA(r, p) /∈ Th(x), meaning that in x,

〈r, p〉 /∈ PA. Thus in σ(x), vfn = 1 and

�(c, sig).(〈FK, r, 〈fn, op〉, vfn, c, SU, sig〉 ∈ FS).
Hence FK(r, p) /∈ Th(σ(x)), so πPA(r,p)(Th(σ(x))) =
FALSE.

• R: If x � R(r) then R(r) ∈ Th(x), meaning that in x,

r ∈ R. Thus in σ(x), (r, 1) ∈ ROLES. Hence Role(r) ∈
Th(σ(x)), so πR(r)(Th(σ(x))) = TRUE.
If x � R(r), then R(r) /∈ Th(x), meaning that in x, r /∈
R. Thus in σ(x), �v.((r, v) ∈ ROLES). Hence Role(r) /∈
Th(σ(x)), so πR(r)(Th(σ(x))) = FALSE.

• auth: If x � auth(u, p) then auth(u, p) ∈ Th(x), so

there exists r such that UR(u, r) ∈ Th(x) ∧ PA(r, p) ∈
Th(x). Since σ preserves π for UR and PA queries,

RK(u, r) ∈ Th(σ(x)) ∧ FK(r, p) ∈ Th(σ(x)). Hence

auth(u, p) ∈ Th(σ(x)), so πauth(u,p)(Th(σ(x))) =
TRUE.
If x � auth(u, p) then auth(u, p) /∈ Th(x), so

�r.(UR(u, r) ∈ Th(x) ∧ PA(r, p) ∈ Th(x)). Since σ
preserves π for UR and PA queries, �r.(RK(u, r) ∈
Th(σ(x))∧FK(r, p) ∈ Th(σ(x))). Hence auth(u, p) /∈
Th(σ(x)), so πauth(u,p)(Th(σ(x))) = FALSE.

4) Label mapping α: The label mapping α simply maps

any RBAC0 label, regardless of the state, to the IBE/IBS label
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of the same name found in Fig. 2. The only difference is that

in IBE/IBS, addP takes as input a filename and file instead

of a permission and delP takes as input a filename instead of

a permission.

5) α congruence-preserves σ: We consider each type of

RBAC0 label separately. We let σ′ be a state mapping congru-

ent to σ and let x′ = next(x, �) be the result of executing label

� in state x. While key generation and encryption algorithms

are normally randomized, for determining equality of states

we assume that they are deterministic.

• addU: If � is an instance of addU(u), then x′ = x∪U(u).
Thus

σ′(x′) = σ′(x ∪ U(u)
)
= σ′(x) ∪ USERS(u)

= next
(
σ′(x), addU(u)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• delU: If � is an instance of delU(u), then x′ =
x \ (U(u) ∪ {UR(u, r) | UR(u, r) ∈ x}). Let T =
{(r, c, sig) | 〈RK, u, (r, vr), c, sig〉 ∈ FS} and T ′ = {r |
∃(c, sig).((r, c, sig) ∈ T )}. Let {r1, r2, . . . , rn} be the

elements of T ′ in arbitrary order. Then

σ′(x′) = σ′(x \ (U(u) ∪ {UR(u, r) | UR(u, r) ∈ x}))

= σ′(x) \ USERS(u)

\ {FS
(〈RK, u, (r, vr), c, sig〉

) | (r, c, sig) ∈ T
}

∼= terminal
(
σ′(x) \ USERS(u),

revokeU(u, r1) ◦ revokeU(u, r2)
◦ · · · ◦ revokeU(u, rn)

)

= next
(
σ′(x), delU(u)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• addR: If � is an instance of addR(r), then x′ = x∪R(r).
Thus

σ′(x′) = σ′(x ∪R(r)
)

= σ′(x) ∪ ROLES(r, 1) ∪ FS
(〈

RK, SU, (r, 1),

EncIBE
SU

(
KeyGenIBE

msk((r, 1)),

KeyGenIBS
msk′((r, 1))

)
,SignIBS

SU

〉)

= next
(
σ′(x), addR(r)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• delR: If � is an instance of delR(r), then x′ = x\(R(r)∪
{UR(u, r) | UR(u, r) ∈ x} ∪ {PA(r, p) | PA(r, p) ∈
x}). Let T = {(u, c, sig) | 〈RK, u, (r, vr), c, sig〉 ∈
FS} and F = {fn | ∃(op, vfn, cfn, sig).(〈FK, (r, vr),
〈fn, op〉, vfn, cfn, SU , sig〉 ∈ FS)}. For each fn ∈ F ,

let Tfn = {(op′, v, cv, sig) | 〈FK, (r, vr), 〈fn, op′〉, v,

cv, SU , sig〉 ∈ FS}. Let {fn1, fn2, . . . , fnn} be the

elements of F in arbitrary order. Then

σ′(x′) = σ′(x \ (R(r) ∪ {UR(u, r) | UR(u, r) ∈ x}
∪ {PA(r, p) | PA(r, p) ∈ x})

= σ′(x) \ROLES(r, vr) \
{
FS

(〈RK, u, (r, vr),
c, sig〉) | (u, c, sig) ∈ T

} \ {FS
(〈FK, (r, vr),

〈fn, op′〉, v, cv, SU, sig〉
) | (fn ∈ F

∧ (op′, v, cv, sig) ∈ Tfn

)}

∼= terminal
(
σ′(x) \ROLES(r, vr)

\ {FS
(〈RK, u, (r, vr), c, sig〉

) | (u, c, sig) ∈ T
}
,

revokeP
(
r, 〈fn1,RW〉

) ◦ revokeP (
r, 〈fn2,RW〉

)

◦ · · · ◦ revokeP (
r, 〈fnn,RW〉

))

= next
(
σ′(x), delR(r)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• addP: If � is an instance of addP (p) with p = 〈fn, op〉
and fn the name of file f , then x′ = x ∪ P (p). Thus for

k ← GenSym(m),

σ′(x′) = σ′(x ∪ P (p)
)

= σ′(x) ∪ FILES(fn, 1)

∪ FS
(〈

F, fn, 1,EncSymk (f)
〉)
∪ FS

(〈
FK, SU,

〈fn,RW〉, 1,EncIBE
SU (k), SU,SignIBS

SU

〉)

= next
(
σ′(x), addP (fn, f)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• delP: If � is an instance of delP (p) with p = 〈fn, op〉,
then x′ = x \ (P (p) ∪ {PA(r, p) | PA(r, p) ∈ x}).
Let T = {(v, c) | 〈F, fn, v, c〉 ∈ FS} and T ′ =
{(r, op′, v, c′, id, sig) | 〈FK, r, 〈fn, op′〉, v, c′, id, sig〉 ∈
FS}. Then

σ′(x′) = σ′(x \ (P (p) ∪ {PA(r, p) | PA(r, p) ∈ x}))

= σ′(x) \ FILES(fn, vfn)

\ {FS
(〈F, fn, v, c〉) | (v, c) ∈ T

}

\ {FS
(〈FK, r, 〈fn, op′〉, v, c′, id, sig〉) | (r, op′,

v, c′, id, sig) ∈ T
}

= next
(
σ′(x), delP (fn)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• assignU: If � is an instance of assignU(u, r), then x′ =
x ∪ UR(u, r). Thus for 〈RK, SU, (r, 1), c, sig〉 ∈ FS in

σ′(x),

σ′(x′) = σ′(x ∪ UR(u, r)
)

= σ′(x) ∪ FS
(〈

RK, SU, (r, 1),

EncIBE
u

(
DecIBE

kSU
(c)

)
,SignIBS

SU

〉)

= next
(
σ′(x), assignU(u, r)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• revokeU: If � is an instance of revokeUser(u, r), then

x′ = x\UR(u, r). Let k(r,vr+1) ← KeyGenIBE((r,vr+

1)) and s(r,vr+1) ← KeyGenIBS((r,vr + 1)). Let T =
{(u′, cu′ , sig) | 〈RK, u′, (r, vr), cu′ , sig〉 ∈ FS} and
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F = {fn | ∃(op, vfn, cfn, sig).(〈FK, (r, vr), 〈fn, op〉,
vfn, cfn, SU , sig〉 ∈ FS). For each fn ∈ F , let

kfn ← GenSym, Tfn = {(op′, v, cv, sig) | 〈FK,

(r, vr), 〈fn, op′〉, v, cv, SU , sig〉 ∈ FS} and T ′
fn =

{id, op′, cid, sig) | 〈FK, id, 〈fn, op′〉, vfn, cid, SU ,

sig〉 ∈ FS}. Then

σ′(x′) = σ′(x \ UR(u, r)
)

= σ′(x) \ {FS
(〈RK, u, (r, vr), cu,

sig〉) | (u, cu, sig) ∈ T
}

∼= σ′(x) \ {FS
(〈RK, u′, (r, vr), cu′ ,

sig〉) | (u′, cu′ , sig) ∈ T
}

∪
{
FS

(〈
RK, u′, (r, vr),EncIBE

u′
(
k(r,vr+1), s(r,vr+1)

)
,

SignIBS
SU

〉)
| (u′, cu′ , sig) ∈ T ∧ u′ �= u

}

\ {FS
(〈FK, (r, vr), 〈fn, op′〉, v, cv,

SU, sig〉) | fn ∈ F ∧ (op′, v, cv, sig) ∈ Tfn

}

∪
{
FS

(〈
FK, (r, vr + 1), 〈fn, op′〉, v,

EncIBE
(r,vr+1)

(
DecIBE

k(r,vr)
(cv)

)
, SU,

SignIBS
SU

〉)
| fn ∈ F ∧ (op′, v, cv, sig) ∈ Tfn

}

∪
{
FS

(〈
FK, id, 〈fn, op′〉, vfn + 1,EncIBE

id (k′p),

SU,SignIBS
SU

〉)
| fn ∈ F ∧ (id, cid, sig) ∈ T ′

fn

}

∪ {
FILES(fn, vfn + 1) | fn ∈ F

}

\ {FILES(fn, vfn) | fn ∈ F
}

∪ ROLES(r, vr + 1) \ ROLES(r, vr)

= next
(
σ′(x), revokeU(u, r)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• assignP: If � is an instance of assignP (r, p) with p =
〈fn, op〉, then x′ = x ∪ PA(r, p). We have two cases

where assignP (r, p) has an effect on x:

– If op = RW and there exists 〈FK, (r, vr), 〈fn,Read〉,
vfn, c, SU , sig〉, then let T = {(v, cv, sig) |
〈FK, (r, vr), 〈fn,Read〉, v, cv, SU, sig〉 ∈ FS}. Then

σ′(x′) = σ′(x ∪ PA(r, p)
)

= σ′(x) \ {FS
(〈FK, (r, vr), 〈fn,Read〉, v, cv,

SU, sig〉) | (v, cv, sig) ∈ T
}

∪ {
FS

(〈
FK, (r, vr), 〈fn,RW〉, v, cv, SU,

SignIBS
SU

〉)
| (v, cv, sig) ∈ T

}

= next
(
σ′(x), assignP (r, p)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

– If there does not exist 〈FK, (r, vr), 〈fn, op′〉,
vfn, c, SU , sig〉, then let T = {(v, cv) |
∃(id, sig).(〈FK, SU, 〈fn,RW〉, v, cv, id, sig〉 ∈ FS)}.
Then

σ′(x′) = σ′(x ∪ PA(r, p)
)

= σ′(x) ∪
{
FS

(〈
FK, (r, vr), 〈fn, op〉, v,

EncIBE
(r,vr)

(
DecIBE

kSU
(cv)

)
, SU,

SignIBS
SU

〉)
| (v, cv) ∈ T

}

= next
(
σ′(x), assignP (r, p)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

• revokeP: If � is an instance of revokeP (r, p) with p =
〈fn, op〉, then x′ = x \ PA(r, p).

– If op = Write, then let T = {(v, cv, sig) |
〈FK, (r, vr), 〈fn,RW〉, v, cv, SU, sig〉 ∈ FS}. Then

σ′(x′) = σ′(x \ PA(r, p)
)

= σ′(x) \ {FS
(〈FK, (r, vr), 〈fn,RW〉, v, cv,

SU, sig〉) | (v, cv, sig) ∈ T
}

∪
{
FS

(〈
FK, (r, vr), 〈fn,Read〉, v, cv, SU,

SignIBS
SU

〉)
| (v, cv, sig) ∈ T

}

= next
(
σ′(x), assignP (r, p)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

– If op = Read, then let k′ ← GenSym, T =
{(op′, v, cv, sig) | 〈FK, (r, vr), 〈fn, op′〉, v, cv, SU ,

sig〉 ∈ FS}, and T ′ = {(id, op′) | id �= r ∧
∃(cid, sig).(〈FK, id, 〈fn, op′〉, vfn, cid, SU , sig〉 ∈
FS)}. Then

σ′(x′) = σ′(x \ PA(r, p)
)

= σ′(x) \ {FS
(〈FK, (r, vr), 〈fn, op′〉, v, cv,

SU, sig〉) | (op′, v, cv, sig) ∈ T
}

∼= σ′(x) \ {FS
(〈FK, (r, vr), 〈fn, op′〉, v, cv,

SU, sig〉) | (op′, v, cv, sig) ∈ T
}

∪
{
FS

(〈
FK, id, 〈fn, op′〉, vfn + 1,

EncIBE
id (k′), SU,SignIBS

SU

〉)
| (id, op′) ∈ T

}

∪ FILES(fn, vfn + 1) \ FILES(fn, vfn)

= next
(
σ′(x), assignP (r, p)

)

= terminal
(
σ′(x), α(σ′(x), �)

)
.

6) Safety: The label mapping α is safe by inspection—for

any RBAC0 state x and label �, the IBE/IBS label α(σ(x), �)
never revokes or grants authorizations except the images of

those that are revoked or granted by �.
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